File size: 8,552 Bytes
0eea40c
 
 
 
 
6e4e8bd
0eea40c
6e4e8bd
0eea40c
 
 
 
 
 
 
 
bfdf63c
8aacc82
21b4001
8a819df
7b40d93
 
 
 
 
 
 
 
 
8aacc82
 
85801c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eea40c
 
3141aad
0eea40c
 
 
 
21b4001
0eea40c
 
 
21b4001
 
0eea40c
 
 
 
 
 
 
 
 
 
 
 
 
3141aad
0eea40c
 
 
 
 
f94181f
0eea40c
 
 
 
 
f94181f
0eea40c
 
 
f94181f
0eea40c
 
 
f94181f
0eea40c
 
 
 
 
f94181f
0eea40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94181f
0eea40c
 
 
f94181f
 
 
 
 
0eea40c
 
 
f94181f
0eea40c
 
 
 
 
f94181f
 
 
 
 
0eea40c
 
 
 
 
f94181f
 
 
 
0eea40c
 
 
f94181f
0eea40c
 
 
 
 
f94181f
 
 
 
 
 
 
0eea40c
 
 
f94181f
0eea40c
 
 
f94181f
0eea40c
 
 
 
 
 
 
 
 
 
 
 
 
8a819df
0eea40c
 
 
 
 
 
 
 
 
f94181f
0eea40c
 
 
f94181f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141aad
 
 
8aacc82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids: []
paperswithcode_id: acronym-identification
pretty_name: Acronym Identification Dataset
train-eval-index:
- config: default
  task: token-classification
  task_id: entity_extraction
  splits:
    eval_split: test
  col_mapping:
    tokens: tokens
    labels: tags
tags:
- acronym-identification
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: labels
    sequence:
      class_label:
        names:
          0: B-long
          1: B-short
          2: I-long
          3: I-short
          4: O
  splits:
  - name: test
    num_bytes: 987728
    num_examples: 1750
  - name: train
    num_bytes: 7792803
    num_examples: 14006
  - name: validation
    num_bytes: 952705
    num_examples: 1717
  download_size: 8556464
  dataset_size: 9733236
---

# Dataset Card for Acronym Identification Dataset

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://sites.google.com/view/sdu-aaai21/shared-task
- **Repository:** https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI
- **Paper:** [What Does This Acronym Mean? Introducing a New Dataset for Acronym Identification and Disambiguation](https://arxiv.org/pdf/2010.14678v1.pdf)
- **Leaderboard:** https://competitions.codalab.org/competitions/26609
- **Point of Contact:** [More Information Needed]

### Dataset Summary

This dataset contains the training, validation, and test data for the **Shared Task 1: Acronym Identification** of the AAAI-21 Workshop on Scientific Document Understanding.

### Supported Tasks and Leaderboards

The dataset supports an `acronym-identification` task, where the aim is to predic which tokens in a pre-tokenized sentence correspond to acronyms. The dataset was released for a Shared Task which supported a [leaderboard](https://competitions.codalab.org/competitions/26609).

### Languages

The sentences in the dataset are in English (`en`).

## Dataset Structure

### Data Instances

A sample from the training set is provided below:

```
{'id': 'TR-0',
 'labels': [4, 4, 4, 4, 0, 2, 2, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4],
 'tokens': ['What',
  'is',
  'here',
  'called',
  'controlled',
  'natural',
  'language',
  '(',
  'CNL',
  ')',
  'has',
  'traditionally',
  'been',
  'given',
  'many',
  'different',
  'names',
  '.']}
```

Please note that in test set sentences only the `id` and `tokens` fields are available. `labels` can be ignored for test set. Labels in the test set are all `O`

### Data Fields

The data instances have the following fields:

- `id`: a `string` variable representing the example id, unique across the full dataset
- `tokens`: a list of `string` variables representing the word-tokenized sentence
- `labels`: a list of `categorical` variables with possible values `["B-long", "B-short", "I-long", "I-short", "O"]` corresponding to a BIO scheme. `-long` corresponds to the expanded acronym, such as *controlled natural language* here, and `-short` to the abbrviation, `CNL` here.

### Data Splits

The training, validation, and test set contain `14,006`, `1,717`, and `1750` sentences respectively.

## Dataset Creation

### Curation Rationale

> First, most of the existing datasets for acronym identification (AI) are either limited in their sizes or created using simple rule-based methods.
> This is unfortunate as rules are in general not able to capture all the diverse forms to express acronyms and their long forms in text.
> Second, most of the existing datasets are in the medical domain, ignoring the challenges in other scientific domains.
> In order to address these limitations this paper introduces two new datasets for Acronym Identification.
> Notably, our datasets are annotated by human to achieve high quality and have substantially larger numbers of examples than the existing AI datasets in the non-medical domain. 

### Source Data

#### Initial Data Collection and Normalization

> In order to prepare a corpus for acronym annotation, we collect a corpus of 6,786 English papers from arXiv.
> These papers consist of 2,031,592 sentences that would be used for data annotation for AI in this work.

The dataset paper does not report the exact tokenization method.

#### Who are the source language producers?

The language was comes from papers hosted on the online digital archive [arXiv](https://arxiv.org/). No more information is available on the selection process or identity of the writers.

### Annotations

#### Annotation process

> Each sentence for annotation needs to contain at least one word in which more than half of the characters in are capital letters (i.e., acronym candidates).
> Afterward, we search for a sub-sequence of words in which the concatenation of the first one, two or three characters of the words (in the order of the words in the sub-sequence could form an acronym candidate.
> We call the sub-sequence a long form candidate. If we cannot find any long form candidate, we remove the sentence.
> Using this process, we end up with 17,506 sentences to be annotated manually by the annotators from Amazon Mechanical Turk (MTurk).
> In particular, we create a HIT for each sentence and ask the workers to annotate the short forms and the long forms in the sentence.
> In case of disagreements, if two out of three workers agree on an annotation, we use majority voting to decide the correct annotation.
> Otherwise, a fourth annotator is hired to resolve the conflict

#### Who are the annotators?

Workers were recruited through Amazon MEchanical Turk and paid $0.05 per annotation. No further demographic information is provided.

### Personal and Sensitive Information

Papers published on arXiv are unlikely to contain much personal information, although some do include some poorly chosen examples revealing personal details, so the data should be used with care.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

Dataset provided for research purposes only. Please check dataset license for additional information.

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The dataset provided for this shared task is licensed under CC BY-NC-SA 4.0 international license.

### Citation Information

```
@inproceedings{Veyseh2020,
  author    = {Amir Pouran Ben Veyseh and
               Franck Dernoncourt and
               Quan Hung Tran and
               Thien Huu Nguyen},
  editor    = {Donia Scott and
               N{\'{u}}ria Bel and
               Chengqing Zong},
  title     = {What Does This Acronym Mean? Introducing a New Dataset for Acronym
               Identification and Disambiguation},
  booktitle = {Proceedings of the 28th International Conference on Computational
               Linguistics, {COLING} 2020, Barcelona, Spain (Online), December 8-13,
               2020},
  pages     = {3285--3301},
  publisher = {International Committee on Computational Linguistics},
  year      = {2020},
  url       = {https://doi.org/10.18653/v1/2020.coling-main.292},
  doi       = {10.18653/v1/2020.coling-main.292}
}
```

### Contributions

Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.