File size: 5,366 Bytes
0261d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7112048
0261d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Kinyarwanda and Kirundi news classification datasets."""


import csv
import os

import datasets


_CITATION = """\
@article{niyongabo2020kinnews,
  title={KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi},
  author={Niyongabo, Rubungo Andre and Qu, Hong and Kreutzer, Julia and Huang, Li},
  journal={arXiv preprint arXiv:2010.12174},
  year={2020}
}
"""

_DESCRIPTION = """\
Kinyarwanda and Kirundi news classification datasets
"""

_HOMEPAGE = "https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus"
_LICENSE = "MIT License"

_URLs = {
    "kinnews": "https://github.com/saradhix/kinnews_kirnews/raw/master/KINNEWS.zip",
    "kirnews": "https://github.com/saradhix/kinnews_kirnews/raw/master/KIRNEWS.zip",
}


class KinnewsKirnews(datasets.GeneratorBasedBuilder):
    """This is Kinyarwanda and Kirundi news dataset called KINNEWS and KIRNEWS."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="kinnews_raw", description="Dataset for Kinyarwanda language"),
        datasets.BuilderConfig(name="kinnews_cleaned", description="Cleaned dataset for Kinyarwanda language"),
        datasets.BuilderConfig(name="kirnews_raw", description="Dataset for Kirundi language"),
        datasets.BuilderConfig(name="kirnews_cleaned", description="Cleaned dataset for Kirundi language"),
    ]
    class_labels = [
        "politics",
        "sport",
        "economy",
        "health",
        "entertainment",
        "history",
        "technology",
        "tourism",
        "culture",
        "fashion",
        "religion",
        "environment",
        "education",
        "relationship",
    ]
    label_columns = {"kinnews_raw": "kin_label", "kirnews_raw": "kir_label"}

    def _info(self):
        if "raw" in self.config.name:
            features = datasets.Features(
                {
                    "label": datasets.ClassLabel(names=self.class_labels),
                    self.label_columns[self.config.name]: datasets.Value("string"),
                    "en_label": datasets.Value("string"),
                    "url": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "content": datasets.Value("string"),
                }
            )
        else:
            features = datasets.Features(
                {
                    "label": datasets.ClassLabel(names=self.class_labels),
                    "title": datasets.Value("string"),
                    "content": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        lang, kind = self.config.name.split("_")
        data_dir = dl_manager.download_and_extract(_URLs[lang])
        lang_dir = lang.upper()

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, lang_dir, kind, "train.csv"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(data_dir, lang_dir, kind, "test.csv"), "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""

        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(
                csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
            )
            next(csv_reader)

            for id_, row in enumerate(csv_reader):
                if "raw" in self.config.name:
                    label, k_label, en_label, url, title, content = row
                    yield id_, {
                        "label": self.class_labels[int(label) - 1],
                        self.label_columns[self.config.name]: k_label,
                        "en_label": en_label,
                        "url": url,
                        "title": title,
                        "content": content,
                    }
                else:
                    label, title, content = row
                    yield id_, {
                        "label": self.class_labels[int(label) - 1],
                        "title": title,
                        "content": content,
                    }