File size: 3,604 Bytes
aced5d2
a13b715
 
aced5d2
a13b715
aced5d2
a13b715
aced5d2
 
a13b715
aced5d2
a13b715
aced5d2
3157f1b
a13b715
 
aced5d2
 
a13b715
aced5d2
 
 
 
 
 
a13b715
 
aced5d2
 
a13b715
 
aced5d2
 
 
 
 
a13b715
 
 
 
 
 
 
aced5d2
a13b715
aced5d2
a13b715
 
aced5d2
 
 
 
 
 
 
 
 
a13b715
 
 
 
 
 
aced5d2
a13b715
 
 
 
 
aced5d2
 
 
a13b715
aced5d2
 
a13b715
aced5d2
 
 
a13b715
 
aced5d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Loading script for the Telugu-English Codeswitch Transliterate dataset
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """ """

_DESCRIPTION = """Telugu English POS Codeswitch dataset.
               """

_HOMEPAGE = """https://zenodo.org/record/4762031"""

_URL = "https://huggingface.co/datasets/anishka/CodeSwitching-TE-EN/resolve/main/"
_TRAINING_FILE = "TE_EN.conllu"


class TeEnCodeSwitchConfig(datasets.BuilderConfig):
    """ Builder config for the Ancora Ca NER dataset """

    def __init__(self, **kwargs):
        """BuilderConfig for TeEnCodeSwitch.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(TeEnCodeSwitchConfig, self).__init__(**kwargs)


class TeEnCodeSwitch(datasets.GeneratorBasedBuilder):
    """ Te-En-CodeSwitch dataset."""

    BUILDER_CONFIGS = [
        TeEnCodeSwitchConfig(
            name="Te-En-CodeSwitch",
            version=datasets.Version("0.0.1"),
            description="Te-En-CodeSwitch dataset"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-LOC",
                                "B-MISC",
                                "B-ORG",
                                "B-PER",
                                "I-LOC",
                                "I-MISC",
                                "I-ORG",
                                "I-PER",
                                "O"
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        print ("Downloading files: ")
        print (urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # TeEnCodeSwitch tokens are space separated
                    splits = line.split('\t')
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }