File size: 5,365 Bytes
627b999
a13b715
 
9122c6a
a13b715
9122c6a
a13b715
627b999
 
 
 
 
 
 
 
 
 
 
9122c6a
a13b715
627b999
a13b715
9122c6a
ede8d6b
 
 
a13b715
 
627b999
9122c6a
a13b715
9122c6a
627b999
9122c6a
 
 
627b999
a13b715
 
627b999
 
a13b715
 
627b999
 
 
 
9122c6a
a13b715
 
 
 
 
 
 
c3de774
 
ede8d6b
a13b715
 
ddd15c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13b715
 
 
c3de774
a13b715
 
 
9122c6a
a13b715
 
 
 
 
9122c6a
 
 
 
 
a13b715
60430f6
9122c6a
 
 
 
 
a13b715
 
627b999
 
 
 
c3de774
627b999
 
 
 
c3de774
 
ede8d6b
c3de774
627b999
 
 
c3de774
9122c6a
627b999
 
c3de774
 
627b999
 
c3de774
 
ede8d6b
c3de774
627b999
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Loading script for the Ancora NER dataset. 
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """ """

_DESCRIPTION = """AnCora Catalan NER.
                  This is a dataset for Named Eentity Reacognition (NER) from Ancora corpus adapted for 
                  Machine Learning and Language Model evaluation purposes.
                  Since multiwords (including Named Entites) in the original Ancora corpus are aggregated as 
                  a single lexical item using underscores (e.g. "Ajuntament_de_Barcelona") 
                  we splitted them to align with word-per-line format, and added conventional Begin-Inside-Outside (IOB)
                   tags to mark and classify Named Entites. 
                   We did not filter out the different categories of NEs from Ancora (weak and strong). 
                   We did 6 minor edits by hand.
                  AnCora corpus is used under [CC-by] (https://creativecommons.org/licenses/by/4.0/) licence.
                  This dataset was developed by BSC TeMU as part of the AINA project, and to enrich the Catalan Language Understanding Benchmark (CLUB).
               """

_HOMEPAGE = """https://zenodo.org/record/4762031"""

_URL = "https://huggingface.co/datasets/anishka/CodeSwitching-TE-EN/resolve/main/"
_TRAINING_FILE = "te_en-code_switch-train.conllu"
_DEV_FILE = "te_en-code_switch-dev.conllu"
_TEST_FILE = "te_en-code_switch-test.conllu"


class AncoraCaNerConfig(datasets.BuilderConfig):
    """ Builder config for the Ancora Ca NER dataset """

    def __init__(self, **kwargs):
        """BuilderConfig for AncoraCaNer.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(AncoraCaNerConfig, self).__init__(**kwargs)


class AncoraCaNer(datasets.GeneratorBasedBuilder):
    """ AncoraCaNer dataset."""

    BUILDER_CONFIGS = [
        AncoraCaNerConfig(
            name="AncoraCaNer",
            version=datasets.Version("2.0.0"),
            description="AncoraCaNer dataset"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "idx": datasets.Value("string"),
                    "text": datasets.Sequence(datasets.Value("string")),
                    "upos": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "NOUN",
                                "PUNCT",
                                "ADP",
                                "NUM",
                                "SYM",
                                "SCONJ",
                                "ADJ",
                                "PART",
                                "DET",
                                "CCONJ",
                                "PROPN",
                                "PRON",
                                "X",
                                "_",
                                "ADV",
                                "INTJ",
                                "VERB",
                                "AUX",
                            ]
                        )
                    ),
                    "xpos": datasets.Sequence(datasets.Value("string")),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            pos_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n" or line.startswith("#"):
                    if tokens:
                        yield guid, {
                            "idx": str(guid),
                            "text": tokens,
                            "upos": pos_tags,
                            "xpos": pos_tags,
                        }
                        guid += 1
                        tokens = []
                        pos_tags = []
                else:
                    # AncoraCaNer tokens are space separated
                    splits = line.split('\t')
                    tokens.append(splits[1])
                    pos_tags.append(splits[3].rstrip())
            # last example
            yield guid, {
                "idx": str(guid),
                "text": tokens,
                "upos": pos_tags,
                "xpos": pos_tags,
            }