# Loading script for the Telugu-English Codeswitch Transliterate dataset import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """Telugu English POS Codeswitch dataset. """ _HOMEPAGE = "" _URL = "https://huggingface.co/datasets/anishka/CodeSwitching-TE-EN/blob/main/" _TRAINING_FILE = "TWT-train.conllu" _DEV_FILE = "TWT-dev.conllu" _TEST_FILE = "TWT-test.conllu" class TeEnCodeSwitchConfig(datasets.BuilderConfig): """ Builder config for the Ancora Ca NER dataset """ def __init__(self, **kwargs): """BuilderConfig for TeEnCodeSwitch. Args: **kwargs: keyword arguments forwarded to super. """ super(TeEnCodeSwitchConfig, self).__init__(**kwargs) class TeEnCodeSwitch(datasets.GeneratorBasedBuilder): """ Te-En-CodeSwitch dataset.""" BUILDER_CONFIGS = [ TeEnCodeSwitchConfig( name="Te-En-CodeSwitch", version=datasets.Version("0.0.1"), description="Te-En-CodeSwitch dataset" ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "NOUN", "PUNCT", "ADP", "NUM", "SYM", "SCONJ", "ADJ", "PART", "DET", "CCONJ", "PROPN", "PRON", "X", "_", "ADV", "INTJ", "VERB", "AUX", ] ) ), "xpos": datasets.Sequence(datasets.Value("string")), "feats": datasets.Sequence(datasets.Value("string")), "head": datasets.Sequence(datasets.Value("string")), "deprel": datasets.Sequence(datasets.Value("string")), "deps": datasets.Sequence(datasets.Value("string")), "misc": datasets.Sequence(datasets.Value("string")), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) print ("Downloading files: ") print (urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): id = 0 for path in filepath: with open(path, "r", encoding="utf-8") as data_file: tokenlist = list(conllu.parse_incr(data_file)) for sent in tokenlist: if "sent_id" in sent.metadata: idx = sent.metadata["sent_id"] else: idx = id tokens = [token["form"] for token in sent] if "text" in sent.metadata: txt = sent.metadata["text"] else: txt = " ".join(tokens) yield id, { "idx": str(idx), "text": txt, "tokens": [token["form"] for token in sent], "lemmas": [token["lemma"] for token in sent], "upos": [token["upos"] for token in sent], "xpos": [token["xpos"] for token in sent], "feats": [str(token["feats"]) for token in sent], "head": [str(token["head"]) for token in sent], "deprel": [str(token["deprel"]) for token in sent], "deps": [str(token["deps"]) for token in sent], "misc": [str(token["misc"]) for token in sent], } id += 1