# Loading script for the Ancora NER dataset. import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """TELUGU dataset converted to Transliterate """ _HOMEPAGE = """""" _URL = "https://huggingface.co/datasets/anishka/UD_Treebank_Te_Transliterate/resolve/main/" _TRAINING_FILE = "te_tr_mtg-ud-train.conllu" _DEV_FILE = "te_tr_mtg-ud-dev.conllu" _TEST_FILE = "te_tr_mtg-ud-test.conllu" class AncoraCaNerConfig(datasets.BuilderConfig): """ Builder config for the Ancora Ca NER dataset """ def __init__(self, **kwargs): """BuilderConfig for AncoraCaNer. Args: **kwargs: keyword arguments forwarded to super. """ super(AncoraCaNerConfig, self).__init__(**kwargs) class AncoraCaNer(datasets.GeneratorBasedBuilder): """ AncoraCaNer dataset.""" BUILDER_CONFIGS = [ AncoraCaNerConfig( name="AncoraCaNer", version=datasets.Version("2.0.0"), description="AncoraCaNer dataset" ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "idx": datasets.Value("string"), "text": datasets.Sequence(datasets.Value("string")), "upos": datasets.Sequence( datasets.features.ClassLabel( names=[ "NOUN", "PUNCT", "ADP", "NUM", "SYM", "SCONJ", "ADJ", "PART", "DET", "CCONJ", "PROPN", "PRON", "X", "_", "ADV", "INTJ", "VERB", "AUX", ] ) ), "xpos": datasets.Sequence(datasets.Value("string")), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] pos_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n" or line.startswith("#"): if tokens: yield guid, { "idx": str(guid), "text": tokens, "upos": pos_tags, "xpos": pos_tags, } guid += 1 tokens = [] pos_tags = [] else: # AncoraCaNer tokens are space separated splits = line.split('\t') tokens.append(splits[1]) pos_tags.append(splits[3].rstrip()) # last example yield guid, { "idx": str(guid), "text": tokens, "upos": pos_tags, "xpos": pos_tags, }