File size: 5,008 Bytes
c614e76
 
 
 
 
 
 
 
 
 
 
 
62220c0
c614e76
 
 
 
 
fd653ea
c614e76
 
 
 
 
 
 
 
 
 
80210ab
a1e11e9
 
80210ab
a1e11e9
80210ab
 
 
 
 
 
 
 
 
a1e11e9
 
 
 
 
 
 
80210ab
a1e11e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80210ab
a1e11e9
80210ab
a1e11e9
 
 
 
80210ab
c614e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e11e9
 
c614e76
 
 
a1e11e9
 
 
 
c614e76
 
 
a1e11e9
c614e76
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
pretty_name: 'Snow Mountain'
language:
- hi
- bgc
- kfs
- dgo
- bhd
- gbk
- xnr
- kfx
- mjl
- kfo
- bfz
annotations_creators:
- ?
language_creators:
- ?
license: []
multilinguality:
- multilingual
size_categories:
- 
source_datasets:
- Snow Mountain
tags: []
task_categories:
- automatic-speech-recognition
task_ids: []
configs:
  - hi
  - bgc
dataset_info:
  - config_name: hi
    features:
      - name: Unnamed
        dtype: int64
      - name: sentence
        dtype: string
      - name: path
        dtype: string
    splits:
      - name: train_500
        num_examples: 400
      - name: val_500  
        num_examples: 100
      - name: train_1000
        num_examples: 800
      - name: val_1000
        num_examples: 200
      - name: test_common
        num_examples: 500
    dataset_size: 71.41 hrs
  - config_name: bgc
    features:
      - name: Unnamed
        dtype: int64
      - name: sentence
        dtype: string
      - name: path
        dtype: string
    splits:
      - name: train_500
        num_examples: 400
      - name: val_500  
        num_examples: 100
      - name: train_1000
        num_examples: 800
      - name: val_1000
        num_examples: 200
      - name: test_common
        num_examples: 500
    dataset_size: 27.41 hrs

---

# Dataset Card for [Dataset Name]

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain**
- **Paper:https://arxiv.org/abs/2206.01205**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription. 

We have used this dataset for experiments in ASR tasks. But these could be used for other applications in speech domain, like speaker recognition, language identification or even as unlabelled corpus for pre-training.

### Supported Tasks and Leaderboards

Atomatic speech recognition, Speaker recognition, Language identification

### Languages

Hindi, Haryanvi, Bilaspuri, Dogri, Bhadrawahi, Gaddi, Kangri, Kulvi, Mandeali, Kulvi Outer Seraji, Pahari Mahasui 

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

The Bible recordings were done in a studio setting by native speakers. 

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)


### Citation Information

@inproceedings{Raju2022SnowMD,
  title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages},
  author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew},
  year={2022}
}



### Contributions

Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.