Datasets:
File size: 5,008 Bytes
c614e76 62220c0 c614e76 fd653ea c614e76 80210ab a1e11e9 80210ab a1e11e9 80210ab a1e11e9 80210ab a1e11e9 80210ab a1e11e9 80210ab a1e11e9 80210ab c614e76 a1e11e9 c614e76 a1e11e9 c614e76 a1e11e9 c614e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
pretty_name: 'Snow Mountain'
language:
- hi
- bgc
- kfs
- dgo
- bhd
- gbk
- xnr
- kfx
- mjl
- kfo
- bfz
annotations_creators:
- ?
language_creators:
- ?
license: []
multilinguality:
- multilingual
size_categories:
-
source_datasets:
- Snow Mountain
tags: []
task_categories:
- automatic-speech-recognition
task_ids: []
configs:
- hi
- bgc
dataset_info:
- config_name: hi
features:
- name: Unnamed
dtype: int64
- name: sentence
dtype: string
- name: path
dtype: string
splits:
- name: train_500
num_examples: 400
- name: val_500
num_examples: 100
- name: train_1000
num_examples: 800
- name: val_1000
num_examples: 200
- name: test_common
num_examples: 500
dataset_size: 71.41 hrs
- config_name: bgc
features:
- name: Unnamed
dtype: int64
- name: sentence
dtype: string
- name: path
dtype: string
splits:
- name: train_500
num_examples: 400
- name: val_500
num_examples: 100
- name: train_1000
num_examples: 800
- name: val_1000
num_examples: 200
- name: test_common
num_examples: 500
dataset_size: 27.41 hrs
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain**
- **Paper:https://arxiv.org/abs/2206.01205**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription.
We have used this dataset for experiments in ASR tasks. But these could be used for other applications in speech domain, like speaker recognition, language identification or even as unlabelled corpus for pre-training.
### Supported Tasks and Leaderboards
Atomatic speech recognition, Speaker recognition, Language identification
### Languages
Hindi, Haryanvi, Bilaspuri, Dogri, Bhadrawahi, Gaddi, Kangri, Kulvi, Mandeali, Kulvi Outer Seraji, Pahari Mahasui
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
The Bible recordings were done in a studio setting by native speakers.
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)
### Citation Information
@inproceedings{Raju2022SnowMD,
title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages},
author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew},
year={2022}
}
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|