antitheft159 commited on
Commit
f074031
·
verified ·
1 Parent(s): ddabd12

Upload cybersecurity_attacks.py

Browse files
Files changed (1) hide show
  1. cybersecurity_attacks.py +245 -0
cybersecurity_attacks.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Cybersecurity Attacks
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1IaRXrO_gtRMKaHU7_IPzZJ705GonLuMV
8
+ """
9
+
10
+ import numpy as np
11
+ import pandas as pd
12
+ import plotly.express as px
13
+ import seaborn as sns
14
+ import matplotlib.pyplot as plt
15
+ import re
16
+
17
+ pd.options.display.float_format = '{:,.2f}'.format
18
+
19
+ df = pd.read_csv("/content/cybersecurity_attacks.csv")
20
+
21
+ print(f"There are {df.shape[0]}, row and {df.shape[1]} columns in the dataset")
22
+
23
+ df.columns
24
+
25
+ df.isna().sum()
26
+
27
+ df.duplicated().sum()
28
+
29
+ df['Malware Indicators'] = df['Malware Indicators'].apply(lambda x: 'No Detection' if pd.isna(x) else x)
30
+
31
+ df['Alerts/Warnings'] = df['Alerts/Warnings'].apply(lambda x: 'yes' if x == 'Alert Triggered' else 'no')
32
+
33
+ df['Prowx Information'] = df['Proxy Information'].apply(lambda x: 'No proxy' if pd.isna(x) else x)
34
+
35
+ df['Firewall Logs'] = df['Firewall Logs'].apply(lambda x: 'No Data' if pd.isna(x) else x)
36
+
37
+ df['IDS/IPS Alerts'] = df['IDS/IPS Alerts'].apply(lambda x: 'No Data' if pd.isna(x) else x)
38
+
39
+ df['Source Port'] = df['Source Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')
40
+ df['Destination Port'] = df['Destination Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')
41
+
42
+ df.isna().sum()
43
+
44
+ df['Device Information'].value_counts()
45
+
46
+ df['Browser'] = df['Device Information'].str.split('/').str[0]
47
+
48
+ df['Browser'].unique()
49
+
50
+ patterns = [
51
+ r'Windows',
52
+ r'Linux',
53
+ r'Android',
54
+ r'iPad',
55
+ r'iPhone',
56
+ r'Macintosh',
57
+ ]
58
+
59
+ def extract_device_or_os(user_agent):
60
+ for pattern in patterns:
61
+ match = re.search(pattern, user_agent, re.I)
62
+ if match:
63
+ return match.group()
64
+
65
+ return 'Unknown'
66
+
67
+ df['Device/OS'] = df['Device Information'].apply(extract_device_or_os)
68
+
69
+ df = df.drop('Device Information', axis = 1)
70
+
71
+ device_counts = df['Device/OS'].value_counts()
72
+
73
+ device_counts_df = pd.DataFrame(device_counts).reset_index()
74
+ device_counts_df.columns = ['Device/OS', 'Count of Attacks']
75
+
76
+ top_devices = device_counts_df.head(10)
77
+ print(top_devices)
78
+
79
+ plt.figure(figsize=(10, 6))
80
+ sns.barplot(x='Count of Attacks', y='Device/OS', hue='Device/OS', data=top_devices, palette='viridis', dodge=False)
81
+ plt.xlabel('Count of Attacks')
82
+ plt.ylabel('Device/OS')
83
+ plt.title('Top 10 Devices/OS Targeted by Attacks')
84
+ plt.tight_layout()
85
+ plt.show()
86
+
87
+ attack_type_counts = df['Attack Type'].value_counts()
88
+ attack_type_counts_df = pd.DataFrame(attack_type_counts).reset_index()
89
+ attack_type_counts_df.columns = ['Attack Type', 'Count of Attacks']
90
+ top_attack_types = attack_type_counts_df.head(10)
91
+ print(top_attack_types)
92
+
93
+ plt.figure(figsize=(10, 6))
94
+ sns.barplot(x='Count of Attacks', y='Attack Type', hue='Attack Type', data=top_attack_types, palette='viridis', dodge=False)
95
+ plt.xlabel('Count of Attacks')
96
+ plt.ylabel('Attack Type')
97
+ plt.title('Top 10 Most Common Attack Types')
98
+ plt.tight_layout()
99
+ plt.show()
100
+
101
+ geo_location_counts = df['Geo-location Data'].value_counts()
102
+
103
+ geo_location_counts_df = pd.DataFrame(geo_location_counts).reset_index()
104
+ geo_location_counts_df.columns = ['Geo-location Data', 'Count of Attacks']
105
+ top_geo_locations = geo_location_counts_df.head(10)
106
+ print(top_geo_locations)
107
+
108
+ plt.figure(figsize=(10, 6))
109
+ sns.barplot(x='Count of Attacks', y='Geo-location Data', hue='Geo-location Data', data=top_geo_locations, palette='viridis', dodge=False)
110
+ plt.xlabel('Count of Attacks')
111
+ plt.ylabel('Geo-location Data')
112
+ plt.title('Top 10 Geographic Locations Source of Malicious Traffic')
113
+ plt.tight_layout()
114
+ plt.show()
115
+
116
+ destination_port_counts = df['Destination Port'].value_counts()
117
+ destination_port_counts_df = pd.DataFrame(destination_port_counts).reset_index()
118
+ destination_port_counts_df.columns = ['Destination Port', 'Count of Attacks']
119
+
120
+ top_destination_ports = destination_port_counts_df.head(10)
121
+ print(top_destination_ports)
122
+
123
+ plt.figure(figsize=(10, 6))
124
+ sns.barplot(x='Destination Port', y='Count of Attacks', hue='Count of Attacks', data=top_destination_ports, palette='viridis', dodge=False)
125
+ plt.xlabel('Destination Port')
126
+ plt.ylabel('Count of Attacks')
127
+ plt.title('Top 10 Most Targeted Destination Ports')
128
+ plt.tight_layout()
129
+ plt.show()
130
+
131
+ severity_mapping = {'Low': 1, 'Medium': 2, 'High': 3}
132
+ df['Severity Level Numeric'] = df['Severity Level'].map(severity_mapping)
133
+
134
+ protocol_severity = df.groupby('Protocol')['Severity Level Numeric'].mean().reset_index()
135
+
136
+ protocol_severity = protocol_severity.sort_values(by='Severity Level Numeric', ascending=False)
137
+
138
+ top_protocol_severity = protocol_severity.head(10)
139
+ print(top_protocol_severity)
140
+
141
+ plt.figure(figsize=(10, 6))
142
+ sns.barplot(x='Severity Level Numeric', y='Protocol', hue='Severity Level Numeric', data=top_protocol_severity, palette='viridis', dodge=False)
143
+ plt.xlabel('Mean Severity Level')
144
+ plt.ylabel('Protocol')
145
+ plt.title('Top 10 Protocols by Mean Severity Level')
146
+ plt.tight_layout()
147
+ plt.show()
148
+
149
+ df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')
150
+ df['Month'] = df['Timestamp'].dt.month
151
+ month_counts = df['Month'].value_counts()
152
+ month_counts_df = pd.DataFrame(month_counts).reset_index()
153
+ month_counts_df.columns = ['Month', 'Count of Attacks']
154
+ sorted_month_counts = month_counts_df.sort_values(by='Month')
155
+ print(sorted_month_counts)
156
+
157
+ df['Timestamp'] = pd.to_datetime(df['Timestamp'])
158
+ df['Month'] = df['Timestamp'].dt.month
159
+
160
+ attacks_by_month = df.groupby('Month').size().reset_index(name='Attack Count')
161
+
162
+ heatmap_data = attacks_by_month.pivot_table(index='Month', columns='Month', values='Attack Count', aggfunc='sum', fill_value=0)
163
+ plt.figure(figsize=(10, 6))
164
+ sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='YlOrRd', cbar=True)
165
+ plt.title('Cybersecurity Attacks Frequency by Month')
166
+ plt.xlabel('Month')
167
+ plt.ylabel('Month')
168
+ plt.tight_layout()
169
+ plt.show()
170
+
171
+ malicious_traffic = df[df['Malware Indicators'] == 'IoCDetected']
172
+
173
+ traffic_type_counts = malicious_traffic['Traffic Type'].value_counts()
174
+ traffic_type_counts_df = pd.DataFrame(traffic_type_counts).reset_index()
175
+ traffic_type_counts_df.columns = ['Traffic Type', 'Count of Malicious Incidents']
176
+
177
+ top_traffic_types = traffic_type_counts_df.head(10)
178
+ print(top_traffic_types)
179
+
180
+ plt.figure(figsize=(10, 6))
181
+ sns.barplot(x='Count of Malicious Incidents', y='Traffic Type', hue='Count of Malicious Incidents', data=top_traffic_types, palette='viridis', dodge=False)
182
+ plt.xlabel('Count of Malicious Incidents')
183
+ plt.ylabel('Traffic Type')
184
+ plt.title('Top Traffic Types Flagged with "IoC Detected"')
185
+ plt.tight_layout()
186
+ plt.show()
187
+
188
+ threshold = 75.0
189
+
190
+ infiltration_data = df[df['Anomaly Scores'] > threshold]
191
+
192
+ vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()
193
+
194
+ vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
195
+ vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']
196
+
197
+ top_vulnerable_traffic = vulnerable_traffic_df.head(10)
198
+ print(top_vulnerable_traffic)
199
+
200
+ plt.figure(figsize=(10, 6))
201
+ sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, dodge=False)
202
+ plt.xlabel('Count of Infiltrations')
203
+ plt.ylabel('Traffic Type')
204
+ plt.title('Top Traffic Types Vulnerable to Infiltration (Anomaly Scores)')
205
+ plt.tight_layout()
206
+ plt.show()
207
+
208
+ threshold = df['Anomaly Scores'].quantile(0.95)
209
+ print(f"Threshold for Anomaly Scores: {threshold}\n")
210
+
211
+ infiltration_data = df[df['Anomaly Scores'] > threshold]
212
+
213
+ print(infiltration_data.head())
214
+
215
+ vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()
216
+ vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
217
+ vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']
218
+
219
+ top_vulnerable_traffic = vulnerable_traffic_df.head(10)
220
+ print(top_vulnerable_traffic)
221
+
222
+ plt.figure(figsize=(10, 6))
223
+ sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, palette='viridis', dodge=False)
224
+ plt.xlabel('Count of Infiltrations')
225
+ plt.ylabel('Traffic Type')
226
+ plt.title('Top Traffic Types Vulnerable to Infiltration (High Anomaly Scores)')
227
+ plt.tight_layout()
228
+ plt.show()
229
+
230
+ cyber_attacks_data = df[df['Action Taken'].str.contains('Blocked', case=False, na=False)]
231
+
232
+ vulnerable_devices_os_counts = cyber_attacks_data['Device/OS'].value_counts()
233
+ vulnerable_devices_os_df = pd.DataFrame(vulnerable_devices_os_counts).reset_index()
234
+ vulnerable_devices_os_df.columns = ['Device/OS', 'Count of Cyber Attacks']
235
+
236
+ top_vulnerable_devices_os = vulnerable_devices_os_df.head(10)
237
+ print(top_vulnerable_devices_os)
238
+
239
+ plt.figure(figsize=(10, 6))
240
+ sns.barplot(x='Count of Cyber Attacks', y='Device/OS', hue='Count of Cyber Attacks', data=top_vulnerable_devices_os, palette='viridis', dodge=False)
241
+ plt.xlabel('Count of Cyber Attacks')
242
+ plt.ylabel('Device/OS')
243
+ plt.title('Top Devices/OS Vulnerable to Cyber Attacks')
244
+ plt.tight_layout()
245
+ plt.show