antitheft159 commited on
Commit
10e8f5e
·
verified ·
1 Parent(s): c185137

Upload enunch_159.py

Browse files
Files changed (1) hide show
  1. enunch_159.py +51 -0
enunch_159.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """enunch.159
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1hjXMe2PUvW0yL5RwWXem47vZgBENHq-6
8
+ """
9
+
10
+ import warnings
11
+ warnings.filterwarnings('ignore')
12
+
13
+ import pandas as pd
14
+ import numpy as np
15
+ import matplotlib.pyplot as plt
16
+ import seaborn as sns
17
+ from sklearn.model_selection import train_test_split
18
+ from sklearn.linear_model import LinearRegression
19
+ from sklearn.metrics import mean_squared_error, r2_score
20
+
21
+ file_path = '/content/House Price India.csv'
22
+ df = pd.read_csv(file_path)
23
+
24
+ df.head()
25
+
26
+ df.isnull().sum()
27
+
28
+ df['Date'] = pd.to_datetime(df['Date'], origin='1899-12-30', unit='D')
29
+
30
+ df.describe()
31
+
32
+ numeric_df = df.select_dtypes(include=[np.number])
33
+ plt.figure(figsize=(15, 10))
34
+ sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
35
+ plt.title('Correlation Heatmap')
36
+ plt.show()
37
+
38
+ X = numeric_df.drop(columns=['Price'])
39
+ y = numeric_df['Price']
40
+
41
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
42
+
43
+ model = LinearRegression()
44
+ model.fit(X_train, y_train)
45
+
46
+ y_pred = model.predict(X_test)
47
+
48
+ mse = mean_squared_error(y_test, y_pred)
49
+ r2 = r2_score(y_test, y_pred)
50
+ print(f'Mean Squared Error: {mse}')
51
+ print(f'R-squared: {r2}')