# -*- coding: utf-8 -*- """enunch.159 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1hjXMe2PUvW0yL5RwWXem47vZgBENHq-6 """ import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score file_path = '/content/House Price India.csv' df = pd.read_csv(file_path) df.head() df.isnull().sum() df['Date'] = pd.to_datetime(df['Date'], origin='1899-12-30', unit='D') df.describe() numeric_df = df.select_dtypes(include=[np.number]) plt.figure(figsize=(15, 10)) sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm') plt.title('Correlation Heatmap') plt.show() X = numeric_df.drop(columns=['Price']) y = numeric_df['Price'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print(f'Mean Squared Error: {mse}') print(f'R-squared: {r2}')