File size: 10,192 Bytes
6235903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import mean_squared_error, accuracy_score
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
sns.set(style="whitegrid")
plt.rcParams['figure.figsize'] = (10, 6)
data = pd.read_csv('/content/Facebook Metrics of Cosmetic Brand.csv')
data.head()
!pip install pingouin
!pip install simpy
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pingouin as pg
import simpy
import random
import joblib
from scipy import stats
from scipy.stats import shapiro, f_oneway, pearsonr, chi2_contingency, ttest_ind
from scipy.fft import fft
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score, confusion_matrix, classification_report
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor, VotingRegressor
from sklearn.utils import resample
from sklearn.impute import SimpleImputer
from sklearn.inspection import PartialDependenceDisplay
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tsa.stattools import ccf
from pandas.plotting import autocorrelation_plot, lag_plot
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=RuntimeWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=ImportWarning)
warnings.filterwarnings('ignore', category=SyntaxWarning)
warnings.filterwarnings('ignore', category=PendingDeprecationWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
sns.set(style='whitegrid')
plt.rcParams['figure.figsize'] = (12, 8)
data = pd.read_csv('/content/Facebook Metrics of Cosmetic Brand.csv')
print("Sample of dataset:")
display(data.head())
print(f"Dataset shape: {data.shape}")
print(f"Columns in the dataset: {data.columns.tolist()}")
print("\nDataset Information:")
data.info()
print("\nSummary Statistics:")
display(data.describe())
print("\nSummary Statistics for Categorical Columns:")
categorical_columns = data.select_dtypes(include=['object']).columns
display(data[categorical_columns].describe())
print("\nSummary Statistics for Cetegorical Columns:")
categorical_columns = data.select_dtypes(include=['object']).columns
display(data[categorical_columns].describe())
duplicate_rows = data.duplicated().sum()
print(f"\nNumber of duplicate rows: {duplicate_rows}")
print("\nUnique values in each column:")
for column in data.columns:
unique_values = data[column].nunique()
print(f"{column}: {unique_values} unique values")
print("\nDistribution of uniquye values in categorical columns:")
for column in categorical_columns:
value_counts = data[column].value_counts()
print(f"\n{column} distribution")
print(value_counts)
print("\nSkewness of numerical columns:")
numerical_columns = data.select_dtypes(include=[np.number]).columns
skewness = data[numerical_columns].skew()
print(skewness)
print("\nKutosis of numerical columns:")
kurtosis = data[numerical_columns].kurtosis()
print(kurtosis)
print("\nPairwise correlatoin of numerical features:")
pairwise_corr = data[numerical_columns].corr()
display(pairwise_corr)
print("\nHighly correlated feature pairs:")
threshold = 0.8
high_corr_pairs = [(i, j, pairwise_corr.loc[i, j]) for i in pairwise_corr.columns for j in pairwise_corr.columns if i != j and abs(pairwise_corr.loc[i, j]) > threshold]
for i, j, corr_value in high_corr_pairs:
print(f"Correlation between {i} and {j}: {corr_value:.2f}")
print("\nVariance Inflation Factor (VIF) analysis for multicollinearity:")
vif_data = pd.DataFrame()
vif_data["features"] = numerical_columns
vif_data["VIF"] = [variance_inflation_factor(data[numerical_columns].fillna(0).values, i) for i in range(len(numerical_columns))]
display(vif_data)
print("\nShapiro-Wilk test for normality of numerical columns:")
for col in numerical_columns:
stat, p = shapiro(data[col].dropna())
print(f"Shapiro-Wilk test for {col}: Statistics={stat:.3f}, p={p:.3f}")
if p > 0.05:
print(f"The {col} distribution looks normal (fail to reject H0)\n")
else:
print(f"The {col} distribution does not look normal (reject H0)\n")
print("\nANOVA test for interaction between categorical and numerical features:")
for cat_col in categorical_columns:
for num_col in numerical_columns:
groups = [data[num_col][data[cat_col] == cat]
for cat in data[cat_col].unique()]
f_stat, p_val = f_oneway(*groups)
print(f"ANOVA test for interaction between {cat_col} and {num_col}: F-statistic={f_stat:.3f}, p-value={p_val:.3f}")
if p_val < 0.05:
print(f"Significant interaction detected between {cat_col} and {num_col}\n")
else:
print(f"No significant interaction detected between {cat_col} and {num_col}")
print("\nMissing Values in Each Column:")
missing_values = data.isnull().sum()
missing_percentage = data.isnull().mean() * 100
missing_data = pd.DataFrame({
'Missing Values': missing_values,
'Percentage': missing_percentage
})
display(missing_data)
plt.figure(figsize=(12, 8))
sns.heatmap(data.isnull(), cbar=False, cmap='viridis')
plt.title('Missing Data Heatmap')
plt.show()
threshold = 30
columns_with_missing_above_threshold = missing_data[missing_data['Percentage'] > threshold].index.tolist()
print(f"\nColumns with more than {threshold}% missing values:")
print(columns_with_missing_above_threshold)
data_cleaned = data.drop(columns = columns_with_missing_above_threshold)
print(f"\nShape of data after dropping columns with > {threshold}% missing values: {data_cleaned.shape}")
numerical_columns = data_cleaned.select_dtypes(include=[np.number]).columns
data_cleaned[numerical_columns] = data_cleaned[numerical_columns].fillna(data_cleaned[numerical_columns].median())
categorical_columns = data_cleaned.select_dtypes(include=['object']).columns
for column in categorical_columns:
data_cleaned[column].fillna(data_cleaned[column].mode()[0], inplace=True)
print("\nMissing Values After Imputation:")
display(data_cleaned.isnull().sum())
print("\nDistribution of 'Type' column:")
type_counts = data['Type'].value_counts()
display(type_counts)
plt.figure(figsize=(10, 6))
sns.countplot(x='Type', data=data, palette='Set3')
plt.title('Distribution of Post Types')
plt.xlabel('Type of Post')
plt.ylabel('Count')
plt.show()
print("\nDistribution of 'Category' column:")
category_counts = data['Category'].value_counts
display(category_counts)
plt.figure(figsize=(10, 6))
sns.countplot(x='Category', data=data, palette='Set2')
plt.title('Distribution of Post Categories')
plt.xlabel('Category of Post')
plt.ylabel('Count')
plt.show()
print("\nDistribution of 'Paid' column:")
paid_counts = data['Paid'].value_counts()
display(paid_counts)
plt.figure(figsize=(10, 6))
sns.countplot(x='Paid', data=data, palette='Set1')
plt.title('Distribution of Paid vs Non-Paid Posts')
plt.xlabel('Paid (1 = Yes, 0 = No)')
plt.ylabel('Count')
plt.show()
print("\nCross-tabulation of 'Type' and 'Paid' columns:")
type_paid_crosstab = pd.crosstab(data['Type'], data['Paid'])
display(type_paid_crosstab)
type_paid_crosstab.plot(kind='bar', stacked=True, colormap='coolwarm')
plt.title('Stacked Bar Plot of Post Type vs Paid Status')
plt.xlabel('Type of Post')
plt.ylabel('Count')
plt.legend(title='Paid', loc='upper right')
plt.show()
print("\nCross-tabulation of 'Category' and 'Paid' columns:")
category_paid_crosstab = pd.crosstab(data['Category'], data['Paid'])
display(category_paid_crosstab)
category_paid_crosstab.plot(kind='bar', stacked=True, colormap='viridis')
plt.title('Stacked Bar Plot of Post Catgory vs Paid Status')
plt.xlabel('Category of Post')
plt.ylabel('Count')
plt.legend(title='Paid', loc='upper right')
plt.show()
numerical_metrics = ['like', 'comment', 'share']
for metric in numerical_metrics:
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 1)
sns.boxplot(x='Type', y=metric, data=data, palette='Set3')
plt.title(f'Distribution of {metric} by Post Type')
plt.subplot(1, 3, 2)
sns.boxplot(x='Category', y=metric, data=data, palette='Set2')
plt.title(f'Distribution of {metric} by Post Category')
plt.subplot(1, 3, 3)
sns.boxplot(x='Paid', y=metric, data=data, palette='Set1')
plt.title(f'Distribution of {metric} by Paid Status')
plt.tight_layout()
plt.show()
for metric in numerical_metrics:
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 1)
sns.violinplot(x='Type', y=metric, data=data, palette='coolwarm', inner='quartile')
plt.title(f'Violin Plot of {metric} by Post Type')
plt.subplot(1, 3, 2)
sns.violinplot(x='Category', y=metric, data=data, palette='viridis', inner='quartile')
plt.title(f'Violin Plot of {metric} by Post Category')
plt.subplot(1, 3, 3)
sns.violinplot(x='Paid', y=metric, data=data, palette='magma', inner='quartile')
plt.title(f'Violin Plof of {metric} by Paid Status')
plt.tight_layout()
plt.show()
from scipy.stats import chi2_contingency
categorical_pairs = [('Type', 'Paid'), ('Category', 'Paid'), ('Type', 'Category')]
print("\nChi-Square Test for Independence between Categorical Variables:")
for pair in categorical_pairs:
contingency_table = pd.crosstab(data[pair[0]], data[pair[1]])
chi2, p, dof, expected = chi2_contingency(contingency_table)
print(f"Chi-Square Test between {pair[0]} and {pair[1]}:")
print(f"Chi2 = {chi2:.2f}, p-value = {p:.3f}")
if p < 0.05:
print(f"There is a significant association between {pair[0]} and {pair[1]}.\n")
else:
print(f"No significant association between {pair[0]} and {pair[1]}.\n")
|