antitheft159 commited on
Commit
c64c415
·
verified ·
1 Parent(s): f49158a

Upload helpdesk_multilanguage.py

Browse files
Files changed (1) hide show
  1. helpdesk_multilanguage.py +87 -0
helpdesk_multilanguage.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Helpdesk MultiLanguage
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1hukfVm3vIbdmE1jpGZUoZDhHeuTs-AlR
8
+ """
9
+
10
+ !pip install datasets
11
+ import pandas as pd
12
+ import plotly.express as px
13
+ import os
14
+ import plotly.graph_objects as go
15
+ from plotly.subplots import make_subplots
16
+ from sklearn.model_selection import train_test_split
17
+ from sklearn.metrics import classification_report, confusion_matrix
18
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
19
+ from datasets import Dataset
20
+ import torch
21
+ import numpy as np
22
+
23
+ !pip install wandb
24
+
25
+ import wandb
26
+ wandb.login(key='eb4c4a1fa7eec1ffbabc36420ba1166f797d4ac5')
27
+
28
+ data_path = "/content/ticket_helpdesk_labeled_multi_languages_english_spain_french_german.csv"
29
+ df = pd.read_csv(data_path)
30
+
31
+ print("First few rows of the dataset:")
32
+ print(df.head())
33
+
34
+ print("\nEDA and Visualization")
35
+ print("\nSummary statistics:")
36
+ print(df.describe(include='all'))
37
+
38
+ fig_queue = px.histogram(df, x='queue', title='Distribution of Queue Categories', color='queue')
39
+ fig_queue.show()
40
+
41
+ fig_priority = px.histogram(df, x='priority', title='Distribution of Priority Levels', color='priority')
42
+ fig_priority.show()
43
+
44
+ fig_language = px.histogram(df, x='language', title='Distribution of Languages', color='language')
45
+ fig_language.show()
46
+
47
+ fig_software = px.histogram(df, x='software_used', title='Distribution of Software Used', color='software_used')
48
+ fig_software.show()
49
+
50
+ fig_hardware = px.histogram(df, x='hardware_used', title='Distribution of Hardware Used', color='hardware_used')
51
+ fig_hardware.show()
52
+
53
+ fig_accounting = px.histogram(df, x='accounting_category', title='Distribution of Accounting Categories', color='accounting_category')
54
+ fig_accounting.show()
55
+
56
+ fig = make_subplots(rows=3, cols=1, subplot_titles=('Priority Distribution', 'Language Distribution', 'Queue Distribution'))
57
+
58
+ fig.add_trace(go.Histogram(x=df['priority'], name='Priority'), row=1, col=1)
59
+ fig.add_trace(go.Histogram(x=df['language'], name='Language'), row=2, col=1)
60
+ fig.add_trace(go.Histogram(x=df['queue'], name='Queue'), row=3, col=1)
61
+
62
+ fig.update_layout(title_text='Distributions of Priority, Language, and Queue', showlegend=False)
63
+ fig.show()
64
+
65
+ fig_scatter = px.scatter(df, x='priority', y='queue', color='priority', title='Scatter Plot of Priority vs. Queue')
66
+ fig_scatter.show()
67
+
68
+ df = df.dropna(subset=['text'])
69
+ df['text'] = df['text'].astype(str)
70
+
71
+ df['queue_encoded'] = df['queue'].astype('category').cat.codes
72
+ queue_mapping = dict(enumerate(df['queue'].astype('category').cat.categories))
73
+
74
+ X_train, X_test, y_train, y_test = train_test_split(df['text'], df['queue_encoded'], test_size=0.2, random_state=42)
75
+
76
+ train_data = Dataset.from_dict({'text': X_train.tolist(), 'label': y_train.tolist()})
77
+ test_data = Dataset.from_dict({'text': X_test.tolist(), 'label': y_test.tolist()})
78
+
79
+ model_name = "xlm-roberta-base"
80
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
81
+ model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=df['queue_encoded'].nunique())
82
+
83
+ def preprocess_function(examples):
84
+ return tokenizer(examples['text'], truncation=True, padding=True)
85
+
86
+ train_data = train_data.map(preprocess_function, batched=True)
87
+ test_data = test_data.map(preprocess_function, batched=True)