!pip install datasets import pandas as pd import plotly.express as px import os import plotly.graph_objects as go from plotly.subplots import make_subplots from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer from datasets import Dataset import torch import numpy as np !pip install wandb import wandb wandb.login(key='eb4c4a1fa7eec1ffbabc36420ba1166f797d4ac5') data_path = "/content/ticket_helpdesk_labeled_multi_languages_english_spain_french_german.csv" df = pd.read_csv(data_path) print("First few rows of the dataset:") print(df.head()) print("\nEDA and Visualization") print("\nSummary statistics:") print(df.describe(include='all')) fig_queue = px.histogram(df, x='queue', title='Distribution of Queue Categories', color='queue') fig_queue.show() fig_priority = px.histogram(df, x='priority', title='Distribution of Priority Levels', color='priority') fig_priority.show() fig_language = px.histogram(df, x='language', title='Distribution of Languages', color='language') fig_language.show() fig_software = px.histogram(df, x='software_used', title='Distribution of Software Used', color='software_used') fig_software.show() fig_hardware = px.histogram(df, x='hardware_used', title='Distribution of Hardware Used', color='hardware_used') fig_hardware.show() fig_accounting = px.histogram(df, x='accounting_category', title='Distribution of Accounting Categories', color='accounting_category') fig_accounting.show() fig = make_subplots(rows=3, cols=1, subplot_titles=('Priority Distribution', 'Language Distribution', 'Queue Distribution')) fig.add_trace(go.Histogram(x=df['priority'], name='Priority'), row=1, col=1) fig.add_trace(go.Histogram(x=df['language'], name='Language'), row=2, col=1) fig.add_trace(go.Histogram(x=df['queue'], name='Queue'), row=3, col=1) fig.update_layout(title_text='Distributions of Priority, Language, and Queue', showlegend=False) fig.show() fig_scatter = px.scatter(df, x='priority', y='queue', color='priority', title='Scatter Plot of Priority vs. Queue') fig_scatter.show() df = df.dropna(subset=['text']) df['text'] = df['text'].astype(str) df['queue_encoded'] = df['queue'].astype('category').cat.codes queue_mapping = dict(enumerate(df['queue'].astype('category').cat.categories)) X_train, X_test, y_train, y_test = train_test_split(df['text'], df['queue_encoded'], test_size=0.2, random_state=42) train_data = Dataset.from_dict({'text': X_train.tolist(), 'label': y_train.tolist()}) test_data = Dataset.from_dict({'text': X_test.tolist(), 'label': y_test.tolist()}) model_name = "xlm-roberta-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=df['queue_encoded'].nunique()) def preprocess_function(examples): return tokenizer(examples['text'], truncation=True, padding=True) train_data = train_data.map(preprocess_function, batched=True) test_data = test_data.map(preprocess_function, batched=True)