antitheft159 commited on
Commit
54aa523
·
verified ·
1 Parent(s): 565480e

Delete master_card_stock_data_159_(2008_2024).py

Browse files
master_card_stock_data_159_(2008_2024).py DELETED
@@ -1,376 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """Master Card Stock Data.159 (2008-2024)
3
-
4
- Automatically generated by Colab.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/127-oS8O1T914B2Fx1z0r0JAfHc3RJ8NB
8
- """
9
-
10
- import pandas as pd
11
-
12
- data = pd.read_csv('MVR.csv')
13
-
14
- print(data.head())
15
-
16
- print(data.isnull().sum())
17
-
18
- data['Date'] = pd.to_datetime(data['Date'])
19
-
20
- data.set_index('Date', inplace=True)
21
-
22
- print(data.dtypes)
23
-
24
- print(data.info())
25
-
26
- print(data.describe())
27
-
28
- import matplotlib.pyplot as plt
29
-
30
- plt.figure(figsize=(14, 7))
31
- plt.plot(data.index, data['Close_M'], label='MasterCard Close')
32
- plt.plot(data.index, data['Close_V'], label='Visa Close')
33
- plt.title('Stock Prices of MasterCard and Visa')
34
- plt.xlabel('Date')
35
- plt.ylabel('Stock Price')
36
- plt.legend()
37
- plt.show()
38
-
39
- data['MA_Close_M'] = data['Close_M'].rolling(window=30).mean()
40
- data['MA_Close_V'] = data['Close_V'].rolling(window=30).mean()
41
-
42
- plt.figure(figsize=(14, 7))
43
- plt.plot(data['Close_M'], label='MasterCard Close Price')
44
- plt.plot(data['MA_Close_M'], label='MasterCard 30-Day MA')
45
- plt.title('Moving Averages of Stock Prices')
46
- plt.xlabel('Date')
47
- plt.ylabel('Price')
48
- plt.legend()
49
- plt.show()
50
-
51
- plt.figure(figsize=(14, 7))
52
- plt.plot(data['Volume_M'], label='MasterCard Volume')
53
- plt.plot(data['Volume_V'], label='Visa Volume')
54
- plt.title('Volume of Stocks Traded')
55
- plt.xlabel('Date')
56
- plt.ylabel('Volume')
57
- plt.legend()
58
- plt.show()
59
-
60
- data['SMA50_M'] = data['Close_M'].rolling(window=50).mean()
61
- data['SMA200_M'] = data['Close_M'].rolling(window=200).mean()
62
-
63
- data['SMA50_V'] = data['Close_V'].rolling(window=50).mean()
64
- data['SMA200_V'] = data['Close_V'].rolling(window=200).mean()
65
-
66
- plt.figure(figsize=(14, 7))
67
- plt.plot(data.index, data['Close_M'], label='MasterCard Close')
68
- plt.plot(data.index, data['SMA50_M'], label='MasterCard SMA50')
69
- plt.plot(data.index, data['SMA200_M'], label='MasterCard SMA200')
70
- plt.title('MasterCard Stock Price and Moving Averages')
71
- plt.xlabel('Date')
72
- plt.ylabel('Stock Price')
73
- plt.legend()
74
- plt.show()
75
-
76
- plt.figure(figsize=(14, 7))
77
- plt.plot(data.index, data['Close_V'], label='Visa Close')
78
- plt.plot(data.index, data['SMA50_V'], label='Visa SMA50')
79
- plt.plot(data.index, data['SMA200_V'], label='Visa SMA200')
80
- plt.title('Visa Stock Price and Moving Averages')
81
- plt.xlabel('Date')
82
- plt.ylabel('Stock Price')
83
- plt.legend()
84
- plt.show
85
-
86
- data['Volatility_M'] = data['Close_M'].rolling(window=30).std()
87
- data['Volatility_V'] = data['Close_V'].rolling(window=30).std()
88
-
89
- plt.figure(figsize=(14, 7))
90
- plt.plot(data.index, data['Volatility_M'], label='MasterCard Volatility')
91
- plt.plot(data.index, data['Volatility_V'], label='Visa Volatility')
92
- plt.title('Stock Price Volatility of MasterCard and Visa')
93
- plt.xlabel('Date')
94
- plt.ylabel('Volatility')
95
- plt.legend()
96
- plt.show()
97
-
98
- data['Return_M'] = data['Close_M'].pct_change()
99
- data['Return_V'] = data['Close_V'].pct_change()
100
-
101
- data['Cumulative_Return_M'] = (1 + data['Return_M']).cumprod()
102
- data['Cumulative_Return_V'] = (1 + data['Return_V']).cumprod()
103
-
104
- plt.figure(figsize=(14, 7))
105
- plt.plot(data.index, data['Cumulative_Return_M'], label='MasterCard Cumulative Return')
106
- plt.plot(data.index, data['Cumulative_Return_V'], label='Visa Cumulative Return')
107
- plt.title('Cumulative Returns of MasterCard and Visa')
108
- plt.xlabel('Date')
109
- plt.ylabel('Cumulative Return')
110
- plt.legend()
111
- plt.show()
112
-
113
- correlation = data[['Close_M', 'Close_V']].corr()
114
- print(correlation)
115
-
116
- from statsmodels.tsa.seasonal import seasonal_decompose
117
-
118
- decomposition_M = seasonal_decompose(data['Close_M'], model='multiplicative', period=365)
119
- fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12))
120
-
121
- ax1.plot(decomposition_M.observed)
122
- ax1.set_title('Observed - MasterCard')
123
- ax2.plot(decomposition_M.trend)
124
- ax2.set_title('Tren - MasterCard')
125
- ax3.plot(decomposition_M.seasonal)
126
- ax3.set_title('Seasonal - MasterCard')
127
- ax4.plot(decomposition_M.resid)
128
- ax4.set_title('Residual - MasterCard')
129
-
130
- plt.tight_layout()
131
- plt.show
132
-
133
- decomposition_V = seasonal_decompose(data['Close_V'], model='multiplicative', period=365)
134
- fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12))
135
-
136
- ax1.plot(decomposition_V.observed)
137
- ax1.set_title('Observed - Visa')
138
- ax2.plot(decomposition_V.trend)
139
- ax2.set_title('Trend - Visa')
140
- ax3.plot(decomposition_V.seasonal)
141
- ax3.set_title('Seasonal - Visa')
142
- ax4.plot(decomposition_V.resid)
143
- ax4.set_title('Residual - Visa')
144
-
145
- plt.tight_layout()
146
- plt.show()
147
-
148
- from statsmodels.tsa.stattools import adfuller
149
-
150
- def adf_test(series):
151
- result = adfuller(series.dropna())
152
- print('ADF Statistic:', result[0])
153
- print('p-value:', result[1])
154
- for key, value in result[4].items():
155
- print('Critial Values:')
156
- print(f' {key}, {value}')
157
-
158
- print("ADF Test for MasterCard Close Price:")
159
- adf_test(data['Close_M'])
160
-
161
- print("\ADF Test for Visa Close Price:")
162
- adf_test(data['Close_V'])
163
-
164
- import numpy as np
165
- from sklearn.preprocessing import MinMaxScaler
166
- from keras.models import Sequential
167
- from keras.layers import LSTM, Dense, Input
168
- from sklearn.metrics import mean_squared_error
169
-
170
- scaler = MinMaxScaler(feature_range=(0, 1))
171
- scaled_data_M = scaler.fit_transform(data[['Close_M']])
172
- scaled_data_V = scaler.fit_transform(data[['Close_V']])
173
-
174
- train_len_M = int(len(scaled_data_M) * 0.8)
175
- train_len_V = int(len(scaled_data_V) * 0.8)
176
-
177
- train_data_M = scaled_data_M[:train_len_M]
178
- test_data_M = scaled_data_M[train_len_M:]
179
-
180
- train_data_V = scaled_data_V[:train_len_V]
181
- test_data_V = scaled_data_V[train_len_V:]
182
-
183
- def create_sequences(data, seq_length):
184
- x = []
185
- y = []
186
- for i in range(seq_length, len(data)):
187
- x.append(data[i-seq_length:i, 0])
188
- y.append(data[i, 0])
189
- return np.array(x), np.array(y)
190
-
191
- seq_length = 60
192
- x_train_M, y_train_M = create_sequences(train_data_M, seq_length)
193
- x_test_M, y_test_M = create_sequences(test_data_M, seq_length)
194
-
195
- x_train_V, y_train_V = create_sequences(train_data_V, seq_length)
196
- x_test_V, y_test_V = create_sequences(test_data_V, seq_length)
197
-
198
- x_train_M = np.reshape(x_train_M, (x_train_M.shape[0], x_train_M.shape[1], 1))
199
- x_test_M = np.reshape(x_test_M, (x_test_M.shape[0], x_test_M.shape[1], 1))
200
-
201
- x_train_V = np.reshape(x_train_V, (x_train_V.shape[0], x_train_V.shape[1], 1))
202
- x_test_V = np.reshape(x_test_V, (x_test_V.shape[0], x_test_V.shape[1], 1))
203
-
204
- model_M = Sequential()
205
- model_M.add(Input(shape=(x_train_M.shape[1], 1)))
206
- model_M.add(LSTM(units=50, return_sequences=True))
207
- model_M.add(LSTM(units=50, return_sequences=False))
208
- model_M.add(Dense(units=25))
209
- model_M.add(Dense(units=1))
210
-
211
- model_M.compile(optimizer='adam', loss='mean_squared_error')
212
-
213
- model_V = Sequential()
214
- model_V.add(Input(shape=(x_train_V.shape[1], 1)))
215
- model_V.add(LSTM(units=50, return_sequences=True))
216
- model_V.add(LSTM(units=50, return_sequences=False))
217
- model_V.add(Dense(units=25))
218
- model_V.add(Dense(units=1))
219
-
220
- model_V.compile(optimizer ='adam', loss='mean_squared_error')
221
-
222
- model_M.fit(x_train_M, y_train_M, batch_size=32, epochs=100)
223
- model_V.fit(x_train_V, y_train_V, batch_size=32, epochs=100)
224
-
225
- predictions_M = model_M.predict(x_test_M)
226
- predictions_M = scaler.inverse_transform(predictions_M)
227
-
228
- predictions_V = model_V.predict(x_test_V)
229
- predictions_V = scaler.inverse_transform(predictions_V)
230
-
231
- rmse_M = np.sqrt(mean_squared_error(y_test_M, predictions_M))
232
- rmse_V = np.sqrt(mean_squared_error(y_test_V, predictions_V))
233
-
234
- print(f'RMSE for MasterCard: {rmse_M}')
235
- print(f'RMSE for Visa: {rmse_V}')
236
-
237
- train_M = data[:train_len_M]['Close_M']
238
- valid_M = data[train_len_M:train_len_M + len(predictions_M)]['Close_M']
239
- valid_M = valid_M.to_frame()
240
- valid_M['Predictions'] = predictions_M
241
-
242
- train_V = data[:train_len_V]['Close_V']
243
- valid_V = data[train_len_V:train_len_V + len(predictions_V)]['Close_V']
244
- valid_V = valid_V.to_frame()
245
- valid_V['Predictions'] = predictions_V
246
-
247
- plt.figure(figsize=(14, 7))
248
- plt.plot(train_M, label='Train - MasterCard')
249
- plt.plot(valid_M['Close_M'], label='Valid - MasterCard')
250
- plt.plot(valid_M['Predictions'], label='Predictions - MasterCard')
251
- plt.legend()
252
- plt.show()
253
-
254
- plt.figure(figsize=(14, 7))
255
- plt.plot(train_V, label ='Train -Visa')
256
- plt.plot(valid_V['Close_V'], label='Valid -Visa')
257
- plt.plot(valid_V['Predictions'], label='Predictions - Visa')
258
- plt.legend()
259
- plt.show()
260
-
261
- from statsmodels.tsa.arima.model import ARIMA
262
-
263
- data = data.asfreq('B')
264
-
265
- train_size = int(len(data) * 0.8)
266
- train, test = data['Close_M'][:train_size], data['Close_M'][train_size:]
267
-
268
- model = ARIMA(train, order=(5, 1, 0))
269
- model_fit = model.fit()
270
- print(model_fit.summary())
271
-
272
- predictions = model_fit.forecast(steps=len(test))
273
- predictions = pd.Series(predictions, index=test.index)
274
-
275
- plt.figure(figsize=(14, 7))
276
- plt.plot(train, label='Training Data')
277
- plt.plot(test, label='Test Data')
278
- plt.plot(predictions, label='Predicted Data')
279
- plt.title('ARIMA Model Predictions for MasterCard')
280
- plt.xlabel('Date')
281
- plt.ylabel('Price')
282
- plt.legend()
283
- plt.show()
284
-
285
- data = data.asfreq('B')
286
-
287
- train_size = int(len(data) * 0.8)
288
- train_V, test_V = data['Close_V'][:train_size], data['Close_V'][train_size:]
289
-
290
- model_V = ARIMA(train_V, order=(5, 1, 0))
291
- model_fit_V = model_V.fit()
292
- print(model_fit_V.summary())
293
-
294
- predictions_V = model_fit_V.forecast(steps=len(test_V))
295
- predictions_V = pd.Series(predictions_V, index=test_V.index)
296
-
297
- plt.figure(figsize=(14, 7))
298
- plt.plot(train_V, label='Training Data')
299
- plt.plot(test_V, label='Test Data')
300
- plt.plot(predictions_V, label='Predicted Data'),
301
- plt.title('ARIMA Model Predictions for Visa')
302
- plt.xlabel('Date')
303
- plt.ylabel('Price')
304
- plt.legend()
305
- plt.show()
306
-
307
- import warnings
308
- warnings.filterwarnings('ignore')
309
- import plotly.graph_objects as go
310
-
311
- def predict_stock_price(data, column_name, forecast_periods):
312
- train_size = int(len(data) * 0.8)
313
- train, test = data[column_name][:train_size], data[column_name][train_size:]
314
-
315
- model = ARIMA(train, order=(5, 1, 0))
316
- model_fit = model.fit()
317
-
318
- future_dates = pd.date_range(start=data.index[-1], periods=forecast_periods, freq='B')
319
- forecast = model_fit.forecast(steps=forecast_periods)
320
- forecast_series = pd.Series(forecast, index=future_dates)
321
-
322
- return forecast_series
323
-
324
- forecast_periods = 3 * 252
325
- forecast_M = predict_stock_price(data, 'Close_M', forecast_periods)
326
- forecast_V = predict_stock_price(data, 'Close_V', forecast_periods)
327
-
328
- extended_data_M = pd.concat([data['Close_M'], forecast_M])
329
- extended_data_V = pd.concat([data['Close_V'], forecast_V])
330
-
331
- candlestick_data_M = pd.DataFrame({
332
- 'Date': extended_data_M.index,
333
- 'Open': extended_data_M.shift(1).fillna(method='bfill'),
334
- 'High': extended_data_M.rolling(2).max(),
335
- 'Low': extended_data_M.rolling(2).min(),
336
- 'Close': extended_data_M
337
- }).reset_index(drop=True)
338
-
339
- candlestick_data_V = pd.DataFrame({
340
- 'Date': extended_data_V.index,
341
- 'Open': extended_data_V.shift(1).fillna(method='bfill'),
342
- 'High': extended_data_V.rolling(2).max(),
343
- 'Low': extended_data_V.rolling(2).min(),
344
- 'Close': extended_data_V
345
- }).reset_index(drop=True)
346
-
347
- fig = go.Figure()
348
-
349
- fig.add_trace(go.Candlestick(
350
- x=candlestick_data_M['Date'],
351
- open=candlestick_data_M['Open'],
352
- high=candlestick_data_M['High'],
353
- low=candlestick_data_M['Low'],
354
- close=candlestick_data_M['Close'],
355
- name='MasterCard',
356
- increasing_line_color='blue', decreasing_line_color='red'
357
- ))
358
-
359
- fig.add_trace(go.Candlestick(
360
- x=candlestick_data_V['Date'],
361
- open=candlestick_data_V['Open'],
362
- high=candlestick_data_V['High'],
363
- low=candlestick_data_V['Low'],
364
- close=candlestick_data_V['Close'],
365
- name='Visa',
366
- increasing_line_color='green', decreasing_line_color='orange'
367
- ))
368
-
369
- fig.update_layout(
370
- title='MasterCard and Visa Stock Prices (Historical and Predicted)',
371
- xaxis_title='Date',
372
- yaxis_title='Price',
373
- xaxis_rangeslider_visible=False
374
- )
375
-
376
- fig.show()