Upload _1294.py
Browse files
_1294.py
ADDED
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
""".1294
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/18GMbHEjdUUsZiko73-qVxV-WVgsf5hgs
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import plotly.express as px
|
15 |
+
import plotly.graph_objects as go
|
16 |
+
from sklearn.cluster import KMeans
|
17 |
+
from sklearn.preprocessing import StandardScaler
|
18 |
+
import statsmodels.api as sm
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
import warnings # Importing the warnings module
|
22 |
+
warnings.filterwarnings('ignore') # Calling the filterwarnings function
|
23 |
+
|
24 |
+
df = pd.read_csv("/content/shopping_trends (2).csv")
|
25 |
+
|
26 |
+
df.head()
|
27 |
+
|
28 |
+
df.sample(10)
|
29 |
+
|
30 |
+
df.info()
|
31 |
+
|
32 |
+
fig_age = px.histogram(
|
33 |
+
df,
|
34 |
+
x='Age',
|
35 |
+
nbins= 50,
|
36 |
+
title='Age Distribution of Customers',
|
37 |
+
color_discrete_sequence=['cyan']
|
38 |
+
)
|
39 |
+
|
40 |
+
fig_age.update_layout(
|
41 |
+
template='plotly_dark',
|
42 |
+
plot_bgcolor='black',
|
43 |
+
paper_bgcolor='black',
|
44 |
+
font=dict(color='white')
|
45 |
+
)
|
46 |
+
fig_age.show()
|
47 |
+
|
48 |
+
gender_counts = df['Gender'].value_counts().reset_index()
|
49 |
+
gender_counts.columns = ['Gender', 'Count']
|
50 |
+
|
51 |
+
fig_gender = px.pie(
|
52 |
+
gender_counts,
|
53 |
+
names='Gender',
|
54 |
+
values='Count',
|
55 |
+
title='Gender Proportions of Customers',
|
56 |
+
color_discrete_sequence=px.colors.sequential.RdBu
|
57 |
+
)
|
58 |
+
fig_gender.update_layout(
|
59 |
+
template='plotly_dark',
|
60 |
+
plot_bgcolor='black',
|
61 |
+
paper_bgcolor='black',
|
62 |
+
font=dict(color='white')
|
63 |
+
)
|
64 |
+
fig_gender.show()
|
65 |
+
|
66 |
+
location_counts = df['Location'].value_counts().reset_index()
|
67 |
+
location_counts.columns = ['Location', 'Count']
|
68 |
+
|
69 |
+
fig_location = px.bar(
|
70 |
+
location_counts,
|
71 |
+
x='Location',
|
72 |
+
y='Count',
|
73 |
+
text='Count',
|
74 |
+
title='Customer Count by Location',
|
75 |
+
color_discrete_sequence=['lime']
|
76 |
+
)
|
77 |
+
location_counts = df['Location'].value_counts().reset_index()
|
78 |
+
location_counts.columns = ['Location', 'Count']
|
79 |
+
|
80 |
+
fig_location = px.bar(
|
81 |
+
location_counts,
|
82 |
+
x='Location',
|
83 |
+
y='Count',
|
84 |
+
text='Count',
|
85 |
+
title='Customer Count by Location',
|
86 |
+
color_discrete_sequence=['lime']
|
87 |
+
)
|
88 |
+
fig_location.update_layout(
|
89 |
+
template='plotly_dark',
|
90 |
+
plot_bgcolor='black',
|
91 |
+
paper_bgcolor='black',
|
92 |
+
font=dict(color='white'),
|
93 |
+
xaxis_title="Location",
|
94 |
+
yaxis_title="Number of Customers"
|
95 |
+
)
|
96 |
+
fig_location.show()
|
97 |
+
fig_location = px.bar(
|
98 |
+
location_counts,
|
99 |
+
x='Location',
|
100 |
+
y='Count',
|
101 |
+
text='Count',
|
102 |
+
title='Customer Count by Location',
|
103 |
+
color_discrete_sequence=['lime']
|
104 |
+
)
|
105 |
+
fig_location.update_layout(
|
106 |
+
template='plotly_dark',
|
107 |
+
plot_bgcolor='black',
|
108 |
+
paper_bgcolor='black',
|
109 |
+
font=dict(color='white'),
|
110 |
+
xaxis_title="Location",
|
111 |
+
yaxis_title="Number of Customers"
|
112 |
+
)
|
113 |
+
fig_location.show()
|
114 |
+
|
115 |
+
item_counts = df['Item Purchased'].value_counts().reset_index()
|
116 |
+
item_counts.columns = ['Item Purchased', 'Count']
|
117 |
+
|
118 |
+
fig_items = px.bar(
|
119 |
+
item_counts,
|
120 |
+
x='Item Purchased',
|
121 |
+
y='Count',
|
122 |
+
text='Count',
|
123 |
+
title='Most Purchased Items',
|
124 |
+
color_discrete_sequence=['orange']
|
125 |
+
)
|
126 |
+
fig_items.update_layout(
|
127 |
+
template='plotly_dark',
|
128 |
+
plot_bgcolor='black',
|
129 |
+
paper_bgcolor='black',
|
130 |
+
font=dict(color='white'),
|
131 |
+
xaxis_title='Items',
|
132 |
+
yaxis_title='Count of Purchases'
|
133 |
+
)
|
134 |
+
fig_items.show()
|
135 |
+
|
136 |
+
fig_amount = px.box(
|
137 |
+
df,
|
138 |
+
y='Purchase Amount (USD)', # Changed from 'Purchased Amount (USD)'
|
139 |
+
title='Purchase Amount Distribution',
|
140 |
+
color_discrete_sequence=['magenta']
|
141 |
+
)
|
142 |
+
|
143 |
+
fig_amount.update_layout(
|
144 |
+
template='plotly_dark',
|
145 |
+
plot_bgcolor='black',
|
146 |
+
paper_bgcolor='black',
|
147 |
+
font=dict(color='white'),
|
148 |
+
yaxis_title='Purchase Amount (USD)'
|
149 |
+
)
|
150 |
+
fig_amount.show()
|
151 |
+
|
152 |
+
# Count popular sizes
|
153 |
+
size_counts = df['Size'].value_counts().reset_index()
|
154 |
+
size_counts.columns = ['Size', 'Count']
|
155 |
+
|
156 |
+
fig_sizes = px.bar(
|
157 |
+
size_counts,
|
158 |
+
x='Size',
|
159 |
+
y='Count',
|
160 |
+
text='Count',
|
161 |
+
title='Preferred Sizes',
|
162 |
+
color_discrete_sequence=['green']
|
163 |
+
)
|
164 |
+
fig_sizes.update_layout(
|
165 |
+
template='plotly_dark',
|
166 |
+
plot_bgcolor='black',
|
167 |
+
paper_bgcolor='black',
|
168 |
+
font=dict(color='white'),
|
169 |
+
xaxis_title='Size',
|
170 |
+
yaxis_title='Count of Purchases'
|
171 |
+
)
|
172 |
+
fig_sizes.show()
|
173 |
+
|
174 |
+
# Count popular colors
|
175 |
+
color_counts = df['Color'].value_counts().reset_index()
|
176 |
+
color_counts.columns = ['Color', 'Count']
|
177 |
+
|
178 |
+
fig_colors = px.bar(
|
179 |
+
color_counts,
|
180 |
+
x='Color',
|
181 |
+
y='Count',
|
182 |
+
text='Count',
|
183 |
+
title='Preferred Colors',
|
184 |
+
color_discrete_sequence=['teal']
|
185 |
+
)
|
186 |
+
fig_colors.update_layout(
|
187 |
+
template='plotly_dark',
|
188 |
+
plot_bgcolor='black',
|
189 |
+
paper_bgcolor='black',
|
190 |
+
font=dict(color='white'),
|
191 |
+
xaxis_title='Color',
|
192 |
+
yaxis_title='Count of Purchases'
|
193 |
+
)
|
194 |
+
fig_colors.show()
|
195 |
+
|
196 |
+
# Seasonal Trends
|
197 |
+
season_counts = df['Season'].value_counts().reset_index()
|
198 |
+
season_counts.columns = ['Season', 'Count']
|
199 |
+
|
200 |
+
fig_season = px.bar(
|
201 |
+
season_counts,
|
202 |
+
x='Season',
|
203 |
+
y='Count',
|
204 |
+
text='Count',
|
205 |
+
title='Seasonal Trends in Purchases',
|
206 |
+
color_discrete_sequence=['blue']
|
207 |
+
)
|
208 |
+
fig_season.update_layout(
|
209 |
+
template='plotly_dark',
|
210 |
+
plot_bgcolor='black',
|
211 |
+
paper_bgcolor='black',
|
212 |
+
font=dict(color='white'),
|
213 |
+
xaxis_title='Season',
|
214 |
+
yaxis_title='Count of Purchases'
|
215 |
+
)
|
216 |
+
fig_season.show()
|
217 |
+
|
218 |
+
# Frequency of Purchases
|
219 |
+
frequency_counts = df['Frequency of Purchases'].value_counts().reset_index()
|
220 |
+
frequency_counts.columns = ['Frequency', 'Count']
|
221 |
+
|
222 |
+
fig_frequency = px.bar(
|
223 |
+
frequency_counts,
|
224 |
+
x='Frequency',
|
225 |
+
y='Count',
|
226 |
+
text='Count',
|
227 |
+
title='Frequency of Purchases',
|
228 |
+
color_discrete_sequence=['red']
|
229 |
+
)
|
230 |
+
fig_frequency.update_layout(
|
231 |
+
template='plotly_dark',
|
232 |
+
plot_bgcolor='black',
|
233 |
+
paper_bgcolor='black',
|
234 |
+
font=dict(color='white'),
|
235 |
+
xaxis_title='Frequency',
|
236 |
+
yaxis_title='Count of Purchases'
|
237 |
+
)
|
238 |
+
fig_frequency.show()
|
239 |
+
|
240 |
+
payment_counts = df['Payment Method'].value_counts().reset_index()
|
241 |
+
payment_counts.columns = ['Payment Method', 'Count']
|
242 |
+
|
243 |
+
fig_payment = px.pie(
|
244 |
+
payment_counts,
|
245 |
+
names='Payment Method',
|
246 |
+
values='Count',
|
247 |
+
title='Popular Payment Methods',
|
248 |
+
color_discrete_sequence=px.colors.sequential.Plasma
|
249 |
+
)
|
250 |
+
fig_payment.update_layout(
|
251 |
+
template='plotly_dark',
|
252 |
+
plot_bgcolor='black',
|
253 |
+
paper_bgcolor='black',
|
254 |
+
font=dict(color='white')
|
255 |
+
)
|
256 |
+
fig_payment.show()
|
257 |
+
|
258 |
+
subscription_data = df.groupby('Subscription Status')['Purchase Amount (USD)'].sum().reset_index()
|
259 |
+
|
260 |
+
fig_subscription = px.bar(
|
261 |
+
subscription_data,
|
262 |
+
x='Subscription Status',
|
263 |
+
y='Purchase Amount (USD)',
|
264 |
+
text='Purchase Amount (USD)',
|
265 |
+
title='Impact of Subscription on Purchases',
|
266 |
+
color='Subscription Status',
|
267 |
+
color_discrete_sequence=px.colors.sequential.Viridis
|
268 |
+
)
|
269 |
+
fig_subscription.update_layout(
|
270 |
+
template='plotly_dark',
|
271 |
+
plot_bgcolor='black',
|
272 |
+
paper_bgcolor='black',
|
273 |
+
font=dict(color='white'),
|
274 |
+
xaxis_title='Subscription Status',
|
275 |
+
yaxis_title='Total Purchase Amount (USD)'
|
276 |
+
)
|
277 |
+
fig_subscription.show()
|
278 |
+
|
279 |
+
discount_data = df['Discount Applied'].value_counts().reset_index()
|
280 |
+
discount_data.columns = ['Discount Applied', 'Count']
|
281 |
+
|
282 |
+
fig_discount = px.bar(
|
283 |
+
discount_data,
|
284 |
+
x='Discount Applied',
|
285 |
+
y='Count',
|
286 |
+
text='Count',
|
287 |
+
title='Discount Usage Analysis',
|
288 |
+
color='Discount Applied',
|
289 |
+
color_discrete_sequence=px.colors.sequential.Cividis
|
290 |
+
)
|
291 |
+
fig_discount.update_layout(
|
292 |
+
template='plotly_dark',
|
293 |
+
plot_bgcolor='black',
|
294 |
+
paper_bgcolor='black',
|
295 |
+
font=dict(color='white'),
|
296 |
+
xaxis_title='Discount Applied',
|
297 |
+
yaxis_title='Number of Purchases'
|
298 |
+
)
|
299 |
+
fig_discount.show()
|
300 |
+
|
301 |
+
category_revenue = df.groupby('Category')['Purchase Amount (USD)'].sum().reset_index()
|
302 |
+
|
303 |
+
fig_category_revenue = px.treemap(
|
304 |
+
category_revenue,
|
305 |
+
path=['Category'],
|
306 |
+
values='Purchase Amount (USD)',
|
307 |
+
title='Category-Wise Revenue',
|
308 |
+
color='Purchase Amount (USD)',
|
309 |
+
color_continuous_scale=px.colors.sequential.Sunset
|
310 |
+
)
|
311 |
+
fig_category_revenue.update_layout(
|
312 |
+
template='plotly_dark',
|
313 |
+
plot_bgcolor='black',
|
314 |
+
paper_bgcolor='black',
|
315 |
+
font=dict(color='white')
|
316 |
+
)
|
317 |
+
fig_category_revenue.show()
|
318 |
+
|
319 |
+
fig_ratings = px.histogram(
|
320 |
+
df,
|
321 |
+
x='Review Rating',
|
322 |
+
nbins=10,
|
323 |
+
title='Distribution of Review Ratings',
|
324 |
+
color_discrete_sequence=['#FFA07A']
|
325 |
+
)
|
326 |
+
fig_ratings.update_layout(
|
327 |
+
template='plotly_dark',
|
328 |
+
plot_bgcolor='black',
|
329 |
+
paper_bgcolor='black',
|
330 |
+
font=dict(color='white'),
|
331 |
+
xaxis_title='Review Rating',
|
332 |
+
yaxis_title='Count'
|
333 |
+
)
|
334 |
+
fig_ratings.show()
|
335 |
+
|
336 |
+
shipping_data = df.groupby('Shipping Type')['Purchase Amount (USD)'].sum().reset_index()
|
337 |
+
|
338 |
+
fig_shipping = px.bar(
|
339 |
+
shipping_data,
|
340 |
+
x='Shipping Type',
|
341 |
+
y='Purchase Amount (USD)',
|
342 |
+
text='Purchase Amount (USD)',
|
343 |
+
title='Shipping Types and Revenue Impact',
|
344 |
+
color='Shipping Type',
|
345 |
+
color_discrete_sequence=px.colors.sequential.Teal
|
346 |
+
)
|
347 |
+
fig_shipping.update_layout(
|
348 |
+
template='plotly_dark',
|
349 |
+
plot_bgcolor='black',
|
350 |
+
paper_bgcolor='black',
|
351 |
+
font=dict(color='white'),
|
352 |
+
xaxis_title='Shipping Type',
|
353 |
+
yaxis_title='Total Revenue (USD)'
|
354 |
+
)
|
355 |
+
fig_shipping.show()
|
356 |
+
|
357 |
+
customer_revenue = df.groupby('Customer ID')['Purchase Amount (USD)'].sum().reset_index()
|
358 |
+
customer_revenue = customer_revenue.sort_values(by='Purchase Amount (USD)', ascending=False)
|
359 |
+
customer_revenue['Cumulative Percentage'] = customer_revenue['Purchase Amount (USD)'].cumsum() / customer_revenue['Purchase Amount (USD)'].sum() * 100
|
360 |
+
|
361 |
+
fig_pareto = px.bar(
|
362 |
+
customer_revenue,
|
363 |
+
x='Customer ID',
|
364 |
+
y='Purchase Amount (USD)',
|
365 |
+
text='Purchase Amount (USD)',
|
366 |
+
title='High-Spending Customers - Pareto Chart',
|
367 |
+
color_discrete_sequence=['#FF7F50']
|
368 |
+
)
|
369 |
+
fig_pareto.add_scatter(
|
370 |
+
x=customer_revenue['Customer ID'],
|
371 |
+
y=customer_revenue['Cumulative Percentage'],
|
372 |
+
mode='lines+markers',
|
373 |
+
name='Cumulative Percentage',
|
374 |
+
line=dict(color='cyan')
|
375 |
+
)
|
376 |
+
fig_pareto.update_layout(
|
377 |
+
template='plotly_dark',
|
378 |
+
plot_bgcolor='black',
|
379 |
+
paper_bgcolor='black',
|
380 |
+
font=dict(color='white'),
|
381 |
+
xaxis_title='Customer ID',
|
382 |
+
yaxis_title='Purchase Amount (USD)',
|
383 |
+
yaxis2=dict(title='Cumulative Percentage', overlaying='y', side='right')
|
384 |
+
)
|
385 |
+
fig_pareto.show()
|
386 |
+
|
387 |
+
clustering_data = df.groupby('Customer ID').agg({
|
388 |
+
'Purchase Amount (USD)': 'sum',
|
389 |
+
'Frequency of Purchases': 'count',
|
390 |
+
'Category': 'nunique'
|
391 |
+
}).reset_index()
|
392 |
+
clustering_data.columns = ['Customer ID', 'Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']
|
393 |
+
|
394 |
+
# Standardize the data
|
395 |
+
scaler = StandardScaler()
|
396 |
+
clustering_data_scaled = scaler.fit_transform(clustering_data[['Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']])
|
397 |
+
|
398 |
+
# Apply K-means clustering
|
399 |
+
kmeans = KMeans(n_clusters=3, random_state=42)
|
400 |
+
clustering_data['Cluster'] = kmeans.fit_predict(clustering_data_scaled)
|
401 |
+
|
402 |
+
# Scatter plot
|
403 |
+
fig_clusters = px.scatter_3d(
|
404 |
+
clustering_data,
|
405 |
+
x='Total Purchase Amount',
|
406 |
+
y='Purchase Frequency',
|
407 |
+
z='Unique Categories',
|
408 |
+
color='Cluster',
|
409 |
+
title='Behavioral Clusters of Customers',
|
410 |
+
symbol='Cluster',
|
411 |
+
color_continuous_scale=px.colors.sequential.Viridis
|
412 |
+
)
|
413 |
+
fig_clusters.update_layout(
|
414 |
+
template='plotly_dark',
|
415 |
+
plot_bgcolor='black',
|
416 |
+
paper_bgcolor='black',
|
417 |
+
font=dict(color='white'),
|
418 |
+
scene=dict(
|
419 |
+
xaxis_title='Total Purchase Amount',
|
420 |
+
yaxis_title='Purchase Frequency',
|
421 |
+
zaxis_title='Unique Categories'
|
422 |
+
)
|
423 |
+
)
|
424 |
+
fig_clusters.show()
|
425 |
+
|
426 |
+
fig_purchase_vs_rating = px.scatter(
|
427 |
+
df,
|
428 |
+
x='Purchase Amount (USD)',
|
429 |
+
y='Review Rating',
|
430 |
+
title='Purchase Amount vs. Review Rating',
|
431 |
+
color='Review Rating',
|
432 |
+
color_continuous_scale='Viridis'
|
433 |
+
)
|
434 |
+
|
435 |
+
# Add regression line
|
436 |
+
X = sm.add_constant(df['Purchase Amount (USD)']) # Add constant for intercept
|
437 |
+
y = df['Review Rating']
|
438 |
+
model = sm.OLS(y, X).fit()
|
439 |
+
df['Regression Line'] = model.predict(X)
|
440 |
+
|
441 |
+
fig_purchase_vs_rating.add_scatter(
|
442 |
+
x=df['Purchase Amount (USD)'],
|
443 |
+
y=df['Regression Line'],
|
444 |
+
mode='lines',
|
445 |
+
name='Regression Line',
|
446 |
+
line=dict(color='cyan')
|
447 |
+
)
|
448 |
+
|
449 |
+
fig_purchase_vs_rating.update_layout(
|
450 |
+
template='plotly_dark',
|
451 |
+
plot_bgcolor='black',
|
452 |
+
paper_bgcolor='black',
|
453 |
+
font=dict(color='white'),
|
454 |
+
xaxis_title='Purchase Amount (USD)',
|
455 |
+
yaxis_title='Review Rating'
|
456 |
+
)
|
457 |
+
|
458 |
+
fig_purchase_vs_rating.show()
|
459 |
+
|
460 |
+
fig_age_vs_spending = px.scatter(
|
461 |
+
df,
|
462 |
+
x='Age',
|
463 |
+
y='Purchase Amount (USD)',
|
464 |
+
title='Age vs. Spending Habits',
|
465 |
+
color='Age',
|
466 |
+
color_continuous_scale='Viridis'
|
467 |
+
)
|
468 |
+
|
469 |
+
fig_age_vs_spending.update_layout(
|
470 |
+
template='plotly_dark',
|
471 |
+
plot_bgcolor='black',
|
472 |
+
paper_bgcolor='black',
|
473 |
+
font=dict(color='white'),
|
474 |
+
xaxis_title='Age',
|
475 |
+
yaxis_title='Purchase Amount (USD)'
|
476 |
+
)
|
477 |
+
|
478 |
+
fig_age_vs_spending.show()
|
479 |
+
|
480 |
+
fig_category_vs_gender.update_layout(
|
481 |
+
template='plotly_dark', # Corrected the template name to 'plotly_dark'
|
482 |
+
plot_bgcolor='black',
|
483 |
+
paper_bgcolor='black',
|
484 |
+
font=dict(color='white'),
|
485 |
+
xaxis_title='Product Category',
|
486 |
+
yaxis_title='Count'
|
487 |
+
)
|
488 |
+
fig_category_vs_gender.show()
|
489 |
+
|
490 |
+
fig_discounts_vs_spending = px.box(
|
491 |
+
df,
|
492 |
+
x='Discount Applied',
|
493 |
+
y='Purchase Amount (USD)',
|
494 |
+
title='Effect of Discounts on Spending',
|
495 |
+
color='Discount Applied',
|
496 |
+
color_discrete_sequence=['#FF6347', '#20B2AA']
|
497 |
+
)
|
498 |
+
|
499 |
+
fig_discounts_vs_spending.update_layout(
|
500 |
+
template='plotly_dark',
|
501 |
+
plot_bgcolor='black',
|
502 |
+
paper_bgcolor='black',
|
503 |
+
font=dict(color='white'),
|
504 |
+
xaxis_title='Discount Applied',
|
505 |
+
yaxis_title='Purchase Amount (USD)'
|
506 |
+
)
|
507 |
+
|
508 |
+
fig_discounts_vs_spending.show()
|
509 |
+
|
510 |
+
fig_profitability_analysis = px.treemap(
|
511 |
+
df,
|
512 |
+
path=['Category', 'Size', 'Color'], # Hierarchy: Category -> Size -> Color
|
513 |
+
values='Purchase Amount (USD)',
|
514 |
+
title='Profitability Analysis by Category, Size, and Color',
|
515 |
+
color='Purchase Amount (USD)', # Color by total purchase amount
|
516 |
+
color_continuous_scale='Viridis'
|
517 |
+
)
|
518 |
+
|
519 |
+
fig_profitability_analysis.update_layout(
|
520 |
+
template='plotly_dark',
|
521 |
+
plot_bgcolor='black',
|
522 |
+
paper_bgcolor='black',
|
523 |
+
font=dict(color='white')
|
524 |
+
)
|
525 |
+
|
526 |
+
fig_profitability_analysis.show()
|
527 |
+
|