# -*- coding: utf-8 -*- """.1294 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/18GMbHEjdUUsZiko73-qVxV-WVgsf5hgs """ import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler import statsmodels.api as sm import warnings import warnings # Importing the warnings module warnings.filterwarnings('ignore') # Calling the filterwarnings function df = pd.read_csv("/content/shopping_trends (2).csv") df.head() df.sample(10) df.info() fig_age = px.histogram( df, x='Age', nbins= 50, title='Age Distribution of Customers', color_discrete_sequence=['cyan'] ) fig_age.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white') ) fig_age.show() gender_counts = df['Gender'].value_counts().reset_index() gender_counts.columns = ['Gender', 'Count'] fig_gender = px.pie( gender_counts, names='Gender', values='Count', title='Gender Proportions of Customers', color_discrete_sequence=px.colors.sequential.RdBu ) fig_gender.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white') ) fig_gender.show() location_counts = df['Location'].value_counts().reset_index() location_counts.columns = ['Location', 'Count'] fig_location = px.bar( location_counts, x='Location', y='Count', text='Count', title='Customer Count by Location', color_discrete_sequence=['lime'] ) location_counts = df['Location'].value_counts().reset_index() location_counts.columns = ['Location', 'Count'] fig_location = px.bar( location_counts, x='Location', y='Count', text='Count', title='Customer Count by Location', color_discrete_sequence=['lime'] ) fig_location.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title="Location", yaxis_title="Number of Customers" ) fig_location.show() fig_location = px.bar( location_counts, x='Location', y='Count', text='Count', title='Customer Count by Location', color_discrete_sequence=['lime'] ) fig_location.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title="Location", yaxis_title="Number of Customers" ) fig_location.show() item_counts = df['Item Purchased'].value_counts().reset_index() item_counts.columns = ['Item Purchased', 'Count'] fig_items = px.bar( item_counts, x='Item Purchased', y='Count', text='Count', title='Most Purchased Items', color_discrete_sequence=['orange'] ) fig_items.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Items', yaxis_title='Count of Purchases' ) fig_items.show() fig_amount = px.box( df, y='Purchase Amount (USD)', # Changed from 'Purchased Amount (USD)' title='Purchase Amount Distribution', color_discrete_sequence=['magenta'] ) fig_amount.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), yaxis_title='Purchase Amount (USD)' ) fig_amount.show() # Count popular sizes size_counts = df['Size'].value_counts().reset_index() size_counts.columns = ['Size', 'Count'] fig_sizes = px.bar( size_counts, x='Size', y='Count', text='Count', title='Preferred Sizes', color_discrete_sequence=['green'] ) fig_sizes.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Size', yaxis_title='Count of Purchases' ) fig_sizes.show() # Count popular colors color_counts = df['Color'].value_counts().reset_index() color_counts.columns = ['Color', 'Count'] fig_colors = px.bar( color_counts, x='Color', y='Count', text='Count', title='Preferred Colors', color_discrete_sequence=['teal'] ) fig_colors.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Color', yaxis_title='Count of Purchases' ) fig_colors.show() # Seasonal Trends season_counts = df['Season'].value_counts().reset_index() season_counts.columns = ['Season', 'Count'] fig_season = px.bar( season_counts, x='Season', y='Count', text='Count', title='Seasonal Trends in Purchases', color_discrete_sequence=['blue'] ) fig_season.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Season', yaxis_title='Count of Purchases' ) fig_season.show() # Frequency of Purchases frequency_counts = df['Frequency of Purchases'].value_counts().reset_index() frequency_counts.columns = ['Frequency', 'Count'] fig_frequency = px.bar( frequency_counts, x='Frequency', y='Count', text='Count', title='Frequency of Purchases', color_discrete_sequence=['red'] ) fig_frequency.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Frequency', yaxis_title='Count of Purchases' ) fig_frequency.show() payment_counts = df['Payment Method'].value_counts().reset_index() payment_counts.columns = ['Payment Method', 'Count'] fig_payment = px.pie( payment_counts, names='Payment Method', values='Count', title='Popular Payment Methods', color_discrete_sequence=px.colors.sequential.Plasma ) fig_payment.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white') ) fig_payment.show() subscription_data = df.groupby('Subscription Status')['Purchase Amount (USD)'].sum().reset_index() fig_subscription = px.bar( subscription_data, x='Subscription Status', y='Purchase Amount (USD)', text='Purchase Amount (USD)', title='Impact of Subscription on Purchases', color='Subscription Status', color_discrete_sequence=px.colors.sequential.Viridis ) fig_subscription.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Subscription Status', yaxis_title='Total Purchase Amount (USD)' ) fig_subscription.show() discount_data = df['Discount Applied'].value_counts().reset_index() discount_data.columns = ['Discount Applied', 'Count'] fig_discount = px.bar( discount_data, x='Discount Applied', y='Count', text='Count', title='Discount Usage Analysis', color='Discount Applied', color_discrete_sequence=px.colors.sequential.Cividis ) fig_discount.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Discount Applied', yaxis_title='Number of Purchases' ) fig_discount.show() category_revenue = df.groupby('Category')['Purchase Amount (USD)'].sum().reset_index() fig_category_revenue = px.treemap( category_revenue, path=['Category'], values='Purchase Amount (USD)', title='Category-Wise Revenue', color='Purchase Amount (USD)', color_continuous_scale=px.colors.sequential.Sunset ) fig_category_revenue.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white') ) fig_category_revenue.show() fig_ratings = px.histogram( df, x='Review Rating', nbins=10, title='Distribution of Review Ratings', color_discrete_sequence=['#FFA07A'] ) fig_ratings.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Review Rating', yaxis_title='Count' ) fig_ratings.show() shipping_data = df.groupby('Shipping Type')['Purchase Amount (USD)'].sum().reset_index() fig_shipping = px.bar( shipping_data, x='Shipping Type', y='Purchase Amount (USD)', text='Purchase Amount (USD)', title='Shipping Types and Revenue Impact', color='Shipping Type', color_discrete_sequence=px.colors.sequential.Teal ) fig_shipping.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Shipping Type', yaxis_title='Total Revenue (USD)' ) fig_shipping.show() customer_revenue = df.groupby('Customer ID')['Purchase Amount (USD)'].sum().reset_index() customer_revenue = customer_revenue.sort_values(by='Purchase Amount (USD)', ascending=False) customer_revenue['Cumulative Percentage'] = customer_revenue['Purchase Amount (USD)'].cumsum() / customer_revenue['Purchase Amount (USD)'].sum() * 100 fig_pareto = px.bar( customer_revenue, x='Customer ID', y='Purchase Amount (USD)', text='Purchase Amount (USD)', title='High-Spending Customers - Pareto Chart', color_discrete_sequence=['#FF7F50'] ) fig_pareto.add_scatter( x=customer_revenue['Customer ID'], y=customer_revenue['Cumulative Percentage'], mode='lines+markers', name='Cumulative Percentage', line=dict(color='cyan') ) fig_pareto.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Customer ID', yaxis_title='Purchase Amount (USD)', yaxis2=dict(title='Cumulative Percentage', overlaying='y', side='right') ) fig_pareto.show() clustering_data = df.groupby('Customer ID').agg({ 'Purchase Amount (USD)': 'sum', 'Frequency of Purchases': 'count', 'Category': 'nunique' }).reset_index() clustering_data.columns = ['Customer ID', 'Total Purchase Amount', 'Purchase Frequency', 'Unique Categories'] # Standardize the data scaler = StandardScaler() clustering_data_scaled = scaler.fit_transform(clustering_data[['Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']]) # Apply K-means clustering kmeans = KMeans(n_clusters=3, random_state=42) clustering_data['Cluster'] = kmeans.fit_predict(clustering_data_scaled) # Scatter plot fig_clusters = px.scatter_3d( clustering_data, x='Total Purchase Amount', y='Purchase Frequency', z='Unique Categories', color='Cluster', title='Behavioral Clusters of Customers', symbol='Cluster', color_continuous_scale=px.colors.sequential.Viridis ) fig_clusters.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), scene=dict( xaxis_title='Total Purchase Amount', yaxis_title='Purchase Frequency', zaxis_title='Unique Categories' ) ) fig_clusters.show() fig_purchase_vs_rating = px.scatter( df, x='Purchase Amount (USD)', y='Review Rating', title='Purchase Amount vs. Review Rating', color='Review Rating', color_continuous_scale='Viridis' ) # Add regression line X = sm.add_constant(df['Purchase Amount (USD)']) # Add constant for intercept y = df['Review Rating'] model = sm.OLS(y, X).fit() df['Regression Line'] = model.predict(X) fig_purchase_vs_rating.add_scatter( x=df['Purchase Amount (USD)'], y=df['Regression Line'], mode='lines', name='Regression Line', line=dict(color='cyan') ) fig_purchase_vs_rating.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Purchase Amount (USD)', yaxis_title='Review Rating' ) fig_purchase_vs_rating.show() fig_age_vs_spending = px.scatter( df, x='Age', y='Purchase Amount (USD)', title='Age vs. Spending Habits', color='Age', color_continuous_scale='Viridis' ) fig_age_vs_spending.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Age', yaxis_title='Purchase Amount (USD)' ) fig_age_vs_spending.show() fig_category_vs_gender.update_layout( template='plotly_dark', # Corrected the template name to 'plotly_dark' plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Product Category', yaxis_title='Count' ) fig_category_vs_gender.show() fig_discounts_vs_spending = px.box( df, x='Discount Applied', y='Purchase Amount (USD)', title='Effect of Discounts on Spending', color='Discount Applied', color_discrete_sequence=['#FF6347', '#20B2AA'] ) fig_discounts_vs_spending.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white'), xaxis_title='Discount Applied', yaxis_title='Purchase Amount (USD)' ) fig_discounts_vs_spending.show() fig_profitability_analysis = px.treemap( df, path=['Category', 'Size', 'Color'], # Hierarchy: Category -> Size -> Color values='Purchase Amount (USD)', title='Profitability Analysis by Category, Size, and Color', color='Purchase Amount (USD)', # Color by total purchase amount color_continuous_scale='Viridis' ) fig_profitability_analysis.update_layout( template='plotly_dark', plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white') ) fig_profitability_analysis.show()