File size: 1,797 Bytes
e755d4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# -*- coding: utf-8 -*-
""".1393
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1-65IULC0-UxJ7kZBDYo3KQ2a6m5JzwVV
"""
# Commented out IPython magic to ensure Python compatibility.
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
# %matplotlib inline
file_path = '/content/Fake Postings (2).csv'
df = pd.read_csv(file_path)
df.head()
df.isnull().sum()
sns.countplot(x='fraudulent', data=df)
plt.title('Distribution of Fraudulent Job Postings')
plt.show()
sns.countplot(y='employment_type', data=df, order=df['employment_type'].value_counts().index)
plt.title('Employment Type Distribution')
plt.show()
plt.figure(figsize=(10, 8))
sns.countplot(y='industry', data=df, order=df['industry'].value_counts().index[:10])
plt.title('Top 10 Industries by Job Postings')
plt.show()
df.fillna('Unknown', inplace=True)
df['fraudulent'] = df['fraudulent'].astype(int)
df['description_length'] = df['requirements'].apply(lambda x: len(x.split(',')))
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Select features and target
features = ['description_length', 'num_requirements']
X = df[features]
y = df['fraudulent']
# Ensure there are at least two classes in the target variable
if len(y.unique()) < 2:
print("The target variable 'fraudulent' must have at least two classes. Exiting...")
else:
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train the model
model = LogisticRegression()
model.fit(X_train, y_train) |