# -*- coding: utf-8 -*- """.1393 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1-65IULC0-UxJ7kZBDYo3KQ2a6m5JzwVV """ # Commented out IPython magic to ensure Python compatibility. import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # %matplotlib inline file_path = '/content/Fake Postings (2).csv' df = pd.read_csv(file_path) df.head() df.isnull().sum() sns.countplot(x='fraudulent', data=df) plt.title('Distribution of Fraudulent Job Postings') plt.show() sns.countplot(y='employment_type', data=df, order=df['employment_type'].value_counts().index) plt.title('Employment Type Distribution') plt.show() plt.figure(figsize=(10, 8)) sns.countplot(y='industry', data=df, order=df['industry'].value_counts().index[:10]) plt.title('Top 10 Industries by Job Postings') plt.show() df.fillna('Unknown', inplace=True) df['fraudulent'] = df['fraudulent'].astype(int) df['description_length'] = df['requirements'].apply(lambda x: len(x.split(','))) from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report # Select features and target features = ['description_length', 'num_requirements'] X = df[features] y = df['fraudulent'] # Ensure there are at least two classes in the target variable if len(y.unique()) < 2: print("The target variable 'fraudulent' must have at least two classes. Exiting...") else: # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train the model model = LogisticRegression() model.fit(X_train, y_train)