antitheft159 commited on
Commit
ec364c2
·
verified ·
1 Parent(s): cf691e0

Upload _1402.py

Browse files
Files changed (1) hide show
  1. _1402.py +204 -0
_1402.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """.1402
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1-MyRdtV24jTgS9BfGaWSD_PPnzPW5R3E
8
+ """
9
+
10
+ import os
11
+ import pandas as pd
12
+ import numpy as np
13
+ import seaborn as sns
14
+ import matplotlib.pyplot as plt
15
+ import warnings
16
+ warnings.filterwarnings('ignore')
17
+
18
+ data = pd.read_csv('/content/psychological_state_dataset.csv')
19
+
20
+ data.sample(20)
21
+
22
+ data.info()
23
+
24
+ numerical_columns = data.select_dtypes(include=['int64', 'float64']).columns.tolist()
25
+ categorical_columns = data.select_dtypes(include=['object']).columns.tolist()
26
+
27
+ print("Numerical Columns:", numerical_columns)
28
+ print("Categorical Columns:", categorical_columns)
29
+
30
+ for col in categorical_columns:
31
+ print(f"Value counts for {col}:\n{data[col].value_counts()}\n")
32
+
33
+ for col in numerical_columns:
34
+ sns.histplot(data[col], kde=True, bins=30)
35
+ plt.title(f'Distribution of {col}')
36
+ plt.show()
37
+
38
+ for col in numerical_columns:
39
+ sns.boxplot(x=data[col])
40
+ plt.title(f'Boxplot of {col}')
41
+ plt.show()
42
+
43
+ for col in categorical_columns:
44
+ sns.countplot(x=data[col], order=data[col].value_counts().index)
45
+ plt.title(f'Distribution of {col}')
46
+ plt.xticks(rotation=45)
47
+ plt.show()
48
+
49
+ corr_matrix = data[numerical_columns].corr()
50
+ sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
51
+ plt.title('Correlation Heatmap')
52
+ plt.show
53
+
54
+ sns.pairplot(data[numerical_columns])
55
+ plt.show()
56
+
57
+ for cat_col in categorical_columns:
58
+ if data[cat_col].nunique() < 5:
59
+ g = sns.FacetGrid(data, col=cat_col, sharey=False)
60
+ g.map(sns.histplot, "Skin Temp (°C)")
61
+ plt.show()
62
+
63
+ if 'Time' in categorical_columns:
64
+ data['Time'] = pd.to_datetime(data['Time'])
65
+
66
+ for col in numerical_columns:
67
+ sns.lineplot(x=data['Time'], y=data[col])
68
+ plt.title(f'{col} Over Time')
69
+ plt.show()
70
+
71
+ for col in ['Mood State', 'Psychological State']:
72
+ if col in categorical_columns:
73
+ sns.countplot(x=col, data=data, order=data[col].value_counts().index)
74
+ plt.title(f'{col} Distribution')
75
+ plt.show()
76
+
77
+ from math import pi
78
+
79
+ radar_data = data[numerical_columns].mean()
80
+ categories = radar_data.index
81
+ values = radar_data.values.tolist()
82
+ values += values[:1]
83
+
84
+ angles = [n / float(len(categories)) * 2 * pi for n in range(len(categories))]
85
+ angles += angles[:1]
86
+
87
+ plt.figure(figsize=(8, 8))
88
+ ax = plt.subplot(111, polar=True)
89
+ plt.xticks(angles[:-1], categories)
90
+
91
+ ax.plot(angles, values, linewidth=2, linestyle='solid')
92
+ ax.fill(angles, values, alpha=0.4)
93
+ plt.title('Radar Chart of Numerical Data')
94
+ plt.show()
95
+
96
+ if 'Cognitive Load' in numerical_columns:
97
+ sns.scatterplot(x=data['Age'], y=data['Focus Duration (s)'], size=data['Cognitive Load'], sizes=(20, 200))
98
+
99
+ for cat_col in categorical_columns:
100
+ grouped_stats = data.groupby(cat_col)[numerical_columns].mean()
101
+ print(f"Grouped statistics for {cat_col}:\n", grouped_stats)
102
+
103
+ from sklearn.cluster import KMeans
104
+ from sklearn.preprocessing import StandardScaler
105
+ from sklearn.decomposition import PCA
106
+
107
+ scaler = StandardScaler()
108
+ scaled_data = scaler.fit_transform(data[numerical_columns])
109
+
110
+ kmeans = KMeans(n_clusters=3, random_state=42)
111
+ data['Cluster'] = kmeans.fit_predict(scaled_data)
112
+
113
+ pca = PCA(n_components=2)
114
+ pca_data = pca.fit_transform(scaled_data)
115
+
116
+ plt.figure(figsize=(10, 6))
117
+ sns.scatterplot(x=pca_data[:, 0], y=pca_data[:, 1], hue=data['Cluster'], palette='viridis', s=100)
118
+ plt.title('K-Means Clusters Visualized in 2D')
119
+ plt.xlabel('PCA Component 1')
120
+ plt.ylabel('PCA Component 2')
121
+ plt.show()
122
+
123
+ from scipy.cluster.hierarchy import linkage, dendrogram
124
+
125
+ linked = linkage(scaled_data, method='ward')
126
+
127
+ plt.figure(figsize=(12, 6))
128
+ dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=False)
129
+ plt.title('Hierarchiacal Clustering Dendrogram')
130
+ plt.xlabel('Samples')
131
+ plt.ylabel('Distance')
132
+ plt.show()
133
+
134
+ from sklearn.manifold import TSNE
135
+
136
+ tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=300)
137
+ tsne_results = tsne.fit_transform(scaled_data)
138
+
139
+ plt.figure(figsize=(10, 6))
140
+ sns.scatterplot(x=tsne_results[:, 0], y=tsne_results[:,1], hue=data['Cluster'], palette='coolwarm', s=100)
141
+ plt.title('T-SNE Clustering Visualization')
142
+ plt.xlabel('TSNE Component 1')
143
+ plt.ylabel('TSNE Component 2')
144
+ plt.show()
145
+
146
+ for cat_col in categorical_columns:
147
+ grouped_data = data.groupby(cat_col)[numerical_columns].mean()
148
+ plt.figure(figsize=(12, 6))
149
+ sns.heatmap(grouped_data, annot=True, fmt=".2f", cmap='coolwarm')
150
+ plt.title(f'Mean Values of Numerical Features by {cat_col}')
151
+ plt.ylabel(cat_col)
152
+ plt.xlabel('Numerical Features')
153
+ plt.show()
154
+
155
+ from pandas.plotting import parallel_coordinates
156
+
157
+ parallel_data = data[numerical_columns].copy()
158
+ parallel_data['Cluster'] = data['Cluster']
159
+
160
+ plt.figure(figsize=(12, 6))
161
+ parallel_coordinates(parallel_data, class_column='Cluster', colormap='viridis')
162
+ plt.title('Parallel Coordinates Plot by Clusters')
163
+ plt.xticks(rotation=45)
164
+ plt.show()
165
+
166
+ from sklearn.model_selection import train_test_split
167
+ from sklearn.preprocessing import StandardScaler, LabelEncoder
168
+ from sklearn.ensemble import RandomForestClassifier
169
+ from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, accuracy_score
170
+
171
+ data_encoded = data.copy()
172
+ for col in categorical_columns:
173
+ le = LabelEncoder()
174
+ data_encoded[col] = le.fit_transform(data[col])
175
+
176
+ X = data_encoded.drop(['Cognitive Load'], axis=1)
177
+ y = data_encoded['Cognitive Load']
178
+
179
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
180
+
181
+ scaler = StandardScaler()
182
+ X_train[numerical_columns] = scaler.fit_transform(X_train[numerical_columns])
183
+ X_test[numerical_columns] = scaler.transform(X_test[numerical_columns])
184
+
185
+ clf = RandomForestClassifier(n_estimators=100, random_state=42)
186
+ clf.fit(X_train, y_train)
187
+
188
+ y_pred = clf.predict(X_test)
189
+
190
+ print("Classification Report:")
191
+ print(classification_report(y_test, y_pred))
192
+
193
+ sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d')
194
+
195
+ accuracy = accuracy_score(y_test, y_pred)
196
+ print(f"accuracy_score: {accuracy * 100:.2f}%")
197
+
198
+ feature_importances = pd.DataFrame({'Feature': X.columns, 'Importance': clf.feature_importances_})
199
+ feature_importances = feature_importances.sort_values(by='Importance', ascending=False)
200
+
201
+ plt.figure(figsize=(10, 6))
202
+ sns.barplot(x='Importance', y='Feature', data=feature_importances)
203
+ plt.title('Feature Importance')
204
+ plt.show()