antitheft159 commited on
Commit
5801cb4
·
verified ·
1 Parent(s): 0e04769

Upload _1434.py

Browse files
Files changed (1) hide show
  1. _1434.py +74 -0
_1434.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """.1434
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1zCqF_BIYa91iouRTczXbC21smYapzDHu
8
+ """
9
+
10
+ # Commented out IPython magic to ensure Python compatibility.
11
+ import pandas as pd
12
+ import numpy as np
13
+ import seaborn as sns
14
+ import matplotlib.pyplot as plt
15
+ import warnings
16
+ warnings.filterwarnings('ignore')
17
+ # %matplotlib inline
18
+
19
+ file_path = '/content/Fake Postings.csv'
20
+ df = pd.read_csv(file_path)
21
+
22
+ df.head()
23
+
24
+ df.isnull().sum()
25
+
26
+ sns.countplot(x='fraudulent', data=df)
27
+ plt.title('Distribution of Fraudulent Job Postings')
28
+ plt.show()
29
+
30
+ sns.countplot(y='employment_type', data=df, order=df['employment_type'].value_counts().index)
31
+ plt.title('Distribution Type Distribution')
32
+ plt.show()
33
+
34
+ plt.figure(figsize=(10, 8))
35
+ sns.countplot(y='industry', data=df, order=df['industry'].value_counts().index[:10])
36
+
37
+ df.fillna('Unknown', inplace=True)
38
+ df['fraudulent'] = df['fraudulent'].astype(int)
39
+
40
+ df['description_length'] = df['description'].apply(len)
41
+ df['num_requirements'] = df['requirements'].apply(lambda x: len(x.split(',')))
42
+
43
+ from sklearn.model_selection import train_test_split
44
+ from sklearn.linear_model import LogisticRegression
45
+ from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
46
+
47
+ features = ['description_length', 'num_requirements']
48
+ X = df[features]
49
+ y = df['fraudulent']
50
+
51
+ if len(y.unique()) < 2:
52
+ print("The target variable 'fraudulent' must have at least two classes. Exiting...")
53
+ else:
54
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=-.2, random_state=42)
55
+
56
+ model = LogisticRegression()
57
+ model.fit(X_train, y_train)
58
+
59
+ if len(y.unique()) >= 2:
60
+ y_pred = model.predict(X_test)
61
+
62
+ accuracy = accuracy_score(y_test, y_pred)
63
+ print(f'Accuracy: {accuracy:.2}')
64
+
65
+ if len(y.unique()) >= 2:
66
+ conf_matrix = confusion_matrix(y_test, y_pred)
67
+ sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
68
+ plt.title('Confusion Matrix')
69
+ plt.xlabel('Predicted')
70
+ plt.ylabel('Actual')
71
+ plt.show()
72
+
73
+ if len(y.unique()) >= 2:
74
+ print(classification_report(y_test, y_pred))