# -*- coding: utf-8 -*- """.1434 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1zCqF_BIYa91iouRTczXbC21smYapzDHu """ # Commented out IPython magic to ensure Python compatibility. import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # %matplotlib inline file_path = '/content/Fake Postings.csv' df = pd.read_csv(file_path) df.head() df.isnull().sum() sns.countplot(x='fraudulent', data=df) plt.title('Distribution of Fraudulent Job Postings') plt.show() sns.countplot(y='employment_type', data=df, order=df['employment_type'].value_counts().index) plt.title('Distribution Type Distribution') plt.show() plt.figure(figsize=(10, 8)) sns.countplot(y='industry', data=df, order=df['industry'].value_counts().index[:10]) df.fillna('Unknown', inplace=True) df['fraudulent'] = df['fraudulent'].astype(int) df['description_length'] = df['description'].apply(len) df['num_requirements'] = df['requirements'].apply(lambda x: len(x.split(','))) from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report features = ['description_length', 'num_requirements'] X = df[features] y = df['fraudulent'] if len(y.unique()) < 2: print("The target variable 'fraudulent' must have at least two classes. Exiting...") else: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=-.2, random_state=42) model = LogisticRegression() model.fit(X_train, y_train) if len(y.unique()) >= 2: y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f'Accuracy: {accuracy:.2}') if len(y.unique()) >= 2: conf_matrix = confusion_matrix(y_test, y_pred) sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues') plt.title('Confusion Matrix') plt.xlabel('Predicted') plt.ylabel('Actual') plt.show() if len(y.unique()) >= 2: print(classification_report(y_test, y_pred))