antitheft159 commited on
Commit
13fbe83
·
verified ·
1 Parent(s): 2f99c38

Upload _2146.py

Browse files
Files changed (1) hide show
  1. _2146.py +65 -0
_2146.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """.2146
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1zrav0p7dTPU_wC5Hee4bqYFrJU2qMRZw
8
+ """
9
+
10
+ # Commented out IPython magic to ensure Python compatibility.
11
+ import pandas as pd
12
+ import numpy as np
13
+ import seaborn as sns
14
+ import matplotlib.pyplot as plt
15
+ import warnings
16
+ warnings.filterwarnings('ignore')
17
+ # %matplotlib inline
18
+
19
+ file_path = '/content/employment_trends (1).csv'
20
+ df = pd.read_csv(file_path)
21
+
22
+ df.head()
23
+
24
+ df['REF_DATE'] = pd.to_datetime(df['REF_DATE'], errors = 'coerce')
25
+
26
+ missing_values = df.isnull().sum()
27
+ missing_values
28
+
29
+ sns.histplot(df['VALUE'].dropna(), bins=30, kde=True)
30
+ plt.title('Distribution of Employment Values')
31
+ plt.xlabel('Employment Value')
32
+ plt.ylabel('Frequency')
33
+ plt.show()
34
+
35
+ plt.figure(figsize=(12, 6))
36
+ sns.countplot(data=df, x='GEO', order=df['GEO'].value_counts().index)
37
+ plt.xticks(rotation=90)
38
+ plt.title('Employment Trends by Geography')
39
+ plt.xlabel('Geography')
40
+ plt.ylabel('Count')
41
+ plt.show()
42
+
43
+ numeric_df = df.select_dtypes(include=[np.number])
44
+ plt.figure(figsize=(10, 8))
45
+ sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f')
46
+ plt.title('Correlation Heatmap')
47
+ plt.show()
48
+
49
+ from sklearn.model_selection import train_test_split
50
+ from sklearn.ensemble import RandomForestRegressor
51
+ from sklearn.metrics import mean_squared_error
52
+
53
+ df_model = df.dropna(subset=['VALUE'])
54
+ X = df_model[['UOM_ID', 'SCALAR_ID', 'DECIMALS']]
55
+ y = df_model['VALUE']
56
+
57
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
58
+
59
+ model = RandomForestRegressor(n_estimators=100, random_state=42)
60
+ model.fit(X_train, y_train)
61
+
62
+ y_pred = model.predict(X_test)
63
+ mse = mean_squared_error(y_test, y_pred)
64
+ rmse = np.sqrt(mse)
65
+ rmse