# -*- coding: utf-8 -*- """.2146 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1zrav0p7dTPU_wC5Hee4bqYFrJU2qMRZw """ # Commented out IPython magic to ensure Python compatibility. import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # %matplotlib inline file_path = '/content/employment_trends (1).csv' df = pd.read_csv(file_path) df.head() df['REF_DATE'] = pd.to_datetime(df['REF_DATE'], errors = 'coerce') missing_values = df.isnull().sum() missing_values sns.histplot(df['VALUE'].dropna(), bins=30, kde=True) plt.title('Distribution of Employment Values') plt.xlabel('Employment Value') plt.ylabel('Frequency') plt.show() plt.figure(figsize=(12, 6)) sns.countplot(data=df, x='GEO', order=df['GEO'].value_counts().index) plt.xticks(rotation=90) plt.title('Employment Trends by Geography') plt.xlabel('Geography') plt.ylabel('Count') plt.show() numeric_df = df.select_dtypes(include=[np.number]) plt.figure(figsize=(10, 8)) sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f') plt.title('Correlation Heatmap') plt.show() from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error df_model = df.dropna(subset=['VALUE']) X = df_model[['UOM_ID', 'SCALAR_ID', 'DECIMALS']] y = df_model['VALUE'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) rmse