antitheft159 commited on
Commit
0a86160
·
verified ·
1 Parent(s): 66cf0da

Upload _2646.py

Browse files
Files changed (1) hide show
  1. _2646.py +76 -0
_2646.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """.2646
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1rm4V5QMLQuWMZikisvPv9jIeKgMEAptr
8
+ """
9
+
10
+ import pandas as pd
11
+
12
+ df = pd.read_csv('//content/Advertising And Sales.csv')
13
+
14
+ print(df.head())
15
+
16
+ print(df.describe())
17
+
18
+ print(df.info())
19
+
20
+ import matplotlib.pyplot as plt
21
+ import seaborn as sns
22
+
23
+ sns.set(style="whitegrid")
24
+
25
+ plt.figure(figsize=(14, 6))
26
+
27
+ plt.subplot(1, 3, 1)
28
+ sns.scatterplot(x='TV', y='Sales', data=df)
29
+ plt.title('TV Advertising vs Sales')
30
+
31
+ plt.subplot(1, 3, 2)
32
+ sns.scatterplot(x='Radio', y='Sales', data=df)
33
+ plt.title('Radio Advertising vs Sales')
34
+
35
+ plt.subplot(1, 3, 3)
36
+ sns.scatterplot(x='Newspaper', y='Sales', data=df)
37
+ plt.title('Newspaper Advertising vs Sales')
38
+
39
+ plt.tight_layout()
40
+ plt.show()
41
+
42
+ corr_matrix = df.corr()
43
+
44
+ plt.figure(figsize=(8, 6))
45
+ sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
46
+ plt.title('Correlation Matrix')
47
+ plt.show()
48
+
49
+ from sklearn.model_selection import train_test_split
50
+ from sklearn.linear_model import LinearRegression
51
+ from sklearn.metrics import mean_squared_error, r2_score
52
+
53
+ X = df[['TV', 'Radio', 'Newspaper']]
54
+ y = df['Sales']
55
+
56
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
57
+
58
+ model = LinearRegression()
59
+ model.fit(X_train, y_train)
60
+
61
+ y_pred = model.predict(X_test)
62
+
63
+ print('Mean Squared Error:' , mean_squared_error(y_test, y_pred))
64
+ print('R^2 Score:', r2_score(y_test, y_pred))
65
+
66
+ coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
67
+ print(coefficients)
68
+
69
+ def calculate_roi(spend, sales):
70
+ return sales / spend if spend != 0 else 0
71
+
72
+ df['TV_ROI'] = df.apply(lambda row: calculate_roi(row['TV'], row['Sales']), axis=1)
73
+ df['Radio_ROI'] = df.apply(lambda row: calculate_roi(row['Radio'], row['Sales']), axis=1)
74
+ df['Newspaper_ROI'] = df.apply(lambda row: calculate_roi(row['Newspaper'], row['Sales']), axis=1)
75
+
76
+ print(df[['TV_ROI', 'Radio_ROI', 'Newspaper_ROI']].head())