# -*- coding: utf-8 -*- """.2646 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1rm4V5QMLQuWMZikisvPv9jIeKgMEAptr """ import pandas as pd df = pd.read_csv('//content/Advertising And Sales.csv') print(df.head()) print(df.describe()) print(df.info()) import matplotlib.pyplot as plt import seaborn as sns sns.set(style="whitegrid") plt.figure(figsize=(14, 6)) plt.subplot(1, 3, 1) sns.scatterplot(x='TV', y='Sales', data=df) plt.title('TV Advertising vs Sales') plt.subplot(1, 3, 2) sns.scatterplot(x='Radio', y='Sales', data=df) plt.title('Radio Advertising vs Sales') plt.subplot(1, 3, 3) sns.scatterplot(x='Newspaper', y='Sales', data=df) plt.title('Newspaper Advertising vs Sales') plt.tight_layout() plt.show() corr_matrix = df.corr() plt.figure(figsize=(8, 6)) sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') plt.title('Correlation Matrix') plt.show() from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score X = df[['TV', 'Radio', 'Newspaper']] y = df['Sales'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) print('Mean Squared Error:' , mean_squared_error(y_test, y_pred)) print('R^2 Score:', r2_score(y_test, y_pred)) coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient']) print(coefficients) def calculate_roi(spend, sales): return sales / spend if spend != 0 else 0 df['TV_ROI'] = df.apply(lambda row: calculate_roi(row['TV'], row['Sales']), axis=1) df['Radio_ROI'] = df.apply(lambda row: calculate_roi(row['Radio'], row['Sales']), axis=1) df['Newspaper_ROI'] = df.apply(lambda row: calculate_roi(row['Newspaper'], row['Sales']), axis=1) print(df[['TV_ROI', 'Radio_ROI', 'Newspaper_ROI']].head())