{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "1ac8b6867a03405bbe92c8a56f83f912": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_5628c745156844a6ad31eb4d0d4669fa", "IPY_MODEL_4494669a6be543a3827209a9d55c9db7", "IPY_MODEL_cb449887166648bd973efb00936c45e1" ], "layout": "IPY_MODEL_84046ed9d8014017a89c0ad1f28434f5" } }, "5628c745156844a6ad31eb4d0d4669fa": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6eff48683d4542fe97fac020bdf6006d", "placeholder": "​", "style": "IPY_MODEL_c298e88cc80c45429afc9b14c89c7ac0", "value": "100%" } }, "4494669a6be543a3827209a9d55c9db7": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c57166a607a94d9e951585e5c36796ad", "max": 15, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_78390cf43aa34c43b8dce2f1aa9f1c66", "value": 15 } }, "cb449887166648bd973efb00936c45e1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c4d658864ba64f7cac15febd68e56c09", "placeholder": "​", "style": "IPY_MODEL_301d8236713443d98ee401300ebf9274", "value": " 15/15 [01:12<00:00,  4.36s/it]" } }, "84046ed9d8014017a89c0ad1f28434f5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6eff48683d4542fe97fac020bdf6006d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c298e88cc80c45429afc9b14c89c7ac0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c57166a607a94d9e951585e5c36796ad": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "78390cf43aa34c43b8dce2f1aa9f1c66": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c4d658864ba64f7cac15febd68e56c09": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "301d8236713443d98ee401300ebf9274": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "id": "OZCyQ0aetEuX" }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.metrics import accuracy_score\n", "from sklearn.metrics import classification_report\n", "import tensorflow as tf\n", "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import Dense, Dropout\n", "from tensorflow.keras.optimizers import Adam\n", "from tensorflow.keras import initializers\n", "from tensorflow.keras.callbacks import ModelCheckpoint" ] }, { "cell_type": "code", "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "import os\n", "for dirname, _, filenames in os.walk('/kaggle/input'):\n", " for filename in filenames:\n", " print(os.path.join(dirname, filename))\n" ], "metadata": { "id": "K5r_oQn8t-u4" }, "execution_count": 4, "outputs": [] }, { "cell_type": "code", "source": [ "missing_values=[\"N/a\", \"na\", np.nan]\n", "Data = pd.read_csv('/content/dataset1.csv', na_values=(missing_values))\n", "Data.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "NNIhWHjquKBd", "outputId": "0da1c881-47a0-43ac-cbba-ce2c52f92520" }, "execution_count": 5, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " N P K pH EC OC S Zn Fe Cu Mn B Output\n", "0 138 8.6 560 7.46 0.62 0.70 5.9 0.24 0.31 0.77 8.71 0.11 0\n", "1 213 7.5 338 7.62 0.75 1.06 25.4 0.30 0.86 1.54 2.89 2.29 0\n", "2 163 9.6 718 7.59 0.51 1.11 14.3 0.30 0.86 1.57 2.70 2.03 0\n", "3 157 6.8 475 7.64 0.58 0.94 26.0 0.34 0.54 1.53 2.65 1.82 0\n", "4 270 9.9 444 7.63 0.40 0.86 11.8 0.25 0.76 1.69 2.43 2.26 1" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NPKpHECOCSZnFeCuMnBOutput
01388.65607.460.620.705.90.240.310.778.710.110
12137.53387.620.751.0625.40.300.861.542.892.290
21639.67187.590.511.1114.30.300.861.572.702.030
31576.84757.640.580.9426.00.340.541.532.651.820
42709.94447.630.400.8611.80.250.761.692.432.261
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "Data", "summary": "{\n \"name\": \"Data\",\n \"rows\": 880,\n \"fields\": [\n {\n \"column\": \"N\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 77,\n \"min\": 6,\n \"max\": 383,\n \"num_unique_values\": 61,\n \"samples\": [\n 138,\n 220,\n 257\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"P\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 21.96775509286144,\n \"min\": 2.9,\n \"max\": 125.0,\n \"num_unique_values\": 92,\n \"samples\": [\n 13.4,\n 6.6,\n 15.6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"K\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 124,\n \"min\": 11,\n \"max\": 887,\n \"num_unique_values\": 62,\n \"samples\": [\n 528,\n 876,\n 560\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"pH\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4649121658515394,\n \"min\": 0.9,\n \"max\": 11.15,\n \"num_unique_values\": 107,\n \"samples\": [\n 7.25,\n 7.45,\n 7.63\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"EC\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1415966877712754,\n \"min\": 0.1,\n \"max\": 0.95,\n \"num_unique_values\": 71,\n \"samples\": [\n 0.61,\n 0.62,\n 0.81\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"OC\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8429861461771505,\n \"min\": 0.1,\n \"max\": 24.0,\n \"num_unique_values\": 68,\n \"samples\": [\n 0.41,\n 1.0,\n 0.86\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.424183642638536,\n \"min\": 0.64,\n \"max\": 31.0,\n \"num_unique_values\": 153,\n \"samples\": [\n 7.5,\n 6.4,\n 3.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Zn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.8942340912435867,\n \"min\": 0.07,\n \"max\": 42.0,\n \"num_unique_values\": 70,\n \"samples\": [\n 0.83,\n 0.24,\n 0.79\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.1100108753080082,\n \"min\": 0.21,\n \"max\": 44.0,\n \"num_unique_values\": 387,\n \"samples\": [\n 1.56,\n 2.64,\n 1.98\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cu\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4658998011958893,\n \"min\": 0.09,\n \"max\": 3.02,\n \"num_unique_values\": 166,\n \"samples\": [\n 0.12,\n 1.86,\n 0.74\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.29882792449984,\n \"min\": 0.11,\n \"max\": 31.0,\n \"num_unique_values\": 429,\n \"samples\": [\n 4.02,\n 4.85,\n 8.84\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5708004655532873,\n \"min\": 0.06,\n \"max\": 2.82,\n \"num_unique_values\": 127,\n \"samples\": [\n 0.88,\n 1.24,\n 0.22\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Output\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 3,\n \"samples\": [\n 0,\n 1,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 5 } ] }, { "cell_type": "code", "source": [ "Data.info()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "mtAngMfRuszz", "outputId": "f5e049e0-25d6-489e-ca6f-14dfbb7553e6" }, "execution_count": 6, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "RangeIndex: 880 entries, 0 to 879\n", "Data columns (total 13 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 N 880 non-null int64 \n", " 1 P 880 non-null float64\n", " 2 K 880 non-null int64 \n", " 3 pH 880 non-null float64\n", " 4 EC 880 non-null float64\n", " 5 OC 880 non-null float64\n", " 6 S 880 non-null float64\n", " 7 Zn 880 non-null float64\n", " 8 Fe 880 non-null float64\n", " 9 Cu 880 non-null float64\n", " 10 Mn 880 non-null float64\n", " 11 B 880 non-null float64\n", " 12 Output 880 non-null int64 \n", "dtypes: float64(10), int64(3)\n", "memory usage: 89.5 KB\n" ] } ] }, { "cell_type": "code", "source": [ "sns.heatmap(Data.isnull(), yticklabels=False)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 452 }, "id": "jSI876Owuu32", "outputId": "1dec1c37-11e8-4cfe-adc1-34c1849d586c" }, "execution_count": 7, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 7 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAGiCAYAAACCkz52AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6G0lEQVR4nO3de3wU9b3/8XcCZINAEgMhCxhuB8pFgWhikuW0P0CCidLW1NgDNB4u5oBWkgKhVUAkiEeDIgURLFoUtIJQvFAFTmwMolZSLgG8QEBsRQqyAYyBEpoL7Pz+8MGWdZawCTvgyOvZxzxKZr7z/c5suuXD5/P9zoQYhmEIAADgHKGX+wIAAMB3DwECAAAwIUAAAAAmBAgAAMCEAAEAAJgQIAAAABMCBAAAYEKAAAAATAgQAACACQECAAAwIUAAAKCBFi1apM6dOys8PFzJycnasmXLedvu2rVLmZmZ6ty5s0JCQjR//vxG9VldXa3x48erdevWatmypTIzM1VeXh7M2/JBgAAAQAOsWrVKeXl5ys/P1/bt29WvXz+lpaXpyJEjftufOnVKXbt21ezZs+V0Ohvd56RJk/Tmm29q9erVevfdd/Xll1/q9ttvt+QeJSmElzUBABC45ORk3XjjjVq4cKEkyePxKC4uTrm5uZoyZUq953bu3FkTJ07UxIkTG9Tn8ePHFRMToxUrVuiOO+6QJO3Zs0e9evVSSUmJUlJSgn6fZBAAAFe0mpoanThxwmerqanx27a2tlalpaVKTU317gsNDVVqaqpKSkoaNX4gfZaWlqqurs6nTc+ePdWxY8dGj3shTQNtuO2aDEsuAADw/ZN4cI3lY9Qd+3tQ+ilY+KIeeughn335+fmaOXOmqe2xY8d05swZxcbG+uyPjY3Vnj17GjV+IH263W6FhYUpKirK1Mbtdjdq3AsJOEAAAOA7xXMmKN1MnTpVeXl5PvscDkdQ+rYzAgQAwBXN4XAEHBC0adNGTZo0Ma0eKC8vP+8ExGD06XQ6VVtbq8rKSp8swsWMeyHMQQAA2JPhCc7WAGFhYUpISFBxcbF3n8fjUXFxsVwuV6NuI5A+ExIS1KxZM582e/fu1YEDBxo97oWQQQAA2JOnYX+5B0teXp5GjRqlxMREJSUlaf78+aqqqtKYMWMkSSNHjlSHDh1UUFAg6ZtJiLt37/b++dChQ9q5c6datmypbt26BdRnZGSksrOzlZeXp+joaEVERCg3N1cul8uSFQwSAQIAwKaMBv7rP1iGDRumo0ePasaMGXK73YqPj1dhYaF3kuGBAwcUGvrvBP2XX36p66+/3vvzE088oSeeeEIDBgzQxo0bA+pTkubNm6fQ0FBlZmaqpqZGaWlpevrppy27z4Cfg8AqBgBAoC7FKobaL3cFpZ+w9tcGpZ/vGzIIAAB7ukwlhisFAQIAwJ4uU4nhSsEqBgAAYEIGAQBgT0F6UBL8I0AAANgTJQZLUWIAAAAmZBAAAPbEKgZLESAAAGzpcj0o6UpBiQEAAJiQQQAA2BMlBksRIAAA7IkSg6UIEAAA9sRzECzFHAQAAGBCBgEAYE+UGCxFgAAAsCcmKVqKEgMAADAhgwAAsCdKDJYiQAAA2BMlBktRYgAAACZkEAAAtmQYPAfBSgQIAAB7Yg6CpSgxAAAAEzIIAAB7YpKipQgQAAD2RInBUgQIAAB74mVNlmIOAgAAMCGDAACwJ0oMliJAAADYE5MULUWJAQAAmJBBAADYEyUGSxEgAADsiRKDpSgxAAAAEzIIAAB7IoNgKQIEAIAt8TZHa1FiAAAAJgQIAAB78niCszXCokWL1LlzZ4WHhys5OVlbtmypt/3q1avVs2dPhYeHq0+fPlq/fr3P8ZCQEL/bnDlzvG06d+5sOj579uxGXX8gCBAAAPZkeIKzNdCqVauUl5en/Px8bd++Xf369VNaWpqOHDnit/2mTZs0YsQIZWdna8eOHcrIyFBGRoY++eQTb5vDhw/7bM8//7xCQkKUmZnp09esWbN82uXm5jb4+gMVYhiGEUjDbddkWHYRAIDvl8SDaywf41/Fzwaln+aDxzWofXJysm688UYtXLhQkuTxeBQXF6fc3FxNmTLF1H7YsGGqqqrS2rVrvftSUlIUHx+vxYsX+x0jIyND//znP1VcXOzd17lzZ02cOFETJ05s0PU2FhkEAMAVraamRidOnPDZampq/Latra1VaWmpUlNTvftCQ0OVmpqqkpISv+eUlJT4tJektLS087YvLy/XunXrlJ2dbTo2e/ZstW7dWtdff73mzJmj06dPB3qbDUaAAACwpyCVGAoKChQZGemzFRQU+B3y2LFjOnPmjGJjY332x8bGyu12+z3H7XY3qP0LL7ygVq1a6fbbb/fZ/6tf/UorV67UO++8o7vvvluPPvqo7rvvvkA/rQZjmSMAwJ6C9ByEqVOnKi8vz2efw+EISt+N8fzzzysrK0vh4eE++8+9xr59+yosLEx33323CgoKLLleAgQAwBXN4XAE/BdsmzZt1KRJE5WXl/vsLy8vl9Pp9HuO0+kMuP3777+vvXv3atWqVRe8luTkZJ0+fVr79+9Xjx49Arr+hqDEAACwp8uwiiEsLEwJCQk+kwc9Ho+Ki4vlcrn8nuNyuXzaS1JRUZHf9s8995wSEhLUr1+/C17Lzp07FRoaqrZt2zboHgJFBgEAYE+X6VHLeXl5GjVqlBITE5WUlKT58+erqqpKY8aMkSSNHDlSHTp08M5jmDBhggYMGKC5c+dq6NChWrlypbZt26Znn/VdhXHixAmtXr1ac+fONY1ZUlKizZs3a9CgQWrVqpVKSko0adIk3Xnnnbr66qstuU8CBAAAGmDYsGE6evSoZsyYIbfbrfj4eBUWFnonIh44cEChof9O0Pfv318rVqzQ9OnTNW3aNHXv3l1r1qzRdddd59PvypUrZRiGRowYYRrT4XBo5cqVmjlzpmpqatSlSxdNmjTJNHcimHgOAgAg6C7JcxDWzQ9KP82HTgxKP983ZBAAAPbUiKcgInBMUgQAACZkEAAA9nSZJileKQgQAAD2RInBUgQIAAB7IoNgKeYgAAAAEzIIAAB7osRgKQIEAIA9UWKwFCUGAABgQgYBAGBPZBAsRYAAALCnwN4UgEaixAAAAEzIIAAA7IkSg6UIEAAA9kSAYClKDAAAwIQMAgDAnnhQkqUIEAAA9kSJwVIECAAAe2KZo6WYgwAAAEzIIAAA7IkSg6UIEAAA9kSAYClKDAAAwIQMAgDAnljmaCkCBACALRkeVjFYiRIDAAAwIYMAALAnJilaigABAGBPzEGwFCUGAABgQgYBAGBPTFK0FAECAMCemINgKQIEAIA9ESBYijkIAADAhAwCAMCeeN2zpQgQAAD2RInBUpQYAACACQECAMCePEZwtkZYtGiROnfurPDwcCUnJ2vLli31tl+9erV69uyp8PBw9enTR+vXr/c5Pnr0aIWEhPhs6enpPm0qKiqUlZWliIgIRUVFKTs7WydPnmzU9QeCAAEAYE+GJzhbA61atUp5eXnKz8/X9u3b1a9fP6WlpenIkSN+22/atEkjRoxQdna2duzYoYyMDGVkZOiTTz7xaZeenq7Dhw97t5dfftnneFZWlnbt2qWioiKtXbtW7733nsaNG9fg6w9UiGEENstj2zUZll0EAOD7JfHgGsvHODXnrqD0c9Vvnm9Q++TkZN14441auHChJMnj8SguLk65ubmaMmWKqf2wYcNUVVWltWvXevelpKQoPj5eixcvlvRNBqGyslJr1qzxO2ZZWZl69+6trVu3KjExUZJUWFioW2+9VQcPHlT79u0bdA+BIIMAALCnIJUYampqdOLECZ+tpqbG75C1tbUqLS1Vamqqd19oaKhSU1NVUlLi95ySkhKf9pKUlpZmar9x40a1bdtWPXr00C9/+Ut99dVXPn1ERUV5gwNJSk1NVWhoqDZv3tzgjy4QBAgAAFsyPJ6gbAUFBYqMjPTZCgoK/I557NgxnTlzRrGxsT77Y2Nj5Xa7/Z7jdrsv2D49PV0vvviiiouL9dhjj+ndd9/VLbfcojNnznj7aNu2rU8fTZs2VXR09HnHvVgscwQAXNGmTp2qvLw8n30Oh+OSXsPw4cO9f+7Tp4/69u2r//iP/9DGjRs1ePDgS3otZxEgAADsKUgva3I4HAEHBG3atFGTJk1UXl7us7+8vFxOp9PvOU6ns0HtJalr165q06aNPvvsMw0ePFhOp9M0CfL06dOqqKiot5+LQYkBAGBPl2EVQ1hYmBISElRcXOzd5/F4VFxcLJfL5fccl8vl016SioqKzttekg4ePKivvvpK7dq18/ZRWVmp0tJSb5sNGzbI4/EoOTm5QfcQKDIIAAB7ukyve87Ly9OoUaOUmJiopKQkzZ8/X1VVVRozZowkaeTIkerQoYN3HsOECRM0YMAAzZ07V0OHDtXKlSu1bds2Pfvss5KkkydP6qGHHlJmZqacTqf+9re/6b777lO3bt2UlpYmSerVq5fS09M1duxYLV68WHV1dcrJydHw4cMtWcEgESAAANAgw4YN09GjRzVjxgy53W7Fx8ersLDQOxHxwIEDCg39d4K+f//+WrFihaZPn65p06ape/fuWrNmja677jpJUpMmTfTRRx/phRdeUGVlpdq3b6+bb75ZDz/8sE/pY/ny5crJydHgwYMVGhqqzMxMLViwwLL75DkIAICguxTPQaiaOSIo/bSY+fKFG12ByCAAAOzpMpUYrhRMUgQAACZkEAAA9tSI9yggcAQIAAB7osRgKUoMAADAhAwCAMCWDA8lBisRIAAA7IkSg6UoMQAAABMyCAAAeyKDYCkCBACAPbHM0VIECAAAeyKDYCnmIAAAABMyCAAAWzLIIFiKAAEAYE8ECJaixAAAAEzIIAAA7IknKVqKAAEAYE+UGCxFiQEAAJiQQQAA2BMZBEsRIAAAbMkwCBCsRIkBAACYkEEAANgTJQZLESAAAOyJAMFSBAgAAFviUcvWYg4CAAAwIYMAALAnMgiWIkAAANgTT1q2FCUGAABgQgYBAGBLTFK0FgECAMCeCBAsRYkBAACYkEEAANgTkxQtRYAAALAl5iBYixIDAAAwIYMAALAnSgyWIkAAANgSJQZrUWIAANiTJ0hbIyxatEidO3dWeHi4kpOTtWXLlnrbr169Wj179lR4eLj69Omj9evXe4/V1dXp/vvvV58+fdSiRQu1b99eI0eO1JdffunTR+fOnRUSEuKzzZ49u3E3EAACBAAAGmDVqlXKy8tTfn6+tm/frn79+iktLU1Hjhzx237Tpk0aMWKEsrOztWPHDmVkZCgjI0OffPKJJOnUqVPavn27HnzwQW3fvl2vvfaa9u7dq5/+9KemvmbNmqXDhw97t9zcXMvuM8QwjIByNNuuybDsIgAA3y+JB9dYPsZXPxkQlH5avvJn1dTU+OxzOBxyOBx+2ycnJ+vGG2/UwoULJUkej0dxcXHKzc3VlClTTO2HDRumqqoqrV271rsvJSVF8fHxWrx4sd8xtm7dqqSkJH3xxRfq2LGjpG8yCBMnTtTEiRMbc5sNRgYBAGBPQSoxFBQUKDIy0mcrKCjwO2Rtba1KS0uVmprq3RcaGqrU1FSVlJT4PaekpMSnvSSlpaWdt70kHT9+XCEhIYqKivLZP3v2bLVu3VrXX3+95syZo9OnT5+3j4vFJEUAwBVt6tSpysvL89l3vuzBsWPHdObMGcXGxvrsj42N1Z49e/ye43a7/bZ3u91+21dXV+v+++/XiBEjFBER4d3/q1/9SjfccIOio6O1adMmTZ06VYcPH9Zvf/vbC95jYxAgAABsyQjSMsf6ygmXWl1dnf7rv/5LhmHod7/7nc+xc4OYvn37KiwsTHfffbcKCgosuX5KDAAAe7oMqxjatGmjJk2aqLy83Gd/eXm5nE6n33OcTmdA7c8GB1988YWKiop8sgf+JCcn6/Tp09q/f3/DbiJABAgAAAQoLCxMCQkJKi4u9u7zeDwqLi6Wy+Xye47L5fJpL0lFRUU+7c8GB/v27dPbb7+t1q1bX/Badu7cqdDQULVt27aRd1M/SgwAAFsKVomhofLy8jRq1CglJiYqKSlJ8+fPV1VVlcaMGSNJGjlypDp06OCd6DhhwgQNGDBAc+fO1dChQ7Vy5Upt27ZNzz77rKRvgoM77rhD27dv19q1a3XmzBnv/ITo6GiFhYWppKREmzdv1qBBg9SqVSuVlJRo0qRJuvPOO3X11Vdbcp8ECAAAW7pcAcKwYcN09OhRzZgxQ263W/Hx8SosLPRORDxw4IBCQ/+doO/fv79WrFih6dOna9q0aerevbvWrFmj6667TpJ06NAhvfHGG5Kk+Ph4n7HeeecdDRw4UA6HQytXrtTMmTNVU1OjLl26aNKkSabJlcHEcxAAAEF3KZ6DUD4oOM9BiH3n3aD0833DHAQAAGBCiQEAYE9GyOW+gu81AgQAgC1drjkIVwpKDAAAwIQMAgDAlgwPJQYrESAAAGyJEoO1KDEAAAATMggAAFsyWMVgKQIEAIAtUWKwFiUGAABgQgYBAGBLrGKwFgECAMCWAnuTEBqLAAEAYEtkEKzFHAQAAGBCBgEAYEtkEKxFgAAAsCXmIFiLEgMAADAhgwAAsCVKDNYiQAAA2BKPWrYWJQYAAGBCBgEAYEu8i8FaBAgAAFvyUGKwFCUGAABgQgYBAGBLTFK0FgECAMCWWOZoLQIEAIAt8SRFazEHAQAAmJBBAADYEiUGaxEgAABsiWWO1qLEAAAATMggAABsiWWO1iJAAADYEqsYrEWJAQAAmJBBAADYEpMUrUWAAACwJeYgWIsSAwAADbRo0SJ17txZ4eHhSk5O1pYtW+ptv3r1avXs2VPh4eHq06eP1q9f73PcMAzNmDFD7dq1U/PmzZWamqp9+/b5tKmoqFBWVpYiIiIUFRWl7OxsnTx5Muj3dhYBAgDAlgwjOFtDrVq1Snl5ecrPz9f27dvVr18/paWl6ciRI37bb9q0SSNGjFB2drZ27NihjIwMZWRk6JNPPvG2efzxx7VgwQItXrxYmzdvVosWLZSWlqbq6mpvm6ysLO3atUtFRUVau3at3nvvPY0bN67hNxCgEMMI7OPZdk2GZRcBAPh+STy4xvIxgvX3Up+/rVJNTY3PPofDIYfD4bd9cnKybrzxRi1cuFCS5PF4FBcXp9zcXE2ZMsXUftiwYaqqqtLatWu9+1JSUhQfH6/FixfLMAy1b99ekydP1q9//WtJ0vHjxxUbG6tly5Zp+PDhKisrU+/evbV161YlJiZKkgoLC3Xrrbfq4MGDat++fVA+i3ORQQAA2JJhhARlKygoUGRkpM9WUFDgd8za2lqVlpYqNTXVuy80NFSpqakqKSnxe05JSYlPe0lKS0vztv/888/ldrt92kRGRio5OdnbpqSkRFFRUd7gQJJSU1MVGhqqzZs3N+4DvAAmKQIArmhTp05VXl6ez77zZQ+OHTumM2fOKDY21md/bGys9uzZ4/cct9vtt73b7fYeP7uvvjZt27b1Od60aVNFR0d72wQbAQIAwJaCtcyxvnLClYwSAwDAlowgbQ3Rpk0bNWnSROXl5T77y8vL5XQ6/Z7jdDrrbX/2vy/U5tuTIE+fPq2KiorzjnuxCBAAAAhQWFiYEhISVFxc7N3n8XhUXFwsl8vl9xyXy+XTXpKKioq87bt06SKn0+nT5sSJE9q8ebO3jcvlUmVlpUpLS71tNmzYII/Ho+Tk5KDd37koMQAAbOlyPUkxLy9Po0aNUmJiopKSkjR//nxVVVVpzJgxkqSRI0eqQ4cO3omOEyZM0IABAzR37lwNHTpUK1eu1LZt2/Tss89KkkJCQjRx4kT97//+r7p3764uXbrowQcfVPv27ZWRkSFJ6tWrl9LT0zV27FgtXrxYdXV1ysnJ0fDhwy1ZwSARIAAAbOpyPUlx2LBhOnr0qGbMmCG32634+HgVFhZ6JxkeOHBAoaH/TtD3799fK1as0PTp0zVt2jR1795da9as0XXXXedtc99996mqqkrjxo1TZWWlfvjDH6qwsFDh4eHeNsuXL1dOTo4GDx6s0NBQZWZmasGCBZbdJ89BAAAE3aV4DsIHzjuC0s9/ul8JSj/fN2QQAAC25LncF/A9R4AAALAlQ7ysyUqsYgAAACZkEAAAtuRpxIuWEDgCBACALXkoMViKAAEAYEvMQbAWcxAAAIAJGQQAgC2xzNFaBAgAAFuixGAtSgwAAMCEDAIAwJYoMViLAAEAYEsECNaixAAAAEzIIAAAbIlJitYiQAAA2JKH+MBSlBgAAIAJGQQAgC3xLgZrESAAAGyJlzlaiwABAGBLLHO0FnMQAACACRkEAIAteUKYg2AlAgQAgC0xB8FalBgAAIAJGQQAgC0xSdFaBAgAAFviSYrWosQAAABMyCAAAGyJJylaiwABAGBLrGKwFiUGAABgQgYBAGBLTFK0FgECAMCWWOZoLQIEAIAtMQfBWsxBAAAAJmQQAAC2xBwEaxEgAABsiTkI1qLEAACABSoqKpSVlaWIiAhFRUUpOztbJ0+erPec6upqjR8/Xq1bt1bLli2VmZmp8vJy7/EPP/xQI0aMUFxcnJo3b65evXrpySef9Olj48aNCgkJMW1ut7tB108GAQBgS9/1DEJWVpYOHz6soqIi1dXVacyYMRo3bpxWrFhx3nMmTZqkdevWafXq1YqMjFROTo5uv/12ffDBB5Kk0tJStW3bVi+99JLi4uK0adMmjRs3Tk2aNFFOTo5PX3v37lVERIT357Zt2zbo+kMMwwhoIui2azIa1DEA4MqVeHCN5WMsjrszKP3c84+XgtLPucrKytS7d29t3bpViYmJkqTCwkLdeuutOnjwoNq3b2865/jx44qJidGKFSt0xx13SJL27NmjXr16qaSkRCkpKX7HGj9+vMrKyrRhwwZJ32QQBg0apK+//lpRUVGNvgdKDACAK1pNTY1OnDjhs9XU1FxUnyUlJYqKivIGB5KUmpqq0NBQbd682e85paWlqqurU2pqqndfz5491bFjR5WUlJx3rOPHjys6Otq0Pz4+Xu3atdOQIUO8GYiGIEAAANiSJ0hbQUGBIiMjfbaCgoKLuja3221K6Tdt2lTR0dHnnQvgdrsVFhZm+ld/bGzsec/ZtGmTVq1apXHjxnn3tWvXTosXL9arr76qV199VXFxcRo4cKC2b9/eoHtgDgIAwJaCNQdh6tSpysvL89nncDj8tp0yZYoee+yxevsrKysL0pXV75NPPtFtt92m/Px83Xzzzd79PXr0UI8ePbw/9+/fX3/72980b948/eEPfwi4fwIEAMAVzeFwnDcg+LbJkydr9OjR9bbp2rWrnE6njhw54rP/9OnTqqiokNPp9Hue0+lUbW2tKisrfbII5eXlpnN2796twYMHa9y4cZo+ffoFrzspKUl/+ctfLtjuXAQIAABbuhyPWo6JiVFMTMwF27lcLlVWVqq0tFQJCQmSpA0bNsjj8Sg5OdnvOQkJCWrWrJmKi4uVmZkp6ZuVCAcOHJDL5fK227Vrl2666SaNGjVKjzzySEDXvXPnTrVr1y6gtmcRIAAAbOm7/CTFXr16KT09XWPHjtXixYtVV1ennJwcDR8+3LuC4dChQxo8eLBefPFFJSUlKTIyUtnZ2crLy1N0dLQiIiKUm5srl8vlXcHwySef6KabblJaWpry8vK8cxOaNGniDVzmz5+vLl266Nprr1V1dbWWLFmiDRs26M9//nOD7oEAAQBgS9/15yAsX75cOTk5Gjx4sEJDQ5WZmakFCxZ4j9fV1Wnv3r06deqUd9+8efO8bWtqapSWlqann37ae/yVV17R0aNH9dJLL+mll/69PLNTp07av3+/JKm2tlaTJ0/WoUOHdNVVV6lv3756++23NWjQoAZdP89BAAAE3aV4DsK8jsF5DsKkA8F/DsL3ARkEAIAtfdczCHZHgAAAsKXLMUnxSsKDkgAAgAkZBACALX2XVzF8HxAgAABsiTkI1qLEAAAATMggAABsiUmK1iJAAADYkocQwVKUGAAAgAkZBACALTFJ0VoECAAAW6LAYC0CBACALZFBsBZzEAAAgAkZBACALfEkRWsRIAAAbIlljtaixAAAAEzIIAAAbIn8gbUIEAAAtsQqBmtRYgAAACZkEAAAtsQkRWsRIAAAbInwwFqUGAAAgAkZBACALTFJ0VoECAAAW2IOgrUIEAAAtkR4YC3mIAAAABMyCAAAW2IOgrUIEAAAtmRQZLAUJQYAAGBCBgEAYEuUGKxFgAAAsCWWOVqLEgMAADAhgwAAsCXyB9YiQAAA2BIlBmtRYgAAACYECAAAW/IEabNKRUWFsrKyFBERoaioKGVnZ+vkyZP1nlNdXa3x48erdevWatmypTIzM1VeXu7TJiQkxLStXLnSp83GjRt1ww03yOFwqFu3blq2bFmDr58AAQBgS0aQ/mOVrKws7dq1S0VFRVq7dq3ee+89jRs3rt5zJk2apDfffFOrV6/Wu+++qy+//FK33367qd3SpUt1+PBh75aRkeE99vnnn2vo0KEaNGiQdu7cqYkTJ+p//ud/9NZbbzXo+kMMwwjo09l2TcYF2wAAIEmJB9dYPsZdne8ISj/P738lKP2cq6ysTL1799bWrVuVmJgoSSosLNStt96qgwcPqn379qZzjh8/rpiYGK1YsUJ33PHNve3Zs0e9evVSSUmJUlJSJH2TQXj99dd9goJz3X///Vq3bp0++eQT777hw4ersrJShYWFAd8DGQQAwBWtpqZGJ06c8Nlqamouqs+SkhJFRUV5gwNJSk1NVWhoqDZv3uz3nNLSUtXV1Sk1NdW7r2fPnurYsaNKSkp82o4fP15t2rRRUlKSnn/+eZ37b/2SkhKfPiQpLS3N1MeFECAAAGwpWCWGgoICRUZG+mwFBQUXdW1ut1tt27b12de0aVNFR0fL7Xaf95ywsDBFRUX57I+NjfU5Z9asWfrjH/+ooqIiZWZm6t5779VTTz3l009sbKypjxMnTuhf//pXwPfAMkcAgC0Fa4Lh1KlTlZeX57PP4XD4bTtlyhQ99thj9fZXVlYWpCvz78EHH/T++frrr1dVVZXmzJmjX/3qV0EdhwABAHBFczgc5w0Ivm3y5MkaPXp0vW26du0qp9OpI0eO+Ow/ffq0Kioq5HQ6/Z7ndDpVW1uryspKnyxCeXn5ec+RpOTkZD388MOqqamRw+GQ0+k0rXwoLy9XRESEmjdvXv8NnoMAAQBgS57A5tgHVUxMjGJiYi7YzuVyqbKyUqWlpUpISJAkbdiwQR6PR8nJyX7PSUhIULNmzVRcXKzMzExJ0t69e3XgwAG5XK7zjrVz505dffXV3iDH5XJp/fr1Pm2Kiorq7cMfAgQAgC19l5+j2KtXL6Wnp2vs2LFavHix6urqlJOTo+HDh3tXMBw6dEiDBw/Wiy++qKSkJEVGRio7O1t5eXmKjo5WRESEcnNz5XK5vCsY3nzzTZWXlyslJUXh4eEqKirSo48+ql//+tfese+55x4tXLhQ9913n+666y5t2LBBf/zjH7Vu3boG3QMBAgAAFli+fLlycnI0ePBghYaGKjMzUwsWLPAer6ur0969e3Xq1Cnvvnnz5nnb1tTUKC0tTU8//bT3eLNmzbRo0SJNmjRJhmGoW7du+u1vf6uxY8d623Tp0kXr1q3TpEmT9OSTT+qaa67RkiVLlJaW1qDr5zkIAICguxTPQfhFp58FpZ8VX7welH6+b8ggAABsycqnIILnIAAAAD/IIAAAbMnKFy2BAAEAYFMeSgyWIkAAANgScxCsxRwEAABgQgYBAGBLzEGwFgECAMCWAnyMDxqJEgMAADAhgwAAsCVWMViLAAEAYEvMQbAWJQYAAGBCBgEAYEs8B8FaBAgAAFtiDoK1KDEAAAATMggAAFviOQjWIkAAANgSqxisRYAAALAlJilaizkIAADAhAwCAMCWWMVgLQIEAIAtMUnRWpQYAACACRkEAIAtUWKwFgECAMCWWMVgLUoMAADAhAwCAMCWPExStBQBAgDAlggPrEWJAQAAmJBBAADYEqsYrEWAAACwJQIEaxEgAABsiScpWos5CAAAwIQMAgDAligxWIsAAQBgSzxJ0VqUGAAAgAkBAgDAlgzDCMpmlYqKCmVlZSkiIkJRUVHKzs7WyZMn6z2nurpa48ePV+vWrdWyZUtlZmaqvLzce3zZsmUKCQnxux05ckSStHHjRr/H3W53g66fEgMAwJa+63MQsrKydPjwYRUVFamurk5jxozRuHHjtGLFivOeM2nSJK1bt06rV69WZGSkcnJydPvtt+uDDz6QJA0bNkzp6ek+54wePVrV1dVq27atz/69e/cqIiLC+/O3j18IAQIAAEFWVlamwsJCbd26VYmJiZKkp556SrfeequeeOIJtW/f3nTO8ePH9dxzz2nFihW66aabJElLly5Vr1699Ne//lUpKSlq3ry5mjdv7j3n6NGj2rBhg5577jlTf23btlVUVFSj74ESAwDAloJVYqipqdGJEyd8tpqamou6tpKSEkVFRXmDA0lKTU1VaGioNm/e7Pec0tJS1dXVKTU11buvZ8+e6tixo0pKSvye8+KLL+qqq67SHXfcYToWHx+vdu3aaciQId4MREMQIAAAbMkjIyhbQUGBIiMjfbaCgoKLuja3221K6Tdt2lTR0dHnnQvgdrsVFhZm+ld/bGzsec957rnn9Itf/MInq9CuXTstXrxYr776ql599VXFxcVp4MCB2r59e4PugRIDAOCKNnXqVOXl5fnsczgcfttOmTJFjz32WL39lZWVBe3a6lNSUqKysjL94Q9/8Nnfo0cP9ejRw/tz//799be//U3z5s0zta0PAQIAwJaC9RwEh8Nx3oDg2yZPnqzRo0fX26Zr165yOp3eVQVnnT59WhUVFXI6nX7Pczqdqq2tVWVlpU8Woby83O85S5YsUXx8vBISEi543UlJSfrLX/5ywXbnIkAAANiS5zK8iyEmJkYxMTEXbOdyuVRZWanS0lLvX+AbNmyQx+NRcnKy33MSEhLUrFkzFRcXKzMzU9I3KxEOHDggl8vl0/bkyZP64x//GHApZOfOnWrXrl1Abc8iQAAA2NJ3+UmKvXr1Unp6usaOHavFixerrq5OOTk5Gj58uHcFw6FDhzR48GC9+OKLSkpKUmRkpLKzs5WXl6fo6GhFREQoNzdXLpdLKSkpPv2vWrVKp0+f1p133mkae/78+erSpYuuvfZaVVdXa8mSJdqwYYP+/Oc/N+geCBAAALDA8uXLlZOTo8GDBys0NFSZmZlasGCB93hdXZ327t2rU6dOeffNmzfP27ampkZpaWl6+umnTX0/99xzuv322/0uY6ytrdXkyZN16NAhXXXVVerbt6/efvttDRo0qEHXH2IE+BipbddkNKhjAMCVK/HgGsvH6NU2KSj9lB3ZEpR+vm/IIAAAbOm7XGL4PuA5CAAAwIQMAgDAli7HKoYrCQECAMCWKDFYixIDAAAwIYMAALAlSgzWIkAAANgSJQZrUWIAAAAmZBAAALZkGJ7LfQnfawQIAABb8lBisBQBAgDAlgJ8UwAaiTkIAADAhAwCAMCWKDFYiwABAGBLlBisRYkBAACYkEEAANgST1K0FgECAMCWeJKitSgxAAAAEzIIAABbYpKitQgQAAC2xDJHa1FiAAAAJmQQAAC2RInBWgQIAABbYpmjtQgQAAC2RAbBWsxBAAAAJmQQAAC2xCoGaxEgAABsiRKDtSgxAAAAEzIIAABbYhWDtQgQAAC2xMuarEWJAQAAmJBBAADYEiUGaxEgAABsiVUM1qLEAAAATMggAABsiUmK1iJAAADYEiUGa1FiAADYkmEYQdmsUlFRoaysLEVERCgqKkrZ2dk6efJkvec8++yzGjhwoCIiIhQSEqLKyspG9fvRRx/pRz/6kcLDwxUXF6fHH3+8wddPgAAAgAWysrK0a9cuFRUVae3atXrvvfc0bty4es85deqU0tPTNW3atEb3e+LECd18883q1KmTSktLNWfOHM2cOVPPPvtsg64/xAgwfNp2TUaDOgYAXLkSD66xfIymYR2C0k/VP/+umpoan30Oh0MOh6PRfZaVlal3797aunWrEhMTJUmFhYW69dZbdfDgQbVv377e8zdu3KhBgwbp66+/VlRUVIP6/d3vfqcHHnhAbrdbYWFhkqQpU6ZozZo12rNnT+A3YVisurrayM/PN6qrq60e6jszNvd8aXHP3/9xL+fYV+I9X+6xL7X8/HxDks+Wn59/UX0+99xzRlRUlM++uro6o0mTJsZrr712wfPfeecdQ5Lx9ddfN7jf//7v/zZuu+02nzYbNmwwJBkVFRUB34PlAcLx48cNScbx48etHuo7Mzb3fGlxz9//cS/n2FfiPV/usS+16upq4/jx4z7bxQZGjzzyiPGDH/zAtD8mJsZ4+umnL3j++QKEQPodMmSIMW7cOJ/ju3btMiQZu3fvDvgemIMAALiiORwORURE+GznKy9MmTJFISEh9W4NSuN/h7HMEQCAAE2ePFmjR4+ut03Xrl3ldDp15MgRn/2nT59WRUWFnE5no8cPpF+n06ny8nKfNmd/bsjYBAgAAAQoJiZGMTExF2zncrlUWVmp0tJSJSQkSJI2bNggj8ej5OTkRo8fSL8ul0sPPPCA6urq1KxZM0lSUVGRevTooauvvjrgsSwvMTgcDuXn51/UbFC7jc09X1rc8/d/3Ms59pV4z5d77O+DXr16KT09XWPHjtWWLVv0wQcfKCcnR8OHD/euYDh06JB69uypLVu2eM9zu93auXOnPvvsM0nSxx9/rJ07d6qioiLgfn/xi18oLCxM2dnZ2rVrl1atWqUnn3xSeXl5DbuJgGcrAACAgH311VfGiBEjjJYtWxoRERHGmDFjjH/+85/e459//rkhyXjnnXe8+/ytqJBkLF26NOB+DcMwPvzwQ+OHP/yh4XA4jA4dOhizZ89u8PUH/BwEAABw5WAVAwAAMCFAAAAAJgQIAADAhAABAACYWBIgjB49WiEhIZo9e7bP/jVr1igkJMSKIf2OHxISorCwMHXr1k2zZs3S6dOnLR83IyPDZ98rr7yi8PBwzZ0719Kxzxo4cKAmTpxo2r9s2TKfF340xrmf67lbenq6t82OHTv085//XLGxsQoPD1f37t01duxYffrppxc19j/+8Q/dddddat++vcLCwtSpUydNmDBBX331lU+7zz77TGPGjNE111wjh8OhLl26aMSIEdq2bdtFjf9tR48e1S9/+Ut17NhRDodDTqdTaWlp+uCDD4LS/8aNG+t9UtugQYOCMk59zvf7Prv8yiput1u5ubnq2rWrHA6H4uLi9JOf/ETFxcWWjHf2Pu+55x7TsfHjxyskJOSCD8ax6prObq1bt1Z6ero++ugjv+0D/X7UZ//+/QoJCdHOnTuDdBe+QkJCtGbNGkv6hjUsyyCEh4frscce09dff23VEPVKT0/X4cOHtW/fPk2ePFkzZ87UnDlzLuk1LFmyRFlZWfrd736nyZMnX9KxrXL2cz13e/nllyVJa9euVUpKimpqarR8+XKVlZXppZdeUmRkpB588MFGj/n3v/9diYmJ2rdvn15++WV99tlnWrx4sYqLi+Vyubzrg7dt26aEhAR9+umneuaZZ7R79269/vrr6tmzZ9A//8zMTO3YsUMvvPCCPv30U73xxhsaOHBgg/4PuT79+/c3fc6HDx/WM888o5CQEN17771BGedC/P2+u3TpYtl4+/fvV0JCgjZs2KA5c+bo448/VmFhoQYNGqTx48dbNm5cXJxWrlypf/3rX9591dXVWrFihTp27GjZuPU597MvLi5W06ZN9eMf/9jULtDvB9BgDV4YGYBRo0YZP/7xj42ePXsav/nNb7z7X3/9dcOiIU3jf/tNVkOGDDFSUlIu2biPPfaYER4eHtBbuxpiwIABxvjx443x48cbERERRuvWrY3p06cbHo/He3zChAmm85YuXWpERkZe1Nj+PtezqqqqjDZt2hgZGRl+j3/7hSMNkZ6eblxzzTXGqVOnfPYfPnzYuOqqq4x77rnH8Hg8xrXXXmskJCQYZ86cCer4/vqSZGzcuDFofQZi9+7dRqtWrYwHHnjAMIx/v8zl7bffNhISEozmzZsbLpfL2LNnT1DGq+/3vWbNGuP66683HA6H0aVLF2PmzJlGXV3dRY95yy23GB06dDBOnjxpOvb11197143v2LHDZ7++tZa8Ic7e53XXXWe89NJL3v3Lly83+vbta9x2223GqFGjDMP45vuVm5tr/OY3vzGuvvpqIzY29qLf+lffNZ3r/fffNyQZR44c8dkfyPfDMAxDkvH666/7tImMjPSur9e31t0PGDDA51pmzpxptGnTxmjVqpVx9913GzU1Nd5+OnXqZMybN8+n7379+nk/m06dOvn03alTpwZ/Jrj0LMsgNGnSRI8++qieeuopHTx40KphAta8eXPV1tZekrHuv/9+Pfzww1q7dq1+9rOfBb3/F154QU2bNtWWLVv05JNP6re//a2WLFkS9HEa4q233tKxY8d03333+T3e2PJGRUWF3nrrLd17771q3ry5zzGn06msrCytWrVKO3fu1K5duzR58mSFhpr/Z32x5ZVztWzZUi1bttSaNWtM75C3SmVlpW677TYNHDhQDz/8sM+xBx54QHPnztW2bdvUtGlT3XXXXZZey/vvv6+RI0dqwoQJ2r17t5555hktW7ZMjzzyyEX1W1FRocLCQo0fP14tWrQwHQ/m79Cfu+66S0uXLvX+/Pzzz2vMmDGmdi+88IJatGihzZs36/HHH9esWbNUVFRk6bWdPHlSL730krp166bWrVt79wf6/TACeNzN2af5vf322zp8+LBee+0177Hi4mKVlZVp48aNevnll/Xaa6/poYceCvj6t27dKklaunSpDh8+7P0Z322WTlL82c9+pvj4eOXn51s5TL0Mw9Dbb7+tt956SzfddJPl4/3f//2fHn/8cf3pT3/S4MGDLRkjLi5O8+bNU48ePZSVlaXc3FzNmzfPe/zpp5/2/iV2dvNXX22MtWvXmvp+9NFHtW/fPklSz549gzLOWfv27ZNhGOrVq5ff47169dLXX39t2fj+NG3aVMuWLdMLL7ygqKgo/ed//qemTZt23vrwxfJ4PPrFL36hpk2bavny5aZ5PI888ogGDBig3r17a8qUKdq0aZOqq6uDMva3f98///nP9dBDD2nKlCkaNWqUunbtqiFDhujhhx/WM888c1FjffbZZzIM45L8Dv2588479Ze//EVffPGFvvjiC33wwQe68847Te369u2r/Px8de/eXSNHjlRiYqIl8yPO/exbtWqlN954Q6tWrfIJgAP9fhw9evSC4519v0Dr1q3ldDoVHR3tPRYWFqbnn39e1157rYYOHapZs2ZpwYIF8ng8Ad3L2b6joqLkdDoDepcBLj/LVzE89thjeuGFF1RWVmb1UD7OfrnCw8N1yy23aNiwYZo5c6bl4/bt21edO3dWfn6+Tp48ackYKSkpPn9JuFwu7du3T2fOnJEkZWVlaefOnT7brFmzgjL2oEGDTH3fc889Af0L5WJcqH+rx/+2zMxMffnll3rjjTeUnp6ujRs36oYbbtCyZcuCPta0adNUUlKiP/3pT2rVqpXpeN++fb1/bteunSSZ3vbWWN/+fS9YsEAffvihZs2a5RM4jB07VocPH9apU6caPdal/h1+W0xMjIYOHaply5Zp6dKlGjp0qNq0aWNqd+7nLX3zmQfr8z7XuZ/9li1blJaWpltuuUVffPGFqa3Vn12/fv101VVXeX92uVw6efKk/vGPf1g6Li4vywOE//f//p/S0tI0depUq4fycfbLtW/fPv3rX//ypgWt1qFDB23cuFGHDh1Senq6/vnPf1o+5rdFRkaqW7duPlvbtm2D0neLFi1MfUdHR+sHP/iBJAX9PejdunVTSEjIeQPMsrIyXX311ZaNX5/w8HANGTJEDz74oDZt2qTRo0cHPVu2cuVKPfHEE1q5cqW6d+/ut83Zt7VJ8gaOgf7L7kK+/ftu166dTp48qYceesgncPj444+1b98+hYeHN3qs7t27KyQkpN7f4dl/PZ/7F2JdXV2jx/y2u+66y5sdOl+p5tzPW/rmMw/W532ucz/7G2+8UUuWLFFVVZV+//vfe9sE+v2IiYlRSEiIKZAI1mcXGhpqWd+4fC7JcxBmz56tN998UyUlJZdiOEn//nJ17NhRTZte2rdad+rUSe+++67cbrclQcLmzZt9fv7rX/+q7t27q0mTJkEdpyFuvvlmtWnTRo8//rjf45WVlY3qt3Xr1hoyZIiefvppnxnm0jfL4ZYvX65hw4YpPj5evXv31ty5c/3+n3Vjx2+I3r17q6qqKmj97dy5U9nZ2Zo9e7bS0tKC1u/FuuGGG7R3715ToNitWze/8z8CFR0drbS0NC1atMjv51hZWelNTR8+fNi7P5jL8tLT01VbW6u6urrv1GcufROIhIaG+nwPAv1+hISEKCYmxudz27dvn0/GJywsTJK8mchzffjhhz79//Wvf1XLli0VFxcnSaa+T5w4oc8//9ynj2bNmvntG99dlyRA6NOnj7KysrRgwYJLMdx3QlxcnDZu3KgjR44oLS1NJ06cCFrfBw4cUF5envbu3auXX35ZTz31lCZMmBC0/utTU1Mjt9vtsx07dkwtWrTQkiVLtG7dOv30pz/V22+/rf3792vbtm267777LmoOxMKFC1VTU6O0tDS99957+sc//qHCwkINGTJEHTp00COPPKKQkBAtXbpUn376qX70ox9p/fr1+vvf/66PPvpIjzzyiG677bagfQZfffWVbrrpJr300kv66KOP9Pnnn2v16tV6/PHHgzbOsWPHlJGRoYEDB+rOO+80feaB1JStMmPGDL344ot66KGHtGvXLpWVlWnlypWaPn36Rfe9aNEinTlzRklJSXr11Ve1b98+lZWVacGCBXK5XGrevLlSUlI0e/ZslZWV6d133w3KuGc1adJEZWVl2r1792UNuCXf71pZWZlyc3N18uRJ/eQnP/FpF8j3Q5JuuukmLVy4UDt27NC2bdt0zz33+GRD2rZtq+bNm6uwsFDl5eU6fvy491htba2ys7O1e/durV+/Xvn5+crJyfEGhDfddJP+8Ic/6P3339fHH3+sUaNGmT6/zp07q7i4WG63+7Itf0cDWbE0wt8Snc8//9wICwu7bMscLwV/4x48eNDo3r27kZKSYhw/fvyixxgwYIBx7733Gvfcc48RERFhXH311ca0adMu2TJH+XkNaY8ePbxttm7datx+++1GTEyM4XA4jG7duhnjxo0z9u3bd1Fj79+/3xg1apQRGxtrNGvWzIiLizNyc3ONY8eO+bTbu3evMXLkSKN9+/ZGWFiY0alTJ2PEiBHG9u3bL2r8c1VXVxtTpkwxbrjhBiMyMtK46qqrjB49ehjTp083LTVrrGXLlvn9rHXOMrGzyxzPXcK5Y8cOQ5Lx+eefX/Q11Pc9KiwsNPr37280b97ciIiIMJKSkoxnn332osc0DMP48ssvjfHjxxudOnUywsLCjA4dOhg//elPvcsYd+/ebbhcLqN58+ZGfHy88ec//zkoyxzP59vLHL/9/Tr3eLB8+7vWqlUr48YbbzReeeUVv+0D+X4cOnTIuPnmm40WLVoY3bt3N9avX++zzNEwDOP3v/+9ERcXZ4SGhpqWOc6YMcNo3bq10bJlS2Ps2LFGdXW197zjx48bw4YNMyIiIoy4uDhj2bJlPsscDcMw3njjDaNbt25G06ZNWeZoE7zu2WYGDhyo+Ph4zZ8//3JfCoArwOjRo1VZWclTEK9AvIsBAACYECAAAAATSgwAAMCEDAIAADAhQAAAACYECAAAwIQAAQAAmBAgAAAAEwIEAABgQoAAAABMCBAAAIDJ/we2zficVt31gwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "Data.duplicated().sum()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "HbrREAGhuzSA", "outputId": "00e129be-2faf-4c15-e3b3-d058be34351b" }, "execution_count": 8, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0" ] }, "metadata": {}, "execution_count": 8 } ] }, { "cell_type": "code", "source": [ "Data.describe()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 320 }, "id": "517zKqg5u1ar", "outputId": "4f7be6f2-8b7e-4553-c420-2848e9d9fb7f" }, "execution_count": 9, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " N P K ... Mn B Output\n", "count 880.00000 880.000000 880.000000 ... 880.000000 880.000000 880.000000\n", "mean 246.73750 14.562159 499.978409 ... 8.666500 0.590159 0.588636\n", "std 77.38886 21.967755 124.222838 ... 4.298828 0.570800 0.575462\n", "min 6.00000 2.900000 11.000000 ... 0.110000 0.060000 0.000000\n", "25% 201.00000 6.800000 412.000000 ... 6.225000 0.270000 0.000000\n", "50% 257.00000 8.100000 475.000000 ... 8.345000 0.405000 1.000000\n", "75% 307.00000 10.550000 581.000000 ... 11.472500 0.610000 1.000000\n", "max 383.00000 125.000000 887.000000 ... 31.000000 2.820000 2.000000\n", "\n", "[8 rows x 13 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NPKpHECOCSZnFeCuMnBOutput
count880.00000880.000000880.000000880.000000880.000000880.000000880.000000880.000000880.000000880.000000880.000000880.000000880.000000
mean246.7375014.562159499.9784097.5105000.5436590.6179897.5450800.4692734.1405230.9524438.6665000.5901590.588636
std77.3888621.967755124.2228380.4649120.1415970.8429864.4241841.8942343.1100110.4659004.2988280.5708000.575462
min6.000002.90000011.0000000.9000000.1000000.1000000.6400000.0700000.2100000.0900000.1100000.0600000.000000
25%201.000006.800000412.0000007.3500000.4300000.3800004.7000000.2800002.0500000.6300006.2250000.2700000.000000
50%257.000008.100000475.0000007.5000000.5450000.5900006.6400000.3600003.5650000.9300008.3450000.4050001.000000
75%307.0000010.550000581.0000007.6300000.6400000.7800008.7500000.4700006.3200001.25000011.4725000.6100001.000000
max383.00000125.000000887.00000011.1500000.95000024.00000031.00000042.00000044.0000003.02000031.0000002.8200002.000000
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"Data\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"N\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 265.54457206299315,\n \"min\": 6.0,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 246.7375,\n 257.0,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"P\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 304.2252038010364,\n \"min\": 2.9,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 14.56215909090909,\n 8.1,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"K\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 313.35112921964037,\n \"min\": 11.0,\n \"max\": 887.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 499.9784090909091,\n 475.0,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"pH\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 309.0014369405242,\n \"min\": 0.4649121658515394,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 7.5104999999999995,\n 7.5,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"EC\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 310.9578888213911,\n \"min\": 0.1,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.5436590909090908,\n 0.545,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"OC\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 309.8563152761273,\n \"min\": 0.1,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.6179886363636365,\n 0.59,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 308.049072136366,\n \"min\": 0.64,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 7.545079545454546,\n 6.64,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Zn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 309.1669438675823,\n \"min\": 0.07,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.46927272727272723,\n 0.36,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 308.2601690405681,\n \"min\": 0.21,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 4.140522727272727,\n 3.565,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cu\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 310.7575789547352,\n \"min\": 0.09,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.9524431818181819,\n 0.93,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 307.72300213074936,\n \"min\": 0.11,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 8.666500000000001,\n 8.344999999999999,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 310.859173970845,\n \"min\": 0.06,\n \"max\": 880.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.5901590909090909,\n 0.405,\n 880.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Output\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 310.8668163530475,\n \"min\": 0.0,\n \"max\": 880.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 880.0,\n 0.5886363636363636,\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 9 } ] }, { "cell_type": "code", "source": [ "from sklearn.utils import resample\n", "\n", "class_0 = Data[Data['Output'] == 0]\n", "class_1 = Data[Data['Output'] == 1]\n", "class_2 = Data[Data['Output'] == 2]\n", "\n", "class_2_oversampled = resample(class_2,\n", " replace=True,\n", " n_samples=200,\n", " random_state=42)\n", "\n", "oversampled_data = pd.concat([class_0, class_1, class_2_oversampled])\n", "Data = oversampled_data" ], "metadata": { "id": "357DBZ9Ru3p7" }, "execution_count": 10, "outputs": [] }, { "cell_type": "code", "source": [ "Data['Output'].hist(figsize=(10, 4))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 300 }, "id": "j_3oRacKvUEr", "outputId": "f25a4573-58a1-431d-c1fd-36c51d430171" }, "execution_count": 11, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 11 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAFfCAYAAABgPnIwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmS0lEQVR4nO3df3BV5Z0/8E+AJAgSEC0JrEixP1RURLFA3Hb9BUTKuLIyW2mtSx3UHSY4RXatMuMPkO6I1pHWNmq3g2C3RSu26kopEFFwqiDKj1lAy6hLxS4GploIP0qIyfn+4TfXXgLoJbkmcF6vmQyc5zzn3Od8zpMn9829uRQkSZIEAADAMa5DWw8AAADgsyD8AAAAqSD8AAAAqSD8AAAAqSD8AAAAqSD8AAAAqSD8AAAAqdCprQdwJBobG2Pr1q3RrVu3KCgoaOvhAAAAbSRJkti1a1f06dMnOnQ4/Gs7R2X42bp1a/Tt27ethwEAALQT7777bpx88smH7XNUhp9u3bpFxEcXWFJS0qZjqa+vjyVLlsTIkSOjsLCwTcdyLFLf/FLf/FPj/FLf/FLf/FLf/FLf/GpP9a2trY2+fftmMsLhHJXhp+mtbiUlJe0i/HTp0iVKSkra/MYfi9Q3v9Q3/9Q4v9Q3v9Q3v9Q3v9Q3v9pjfT/Nr8P4wAMAACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVhB8AACAVOrX1AACgpc6atjjqGgraehjtyh9njm7rIQC0O175AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUkH4AQAAUqFF4WfmzJlRUFAQkydPzrTt27cvKisr48QTT4zjjz8+xo4dG9u2bcs6bsuWLTF69Ojo0qVL9OrVK26++eb48MMPWzIUAACAwzri8PPqq6/GT3/60xg4cGBW+0033RTPPvtszJ8/P5YvXx5bt26NK6+8MrO/oaEhRo8eHfv374+XX345Hn300Zg7d27ccccdR34VAAAAn+CIws/u3bvj6quvjp/97GdxwgknZNp37twZs2fPjvvvvz8uueSSGDx4cMyZMydefvnlWLlyZURELFmyJF5//fX4xS9+EYMGDYpRo0bFjBkzoqqqKvbv3986VwUAAHCATkdyUGVlZYwePTqGDx8e3//+9zPtq1evjvr6+hg+fHim7fTTT49TTjklVqxYEcOGDYsVK1bE2WefHaWlpZk+FRUVMXHixNi4cWOce+65zR6vrq4u6urqMtu1tbUREVFfXx/19fVHcgmtpunxB9+1KOoaC9p0LO3RhmkVLTq+qb5tfZ+PVeqbf2qcX011Le6QtPFI2p/WmHPmb36pb36pb361p/rmMoacw8/jjz8ea9asiVdffbXZvpqamigqKooePXpktZeWlkZNTU2mz98Gn6b9TfsO5u67747p06c3a1+yZEl06dIl10vIixnnN7b1ENqlhQsXtsp5qqurW+U8HJz65p8a55c1uLnWWn8jzN98U9/8Ut/8ag/13bt376fum1P4effdd+O73/1uVFdXR+fOnXMe2JGaOnVqTJkyJbNdW1sbffv2jZEjR0ZJSclnNo6Dqa+vj+rq6rj9tQ5e+TmI1njlp7q6OkaMGBGFhYWtNCqaqG/+qXF+WYMPraXrb4T5m2/qm1/qm1/tqb5N7wr7NHIKP6tXr47t27fHeeedl2lraGiIF198MX7yk5/E4sWLY//+/bFjx46sV3+2bdsWZWVlERFRVlYWq1atyjpv06fBNfU5UHFxcRQXFzdrLywsbPNiN6lrLIi6Bj94D9Ra96c93etjkfrmnxrnlzW4udacb+ZvfqlvfqlvfrWH+uby+Dl94MGll14a69evj3Xr1mW+zj///Lj66qszfy8sLIylS5dmjtm0aVNs2bIlysvLIyKivLw81q9fH9u3b8/0qa6ujpKSkhgwYEAuwwEAAPjUcnrlp1u3bnHWWWdltXXt2jVOPPHETPuECRNiypQp0bNnzygpKYkbb7wxysvLY9iwYRERMXLkyBgwYEBcc801ce+990ZNTU3cdtttUVlZedBXdwAAAFrDEX3a2+HMmjUrOnToEGPHjo26urqoqKiIBx98MLO/Y8eOsWDBgpg4cWKUl5dH165dY/z48XHXXXe19lAAAAAyWhx+li1blrXduXPnqKqqiqqqqkMe069fv1b9FBoAAIBPckT/ySkAAMDRRvgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSIafw89BDD8XAgQOjpKQkSkpKory8PH73u99l9u/bty8qKyvjxBNPjOOPPz7Gjh0b27ZtyzrHli1bYvTo0dGlS5fo1atX3HzzzfHhhx+2ztUAAAAcQk7h5+STT46ZM2fG6tWr47XXXotLLrkkrrjiiti4cWNERNx0003x7LPPxvz582P58uWxdevWuPLKKzPHNzQ0xOjRo2P//v3x8ssvx6OPPhpz586NO+64o3WvCgAA4ACdcul8+eWXZ23/x3/8Rzz00EOxcuXKOPnkk2P27Nkxb968uOSSSyIiYs6cOXHGGWfEypUrY9iwYbFkyZJ4/fXX47nnnovS0tIYNGhQzJgxI2655ZaYNm1aFBUVHfRx6+rqoq6uLrNdW1sbERH19fVRX1+f0wW3tqbHL+6QtOk42quW3p+m49v6Ph+r1Df/1Di/rMGH1hpzzvzNL/XNL/XNr/ZU31zGUJAkyRH9xGhoaIj58+fH+PHjY+3atVFTUxOXXnpp/OUvf4kePXpk+vXr1y8mT54cN910U9xxxx3x3//937Fu3brM/s2bN8epp54aa9asiXPPPfegjzVt2rSYPn16s/Z58+ZFly5djmT4AADAMWDv3r3xrW99K3bu3BklJSWH7ZvTKz8REevXr4/y8vLYt29fHH/88fHUU0/FgAEDYt26dVFUVJQVfCIiSktLo6amJiIiampqorS0tNn+pn2HMnXq1JgyZUpmu7a2Nvr27RsjR478xAvMt/r6+qiuro7bX+sQdY0FbTqW9mjDtIoWHd9U3xEjRkRhYWErjYom6pt/apxf1uBDa+n6G2H+5pv65pf65ld7qm/Tu8I+jZzDz2mnnRbr1q2LnTt3xpNPPhnjx4+P5cuX53qanBQXF0dxcXGz9sLCwjYvdpO6xoKoa/CD90CtdX/a070+Fqlv/qlxflmDm2vN+Wb+5pf65pf65ld7qG8uj59z+CkqKoovfvGLERExePDgePXVV+NHP/pRXHXVVbF///7YsWNH1qs/27Zti7KysoiIKCsri1WrVmWdr+nT4Jr6AAAA5EOL/5+fxsbGqKuri8GDB0dhYWEsXbo0s2/Tpk2xZcuWKC8vj4iI8vLyWL9+fWzfvj3Tp7q6OkpKSmLAgAEtHQoAAMAh5fTKz9SpU2PUqFFxyimnxK5du2LevHmxbNmyWLx4cXTv3j0mTJgQU6ZMiZ49e0ZJSUnceOONUV5eHsOGDYuIiJEjR8aAAQPimmuuiXvvvTdqamritttui8rKyoO+rQ0AAKC15BR+tm/fHv/yL/8S7733XnTv3j0GDhwYixcvjhEjRkRExKxZs6JDhw4xduzYqKuri4qKinjwwQczx3fs2DEWLFgQEydOjPLy8ujatWuMHz8+7rrrrta9KgAAgAPkFH5mz5592P2dO3eOqqqqqKqqOmSffv36xcKFC3N5WAAAgBZr8e/8AAAAHA2EHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBWEHwAAIBVyCj933313fOUrX4lu3bpFr169YsyYMbFp06asPvv27YvKyso48cQT4/jjj4+xY8fGtm3bsvps2bIlRo8eHV26dIlevXrFzTffHB9++GHLrwYAAOAQcgo/y5cvj8rKyli5cmVUV1dHfX19jBw5Mvbs2ZPpc9NNN8Wzzz4b8+fPj+XLl8fWrVvjyiuvzOxvaGiI0aNHx/79++Pll1+ORx99NObOnRt33HFH610VAADAATrl0nnRokVZ23Pnzo1evXrF6tWr4x/+4R9i586dMXv27Jg3b15ccsklERExZ86cOOOMM2LlypUxbNiwWLJkSbz++uvx3HPPRWlpaQwaNChmzJgRt9xyS0ybNi2Kiopa7+oAAAD+v5zCz4F27twZERE9e/aMiIjVq1dHfX19DB8+PNPn9NNPj1NOOSVWrFgRw4YNixUrVsTZZ58dpaWlmT4VFRUxceLE2LhxY5x77rnNHqeuri7q6uoy27W1tRERUV9fH/X19S25hBZrevziDkmbjqO9aun9aTq+re/zsUp980+N88safGitMefM3/xS3/xS3/xqT/XNZQwFSZIc0U+MxsbG+Md//MfYsWNH/P73v4+IiHnz5sW1116bFVQiIoYMGRIXX3xx3HPPPXHDDTfEO++8E4sXL87s37t3b3Tt2jUWLlwYo0aNavZY06ZNi+nTpzdrnzdvXnTp0uVIhg8AABwD9u7dG9/61rdi586dUVJScti+R/zKT2VlZWzYsCETfPJp6tSpMWXKlMx2bW1t9O3bN0aOHPmJF5hv9fX1UV1dHbe/1iHqGgvadCzt0YZpFS06vqm+I0aMiMLCwlYaFU3UN//UOL+swYfW0vU3wvzNN/XNr9aq71nTFn9ypxQq7pDEjPMb28X8bXpX2KdxROFn0qRJsWDBgnjxxRfj5JNPzrSXlZXF/v37Y8eOHdGjR49M+7Zt26KsrCzTZ9WqVVnna/o0uKY+ByouLo7i4uJm7YWFhW1e7CZ1jQVR1+AH74Fa6/60p3t9LFLf/FPj/LIGN9ea8838zS/1za+W1tfacnjtYf7m8vg5fdpbkiQxadKkeOqpp+L555+P/v37Z+0fPHhwFBYWxtKlSzNtmzZtii1btkR5eXlERJSXl8f69etj+/btmT7V1dVRUlISAwYMyGU4AAAAn1pOr/xUVlbGvHnz4plnnolu3bpFTU1NRER07949jjvuuOjevXtMmDAhpkyZEj179oySkpK48cYbo7y8PIYNGxYRESNHjowBAwbENddcE/fee2/U1NTEbbfdFpWVlQd9dQcAAKA15BR+HnrooYiIuOiii7La58yZE9/5znciImLWrFnRoUOHGDt2bNTV1UVFRUU8+OCDmb4dO3aMBQsWxMSJE6O8vDy6du0a48ePj7vuuqtlVwIAAHAYOYWfT/PBcJ07d46qqqqoqqo6ZJ9+/frFwoULc3loAACAFsnpd34AAACOVsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCsIPAACQCjmHnxdffDEuv/zy6NOnTxQUFMTTTz+dtT9Jkrjjjjuid+/ecdxxx8Xw4cPjzTffzOrzwQcfxNVXXx0lJSXRo0ePmDBhQuzevbtFFwIAAHA4OYefPXv2xDnnnBNVVVUH3X/vvffGAw88EA8//HC88sor0bVr16ioqIh9+/Zl+lx99dWxcePGqK6ujgULFsSLL74YN9xww5FfBQAAwCfolOsBo0aNilGjRh10X5Ik8cMf/jBuu+22uOKKKyIi4uc//3mUlpbG008/HePGjYs33ngjFi1aFK+++mqcf/75ERHx4x//OL7+9a/HfffdF3369GnB5QAAABxczuHncDZv3hw1NTUxfPjwTFv37t1j6NChsWLFihg3blysWLEievTokQk+ERHDhw+PDh06xCuvvBL/9E//1Oy8dXV1UVdXl9mura2NiIj6+vqor69vzUvIWdPjF3dI2nQc7VVL70/T8W19n49V6pt/apxf1uBDa405Z/7ml/rmV2vVt7ij9eVgmtbd9jB/cxlDq4afmpqaiIgoLS3Nai8tLc3sq6mpiV69emUPolOn6NmzZ6bPge6+++6YPn16s/YlS5ZEly5dWmPoLTbj/Ma2HkK7tHDhwlY5T3V1dauch4NT3/xT4/yyBjfXWutvhPmbb+qbXy2t771DWmkgx6j2MH/37t37qfu2avjJl6lTp8aUKVMy27W1tdG3b98YOXJklJSUtOHIPkqa1dXVcftrHaKusaBNx9IebZhW0aLjm+o7YsSIKCwsbKVR0UR980+N88safGgtXX8jzN98U9/8aq36njVtcSuO6thR3CGJGec3tov52/SusE+jVcNPWVlZRERs27YtevfunWnftm1bDBo0KNNn+/btWcd9+OGH8cEHH2SOP1BxcXEUFxc3ay8sLGzzYjepayyIugY/eA/UWvenPd3rY5H65p8a55c1uLnWnG/mb36pb361tL7WlsNrD/M3l8dv1f/np3///lFWVhZLly7NtNXW1sYrr7wS5eXlERFRXl4eO3bsiNWrV2f6PP/889HY2BhDhw5tzeEAAABk5PzKz+7du+Ott97KbG/evDnWrVsXPXv2jFNOOSUmT54c3//+9+NLX/pS9O/fP26//fbo06dPjBkzJiIizjjjjLjsssvi+uuvj4cffjjq6+tj0qRJMW7cOJ/0BgAA5E3O4ee1116Liy++OLPd9Ls448ePj7lz58b3vve92LNnT9xwww2xY8eO+OpXvxqLFi2Kzp07Z4755S9/GZMmTYpLL700OnToEGPHjo0HHnigFS4HAADg4HIOPxdddFEkyaE/8q+goCDuuuuuuOuuuw7Zp2fPnjFv3rxcHxoAAOCIterv/AAAALRXwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKwg8AAJAKbRp+qqqq4vOf/3x07tw5hg4dGqtWrWrL4QAAAMewNgs/v/rVr2LKlClx5513xpo1a+Kcc86JioqK2L59e1sNCQAAOIZ1aqsHvv/+++P666+Pa6+9NiIiHn744fjtb38bjzzySNx6661Zfevq6qKuri6zvXPnzoiI+OCDD6K+vv6zG/RB1NfXx969e6NTfYdoaCxo07G0R++//36Ljm+q7/vvvx+FhYWtNCqaqG/+qXF+WYMPraXrb4T5m2/qm1+tVd9OH+5pxVEdOzo1JrF3b2O7mL+7du2KiIgkST6xb0HyaXq1sv3790eXLl3iySefjDFjxmTax48fHzt27Ihnnnkmq/+0adNi+vTpn/EoAQCAo8W7774bJ5988mH7tMkrP3/+85+joaEhSktLs9pLS0vjD3/4Q7P+U6dOjSlTpmS2Gxsb44MPPogTTzwxCgra9l/6amtro2/fvvHuu+9GSUlJm47lWKS++aW++afG+aW++aW++aW++aW++dWe6pskSezatSv69OnziX3b7G1vuSguLo7i4uKsth49erTNYA6hpKSkzW/8sUx980t980+N80t980t980t980t986u91Ld79+6fql+bfODBSSedFB07doxt27ZltW/bti3KysraYkgAAMAxrk3CT1FRUQwePDiWLl2aaWtsbIylS5dGeXl5WwwJAAA4xrXZ296mTJkS48ePj/PPPz+GDBkSP/zhD2PPnj2ZT387WhQXF8edd97Z7G15tA71zS/1zT81zi/1zS/1zS/1zS/1za+jtb5t8mlvTX7yk5/ED37wg6ipqYlBgwbFAw88EEOHDm2r4QAAAMewNg0/AAAAn5U2+Z0fAACAz5rwAwAApILwAwAApILwAwAApILwcxBVVVXx+c9/Pjp37hxDhw6NVatWHbb//Pnz4/TTT4/OnTvH2WefHQsXLszanyRJ3HHHHdG7d+847rjjYvjw4fHmm2/m8xLatVzq+7Of/Sy+9rWvxQknnBAnnHBCDB8+vFn/73znO1FQUJD1ddlll+X7MtqtXOo7d+7cZrXr3LlzVh/zN1su9b3oooua1begoCBGjx6d6WP+fuzFF1+Myy+/PPr06RMFBQXx9NNPf+Ixy5Yti/POOy+Ki4vji1/8YsydO7dZn1zX9GNVrvX9zW9+EyNGjIjPfe5zUVJSEuXl5bF48eKsPtOmTWs2f08//fQ8XkX7lWt9ly1bdtD1oaamJquf+fuRXOt7sLW1oKAgzjzzzEwf8/djd999d3zlK1+Jbt26Ra9evWLMmDGxadOmTzzuaHwOLPwc4Fe/+lVMmTIl7rzzzlizZk2cc845UVFREdu3bz9o/5dffjm++c1vxoQJE2Lt2rUxZsyYGDNmTGzYsCHT5957740HHnggHn744XjllVeia9euUVFREfv27fusLqvdyLW+y5Yti29+85vxwgsvxIoVK6Jv374xcuTI+L//+7+sfpdddlm89957ma/HHnvss7icdifX+kZElJSUZNXunXfeydpv/n4s1/r+5je/yarthg0bomPHjvHP//zPWf3M34/s2bMnzjnnnKiqqvpU/Tdv3hyjR4+Oiy++ONatWxeTJ0+O6667LusJ+pF8Txyrcq3viy++GCNGjIiFCxfG6tWr4+KLL47LL7881q5dm9XvzDPPzJq/v//97/Mx/HYv1/o22bRpU1b9evXqldln/n4s1/r+6Ec/yqrru+++Gz179my2/pq/H1m+fHlUVlbGypUro7q6Ourr62PkyJGxZ8+eQx5z1D4HTsgyZMiQpLKyMrPd0NCQ9OnTJ7n77rsP2v8b3/hGMnr06Ky2oUOHJv/6r/+aJEmSNDY2JmVlZckPfvCDzP4dO3YkxcXFyWOPPZaHK2jfcq3vgT788MOkW7duyaOPPpppGz9+fHLFFVe09lCPSrnWd86cOUn37t0PeT7zN1tL5++sWbOSbt26Jbt37860mb8HFxHJU089ddg+3/ve95Izzzwzq+2qq65KKioqMtstvWfHqk9T34MZMGBAMn369Mz2nXfemZxzzjmtN7BjxKep7wsvvJBERPKXv/zlkH3M34M7kvn71FNPJQUFBckf//jHTJv5e2jbt29PIiJZvnz5Ifscrc+BvfLzN/bv3x+rV6+O4cOHZ9o6dOgQw4cPjxUrVhz0mBUrVmT1j4ioqKjI9N+8eXPU1NRk9enevXsMHTr0kOc8Vh1JfQ+0d+/eqK+vj549e2a1L1u2LHr16hWnnXZaTJw4Md5///1WHfvR4Ejru3v37ujXr1/07ds3rrjiiti4cWNmn/n7sdaYv7Nnz45x48ZF165ds9rN3yPzSetva9wzPtbY2Bi7du1qtv6++eab0adPnzj11FPj6quvji1btrTRCI9OgwYNit69e8eIESPipZdeyrSbv61r9uzZMXz48OjXr19Wu/l7cDt37oyIaPb9/reO1ufAws/f+POf/xwNDQ1RWlqa1V5aWtrsPbhNampqDtu/6c9cznmsOpL6HuiWW26JPn36ZH0jXXbZZfHzn/88li5dGvfcc08sX748Ro0aFQ0NDa06/vbuSOp72mmnxSOPPBLPPPNM/OIXv4jGxsa44IIL4k9/+lNEmL9/q6Xzd9WqVbFhw4a47rrrstrN3yN3qPW3trY2/vrXv7bKmsPH7rvvvti9e3d84xvfyLQNHTo05s6dG4sWLYqHHnooNm/eHF/72tdi165dbTjSo0Pv3r3j4Ycfjl//+tfx61//Ovr27RsXXXRRrFmzJiJa52cmH9m6dWv87ne/a7b+mr8H19jYGJMnT46///u/j7POOuuQ/Y7W58Cd2uyRIUczZ86Mxx9/PJYtW5b1S/njxo3L/P3ss8+OgQMHxhe+8IVYtmxZXHrppW0x1KNGeXl5lJeXZ7YvuOCCOOOMM+KnP/1pzJgxow1HduyZPXt2nH322TFkyJCsdvOXo8G8efNi+vTp8cwzz2T9TsqoUaMyfx84cGAMHTo0+vXrF0888URMmDChLYZ61DjttNPitNNOy2xfcMEF8fbbb8esWbPiv/7rv9pwZMeeRx99NHr06BFjxozJajd/D66ysjI2bNhwzP7+k1d+/sZJJ50UHTt2jG3btmW1b9u2LcrKyg56TFlZ2WH7N/2ZyzmPVUdS3yb33XdfzJw5M5YsWRIDBw48bN9TTz01TjrppHjrrbdaPOajSUvq26SwsDDOPffcTO3M34+1pL579uyJxx9//FP9ME3r/D0Sh1p/S0pK4rjjjmuV7wkiHn/88bjuuuviiSeeaPYWlwP16NEjvvzlL5u/R2jIkCGZ2pm/rSNJknjkkUfimmuuiaKiosP2NX8jJk2aFAsWLIgXXnghTj755MP2PVqfAws/f6OoqCgGDx4cS5cuzbQ1NjbG0qVLs/51/G+Vl5dn9Y+IqK6uzvTv379/lJWVZfWpra2NV1555ZDnPFYdSX0jPvqkkBkzZsSiRYvi/PPP/8TH+dOf/hTvv/9+9O7du1XGfbQ40vr+rYaGhli/fn2mdubvx1pS3/nz50ddXV18+9vf/sTHSev8PRKftP62xvdE2j322GNx7bXXxmOPPZb1Ee2Hsnv37nj77bfN3yO0bt26TO3M39axfPnyeOuttz7VPz6lef4mSRKTJk2Kp556Kp5//vno37//Jx5z1D4HbrOPWminHn/88aS4uDiZO3du8vrrryc33HBD0qNHj6SmpiZJkiS55pprkltvvTXT/6WXXko6deqU3Hfffckbb7yR3HnnnUlhYWGyfv36TJ+ZM2cmPXr0SJ555pnkf/7nf5Irrrgi6d+/f/LXv/71M7++tpZrfWfOnJkUFRUlTz75ZPLee+9lvnbt2pUkSZLs2rUr+fd///dkxYoVyebNm5PnnnsuOe+885IvfelLyb59+9rkGttSrvWdPn16snjx4uTtt99OVq9enYwbNy7p3LlzsnHjxkwf8/djuda3yVe/+tXkqquuatZu/mbbtWtXsnbt2mTt2rVJRCT3339/snbt2uSdd95JkiRJbr311uSaa67J9P/f//3fpEuXLsnNN9+cvPHGG0lVVVXSsWPHZNGiRZk+n3TP0iTX+v7yl79MOnXqlFRVVWWtvzt27Mj0+bd/+7dk2bJlyebNm5OXXnopGT58eHLSSScl27dv/8yvr63lWt9Zs2YlTz/9dPLmm28m69evT7773e8mHTp0SJ577rlMH/P3Y7nWt8m3v/3tZOjQoQc9p/n7sYkTJybdu3dPli1blvX9vnfv3kyfY+U5sPBzED/+8Y+TU045JSkqKkqGDBmSrFy5MrPvwgsvTMaPH5/V/4knnki+/OUvJ0VFRcmZZ56Z/Pa3v83a39jYmNx+++1JaWlpUlxcnFx66aXJpk2bPotLaZdyqW+/fv2SiGj2deeddyZJkiR79+5NRo4cmXzuc59LCgsLk379+iXXX399Kn8wNMmlvpMnT870LS0tTb7+9a8na9asyTqf+Zst1/XhD3/4QxIRyZIlS5qdy/zN1vTRvwd+NdV0/PjxyYUXXtjsmEGDBiVFRUXJqaeemsyZM6fZeQ93z9Ik1/peeOGFh+2fJB99tHjv3r2ToqKi5O/+7u+Sq666Knnrrbc+2wtrJ3Kt7z333JN84QtfSDp37pz07Nkzueiii5Lnn3++2XnN348cyfqwY8eO5Ljjjkv+8z//86DnNH8/drDaRkTWmnqsPAcuSJIkydvLSgAAAO2E3/kBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABSQfgBAABS4f8Bysws2N6E5rAAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "fig, axes = plt.subplots(4, 3, figsize=(15, 15))\n", "axes = axes.flatten()\n", "for i, column in enumerate(Data.columns):\n", " if column == 'Output':\n", " continue\n", " sns.boxplot(data=Data[column], ax=axes[i])\n", " axes[i].set_title(f'Boxplot of {column}')\n", " axes[i].set_xlabel('')\n", " axes[i].set_ylabel('Values')\n", "\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 646 }, "id": "0QRlrJ7SvXxY", "outputId": "fe6e51b3-991d-42ae-f265-438f35bbab92" }, "execution_count": 12, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAXRCAYAAABxVdQKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVyVdfr/8TeHXRQQF5YUoyZzSdJRsxPlaJK4ZDqp/RwdlzIxwyZ12sjdNCYn09FQoTG1xJxsSsutcEknRVPKMC1LI9H0oA0Cbiwezu+PvtzTSSkX4AbO6/l43I+4P5/r3Oe6mcd0xXXu8/m4ORwOhwAAAAAAAAAAwCUsZicAAAAAAAAAAEBVRRMdAAAAAAAAAIAy0EQHAAAAAAAAAKAMNNEBAAAAAAAAACgDTXQAAAAAAAAAAMpAEx0AAAAAAAAAgDLQRAcAAAAAAAAAoAw00QEAAAAAAAAAKANNdAAAAAAAAAAAykATHcBVc3Nz05QpU8xOw8nu3bt11113yc/PT25ubtq7d6/ZKQEAUKVQvwEAqF6o3UDVQRMdqEKWLFkiNzc3p6Nhw4bq3Lmz1q9fb3Z61+3AgQOaMmWKvv/++3K9bnFxsfr376+cnBzNnj1bb775ppo0aXLZ2I8//tj43aanp18yP2zYMNWuXbtc8wMA1GzU72tzrfXbzc1Nnp6euummmzRkyBB999135ZoXAKDmo3Zfm2up3e+8847TeFFRke6//35ZLBa9/vrr5ZofUJE8zE4AwKWmTZumiIgIORwOZWdna8mSJerRo4c++OAD3X///Wand80OHDigqVOnqlOnTrrxxhvL7bqHDx/WkSNH9Nprr+nRRx+94tdNmTJFH3zwQbnlAQBwbdTvq3Mt9fsvf/mL2rdvr+LiYn322WdKTk7W2rVrtW/fPoWFhZVbbgAA10DtvjrX+rd3qeLiYvXr10/r1q3Ta6+9pkceeaTccgMqGk10oArq3r272rVrZ5wPHz5cwcHBeuutt6p1Ia8oJ0+elCQFBgZe8Wtat26tNWvW6LPPPtPvf//7CsoMAOBKqN9X51rq9z333KN+/fpJkh5++GE1bdpUf/nLX7R06VLFx8dXRJoAgBqM2n11rqV2lyouLtZDDz2kNWvWKCkpScOHDy/n7ICKxXIuQDUQGBgoX19feXg4f+517tw5/fWvf1Xjxo3l7e2tW2+9VS+//LIcDock6cKFC2rWrJmaNWumCxcuGK/LyclRaGio7rrrLtntdkn/W8bku+++U0xMjPz8/BQWFqZp06YZ1/s1n3/+ubp37y5/f3/Vrl1bXbp00c6dO435JUuWqH///pKkzp07G1+Z+/jjj3/1ups3b9Y999wjPz8/BQYGqnfv3vrqq6+M+WHDhukPf/iDJKl///5yc3NTp06dfjPfJ554QnXr1q1y68sBAGoO6nf51+9fuvfeeyVJmZmZV/1aAAB+idpdMbX74sWLGjBggFavXq0FCxZoxIgRV/Q6oCqhiQ5UQXl5efrxxx916tQp7d+/X6NGjdLZs2f15z//2YhxOBx64IEHNHv2bHXr1k2vvPKKbr31Vj399NMaN26cJMnX11dLly7VoUOHNH78eOO1cXFxysvL05IlS+Tu7m6M2+12devWTcHBwZo5c6batm2ryZMna/Lkyb+a7/79+3XPPffoiy++0DPPPKOJEycqMzNTnTp10q5duyRJHTt21F/+8hdJ0vPPP68333xTb775ppo3b17mdTdu3KiYmBidPHlSU6ZM0bhx47Rjxw5FRUUZa7uNHDlSzz//vKSfvuL95ptvOt1rWfz9/TV27Fh98MEH+uyzz34zHgCA30L9/klF1u9fOnz4sCSpXr16V/1aAACo3T+pyNp98eJF/elPf9J7772nxMREjRw58jdfA1RJDgBVxuLFix2SLjm8vb0dS5YscYpdtWqVQ5Jj+vTpTuP9+vVzuLm5OQ4dOmSMxcfHOywWi2Pbtm2OlStXOiQ55syZ4/S6oUOHOiQ5nnjiCWOspKTE0bNnT4eXl5fj1KlTxrgkx+TJk43zPn36OLy8vByHDx82xo4fP+6oU6eOo2PHjsZY6Xtv2bLlin4frVu3djRs2NDx3//+1xj74osvHBaLxTFkyBBjbMuWLQ5JjpUrV/7mNX8em5ub66hbt67jgQcecPo9+Pn5XVF+AAA4HNTvX6rI+v366687Tp065Th+/Lhj7dq1jhtvvNHh5ubm2L179xXlBgCAw0Ht/qWKrN1NmjRxSHIkJiZeUS5AVcWT6EAVlJiYqNTUVKWmpmrZsmXq3LmzHn30Ub377rtGzLp16+Tu7m58wlzqr3/9qxwOh9OO4lOmTFHLli01dOhQPf744/rDH/5wyetKjR492vjZzc1No0ePVlFRkTZu3HjZeLvdro8++kh9+vTRTTfdZIyHhoZq4MCB+uSTT5Sfn3/Vv4MTJ05o7969GjZsmIKCgozxyMhI3XfffVq3bt1VX/OXAgICNGbMGL3//vv6/PPPr/t6AADXRv2u+Pr9yCOPqEGDBgoLC1PPnj117tw5LV261Gk9WwAArhS1u+Jrd3Z2tjw8PBQREXFd1wHMRhMdqILuuOMORUdHKzo6WoMGDdLatWvVokULo6hK0pEjRxQWFqY6deo4vbb0K1pHjhwxxry8vPT6668rMzNTZ86c0eLFi+Xm5nbJ+1osFqdiLElNmzaVJOMrXL906tQpnT9/Xrfeeuslc82bN1dJSYmOHj165Tf/f0rzL+u6P/74o86dO3fV1/2lJ598UoGBgayNDgC4btTviq/fkyZNUmpqqjZv3qyMjAwdP35cgwcPvubrAQBcG7W74mv3zJkzFR4ern79+mn79u3XfB3AbDTRgWrAYrGoc+fOOnHihL799ttrusaHH34oSSooKLjma9REPI0OAKgo1O/y16pVK0VHR6tz585q1arVJRu/AQBwPajd5S80NFSpqakKCAhQz5499cUXX5idEnBNaKID1cTFixclSWfPnpUkNWnSRMePH9eZM2ec4r7++mtjvlRGRoamTZumhx9+WG3atNGjjz6qvLy8S96jpKRE3333ndPYN998I0m68cYbL5tXgwYNVKtWLR08ePCSua+//loWi0WNGzeWpMt+Al+W0vzLum79+vXl5+d3xdf7NWPGjFFgYKCmTp1aLtcDAKAU9dv5uuVZvwEAqAjUbufrlkftvummm/Thhx/KYrEoJiaGDxdQLdFEB6qB4uJiffTRR/Ly8jK+MtajRw/Z7Xa9+uqrTrGzZ8+Wm5ubunfvbrx22LBhCgsL0z/+8Q8tWbJE2dnZGjt27GXf6+fXczgcevXVV+Xp6akuXbpcNt7d3V1du3bV6tWrnb52lp2dreXLl+vuu++Wv7+/JBmFNzc39zfvOTQ0VK1bt9bSpUud4r/88kt99NFH6tGjx29e40qVPo2+evVq7d27t9yuCwBwbdTv/8VXRP0GAKC8Ubv/F1/etbtVq1Zau3atzp49q/vuu08//PBDuVwXqCx8/xGogtavX298qn3y5EktX75c3377rZ577jmjKPbq1UudO3fW+PHj9f333+v222/XRx99pNWrV2vMmDG6+eabJUnTp0/X3r17tWnTJtWpU0eRkZGaNGmSJkyYoH79+jkVRB8fH23YsEFDhw5Vhw4dtH79eq1du1bPP/+8GjRoUGa+06dPV2pqqu6++249/vjj8vDwUFJSkgoLCzVz5kwjrnXr1nJ3d9dLL72kvLw8eXt7695771XDhg0ve92///3v6t69u6xWq4YPH64LFy5o3rx5CggIKPc1zJ988knNnj1bX3zxBU/IAQCuCfX7J5VZvwEAuB7U7p9UVu22Wq1699131atXL9133336z3/+o3r16pXb9YEK5QBQZSxevNghyenw8fFxtG7d2rFgwQJHSUmJU/yZM2ccY8eOdYSFhTk8PT0dt9xyi+Pvf/+7EZeenu7w8PBwPPHEE06vu3jxoqN9+/aOsLAwx+nTpx0Oh8MxdOhQh5+fn+Pw4cOOrl27OmrVquUIDg52TJ482WG3251eL8kxefJkp7HPPvvMERMT46hdu7ajVq1ajs6dOzt27NhxyT2+9tprjptuusnh7u7ukOTYsmXLr/5ONm7c6IiKinL4+vo6/P39Hb169XIcOHDAKWbLli0OSY6VK1f+6rV+K3by5MkOSQ4/P7/fvA4AAKWo35eqzPoNAMDVonZfqjJr97/+9S+HxWJxtG/f3pGfn/+b1wKqAjeHw+GotI49gCpr2LBheuedd4x13wAAQNVH/QYAoHqhdgPVE2uiAwAAAAAAAABQBproAAAAAAAAAACUgSY6AAAAAAAAAABlYE10AAAAAAAAAADKUGWeRP/b3/4mNzc3jRkzxhgrKChQXFyc6tWrp9q1a6tv377Kzs52el1WVpZ69uypWrVqqWHDhnr66ad18eLFSs4eAAAAAAAAAFATeZidgCTt3r1bSUlJioyMdBofO3as1q5dq5UrVyogIECjR4/Wgw8+qO3bt0uS7Ha7evbsqZCQEO3YsUMnTpzQkCFD5OnpqRdffPGK37+kpETHjx9XnTp15ObmVq73BgDAtXI4HDpz5ozCwsJksVSZz72rBGo3AKAqonaXjdoNAKiKrrh2O0x25swZxy233OJITU11/OEPf3A8+eSTDofD4cjNzXV4eno6Vq5cacR+9dVXDkmOtLQ0h8PhcKxbt85hsVgcNpvNiFmwYIHD39/fUVhYeMU5HD161CGJg4ODg4OjSh5Hjx4tn6Jbg1C7OTg4ODiq8kHtvhS1m4ODg4OjKh+/VbtNfxI9Li5OPXv2VHR0tKZPn26Mp6enq7i4WNHR0cZYs2bNFB4errS0NN15551KS0tTq1atFBwcbMTExMRo1KhR2r9/v9q0aXPZ9ywsLFRhYaFx7vi/ZeGPHj0qf3//8r5FAACuSX5+vho3bqw6deqYnUqVU/o7oXYDAKoSanfZqN0AgKroSmu3qU30FStW6LPPPtPu3bsvmbPZbPLy8lJgYKDTeHBwsGw2mxHz8wZ66XzpXFkSEhI0derUS8b9/f0p5gCAKoevPF+q9HdC7QYAVEXU7ktRuwEAVdlv1W7TFmk7evSonnzySaWkpMjHx6dS3zs+Pl55eXnGcfTo0Up9fwAAAAAAAABA9WBaEz09PV0nT57U73//e3l4eMjDw0Nbt27V3Llz5eHhoeDgYBUVFSk3N9fpddnZ2QoJCZEkhYSEKDs7+5L50rmyeHt7G59+8yk4AAAAAAAAAKAspjXRu3Tpon379mnv3r3G0a5dOw0aNMj42dPTU5s2bTJec/DgQWVlZclqtUqSrFar9u3bp5MnTxoxqamp8vf3V4sWLSr9ngAAAAAAAAAANYtpa6LXqVNHt912m9OYn5+f6tWrZ4wPHz5c48aNU1BQkPz9/fXEE0/IarXqzjvvlCR17dpVLVq00ODBgzVz5kzZbDZNmDBBcXFx8vb2rvR7AgAAAAAAAADULKZuLPpbZs+eLYvFor59+6qwsFAxMTGaP3++Me/u7q41a9Zo1KhRslqt8vPz09ChQzVt2jQTswYAAAAAAAAA1BRuDofDYXYSZsvPz1dAQIDy8vJYHx0AUGVQn8rG7wYAUBVRn8rG7wYAUBVdaX0ybU10AAAAAAAAAACqOproAAAAgIs6duyYunXrps6dO6tbt246duyY2SkBAIBfQe0GzFGl10QHAAAAUDG6dOkiu91unBcUFOjPf/6z3N3dtWnTJhMzAwAAl0PtBszDk+gAAACAi/n5H+H+/v7661//aqwBabfb1aVLFzPTAwAAv0DtBszFk+gAAACACzl27JjxR/g777yj+vXrS5J69eqlH3/8Uf369ZPdbtexY8fUqFEjM1MFAACidgNVAU10uLSCggJlZWWZnQZwRcLDw+Xj42N2GgCAau7RRx+V9NNTbKV/hJeqX7++6tSpozNnzujRRx/Vhg0bzEgRAAD8zM9rd926dfX5558rJydHQUFBioyMpHYDlYAmOlxaVlaWYmNjzU4DuCLJyclq2rSp2WkAAKq5wsJCSdKIESMuO//www9r7ty5RhwAADBXaU3+wx/+oEGDBslmsxlzISEhuueee7Ru3TpqN1CBaKLDpYWHhys5OdnsNGqUI0eOaMaMGRo/fryaNGlidjo1Snh4uNkpAABqAG9vbxUUFOi1115Tjx49lJGR4fQ02+LFi404AABgvtLa/cEHH+iuu+7SxIkTFRERoczMTKWkpGjdunVGHICKQRMdLs3Hx4cneytIkyZN+N0CAFAF/fOf/9Sf//xn5efn649//KPy8/ONOX9/f505c8aIAwAA5ktOTtaQIUMkSWPGjFHDhg0lSS1bttSYMWO0Y8cOIw5AxbCYnQAAAACAytOoUSNZLD/9GZCfn69atWrpscceU61atYyGusViYWMyAACqiP/+97/Gzw899JB69eqld999V7169dJDDz102TgA5YsmOgAAAOBC7Ha78QSbJJ0/f14LFy7U+fPnjbHg4GDZ7XYz0gMAAL+Qk5MjScaH4GfOnNHcuXONb4+VjpfGASh/NNEBAAAAF5KRkSGbzabExEQtW7ZMPj4+cnNzk4+Pj5YtW6bExESdOHFCGRkZZqcKAAAkBQUFSZLmzZt32do9b948pzgA5Y810QEAAAAXUvqUWkREhLy9vZWQkGBsLBoaGmr8Ac7TbAAAVA2RkZEKCQlRSkqKpk+frg0bNhhzJSUlmj9/vkJDQxUZGWlilkDNRhMdAAAAcCGlTfL33ntPH3zwgWw2mzEXEhKiXr16OcUBAABzubu76/HHH9fkyZM1YcIEDRo0SBEREcrMzFRKSorS0tI0depUubu7m50qUGPRRAcAAABcSGRkpAIDA/Xaa6/JarVq4sSJxh/iy5Yt02uvvabAwECeZgMAoArp2LGjpk6dqvnz5ysuLs4YDw0N1dSpU9WxY0cTswNqPtZEBwAAV2zbtm3q1auXwsLC5ObmplWrVhlzxcXFevbZZ9WqVSv5+fkpLCxMQ4YM0fHjx52ukZOTo0GDBsnf31+BgYEaPny4zp49W8l3AuDXuLm5mZ0CAAD4hY4dOyolJUWzZ8/WxIkTNXv2bC1btowGOlAJaKIDAIArdu7cOd1+++1KTEy8ZO78+fP67LPPNHHiRH322Wd69913dfDgQT3wwANOcYMGDdL+/fuVmpqqNWvWaNu2bYqNja2sWwBcXkZGhnJzczVixAhlZmYqLi5OPXr0UFxcnL7//ns9+uijOn36NBuLAgBQBdntdh06dEhffvmlDh06JLvdbnZKgEtgORcAAHDFunfvru7du192LiAgQKmpqU5jr776qu644w5lZWUpPDxcX331lTZs2KDdu3erXbt2kqR58+apR48eevnllxUWFlbh9wC4utINQ//4xz/qwQcfVFJSko4dO6ZGjRpp5MiRcjgc+uc//8nGogAAVDELFy7UypUrnRrnCxcuVP/+/fXYY4+ZmBlQ89FEBwAAFSYvL09ubm4KDAyUJKWlpSkwMNBooEtSdHS0LBaLdu3apT/+8Y+XvU5hYaEKCwuN8/z8/ArNG6jJSjcMfeWVV7RlyxbjD/E9e/bogw8+UOfOnZ3iAACA+RYuXKgVK1aobt26Gj58uKxWq9LS0rRo0SKtWLFCkmikAxWI5VwAAECFKCgo0LPPPqs//elP8vf3lyTZbDY1bNjQKc7Dw0NBQUGy2WxlXishIUEBAQHG0bhx4wrNHajJIiMjVatWLW3cuFH+/v566qmn9O9//1tPPfWU/P39tXHjRtWqVYuNRQEAqCKKioq0cuVK1a1bVytXrtT999+vevXq6f7773caLyoqMjtVoMaiiQ4AAMpdcXGxHnroITkcDi1YsOC6rxcfH6+8vDzjOHr0aDlkCbgmu92ugoICSdKtt96qiIgI+fr6KiIiQrfeequknz4EY41VAACqhtWrV8tut2v48OHy8HBeVMLDw0OPPPKI7Ha7Vq9ebVKGQM3Hci4AAKBclTbQjxw5os2bNxtPoUtSSEiITp486RR/8eJF5eTkKCQkpMxrent7y9vbu8JyBlzJ6tWrVVJSogceeECffvqp4uLijLnQ0FD16tVLH3zwgVavXq3+/fubmCkAAJCk48ePS5KsVutl50vHS+MAlD+a6AAAoNyUNtC//fZbbdmyRfXq1XOat1qtys3NVXp6utq2bStJ2rx5s0pKStShQwczUgZcTukf2EOHDtWTTz6pjIwM5eTkKCgoSJGRkTp9+rQ++OAD/hAHAKCKCAsLk/TT/kL333//JfNpaWlOcQDKH010AABwxc6ePatDhw4Z55mZmdq7d6+CgoIUGhqqfv366bPPPtOaNWtkt9uNdc6DgoLk5eWl5s2bq1u3bhoxYoQWLlyo4uJijR49WgMGDOA/+oFK8ss/xNu0aeM0zx/iAIDyVFBQoKysLLPTqNZatmwpi8WipKQk3XTTTU5Luly8eFHJycmyWCxq2bKlvvnmGxMzrf7Cw8Pl4+NjdhqogtwcDofD7CTMlp+fr4CAAOXl5Tl95RzA1fvmm28UGxur5ORkNW3a1Ox0gGqtKtanjz/+WJ07d75kfOjQoZoyZYoiIiIu+7otW7aoU6dOkqScnByNHj1aH3zwgSwWi/r27au5c+eqdu3aV5xHVfzdANVFUVGRunfvLn9/f61cufKSP8T79++v/Px8rV+/Xl5eXiZmClQ/1Key8btxXaV/IwLVAb0M13Ol9Ykn0QEAwBXr1KmTfu3z9yv5bD4oKEjLly8vz7QAXAUvLy/1799fK1asUP/+/fXII4/IarUqLS1Nr7/+uk6fPq0BAwbQQAcAlIvw8HAlJyebnUaN8M4772jjxo0qKSkxxiwWi6Kjo9WvXz8TM6s5wsPDzU4BVRRNdAAAAMDFPPbYY5KklStXatasWca4u7u7BgwYYMwDAHC9fHx8eLK3nDz//PN66qmn9M9//lNvv/22HnroIT366KN88A1UAproAAAAgAt67LHH9Mgjj2j16tU6fvy4wsLC1Lt3b/4QBwCgCvPy8lJ0dLTefvttRUdHU7eBSkITHQAAAHBRdrtdP/zwg44dOyaHwyG73W52SgAAAECVYzHzzRcsWKDIyEj5+/vL399fVqtV69evN+Y7deokNzc3p+OXXy3NyspSz549VatWLTVs2FBPP/20Ll68WNm3AgAAAFQr48ePV/fu3bVq1Srt2bNHq1atUvfu3TV+/HizUwMAAACqFFOb6I0aNdLf/vY3paena8+ePbr33nvVu3dv7d+/34gZMWKETpw4YRwzZ8405ux2u3r27KmioiLt2LFDS5cu1ZIlSzRp0iQzbgcAAACoFsaPH6/t27fL09NTAwcO1LJlyzRw4EB5enpq+/btNNIBAACAnzF1OZdevXo5nc+YMUMLFizQzp071bJlS0lSrVq1FBISctnXf/TRRzpw4IA2btyo4OBgtW7dWi+88IKeffZZTZkypcx1oQoLC1VYWGic5+fnl9MdAQAAAFXbhQsXjAb62rVrjf9mjo2N1bBhw9SzZ09t375dFy5ckK+vr8nZAgAAAOYz9Un0n7Pb7VqxYoXOnTsnq9VqjKekpKh+/fq67bbbFB8fr/PnzxtzaWlpatWqlYKDg42xmJgY5efnOz3N/ksJCQkKCAgwjsaNG1fMTQEAAABVTFJSkiSpf//+lzx04uXlpX79+jnFAaje7Ha7Jk6cqIiICPn6+urmm2/WCy+8IIfDYcQ4HA5NmjRJoaGh8vX1VXR0tL799lun6+Tk5GjQoEHy9/dXYGCghg8frrNnz1b27QAAYArTm+j79u1T7dq15e3trccee0zvvfeeWrRoIUnGV0u3bNmi+Ph4vfnmm/rzn/9svNZmszk10CUZ5zabrcz3jI+PV15ennEcPXq0Au4MAAAAqHqOHTsmSerRo8dl50vHS+MAVG8vvfSSFixYoFdffVVfffWVXnrpJc2cOVPz5s0zYmbOnKm5c+dq4cKF2rVrl/z8/BQTE6OCggIjZtCgQdq/f79SU1O1Zs0abdu2TbGxsWbcEgAAlc7U5Vwk6dZbb9XevXuVl5end955R0OHDtXWrVvVokULp4LcqlUrhYaGqkuXLjp8+LBuvvnma35Pb29veXt7l0f6AAAAQLXSqFEj7dmzR+vWrdPw4cOVkZGhnJwcBQUFKTIyUuvWrTPiAFR/O3bsUO/evdWzZ09J0o033qi33npLn376qaSfnkKfM2eOJkyYoN69e0uS3njjDQUHB2vVqlUaMGCAvvrqK23YsEG7d+9Wu3btJEnz5s1Tjx499PLLLyssLMycmwMAoJKY3kT38vLS7373O0lS27ZttXv3bv3jH/+47NdHO3ToIEk6dOiQbr75ZoWEhBiFv1R2drYklbmOOgAAAODKRo4cqVWrVulf//qXUlNTderUKWOuQYMGysnJMeIAVH933XWXkpOT9c0336hp06b64osv9Mknn+iVV16RJGVmZspmsyk6Otp4TUBAgDp06KC0tDQNGDBAaWlpCgwMNBrokhQdHS2LxaJdu3bpj3/84yXvy15kAICaxPTlXH6ppKTEqdD+3N69eyVJoaGhkiSr1ap9+/bp5MmTRkxqaqr8/f2NJWEAAAAA/I+vr6+aNWsmu92uH3/8Uffdd5+Sk5N133336ccff5TdblezZs3YVBSoIZ577jkNGDBAzZo1k6enp9q0aaMxY8Zo0KBBkv63FOrllkotnbPZbGrYsKHTvIeHh4KCgspcSpW9yAAANYmpT6LHx8ere/fuCg8P15kzZ7R8+XJ9/PHH+vDDD3X48GEtX75cPXr0UL169ZSRkaGxY8eqY8eOioyMlCR17dpVLVq00ODBgzVz5kzZbDZNmDBBcXFxLNcCAAAAXIbdbldubq7q1q2r06dPKzU1VampqcZ83bp1lZeXJ7vdLnd3dxMzBVAe3n77baWkpGj58uVq2bKl9u7dqzFjxigsLExDhw6tsPeNj4/XuHHjjPP8/Hwa6QCAasvUJvrJkyc1ZMgQnThxQgEBAYqMjNSHH36o++67T0ePHtXGjRs1Z84cnTt3To0bN1bfvn01YcIE4/Xu7u5as2aNRo0aJavVKj8/Pw0dOlTTpk0z8a4AAACAqisjI0M2m02JiYm66aablJSUpGPHjqlRo0YaOXKkvvvuO8XFxSkjI0Nt2rQxO10A1+npp582nkaXftpv7MiRI0pISNDQoUONpVCzs7ONb32Xnrdu3VrST8ul/vwb4JJ08eJF5eTklLmUKnuRAQBqElOb6IsWLSpzrnHjxtq6detvXqNJkybG5kcAAAAAfl3pmucRERHy9fXVmDFjnOYjIiKc4gBUb+fPn5fF4rySq7u7u0pKSiT99P/5kJAQbdq0yWia5+fna9euXRo1apSkn5ZSzc3NVXp6utq2bStJ2rx5s0pKSoy9ywAAqMlM31gUAAAAQOUJCgqS9NNmgi1btrxkPjMz0ykOQPXWq1cvzZgxQ+Hh4WrZsqU+//xzvfLKK3rkkUckSW5ubhozZoymT5+uW265RREREZo4caLCwsLUp08fSVLz5s3VrVs3jRgxQgsXLlRxcbFGjx6tAQMGKCwszMS7AwCgctBEBwAAAFxIZGSkQkJClJKSounTpzs9oVpSUqKUlBSFhoYa+xABqN7mzZuniRMn6vHHH9fJkycVFhamkSNHatKkSUbMM888o3Pnzik2Nla5ubm6++67tWHDBvn4+BgxKSkpGj16tLp06SKLxaK+fftq7ty5ZtwSAACVjiY6AAAA4ELc3d31+OOPa/LkyZowYYIGDRqkiIgIZWZmKiUlRWlpaZo6dSqbigI1RJ06dTRnzhzNmTOnzBg3NzdNmzbtV/cXCwoK0vLlyysgQwAAqj6a6AAAAICL6dixo6ZOnar58+crLi7OGA8NDdXUqVPVsWNHE7MDAAAAqhaa6AAAAIAL6tixo26//XaNHz9e2dnZCg4O1owZMxQQEGB2agAAAECVQhMdAAAAcEGPPfaYvv76a+P81KlT6t27t5o1a6aFCxeamBkAAABQtVh+OwQAAABATVLaQHdzc1PXrl31z3/+U127dpWbm5u+/vprPfbYY2anCAAAAFQZPIkOAAAAuJCzZ88aDfT169fLx8dHkvT8889r3Lhx6t69u77++mudPXtWtWvXNjlbAAAAwHw8iQ4AAAC4kISEBEnSfffdZzTQS/n4+Cg6OtopDgAAAHB1NNEBAAAAF3L8+HFJ0kMPPXTZ+f79+zvFAQAAAK6OJjoAAADgQsLCwiRJb7/9tux2uz7//HNt2rRJn3/+uex2u1auXOkUBwAAALg61kQHAAAAXEh8fLzuv/9+ffTRR9q7d69OnjxpzDVs2NA4j4+PNytFAAAAoErhSXQAAADAhdSuXVs33HCDJOnkyZNq37695s2bp/bt2xsN9BtuuIFNRQEAAID/w5PoAAAAgAux2+2y2+3y8/PTuXPntHv3bu3evduY9/PzU0lJiex2u9zd3U3MFAAAAKgaeBIdAAAAcCEZGRmy2WyaOXOm1qxZo6ioKEVERCgqKkpr1qzRzJkzdeLECWVkZJidKgAAAFAl8CR6NZOdna28vDyz0wDKdOTIEad/AlVVQECAgoODzU4DACpdTk6OJCkiIkJubm5q0KCBCgsL1aBBA7m7uysiIsIpDgAAAHB1NNGrkezsbP158BAVFxWanQrwm2bMmGF2CsCv8vTy1rI336CRDsDlBAUFSZKee+45p6fN9+zZo1WrVqlVq1ZOcQAAAICro4lejeTl5am4qFAXbvqDSnwCzE4HAKotS0Ge9N1W5eXl0UQH4HIiIyPl7e2tjIwMeXh46KGHHlKPHj20bt06vf3229q3b5+8vb0VGRlpdqoAAABAlUATvRoq8QlQiV99s9MAAABANVRUVKTCwp++2diuXTtFRUUpKChIUVFR+u6777Rz504VFhaqqKhIvr6+JmcLAAAAmI8mOgAAAOBCkpKSJEn33HOPvv32W8XFxRlzoaGhuvvuu/XJJ58oKSlJY8aMMSlLAAAAoOqgiQ4AAAC4kGPHjkmSRo4cqdDQUGVkZCgnJ0dBQUGKjIzU8ePH9cknnxhxAAAAgKuzmJ0AAAAAgMrTqFEjSdK6devk7u6uNm3aqEuXLmrTpo3c3d21bt06pzgAAADA1dFEBwAAAFzIyJEjJUkrV65UUVGR01xRUZHeeecdpzgAAADA1dFEBwAAAFyIr6+voqKiVFxcrJ49eyopKUlHjx5VUlKSevbsqeLiYkVFRbGpKAAAAPB/aKIDAIArtm3bNvXq1UthYWFyc3PTqlWrnOYdDocmTZqk0NBQ+fr6Kjo6Wt9++61TTE5OjgYNGiR/f38FBgZq+PDhOnv2bCXeBYAZM2YYjfS33npLgwcP1ltvvWU00GfMmGF2igAAAECVQRMdAABcsXPnzun2229XYmLiZednzpypuXPnauHChdq1a5f8/PwUExOjgoICI2bQoEHav3+/UlNTtWbNGm3btk2xsbGVdQsA/s+MGTO0fv169enTR+3atVOfPn20fv16GugAAADAL3iYnQAAAKg+unfvru7du192zuFwaM6cOZowYYJ69+4tSXrjjTcUHBysVatWacCAAfrqq6+0YcMG7d69W+3atZMkzZs3Tz169NDLL7+ssLCwSrsXAAAAAACuBE+iAwCAcpGZmSmbzabo6GhjLCAgQB06dFBaWpokKS0tTYGBgUYDXZKio6NlsVi0a9euMq9dWFio/Px8pwPA9Rk/fry6d++uVatWac+ePVq1apW6d++u8ePHm50aAAAAUKXQRAcAAOXCZrNJkoKDg53Gg4ODjTmbzaaGDRs6zXt4eCgoKMiIuZyEhAQFBAQYR+PGjcs5e8C1jB8/Xtu3b5enp6cGDhyoZcuWaeDAgfL09NT27dtppAMAAAA/Y2oTfcGCBYqMjJS/v7/8/f1ltVq1fv16Y76goEBxcXGqV6+eateurb59+yo7O9vpGllZWerZs6dq1aqlhg0b6umnn9bFixcr+1YAAEAFio+PV15ennEcPXrU7JSAauvChQtGA33t2rWKjY1Vo0aNFBsbq7Vr1xqN9AsXLpidKgAAAFAlmNpEb9Sokf72t78pPT1de/bs0b333qvevXtr//79kqSxY8fqgw8+0MqVK7V161YdP35cDz74oPF6u92unj17qqioSDt27NDSpUu1ZMkSTZo0yaxbAgDAZYWEhEjSJR94Z2dnG3MhISE6efKk0/zFixeVk5NjxFyOt7e38aF76QHg2iQlJUmS+vfvLy8vL6c5Ly8v9evXzykOAAAAcHWmNtF79eqlHj166JZbblHTpk01Y8YM1a5dWzt37lReXp4WLVqkV155Rffee6/atm2rxYsXa8eOHdq5c6ck6aOPPtKBAwe0bNkytW7dWt27d9cLL7ygxMREFRUVlfm+rKsKAED5i4iIUEhIiDZt2mSM5efna9euXbJarZIkq9Wq3NxcpaenGzGbN29WSUmJOnToUOk5A67o2LFjkqQePXooJydHw4YNU69evTRs2DDl5OSoR48eTnEAAACAq/MwO4FSdrtdK1eu1Llz52S1WpWenq7i4mKnzcmaNWum8PBwpaWl6c4771RaWppatWrltPZqTEyMRo0apf3796tNmzaXfa+EhARNnTq1wu8JAICa5uzZszp06JBxnpmZqb179yooKEjh4eEaM2aMpk+frltuuUURERGaOHGiwsLC1KdPH0lS8+bN1a1bN40YMUILFy5UcXGxRo8erQEDBigsLMykuwJcS6NGjbRnzx49+uijKigoMMbPnDmjBx98UD4+PkYcAAAAgCqwsei+fftUu3ZteXt767HHHtN7772nFi1ayGazycvLS4GBgU7xv9yc7HKbl5XOlYV1VQEAuDZ79uxRmzZtjA+qx40bpzZt2hhLqT3zzDN64oknFBsbq/bt2+vs2bPasGGD0ZSTpJSUFDVr1kxdunRRjx49dPfddys5OdmU+wFc0ciRIyXJaKC3aNFCs2bNUosWLZzGS+MAAAAAV2f6k+i33nqr9u7dq7y8PL3zzjsaOnSotm7dWqHv6e3tLW9v7wp9DwAAaqJOnTrJ4XCUOe/m5qZp06Zp2rRpZcYEBQVp+fLlFZEegCvwyw1Db7/9djVs2FC33367Dhw44BTn6+tb2ekBAAAAVY7pT6J7eXnpd7/7ndq2bauEhATdfvvt+sc//qGQkBAVFRUpNzfXKf6Xm5NdbvOy0jkAAAAAzsaNGydJql27tiTprbfe0uDBg/XWW29Jkvz8/JziAAAAAFdnehP9l0pKSlRYWKi2bdvK09PTaXOygwcPKisry2lzsn379unkyZNGTGpqqvz9/Y2vowIAAAD4n//+97+SpKlTp2r9+vXq06eP2rVrpz59+mj9+vWaPHmyUxwAAADg6kxdziU+Pl7du3dXeHi4zpw5o+XLl+vjjz/Whx9+qICAAA0fPlzjxo1TUFCQ/P399cQTT8hqterOO++UJHXt2lUtWrTQ4MGDNXPmTNlsNk2YMEFxcXEs1wIAAABcRr169XTmzBktWrRICQkJOnTokLKzs1VQUKCioiItXrzYiAMAAABgchP95MmTGjJkiE6cOKGAgABFRkbqww8/1H333SdJmj17tiwWi/r27avCwkLFxMRo/vz5xuvd3d21Zs0ajRo1SlarVX5+fho6dOivrsMKAAAAuLJXXnlFDz74oA4cOKDevXsb46dOnXI6f+WVV8xIDwAAAKhyTG2iL1q06FfnfXx8lJiYqMTExDJjmjRponXr1pV3agAAAECNFBQUJIvFopKSEklSrVq1NGzYMC1ZskTnz5+XJFksFgUFBZmZJgAAAFBlVLk10QEAAABUnLy8PKOBLknnz5/X/PnzjQa69NM+RXl5eWakBwAAAFQ5NNEBAAAAFzJ+/HhJ0h133KF3331XN954o+rUqaMbb7xR7777rtq3b+8UBwAAALg6mugAAACAC8nOzpYkDRkyRF5eXrrhhhtUv3593XDDDfLy8tLgwYOd4gAAAABXZ+qa6AAAAAAqV3BwsE6dOqVnnnnGaQmXzMxM3X///apVq5YRBwAAAIAn0QEAAACXMmPGDEkyGuhdu3bVP//5T3Xt2tVpvDQOAAAAcHU00QEAAAAX4u7u7nR++vRpnT9/XqdPn/7VOAAAAMBV0UQHAAAAXEhCQoIkydfXV5K0e/du/eUvf9Hu3budxkvjAAAAAFdHEx0AAABwIcePH5ckzZs3TytWrFDdunXl6empunXrasWKFfrHP/7hFAcAAAC4OjYWBQAAAFxIWFiYMjMzFR8fr1OnThnjp0+f1oABA1S/fn0jDgAAAABPogMAAAAuJT4+XpJ06tQpeXh4aODAgVq2bJkGDhwoDw8P/fjjj05xAAAAgKujiQ4AAAC4kJ9vGHrx4kWdOnVK58+f16lTp3Tx4sXLxgEAAACujCY6AAAA4EKSkpIkSUFBQZKk1NRUxcbGKjU11Wm8NA4AAABwdTTRAQAAABdy7NgxSdLcuXO1Zs0aRUVFKSIiQlFRUVqzZo2xsWhpHAAAAODqaKIDAAAALqRRo0aSpHXr1snLy0utW7c2Di8vL61bt84pDgAAAHB1HmYnAAAAAKDyjBw5UqtWrdKKFSu0YsUKlZSUGHMLFixwigMAAABAE71aslzINTsFAKjW+PcoAFfm6+urG264QT/88IMkqX379hoyZIjeeOMN7d69W5J0ww03yNfX18w0AQAAgCqDJno15Ju5zewUAAAAUE0VFRXJZrPJ09NTxcXF2r17t9E8lyRPT0/ZbDYVFRXJy8vLxEwBAACAqoEmejV0IaKjSnwDzU4DAKoty4VcPpAE4LJWr14tu92usWPHqkuXLkpKStKxY8fUqFEjjRw5Uhs3btSsWbO0evVq9e/f3+x0AQAAANPRRK+GSnwDVeJX3+w0AAAAUA0dP35ckmS1WuXl5aU//OEPysnJUVBQkLy8vGS1Wp3iAAAAAFdHEx0AAABwIWFhYZKkpUuX6tNPP5XNZjPmQkJC1L59e6c4AAAAwNVZzE4AAAAAQOXp3bu3LBaL3n//fd14441KTEzUunXrlJiYqBtvvFEffPCBLBaLevfubXaqAAAAQJVAEx0AAABwIe7u7vLx8ZEkHTx4UN99953Onz+v7777TgcPHpQk+fj4yN3d3cw0AZSjH374QX/+859Vr149+fr6qlWrVtqzZ48x73A4NGnSJIWGhsrX11fR0dH69ttvna6Rk5OjQYMGyd/fX4GBgRo+fLjOnj1b2bcCAIApaKIDAAAALiQjI0Pnz59XdHS08vPzNWvWLPXr10+zZs1Sfn6+oqOjdf78eWVkZJidKoBycPr0aUVFRcnT01Pr16/XgQMHNGvWLNWtW9eImTlzpubOnauFCxdq165d8vPzU0xMjAoKCoyYQYMGaf/+/UpNTdWaNWu0bds2xcbGmnFLAABUOtZEBwAAAFxITk6OJGncuHEaMmSIhg8fruLiYnl6emrRokWqX7++Nm7caMQBqN5eeuklNW7cWIsXLzbGIiIijJ8dDofmzJmjCRMmGMs4vfHGGwoODtaqVas0YMAAffXVV9qwYYN2796tdu3aSZLmzZunHj166OWXX77sHgqFhYUqLCw0zvPz8yvqFgEAqHA8iQ4AAAC4kKCgIEnSAw88oCFDhqi4uFiSVFxcrCFDhuiBBx5wigNQvb3//vtq166d+vfvr4YNG6pNmzZ67bXXjPnMzEzZbDZFR0cbYwEBAerQoYPS0tIkSWlpaQoMDDQa6JIUHR0ti8WiXbt2XfZ9ExISFBAQYByNGzeuoDsEAKDi0UQHAAAAXEhkZKQk6eLFi5J+apbHx8cbTfPS8dI4ANXbd999pwULFuiWW27Rhx9+qFGjRukvf/mLli5dKkmy2WySpODgYKfXBQcHG3M2m00NGzZ0mvfw8FBQUJAR80vx8fHKy8szjqNHj5b3rQEAUGlYzgUAAABwIdnZ2cbPbdq00aOPPqqIiAg1atRI//znP/X5558bcZdbogFA9VJSUqJ27drpxRdflPTT/++//PJLLVy4UEOHDq2w9/X29pa3t3eFXR8AgMrEk+gAAACACyndCLB27do6ceKE4uLi1KNHD8XFxclms8nPz88pDkD1FhoaqhYtWjiNNW/eXFlZWZKkkJAQSc4fsJWel86FhITo5MmTTvMXL15UTk6OEQMAQE1mahM9ISFB7du3V506ddSwYUP16dNHBw8edIrp1KmT3NzcnI7HHnvMKSYrK0s9e/ZUrVq11LBhQz399NPG11ABAAAA/M+FCxckSU888YRSUlI0e/ZsTZw4UbNnz9ayZcs0atQopzgA1VtUVNQlf2d/8803atKkiaSfNhkNCQnRpk2bjPn8/Hzt2rVLVqtVkmS1WpWbm6v09HQjZvPmzSopKVGHDh0q4S4AADCXqU30rVu3Ki4uTjt37lRqaqqKi4vVtWtXnTt3ziluxIgROnHihHHMnDnTmLPb7erZs6eKioq0Y8cOLV26VEuWLNGkSZMq+3YAAACAKs/X11eSlJSUJLvdrkOHDunLL7/UoUOHZLfb9frrrzvFAajexo4dq507d+rFF1/UoUOHtHz5ciUnJysuLk6S5ObmpjFjxmj69Ol6//33tW/fPg0ZMkRhYWHq06ePpJ+eXO/WrZtGjBihTz/9VNu3b9fo0aM1YMAAln0CALgEU9dE37Bhg9P5kiVL1LBhQ6Wnp6tjx47GeK1atcr8ithHH32kAwcOaOPGjQoODlbr1q31wgsv6Nlnn9WUKVPk5eVVofcAAAAAVCfJyckaOHCgcnJy1LVrV6e5xMREpzgA1V/79u313nvvKT4+XtOmTVNERITmzJmjQYMGGTHPPPOMzp07p9jYWOXm5uruu+/Whg0b5OPjY8SkpKRo9OjR6tKliywWi/r27au5c+eacUsVLjs7W3l5eWanAZTpyJEjTv8EqqqAgIBLNq6urqrUxqKlRSooKMhpPCUlRcuWLVNISIh69eqliRMnqlatWpKktLQ0tWrVyul/kJiYGI0aNUr79+9XmzZtLnmfwsJCFRYWGuf5+fkVcTsAAABAlRMWFiaLxaKSkhJJPz2wMnToUC1dulTnz5+XJFksFp4uBWqQ+++/X/fff3+Z825ubpo2bZqmTZtWZkxQUJCWL19eEelVKdnZ2frz4CEqLir87WDAZDNmzDA7BeBXeXp5a9mbb9SIRnqVaaKXlJRozJgxioqK0m233WaMDxw4UE2aNFFYWJgyMjL07LPP6uDBg3r33XclSTab7ZL/IUrPbTbbZd8rISFBU6dOraA7AQAAAKquoqIiubm5Gefnz5/XggULnGLc3NxUVFTEtzoBuJy8vDwVFxXqwk1/UIlPgNnpAEC1ZSnIk77bqry8PJro5SkuLk5ffvmlPvnkE6fx2NhY4+dWrVopNDRUXbp00eHDh3XzzTdf03vFx8dr3Lhxxnl+fr4aN258bYkDAACD3W7XlClTtGzZMtlsNoWFhWnYsGGaMGGC0bRzOByaPHmyXnvtNeXm5ioqKkoLFizQLbfcYnL2gGtYvXq17Ha7nnrqKf3+979XbGysLly4IF9fXyUnJys9PV2zZs3S6tWr1b9/f7PTBQBTlPgEqMSvvtlpAACqiCrRRB89erTWrFmjbdu2qVGjRr8aW7rz96FDh3TzzTcrJCREn376qVNMdna2JJW5jrq3t7e8vb3LIXMAAPBzL730khYsWKClS5eqZcuW2rNnjx5++GEFBAToL3/5iyRp5syZmjt3rpYuXaqIiAhNnDhRMTExOnDggNPaqwAqxvHjxyVJVqtVtWrVUnR0tI4dO6ZGjRqpbt26slqtTnEAAACAqzO1ie5wOPTEE0/ovffe08cff6yIiIjffM3evXslSaGhoZJ++o//GTNm6OTJk2rYsKEkKTU1Vf7+/mrRokWF5Q4AAC61Y8cO9e7dWz179pQk3XjjjXrrrbeMD7wdDofmzJmjCRMmqHfv3pKkN974aY28VatWacCAAablDriK0rXOn3nmGR0+fNgY37Nnj1atWmV825M10QEAAICfWMx887i4OC1btkzLly9XnTp1ZLPZZLPZdOHCBUnS4cOH9cILLyg9PV3ff/+93n//fQ0ZMkQdO3ZUZGSkJKlr165q0aKFBg8erC+++EIffvihJkyYoLi4OJ42BwCgkt11113atGmTvvnmG0nSF198oU8++UTdu3eXJGVmZspmsyk6Otp4TUBAgDp06KC0tLQyr1tYWKj8/HynA8C1Kf0A6/Dhw/Lw8NDAgQO1bNkyDRw4UB4eHkZjvTQOAAAAcHWmPoleuoFRp06dnMYXL16sYcOGycvLSxs3btScOXN07tw5NW7cWH379tWECROMWHd3d61Zs0ajRo2S1WqVn5+fhg4d+qu7igMAgIrx3HPPKT8/X82aNZO7u7vsdrtmzJihQYMGSfrfpt+X2xS8rA3BJTYFB8qT3W43fq5du7ZCQ0Pl4+Oj0NBQ1a5dW7m5uZfEAQAAAK7M9OVcfk3jxo21devW37xOkyZNtG7duvJKCwAAXKO3335bKSkpWr58uVq2bKm9e/dqzJgxCgsL09ChQ6/5umwKDpSfpKQkSVKzZs307bffatasWcacu7u7mjVrpq+//lpJSUkaM2aMSVkCAAAAVUeV2FgUAADUDE8//bSee+45Y23zVq1a6ciRI0pISNDQoUONTb+zs7ON/U1Kz1u3bl3mddkUHCg/x44dkyRNmDBBFotFsbGxunDhgnx9fZWcnCy73a7BgwcbcQAAAICro4kOAADKzfnz52WxOG+54u7urpKSEklSRESEQkJCtGnTJqNpnp+fr127dmnUqFGVnS7gkho1aqQ9e/bo4YcfVnFxsTF+9uxZDRw4UJ6enkYcAAAAAJM3FgUAADVLr169NGPGDK1du1bff/+93nvvPb3yyiv64x//KElyc3PTmDFjNH36dL3//vvat2+fhgwZorCwMPXp08fc5AEXMXLkSEkyGug33nijXnzxRd14441O46VxAAAAgKvjSXQAAFBu5s2bp4kTJ+rxxx/XyZMnFRYWppEjR2rSpElGzDPPPKNz584pNjZWubm5uvvuu7Vhwwb5+PiYmDngOs6ePet0brVa1bhxY1mtVn3//fdOcb6+vpWcHQAAAFD10EQHAADlpk6dOpozZ47mzJlTZoybm5umTZumadOmVV5iAAyjR4+WJPn6+urChQt666239NZbbxnzPj4+Kigo0OjRo/Wvf/3LrDQBAACAKoPlXAAAAAAXkpeXJ0maOHGi1q9frz59+qhdu3bq06eP1q9fr+eff94pDgAAAHB1NNEBAAAAFxIQECBJSk5OVlFRkQ4dOqQjR47o0KFDKioq0qJFi5ziAAAAAFfHci4AAACAC3n11VfVv39/ff/99+rdu7cxfurUKafzV1991Yz0AAAAgCqHJ9EBAAAAF9KgQQO5ubkZ597e3ho+fLi8vb2NMTc3NzVo0MCM9AAAAIAqhyY6AAAA4ELy8vLkcDiM88LCQi1atEiFhYXGmMPhYE10AAAA4P/QRAcAAABcyPjx4yVJd9xxh1auXKng4GD5+PgoODhYK1euVPv27Z3iAAAAAFfHmugAAACAC8nOzpYkDRkyREFBQXruueeUk5OjoKAgBQUFafDgwdq9e7cRBwAAALg6mugAAACACwkODtapU6c0Z84cnT17VjabzZgLCQmRn5+fEQcAAACA5VwAAAAAlzJjxgxJ0qFDh9SkSRMlJiZq3bp1SkxMVJMmTXT48GGnOAAAAMDV8SQ6AAAA4EJq164td3d32e127dq1SyUlJRo8eLDefPNN7d69W5Lk7u6u2rVrm5wpAAAAUDXQRAcAAABcSEZGhux2uxo0aKBTp05p9+7dRvNckurXr68ff/xRGRkZatOmjYmZAgAAAFUDy7kAAAAALiQnJ0eStHTpUq1evVq33XabGjRooNtuu02rV6/WG2+84RQHAAAAuLqrbqIfPXpUx44dM84//fRTjRkzRsnJyeWaGAAAKB/UbgA/FxQUJEnKzMyUl5eXfve736lJkyb63e9+Jy8vL2VmZjrFAah81G4AAKqWq26iDxw4UFu2bJEk2Ww23Xffffr00081fvx4TZs2rdwTBAAA14faDeDnIiMjFRISogkTJqh79+5atWqV9uzZo1WrVql79+6aMGGCQkNDFRkZaXaqgMuidgMAULVcdRP9yy+/1B133CFJevvtt3Xbbbdpx44dSklJ0ZIlS8o7PwAAcJ2o3QB+zt3dXYGBgTp9+rTc3Nx033336bXXXtN9990nNzc3nT59WgEBAXJ3dzc7VcBlUbsBAKharnpj0eLiYnl7e0uSNm7cqAceeECS1KxZM504caJ8swMAANeN2g3g5y5cuKCvv/5a7u7uql+/vlJTU5WamipJCgkJ0alTp/T111/rwoUL8vX1NTlbwDVRuwEAqFqu+kn0li1bauHChfrPf/6j1NRUdevWTZJ0/Phx1atXr9wTBAAA14faDeDnkpKSJEn/7//9Py1fvlyzZ8/WxIkTNXv2bKWkpOihhx5yigNQ+ajdAABULVfdRH/ppZeUlJSkTp066U9/+pNuv/12SdL7779vfN0MAABUHdRuAD9Xullhjx49ZLfbdejQIX355Zc6dOiQ7Ha7evTo4RQHoPJRuwEAqFquejmXTp066ccff1R+fr7q1q1rjMfGxqpWrVrlmhwAALh+1G4AP9eoUSPt2bNH06dP17fffiu73W7MLVy4ULfccosRB8Ac1G4AAKqWq34SXZIcDofS09OVlJSkM2fOSJK8vLwo5gAAVFHUbgClRo4cKUn6+uuvVadOHT311FP697//raeeekp16tTR119/7RQHwBzUbgAAqo6rfhL9yJEj6tatm7KyslRYWKj77rtPderU0UsvvaTCwkItXLiwIvIEAADXiNoN4Ofc3d2Nn8+ePasffvhB58+f1w8//KCzZ89eNg5A5aJ2AwBQtVx1E/3JJ59Uu3bt9MUXXzhtaPLHP/5RI0aMKNfkcHmWgjyzUwCAas3V/j1K7Qbwc6tXr5Yk3XzzzTp8+LDeeustvfXWW8Z86fjq1avVv39/s9IEXBq1GwCAquWqm+j/+c9/tGPHDnl5eTmN33jjjfrhhx/KLTFcKiAgQJ5e3tJ3W81OBQCqPU8vbwUEBJidRqWgdgP4uePHj0uSZs6cqTNnzmj48OGy2+1yd3fXokWLVLt2bfXr18+IA1D5qN3ms1zINTsFAKjWatq/R6+6iV5SUuK0+VCpY8eOqU6dOuWSFC4vODhYy958Q3l5rvUEJaqXI0eOaMaMGRo/fryaNGlidjpAmQICAhQcHGx2GpWC2g3g58LCwiRJ/fv3V0lJiTFut9s1bNgwWSwWpzgAlY/abT7fzG1mpwAAqEKuuonetWtXzZkzR8nJyZIkNzc3nT17VpMnT1aPHj2u6loJCQl699139fXXX8vX11d33XWXXnrpJd16661GTEFBgf76179qxYoVKiwsVExMjObPn+/U+MjKytKoUaO0ZcsW1a5dW0OHDlVCQoI8PK769qq84OBgl2n6oHpr0qSJmjZtanYaAFS+tRtA9de7d28lJiYaDfSgoCCNHDlSSUlJysnJMcZ79+5tZpqAS6N2m+9CREeV+AaanQYAVFuWC7k16gPJq+4yz5o1SzExMWrRooUKCgo0cOBAffvtt6pfv77TWopXYuvWrYqLi1P79u118eJFPf/88+ratasOHDggPz8/SdLYsWO1du1arVy5UgEBARo9erQefPBBbd++XdJPT8z07NlTISEh2rFjh06cOKEhQ4bI09NTL7744tXeHgAANU551m4A1d+PP/5o/Ozr66uHH35Ybdu21cMPP6z58+frwoULRhxPowPmoHabr8Q3UCV+9c1OAwBQRVx1E71Ro0b64osvtGLFCmVkZOjs2bMaPny4Bg0aJF9f36u61oYNG5zOlyxZooYNGyo9PV0dO3ZUXl6eFi1apOXLl+vee++VJC1evFjNmzfXzp07deedd+qjjz7SgQMHtHHjRgUHB6t169Z64YUX9Oyzz2rKlCmXrCEnSYWFhSosLDTO8/Pzr/bXAABAtVGetRtA9RcbGytJ8vb2VlFRkWbNmmXMubu7y9vbW4WFhYqNjdWaNWvMShNwadRuAACqlmta78TDw0N//vOfyzsXY63voKAgSVJ6erqKi4sVHR1txDRr1kzh4eFKS0vTnXfeqbS0NLVq1cppiZOYmBiNGjVK+/fvV5s2bS55n4SEBE2dOrXc8wcAoKqqqNoNoPopfdJ83Lhx6ty5s1avXq3jx48rLCxMvXv31kcffaSXX37ZiANgDmo3AABVx1U30d94441fnR8yZMg1JVJSUqIxY8YoKipKt912myTJZrPJy8tLgYGBTrHBwcGy2WxGzC/XCC89L435pfj4eI0bN844z8/PV+PGja8pbwAAqrqKqt0AqidfX1+dPXtWSUlJ6ty58yXzr7/+uhEHwBzUbgAAqparbqI/+eSTTufFxcU6f/68vLy8VKtWrWsu5nFxcfryyy/1ySefXNPrr4a3t7e8vb0r/H0AAKgKKqp2A6iekpOTNXDgQOXk5Khr165Oc4mJiU5xAMxB7QYAoGqxXO0LTp8+7XScPXtWBw8e1N13333NG5yMHj1aa9as0ZYtW9SoUSNjPCQkREVFRcrNzXWKz87OVkhIiBGTnZ19yXzpHAAArq4iajeA6issLEwWy//+DKhVq5Yee+wx1apVyxizWCxsKgqYiNoNAEDVctVN9Mu55ZZb9Le//e2ST8t/i8Ph0OjRo/Xee+9p8+bNioiIcJpv27atPD09tWnTJmPs4MGDysrKktVqlSRZrVbt27dPJ0+eNGJSU1Pl7++vFi1aXMddAQBQc11r7QZQ/RUVFcnNzc04P3/+vBYuXKjz588bY25ubioqKjIjPQBloHYDAGCecmmiSz9tenL8+PGrek1cXJyWLVum5cuXq06dOrLZbLLZbMYmRgEBARo+fLjGjRunLVu2KD09XQ8//LCsVqvuvPNOSVLXrl3VokULDR48WF988YU+/PBDTZgwQXFxcSzZAgDAr7iW2g2g+lu9erXsdrueeuopLV++XLVr15a7u7tq166t5cuX669//avsdrtWr15tdqoAfoHaDQCAOa56TfT333/f6dzhcOjEiRN69dVXFRUVdVXXWrBggSSpU6dOTuOLFy/WsGHDJEmzZ8+WxWJR3759VVhYqJiYGM2fP9+IdXd315o1azRq1ChZrVb5+flp6NChmjZt2tXeGgAANVJ51m4A1V9pA85qtapOnToaOnSojh8/rrCwMNWvX9/4xieNOsA81G4AAKqWq26i9+nTx+nczc1NDRo00L333qtZs2Zd1bUcDsdvxvj4+CgxMdFpk6NfatKkidatW3dV7w0AgKsoz9oNoPorXes8ISFBn3/+uex2uzG3cOFCtWnTxikOQOWjdgMAULVcdRO9pKSkIvIAAAAVhNoN4Od69+6t+fPna8+ePapbt66GDx8uq9WqtLQ0LVq0SHv27JGbm5t69+5tdqqAy6J2AwBQtZTbmugAAAAAqheHw3HJAQAAAMDZFT2JPm7cuCu+4CuvvHLNyQAAgPJB7QZQltWrV8vhcKh9+/b67LPPnJaGcHd3V7t27bRnzx6tXr1a/fv3NzFTwLVQuwEAqLquqIn++eefX9HF3NzcrisZAABQPsys3T/88IOeffZZrV+/XufPn9fvfvc7LV68WO3atZP005OvkydP1muvvabc3FxFRUVpwYIFuuWWW8o9FwCXKt0w9LnnnpO3t7cSEhKMjUXj4+NVUFCgfv36sbEoUMn4uxsAgKrriproW7Zsqeg8AABAOTKrdp8+fVpRUVHq3Lmz1q9frwYNGujbb79V3bp1jZiZM2dq7ty5Wrp0qSIiIjRx4kTFxMTowIED8vHxMSVvwJWUbhj6t7/9TZ999pmxsWhmZqZ69+7NxqKASfi7GwCAquuqNxYFAAAoy0svvaTGjRtr8eLFxlhERITxs8Ph0Jw5czRhwgRj08I33nhDwcHBWrVqlQYMGFDpOQOupnRj0d27dysgIEAjRowwNhZ97bXX2FgUAAAA+IVraqLv2bNHb7/9trKyslRUVOQ09+6775ZLYgAAoPxUVu1+//33FRMTo/79+2vr1q264YYb9Pjjj2vEiBGSfnrS1WazKTo62nhNQECAOnTooLS0tDKb6IWFhSosLDTO8/Pzyy1nwJVZLBanTUUtFovZKQH4P/zdDQBA1XHV/5W8YsUK3XXXXfrqq6/03nvvqbi4WPv379fmzZsVEBBQETkCAIDrUJm1+7vvvjPWN//www81atQo/eUvf9HSpUslSTabTZIUHBzs9Lrg4GBj7nISEhIUEBBgHI0bNy7XvAFXUrqxaLt27ZSfn69Zs2apX79+mjVrlvLz89WuXTs5HA6tXr3a7FQBl8Xf3QAAVC1X/ST6iy++qNmzZysuLk516tTRP/7xD0VERGjkyJEKDQ2tiBwBAMB1qMzaXVJSonbt2unFF1+UJLVp00ZffvmlFi5cqKFDh17zdePj4zVu3DjjPD8/n0Y6cI1KNwyNj49XnTp1tHr1amNj0d69eys/P5+NRQGT8Xe3+SwFeWanAADVWk379+hVN9EPHz6snj17SpK8vLx07tw5ubm5aezYsbr33ns1derUck8SAABcu8qs3aGhoWrRooXTWPPmzfXvf/9bkhQSEiJJys7OdmoCZGdnq3Xr1mVe19vbW97e3uWWJ+DKSjcMTUtL0/3336/+/fs7zaelpTnFAah8/N1tnoCAAHl6eUvfbTU7FQCo9jy9vGvMN6iuuolet25dnTlzRpJ0ww036Msvv1SrVq2Um5ur8+fPl3uCAADg+lRm7Y6KitLBgwedxr755hs1adJE0k+bjIaEhGjTpk1G0zw/P1+7du3SqFGjyjUXAJfXu3dvLVy4UIsWLVK3bt3k4fG/PwkuXryo119/Xe7u7mwsCpioomr33/72N8XHx+vJJ5/UnDlzJEkFBQX661//qhUrVqiwsFAxMTGaP3++09JrWVlZGjVqlLZs2aLatWtr6NChSkhIcPr3R00RHBysZW++oby8mvUEJWqWI0eOaMaMGRo/frzx39lAVRQQEHDJUp7V1RVXvC+//FK33XabOnbsqNTUVLVq1Ur9+/fXk08+qc2bNys1NVVdunSpyFwBAMBVMKN2jx07VnfddZdefPFFPfTQQ/r000+VnJys5ORkSZKbm5vGjBmj6dOn65ZbblFERIQmTpyosLAw9enTp1xzAXB5Xl5e6t+/v1asWKH+/fvrkUcekdVqVVpaml5//XWdPn1aAwYMkJeXl9mpAi6nImv37t27lZSUpMjISKfxsWPHau3atVq5cqUCAgI0evRoPfjgg9q+fbskyW63q2fPngoJCdGOHTt04sQJDRkyRJ6ensbybTVNcHBwjWn6oGZr0qSJmjZtanYagEu44iZ6ZGSk2rdvrz59+hhf+Rw/frw8PT21Y8cO9e3bVxMmTKiwRAEAwNUxo3a3b99e7733nuLj4zVt2jRFRERozpw5GjRokBHzzDPP6Ny5c4qNjVVubq7uvvtubdiwQT4+PuWaC4CyPfbYY5KklStXatasWca4u7u7BgwYYMwDqFwVVbvPnj2rQYMG6bXXXtP06dON8by8PC1atEjLly/XvffeK0lavHixmjdvrp07d+rOO+/URx99pAMHDmjjxo0KDg5W69at9cILL+jZZ5/VlClT+MANAOAS3BwOh+NKAv/zn/9o8eLFeuedd1RSUqK+ffvq0Ucf1T333FPROVa4/Px8BQQEKC8vT/7+/manA1Rr33zzjWJjY5WcnMwn4sB1ut76RO0G8FuKioou2ViUhhhw7apq7R46dKiCgoI0e/ZsderUSa1bt9acOXO0efNmdenSRadPn1ZgYKAR36RJE40ZM0Zjx47VpEmT9P7772vv3r3GfGZmpm666SZ99tlnatOmzWXfs7CwUIWFhcZ56abg1G7g+vF3N1B+rrR2W670gvfcc49ef/11nThxQvPmzdP333+vP/zhD2ratKleeukl2Wy2ckkcAACUD2o3gN9SurTLk08+qf79+9NAB0xWEbV7xYoV+uyzz5SQkHDJnM1mk5eXl1MDXfppOZPS97LZbJcsbVJ6/mv5JCQkKCAgwDgaN2581bkDAFBVXHETvZSfn58efvhhbd26Vd9884369++vxMREhYeH64EHHqiIHAEAwHWgdgMAUL2UV+0+evSonnzySaWkpFT6smnx8fHKy8szjqNHj1bq+wMAUJ6uuon+c7/73e/0/PPPa8KECapTp47Wrl1bXnkBAIAKQO0GAKB6uZ7anZ6erpMnT+r3v/+9PDw85OHhoa1bt2ru3Lny8PBQcHCwioqKlJub6/S67OxshYSESJJCQkKUnZ19yXzpXFm8vb3l7+/vdAAAUF1dcxN927ZtGjZsmEJCQvT000877d4NAACqHmo3AADVy/XW7i5dumjfvn3au3evcbRr106DBg0yfvb09NSmTZuM1xw8eFBZWVmyWq2SJKvVqn379unkyZNGTGpqqvz9/dWiRYvyu1kAAKowj6sJPn78uJYsWaIlS5bo0KFDuuuuuzR37lw99NBD8vPzq6gcAQDANaJ2AwBQvZRn7a5Tp45uu+02pzE/Pz/Vq1fPGB8+fLjGjRunoKAg+fv764knnpDVatWdd94pSeratatatGihwYMHa+bMmbLZbJowYYLi4uLk7e1dPjcNAEAVd8VN9O7du2vjxo2qX7++hgwZokceeUS33nprReYGAACuA7UbAIDqxYzaPXv2bFksFvXt21eFhYWKiYnR/PnzjXl3d3etWbNGo0aNktVqlZ+fn4YOHapp06ZVaF4AAFQlV9xE9/T01DvvvKP7779f7u7uFZkTAAAoB9RuAACql8qo3R9//LHTuY+PjxITE5WYmFjma5o0aaJ169ZVSD4AAFQHV9xEf//99ysyDwAAUM6o3QAAVC/UbgAAqqZr3lgUAAAAAAAAAICajiY6AAAAAAAAAABloIkOAAAAAAAAAEAZaKIDAAAAAAAAAFAGmugAAAAAAAAAAJSBJjoAAAAAAAAAAGWgiQ4AAAAAAAAAQBlMbaJv27ZNvXr1UlhYmNzc3LRq1Sqn+WHDhsnNzc3p6Natm1NMTk6OBg0aJH9/fwUGBmr48OE6e/ZsJd4FAAAAAAAAAKCmMrWJfu7cOd1+++1KTEwsM6Zbt246ceKEcbz11ltO84MGDdL+/fuVmpqqNWvWaNu2bYqNja3o1AEAAAAAAAAALsDDzDfv3r27unfv/qsx3t7eCgkJuezcV199pQ0bNmj37t1q166dJGnevHnq0aOHXn75ZYWFhV32dYWFhSosLDTO8/Pzr/EOAAAAAAAAAAA1WZVfE/3jjz9Ww4YNdeutt2rUqFH673//a8ylpaUpMDDQaKBLUnR0tCwWi3bt2lXmNRMSEhQQEGAcjRs3rtB7AAAAAAAAAABUT1W6id6tWze98cYb2rRpk1566SVt3bpV3bt3l91ulyTZbDY1bNjQ6TUeHh4KCgqSzWYr87rx8fHKy8szjqNHj1bofQAAAAAAAAAAqidTl3P5LQMGDDB+btWqlSIjI3XzzTfr448/VpcuXa75ut7e3vL29i6PFAEAAAAAAAAANViVfhL9l2666SbVr19fhw4dkiSFhITo5MmTTjEXL15UTk5OmeuoAwAAAAAAAABwpapVE/3YsWP673//q9DQUEmS1WpVbm6u0tPTjZjNmzerpKREHTp0MCtNAAAAAAAAAEANYepyLmfPnjWeKpekzMxM7d27V0FBQQoKCtLUqVPVt29fhYSE6PDhw3rmmWf0u9/9TjExMZKk5s2bq1u3bhoxYoQWLlyo4uJijR49WgMGDFBYWJhZtwUAAAAAAAAAqCFMfRJ9z549atOmjdq0aSNJGjdunNq0aaNJkybJ3d1dGRkZeuCBB9S0aVMNHz5cbdu21X/+8x+n9cxTUlLUrFkzdenSRT169NDdd9+t5ORks24JAAAAAAAAAFCDmPokeqdOneRwOMqc//DDD3/zGkFBQVq+fHl5pgUAAAAAAAAAgKRqtiY6AAAAAAAAAACViSY6AAAAAAAAAABloIkOAAAAAAAAAEAZaKIDAAAAAAAAAFAGmugAAAAAAAAAAJSBJjoAAAAAAAAAAGWgiQ4AAAAAAAAAQBloogMAAAAAAAAAUAaa6AAAAAAAAAAAlIEmOgAAAAAAAAAAZaCJDgAAAAAAAABAGWiiAwAAAAAAAABQBproAACgwvztb3+Tm5ubxowZY4wVFBQoLi5O9erVU+3atdW3b19lZ2eblyQAAAAAAL+CJjoAAKgQu3fvVlJSkiIjI53Gx44dqw8++EArV67U1q1bdfz4cT344IMmZQkAAAAAwK+jiQ4AAMrd2bNnNWjQIL322muqW7euMZ6Xl6dFixbplVde0b333qu2bdtq8eLF2rFjh3bu3GlixgAAAAAAXB5NdAAAUO7i4uLUs2dPRUdHO42np6eruLjYabxZs2YKDw9XWlpamdcrLCxUfn6+0wEAAAAAQGXwMDsBAABQs6xYsUKfffaZdu/efcmczWaTl5eXAgMDncaDg4Nls9nKvGZCQoKmTp1a3qkCAAAAAPCbeBIdAACUm6NHj+rJJ59USkqKfHx8yu268fHxysvLM46jR4+W27UBAAAAAPg1NNEBAEC5SU9P18mTJ/X73/9eHh4e8vDw0NatWzV37lx5eHgoODhYRUVFys3NdXpddna2QkJCyryut7e3/P39nQ4AAAAAACoDy7kAAIBy06VLF+3bt89p7OGHH1azZs307LPPqnHjxvL09NSmTZvUt29fSdLBgweVlZUlq9VqRsoAAAAAAPwqmugAAKDc1KlTR7fddpvTmJ+fn+rVq2eMDx8+XOPGjVNQUJD8/f31xBNPyGq16s477zQjZQAAAAAAfhVNdAAAUKlmz54ti8Wivn37qrCwUDExMZo/f77ZaQEAAAAAcFk00QEAQIX6+OOPnc59fHyUmJioxMREcxICAAAAAOAqsLEoAAAAAAAAAABloIkOAAAAAAAAAEAZaKIDAAAAAAAAAFAGmugAAAAAAAAAAJSBJjoAAAAAAAAAAGUwtYm+bds29erVS2FhYXJzc9OqVauc5h0OhyZNmqTQ0FD5+voqOjpa3377rVNMTk6OBg0aJH9/fwUGBmr48OE6e/ZsJd4FAAAAAAAAAKCmMrWJfu7cOd1+++1KTEy87PzMmTM1d+5cLVy4ULt27ZKfn59iYmJUUFBgxAwaNEj79+9Xamqq1qxZo23btik2NraybgEAAAAAAAAAUIN5mPnm3bt3V/fu3S8753A4NGfOHE2YMEG9e/eWJL3xxhsKDg7WqlWrNGDAAH311VfasGGDdu/erXbt2kmS5s2bpx49eujll19WWFhYpd0LAAAAAAAAAKDmqbJromdmZspmsyk6OtoYCwgIUIcOHZSWliZJSktLU2BgoNFAl6To6GhZLBbt2rWrzGsXFhYqPz/f6QAAAAAAAAAA4JeqbBPdZrNJkoKDg53Gg4ODjTmbzaaGDRs6zXt4eCgoKMiIuZyEhAQFBAQYR+PGjcs5ewAAAAAAAABATWDqci5miY+P17hx44zz/Px8GukAAAAAAADlrKCgQFlZWWanUaMcOXLE6Z8oP+Hh4fLx8TE7DVRBVbaJHhISIknKzs5WaGioMZ6dna3WrVsbMSdPnnR63cWLF5WTk2O8/nK8vb3l7e1d/kkDAAAAAADAkJWVpdjYWLPTqJFmzJhhdgo1TnJyspo2bWp2GqiCqmwTPSIiQiEhIdq0aZPRNM/Pz9euXbs0atQoSZLValVubq7S09PVtm1bSdLmzZtVUlKiDh06mJU6AAAAAAAA9NOTvcnJyWanAVyR8PBws1NAFWVqE/3s2bM6dOiQcZ6Zmam9e/cqKChI4eHhGjNmjKZPn65bbrlFERERmjhxosLCwtSnTx9JUvPmzdWtWzeNGDFCCxcuVHFxsUaPHq0BAwYoLCzMpLsCAAAAAACAJPn4+PBkL4Bqz9Qm+p49e9S5c2fjvHSd8qFDh2rJkiV65plndO7cOcXGxio3N1d33323NmzY4LQ2UUpKikaPHq0uXbrIYrGob9++mjt3bqXfCwAAAAAAAACg5rGY+eadOnWSw+G45FiyZIkkyc3NTdOmTZPNZlNBQYE2btx4yaeXQUFBWr58uc6cOaO8vDy9/vrrql27tgl3AwAAAABA1ZKQkKD27durTp06atiwofr06aODBw86xRQUFCguLk716tVT7dq11bdvX2VnZzvFZGVlqWfPnqpVq5YaNmyop59+WhcvXqzMWwEAwDSmNtEBAAAAAEDF2bp1q+Li4rRz506lpqaquLhYXbt21blz54yYsWPH6oMPPtDKlSu1detWHT9+XA8++KAxb7fb1bNnTxUVFWnHjh1aunSplixZokmTJplxSwAAVLoqu7EoAAAAAAC4Phs2bHA6X7JkiRo2bKj09HR17NhReXl5WrRokZYvX657771XkrR48WI1b95cO3fu1J133qmPPvpIBw4c0MaNGxUcHKzWrVvrhRde0LPPPqspU6bIy8vLjFsDAKDS8CQ6AAAAAAAuIi8vT9JPS6NKUnp6uoqLixUdHW3ENGvWTOHh4UpLS5MkpaWlqVWrVgoODjZiYmJilJ+fr/3791/2fQoLC5Wfn+90AABQXdFEBwAAAADABZSUlGjMmDGKiorSbbfdJkmy2Wzy8vJSYGCgU2xwcLBsNpsR8/MGeul86dzlJCQkKCAgwDgaN25czncDAEDloYkOAAAAAIALiIuL05dffqkVK1ZU+HvFx8crLy/POI4ePVrh7wkAQEVhTXQAAAAAAGq40aNHa82aNdq2bZsaNWpkjIeEhKioqEi5ublOT6NnZ2crJCTEiPn000+drpednW3MXY63t7e8vb3L+S4AADAHT6IDAAAAAFBDORwOjR49Wu+99542b96siIgIp/m2bdvK09NTmzZtMsYOHjyorKwsWa1WSZLVatW+fft08uRJIyY1NVX+/v5q0aJF5dwIAAAm4kl0AAAAAABqqLi4OC1fvlyrV69WnTp1jDXMAwIC5Ovrq4CAAA0fPlzjxo1TUFCQ/P399cQTT8hqterOO++UJHXt2lUtWrTQ4MGDNXPmTNlsNk2YMEFxcXE8bQ4AcAk00QEAAAAAqKEWLFggSerUqZPT+OLFizVs2DBJ0uzZs2WxWNS3b18VFhYqJiZG8+fPN2Ld3d21Zs0ajRo1SlarVX5+fho6dKimTZtWWbcBAICpaKIDAAAAAFBDORyO34zx8fFRYmKiEhMTy4xp0qSJ1q1bV56pAQBQbbAmOgAAAAAAAAAAZaCJDgAAAAAAAABAGWiiAwAAAAAAAABQBproAAAAAAAAAACUgSY6AAAAAAAAAABloIkOAAAAAAAAAEAZaKIDAAAAAAAAAFAGD7MTAAAAAGCOCxcuKCkpSceOHVOjRo00cuRI+fr6mp0WAAAAUKXQRAcAAABc0Pjx47V9+3bjfM+ePVq1apWioqI0Y8YMEzMDAAAAqhaWcwEAAABcTGkD3dPTUwMHDtSyZcs0cOBAeXp6avv27Ro/frzZKQIAAABVBk+iAwAAAC7kwoULRgN97dq18vLykiTFxsZq2LBh6tmzp7Zv364LFy6wtAsAAAAgnkQHAAAAXEpSUpIkqX///kYDvZSXl5f69evnFAcAAAC4Op5EBwAA5SYhIUHvvvuuvv76a/n6+uquu+7SSy+9pFtvvdWIKSgo0F//+letWLFChYWFiomJ0fz58xUcHGxi5qguCgoKlJWVZXYa1do333wjSWrRooXx8881b97ciLvcPK5ceHi4fHx8zE4DAAAA14kmOgAAKDdbt25VXFyc2rdvr4sXL+r5559X165ddeDAAfn5+UmSxo4dq7Vr12rlypUKCAjQ6NGj9eCDDzptcAiUJSsrS7GxsWanUSNMmDDhV+cPHDjA7/o6JScnq2nTpmanAQCoQex2uzIyMpSTk6OgoCBFRkbK3d3d7LSAGo8mOgAAKDcbNmxwOl+yZIkaNmyo9PR0dezYUXl5eVq0aJGWL1+ue++9V5K0ePFiNW/eXDt37tSdd95pRtqoRsLDw5WcnGx2GtVaUVGRRo8eLXd3d/3jH//QiRMnNGPGDI0fP16hoaF68sknZbfb9eqrr16y3AuuTnh4uNkpAABqkG3btmn+/Pmy2WzGWEhIiB5//HF17NjRxMyAmo8mOgAAqDB5eXmSpKCgIElSenq6iouLFR0dbcQ0a9ZM4eHhSktLK7OJXlhYqMLCQuM8Pz+/ArNGVebj48OTveUgKipK27dv19ixY40PtPbs2aPNmzfLbrcrKipKt912m8lZAgCAUtu2bdPkyZNltVo1ceJERUREKDMzUykpKZo8ebKmTp1KIx2oQGwsCgAAKkRJSYnGjBnj1Iyz2Wzy8vJSYGCgU2xwcLDTEzW/lJCQoICAAONo3LhxRaYO1HgzZsxQVFSUiouL9eGHH0qSPvzwQxUXFysqKkozZswwOUMAAFDKbrdr/vz5slqtmj59ulq2bKlatWqpZcuWmj59uqxWqxYsWCC73W52qkCNRRMdAABUiLi4OH355ZdasWLFdV8rPj5eeXl5xnH06NFyyBBwbTNmzND69evVqVMnSVKnTp20fv16GugAAFQxGRkZstlsGjRokCwW51aexWLRoEGDdOLECWVkZJiUIVDz0UQHAADlbvTo0VqzZo22bNmiRo0aGeMhISEqKipSbm6uU3x2drZCQkLKvJ63t7f8/f2dDgDXz9fXVwMHDpQkDRw4UL6+viZnBAAAfiknJ0eSFBERcdn50vHSOADlr0o30adMmSI3Nzeno1mzZsZ8QUGB4uLiVK9ePdWuXVt9+/ZVdna2iRkDAODaHA6HRo8erffee0+bN2++5D/027ZtK09PT23atMkYO3jwoLKysmS1Wis7XQAAAKDKK91fKDMz87LzpeOlcQDKX5VuoktSy5YtdeLECeP45JNPjLmxY8fqgw8+0MqVK7V161YdP35cDz74oInZAgDg2uLi4rRs2TItX75cderUkc1mk81m04ULFyRJAQEBGj58uMaNG6ctW7YoPT1dDz/8sKxWa5mbigIAAACuLDIyUiEhIUpJSVFJSYnTXElJiVJSUhQaGqrIyEiTMgRqPg+zE/gtHh4el/16d15enhYtWqTly5fr3nvvlSQtXrxYzZs3186dO/lDHAAAEyxYsECSjDWWSy1evFjDhg2TJM2ePVsWi0V9+/ZVYWGhYmJiNH/+/ErOFAAAAKge3N3d9fjjj2vy5MmaMGGCBg0apIiICGVmZiolJUVpaWmaOnWq3N3dzU4VqLGqfBP922+/VVhYmHx8fGS1WpWQkKDw8HClp6eruLhY0dHRRmyzZs0UHh6utLS0X22iFxYWqrCw0DjPz8+v0HsAAMBVOByO34zx8fFRYmKiEhMTKyEjAAAAoPrr2LGjpk6dqvnz5ysuLs4YDw0N1dSpU9WxY0cTswNqvirdRO/QoYOWLFmiW2+9VSdOnNDUqVN1zz336Msvv5TNZpOXl5cCAwOdXhMcHCybzfar101ISNDUqVMrMHMAAAAAAACg/HTs2FFRUVHKyMhQTk6OgoKCFBkZyRPoQCWo0k307t27Gz9HRkaqQ4cOatKkid5++235+vpe83Xj4+M1btw44zw/P1+NGze+rlwBAAAAAACAiuTu7q42bdqYnQbgcqr8xqI/FxgYqKZNm+rQoUMKCQlRUVGRcnNznWKys7Mvu4b6z3l7e8vf39/pAAAAAAAAAADgl6pVE/3s2bM6fPiwQkND1bZtW3l6emrTpk3G/MGDB5WVlSWr1WpilgAAAAAAAACAmqJKL+fy1FNPqVevXmrSpImOHz+uyZMny93dXX/6058UEBCg4cOHa9y4cQoKCpK/v7+eeOIJWa3WX91UFAAAAAAAAACAK1Wlm+jHjh3Tn/70J/33v/9VgwYNdPfdd2vnzp1q0KCBJGn27NmyWCzq27evCgsLFRMTo/nz55ucNQAAAAAAAACgpqjSTfQVK1b86ryPj48SExOVmJhYSRkBAAAAAAAAAFxJtVoTHQAAAAAAAACAylSln0QHKlpBQYGysrLMTqNGOXLkiNM/UX7Cw8Pl4+NjdhoAAAAAAAAuhSY6XFpWVpZiY2PNTqNGmjFjhtkp1DjJyclq2rSp2WkAuErZ2dnKy8szOw2gTHwAjuoiICBAwcHBZqcBAABcEE10uLTw8HAlJyebnUaNUVRUpHfeeUcnT55Uw4YN1a9fP3l5eZmdVo0RHh5udgoArlJ2drb+PHiIiosKzU4F+E18AI6qztPLW8vefINGOgAAqHQ00eHSfHx8eLK3nIwfP17bt283zg8cOKCPP/5YUVFR/FEOwGXl5eWpuKhQF276g0p8AsxOBwCqLUtBnvTdVuXl5dFEBwAAlY4mOoDrVtpA9/T0VP/+/dWjRw+tW7dOK1eu1Pbt2zV+/Hga6QBcWolPgEr86pudBgAAAADgGtBEB3BdLly4YDTQ165dayzfEhsbq2HDhqlnz57avn27Lly4IF9fX5OzBQAAAAAAAK6OxewEAFRvSUlJkqT+/ftLklauXKl//OMfWrlypSSpX79+TnEAAAAAAABAdcKT6ACuy7FjxyT9tO5v9+7dZbfbjbmFCxcqJibGKQ4AAAAAAACoTngSHcB1adSokSRp7dq18vf311NPPaV///vfeuqpp+Tv769169Y5xQEAAAAAAADVCU10ANfl4YcfNn5OSUnR/fffr3r16un+++9XSkrKZeMAAAAAAACA6oImOoDr8tFHHxk/9+7dW0lJSTp69KiSkpLUu3fvy8YBAAAAAAAA1QVNdADX5fjx45Kk9u3bq7i4WG+99ZYGDx6st956S8XFxWrXrp1THAAAAAAAAFCdsLEogOsSFhZWrnEAUBNZLuSanQIAVGv8exQAAJiJJjqA69K7d2/Nnz9fu3fvVmBgoB599FFZrValpaXpn//8p/bs2SM3NzenpV0AwNX4Zm4zOwUAAAAAwDWiiQ6g3Li5ucnhcBiHm5ub2SkBQJVwIaKjSnwDzU4DAKoty4VcPpAEAACmoYkO4LqsXr1aDodD7dq10+eff65Zs2YZc+7u7mrXrp327Nmj1atXq3///iZmCgAm4kNFALg+/HsUAACYiCY6gOtSumFofHy8atWqpaSkJB07dkyNGjXSyJEjde7cOfXr14+NRQG4pICAAHl6eUvfbTU7FQCo9jy9vBUQEGB2GgAAwAXRRAdwXUo3DF26dKk+/fRT2Ww2SdKePXu0c+dO3XHHHU5xAOBKgoODtezNN5SXl2d2KkCZjhw5ohkzZmj8+PFq0qSJ2ekAZQoICFBwcLDZaQAAABdEEx3Adendu7cWLFig999/X1arVRMnTlRERIQyMzO1bNkyvf/++7JYLGwsCsBlBQcH0/RBtdCkSRM1bdrU7DQAAACAKsdidgIAqjd3d3f5+vpKkr766it99913On/+vL777jt99dVXkiRfX1+5u7ubmSYAAAAAAABwTXgSHcB1ycjI0Llz5xQdHa0tW7ZcsrFodHS0Nm7cqIyMDLVp08bETAEAAAAAAICrx5PoAK5LTk6OJGncuHF69913ddttt6lBgwa67bbb9O6772rcuHFOcQAAAAAA4NrY7XZ9/vnn2rRpkz7//HPZ7XazUwJcAk+iA7guQUFBkqTnnntOGRkZxvipU6fUu3dvtWrVyikOAAAAAABcvW3btmn+/Pmy2WzGWEhIiB5//HF17NjRxMyAmo8n0QFcl8jISHl5eSkjI0Oenp4aOHCgli1bpoEDB8rT01P79u2Tt7e3IiMjzU4VAAAAAIBqadu2bZo8ebJuuukmJSYmat26dUpMTNRNN92kyZMna9u2bWanCNRoNNEBXJeioiIVFRVJkn7/+98rKipKQUFBioqK0u9//3tJUmFhoREDAAAAAACunN1u1/z582W1WjV9+nS1bNlStWrVUsuWLTV9+nRZrVYtWLCApV2ACsRyLgCuS1JSkiTp7rvv1qFDhxQXF2fMhYaG6u6779Ynn3yipKQkjRkzxqQsAQA1RUFBgbKyssxOo0Y5cuSI0z9RfsLDw+Xj42N2GgCAai4jI0M2m00TJ06UxeL8PKzFYtGgQYMUFxenjIwMtWnTxqQsgZqNJjqA63Ls2DFJ0mOPPabQ0FBlZGQoJydHQUFBioyM1PHjx/XJJ58YcQAAXI+srCzFxsaanUaNNGPGDLNTqHGSk5PVtGlTs9MAAFRzOTk5kqSIiIjLzpeOl8YBKH800QFcl0aNGmnPnj1at26dYmNjL/nUe926dUYcAADXKzw8XMnJyWanAVyR8PBws1MAylViYqL+/ve/y2az6fbbb9e8efN0xx13mJ0WUOMFBQVJkjIzM9WyZctL5jMzM53iAJS/GtNEp5gD5hg5cqRWrVqllStXatiwYfLy8jLmioqK9M477xhxAABcLx8fH57sBQAT/Otf/9K4ceO0cOFCdejQQXPmzFFMTIwOHjyohg0bmp0eUKNFRkYqJCREKSkpmj59utOSLiUlJUpJSVFoaKgiIyNNzBKo2WrExqKlxXzy5Mn67LPPdPvttysmJkYnT540OzWgxvP19VVUVJSKi4vVs2dPJSUl6ejRo0pKSlLPnj1VXFysqKgo+fr6mp0qAAAAgGv0yiuvaMSIEXr44YfVokULLVy4ULVq1dLrr79+2fjCwkLl5+c7HQCujbu7ux5//HGlpaVpwoQJ2r9/v86fP6/9+/drwoQJSktL06hRo+Tu7m52qkCN5eZwOBxmJ3G9OnTooPbt2+vVV1+V9NOncI0bN9YTTzyh55577pL4wsJCFRYWGuf5+flq3Lix8vLy5O/vX2l5AzXJ+PHjtX379kvGo6KiWGMVuEb5+fkKCAiosfXper5FVtN/NwCA6qmm1qeioiLVqlVL77zzjvr06WOMDx06VLm5uVq9evUlr5kyZYqmTp16yXhN+90AlWnbtm2aP3++bDabMRYaGqpRo0apY8eOJmYGVF9XWrur/XIuRUVFSk9PV3x8vDFmsVgUHR2ttLS0y74mISHhssUcwLWbMWOGLly4oKSkJB07dkyNGjXSyJEjeQIdwGXxlXAAAKqPH3/8UXa7XcHBwU7jwcHB+vrrry/7mvj4eI0bN844L314DcC169ixo6KiopSRkaGcnBwFBQUpMjKSJ9CBSlDtm+gUc6Dq8PX11ZgxY8xOA0A18POvhEvSwoULtXbtWr3++uuX/RYZAACoXry9veXt7W12GkCN4+7urjZt2pidBuByqn0T/VpQzAEAMM+1fIvsckuxAQCAylG/fn25u7srOzvbaTw7O1shISEmZQUAQOWp9huLUswBAKhefu1bZD9f3/HnEhISFBAQYBx8gwwAgMrj5eWltm3batOmTcZYSUmJNm3aJKvVamJmAABUjmrfRKeYAwBQ88XHxysvL884jh49anZKAAC4lHHjxum1117T0qVL9dVXX2nUqFE6d+6csTQbAAA1WY1YzmXcuHEaOnSo2rVrpzvuuENz5syhmAMAUEVdy7fIWIoNAABz/b//9/906tQpTZo0STabTa1bt9aGDRsu+WYZAAA1UY1oolPMAQCoPn7+LbI+ffpI+t+3yEaPHm1ucgAAoEyjR4+mVgMAXFKNaKJLFHMAAKoTvkUGAAAAAKguakwTHQAAVB98iwwAAAAAUF3QRJfkcDgkSfn5+SZnAgDA/5TWpdI6VdNcz7fIqN0AgKqoptfu60HtBgBURVdau2miSzpz5owkqXHjxiZnAgDApc6cOaOAgACz06hSqN0AgKqM2n0pajcAoCr7rdrt5uAjcpWUlOj48eOqU6eO3NzczE4HqNby8/PVuHFjHT16VP7+/manA1RrDodDZ86cUVhYmCwWi9npVCnUbqD8ULuB8kPtLhu1Gyg/1G6g/Fxp7aaJDqBc5efnKyAgQHl5eRRzAACqAWo3AADVC7UbqHx8NA4AAAAAAAAAQBloogMAAAAAAAAAUAaa6ADKlbe3tyZPnixvb2+zUwEAAFeA2g0AQPVC7QYqH2uiAwAAAAAAAABQBp5EBwAAAAAAAACgDDTRAQAAAAAAAAAoA010AAAAAAAAAADKQBMdAAAAAAAAAIAy0EQHAAAAAAAAAKAMNNEBAAAAAAAAACgDTXQAAAAAAAAAAMpAEx0AAAAAAAAAgDLQRAcAAAAAAAAAoAw00QEAAAAAAAAAKANNdAAAAAAAAAAAykATHQAAAAAAAACAMtBEBwAAAAAAAACgDDTRAQAAAAAAAAAoA010AL/Kzc1NU6ZMMTsNJ7t379Zdd90lPz8/ubm5ae/evWanBABAlUHtBgCg+qBuA9UDTXTAJEuWLJGbm5vT0bBhQ3Xu3Fn/n727D4uqzv8//oJRBrwBxRtuEhTczMJIV82IIk3LNDW/mVtGm5plCVbq7lYkirgYWbtmW4DplnaDWe5WZpllptINZt4tpZul4k0hqJGgqKAz5/dHP2abYBRl4DD4fFzXuXI+53POec18v5fv9T1nPueDDz4wO16tbd++XTNmzNCePXvcet5Tp05p5MiRKi4u1jPPPKNXX31VHTt2rPV5+/btq27dulW7b8+ePfLy8tLf/va3Wl8HAOC5qN3n51xq99q1a6t8xr/elixZ4jTfZrNp4cKF6tu3rwIDA2W1WtWpUyeNHTtWGzdudOv7AAB4Fur2+Tmff3Pv27dPDzzwgDp16iSr1ar27dtr+PDh+vzzz10eU1RUpD//+c/q2rWrmjVrpubNm6tnz55KS0vTkSNH3PqeAHdoYnYA4EI3c+ZMRUREyDAMFRUVadGiRRo8eLCWL1+uIUOGmB3vvG3fvl2pqanq27evOnXq5Lbz7tq1S3v37tWCBQt07733uu28AADUFLX73JxP7X7ooYfUu3fvKuMxMTGOP584cUK33nqrVq5cqbi4OD3++OMKDAzUnj179Oabb+rll1/Wvn371KFDB7e9FwCA56Fun5tzrduff/65Bg8eLEm69957ddlll6mwsFCLFi3Stddeq2effVYPPvig0zFfffWVBg8erGPHjumuu+5Sz549JUkbN27Uk08+qZycHH300Udue0+AO9BEB0w2aNAg9erVy/F63LhxCgoK0uuvv+7RBb2uHDx4UJLUqlUrc4MAAC5Y1O5zcz61+9prr9Vtt912xjl/+ctftHLlSj3zzDOaNGmS076UlBQ988wz5xoVANAIUbfPzbnU7Z9//lm33Xab/Pz89Pnnn6tz586OfVOmTNHAgQM1adIk9ezZU1dffbUk6ciRI/q///s/WSwWbdmyRV27dnU656xZs7RgwQL3vSHATVjOBWhgWrVqJT8/PzVp4vwdV1lZmf70pz8pLCxMVqtVl1xyif72t7/JMAxJv9yN1bVrV3Xt2lUnTpxwHFdcXKyQkBBdffXVstlskqQxY8aoRYsW2r17twYOHKjmzZsrNDRUM2fOdJzvTLZs2aJBgwbJ399fLVq0UP/+/bV+/XrH/kWLFmnkyJGSpH79+jl+Ord27doznveTTz7Rtddeq+bNm6tVq1a65ZZb9N///texf8yYMbruuuskSSNHjpSXl5f69u3r8nyVP9/LycnR/fffrzZt2sjf31933323fv7557O+TwAAaoLa7b7aXVM//PCDXnjhBd1www1VGuiSZLFY9Oc//5m70AEAVVC33Ve3X3jhBRUWFurpp592aqBLkp+fn15++WV5eXlp5syZTsf8+OOPmjNnTpUGuiQFBQUpOTn5jO8DMAN3ogMmKykp0eHDh2UYhg4ePKjnnnvO8ZOmSoZhaNiwYVqzZo3GjRun7t2768MPP9Rf/vIX/fjjj3rmmWccBSo2NlZTp07VnDlzJEmJiYkqKSnRokWLZLFYHOe02Wy66aabdNVVV+mpp57SypUrlZKSotOnTzsVuN/atm2brr32Wvn7++uRRx5R06ZN9cILL6hv375at26d+vTpo7i4OD300EP6xz/+occff1yXXnqpJDn+W52PP/5YgwYNUmRkpGbMmKETJ07oueeeU2xsrDZv3qxOnTrp/vvv10UXXaQnnnjC8TPvoKCgs37GEydOVKtWrTRjxgzt2LFDWVlZ2rt3r2Pd1V9/JocPH65yPA13AMCvUbt/UZe1++jRo9XW5DZt2sjLy0sffPCBTp8+rT/+8Y9nPRcA4MJG3f5FXdTt5cuXy9fXV3/4wx+q3R8REaFrrrlGn3zyiU6cOCE/Pz+9++678vPzO+svzoAGxwBgioULFxqSqmxWq9VYtGiR09x33nnHkGSkpaU5jd92222Gl5eXsXPnTsdYUlKS4e3tbeTk5BhLly41JBlz5851Om706NGGJOPBBx90jNntduPmm282fHx8jEOHDjnGJRkpKSmO18OHDzd8fHyMXbt2OcYKCgqMli1bGnFxcY6xymuvWbOmRp9H9+7djfbt2xs//fSTY+w///mP4e3tbdx9992OsTVr1hiSjKVLl571nJWfcc+ePY2KigrH+FNPPWVIMpYtW+YYu+6666r9v8evt6effrpG7wUA0DhRu53VRe2unOtqO3DggGEYhjF58mRDkrFly5YaZQUAXHio287qom63atXKuOKKK84456GHHjIkGXl5eYZhGEbr1q3PegzQELGcC2CyjIwMrVq1SqtWrdJrr72mfv366d5779Vbb73lmLNixQpZLBY99NBDTsf+6U9/kmEYTk8WnzFjhqKiojR69GglJCTouuuuq3JcpYkTJzr+7OXlpYkTJ6qiokIff/xxtfNtNps++ugjDR8+XJGRkY7xkJAQ3Xnnnfrss89UWlp6zp/BgQMHtHXrVo0ZM0aBgYGO8ejoaN1www1asWLFOZ/z18aPH6+mTZs6Xk+YMEFNmjSpct5OnTo5/m/x6+21116r1fUBAI0Ltbvua/f06dOrrcmV16rM3LJly1pdBwDQ+FG3665uHz169Ky1uHJ/Ze7S0lLqNzwSy7kAJrvyyiudHnIyatQo9ejRQxMnTtSQIUPk4+OjvXv3KjQ0tEqhqfyp1t69ex1jPj4+eumll9S7d2/5+vpq4cKFTkuWVPL29nYqypLUpUsXSdKePXuqzXro0CEdP35cl1xySZV9l156qex2u/bv36+oqKiavfn/rzK/q/N++OGHKisrU/Pmzc/pvJUuvvhip9ctWrRQSEhIlffZvHlzDRgwoMrxrj4PAMCFidpd97X78ssvr7YmV/L395f0yz/eAQA4E+p23dXtli1bnrUWV+6v/Gz9/f2p3/BI3IkONDDe3t7q16+fDhw4oO+///68zvHhhx9Kkk6ePHne5wAAADVD7a5/lQ8i+/rrr01OAgDwNNRt97n00ku1Y8cOlZeXu5yTl5enpk2bOm5u69q1q7777jtVVFTUV0zALWiiAw3Q6dOnJUnHjh2TJHXs2FEFBQVVvq399ttvHfsr5eXlaebMmRo7dqx69Oihe++9VyUlJVWuYbfbtXv3bqex7777TtIvy5pUp127dmrWrJl27NhRZd+3334rb29vhYWFSVK138S7Upnf1Xnbtm173neySaryP2qOHTumAwcOuHyfAACcK2q383lrW7vPZtCgQbJYLCy5BgA4L9Rt5/Oeb90eMmSITp48qaVLl1a7f8+ePfr00091/fXXy8/PT5I0dOhQnThxQv/+97/P+XqAmWiiAw3MqVOn9NFHH8nHx8fx07HBgwfLZrPp+eefd5r7zDPPyMvLS4MGDXIcO2bMGIWGhurZZ5/VokWLVFRUpMmTJ1d7rV+fzzAMPf/882ratKn69+9f7XyLxaIbb7xRy5Ytc/r5WVFRkRYvXqxrrrnG8fPqygJ85MiRs77nkJAQde/eXS+//LLT/G+++UYfffSRBg8efNZznMn8+fN16tQpx+usrCydPn3a8bkBAFAb1O7/zXdX7T6bsLAw3Xffffroo4/03HPPVdlvt9v197//XT/88EOd5gAAeB7q9v/m17Zu33///Wrfvr3+8pe/VPnC4OTJkxo7dqwMw9D06dMd4w888IBCQkL0pz/9yfGlwq8dPHhQaWlp55UHqEusiQ6Y7IMPPnB8u33w4EEtXrxY33//vR577DFHcRw6dKj69eunqVOnas+ePbriiiv00UcfadmyZZo0aZI6d+4sSUpLS9PWrVu1evVqtWzZUtHR0Zo+fbqSk5N12223ORVGX19frVy5UqNHj1afPn30wQcf6P3339fjjz+udu3aucyblpamVatW6ZprrlFCQoKaNGmiF154QeXl5Xrqqacc87p37y6LxaLZs2erpKREVqtV119/vdq3b1/teZ9++mkNGjRIMTExGjdunE6cOKHnnntOAQEBmjFjRq0+44qKCvXv319/+MMftGPHDmVmZuqaa67RsGHDanVeAMCFidr9i7qs3Z9++qlOnjxZZTw6OlrR0dGSpL///e/atWuXHnroIb311lsaMmSIWrdurX379mnp0qX69ttvdccdd9QqBwDA81G3f1EXdbtNmzb617/+pZtvvlm///3vde+99+qyyy5TYWGhFi1apJ07d+rZZ5/V1Vdf7TimdevWevvttzV48GB1795dd911l3r27ClJ2rx5s15//XXFxMScVx6gThkATLFw4UJDktPm6+trdO/e3cjKyjLsdrvT/KNHjxqTJ082QkNDjaZNmxoXX3yx8fTTTzvmbdq0yWjSpInx4IMPOh13+vRpo3fv3kZoaKjx888/G4ZhGKNHjzaaN29u7Nq1y7jxxhuNZs2aGUFBQUZKSophs9mcjpdkpKSkOI1t3rzZGDhwoNGiRQujWbNmRr9+/YwvvviiyntcsGCBERkZaVgsFkOSsWbNmjN+Jh9//LERGxtr+Pn5Gf7+/sbQoUON7du3O81Zs2aNIclYunTpGc9lGP/7jNetW2eMHz/eaN26tdGiRQsjPj7e+Omnn5zmXnfddUZUVFS158nPzzckGU8//fRZrwkAaLyo3VW5u3ZXznW1/fZ9nT592vjnP/9pXHvttUZAQIDRtGlTo2PHjsbYsWONLVu2nPV6AIDGi7pdlbvrdqX8/HzjvvvuM8LDw42mTZsabdu2NYYNG2Z8+umnLo8pKCgwJk+ebHTp0sXw9fU1mjVrZvTs2dOYNWuWUVJSUuNrA/XFyzAMoz6a9QAajjFjxuhf//qXY/23xmrRokUaO3asvvrqK6ensQMA4GkulNoNAEBjQN0GGh/WRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF1gTHQAAAAAAAAAAF7gTHQAAAAAAAAAAF2iiAwAAAAAAAADgQhOzAzQEdrtdBQUFatmypby8vMyOAwCAJMkwDB09elShoaHy9uZ771+jdgMAGiJPrN3p6el666239O2338rPz09XX321Zs+erUsuucQxp2/fvlq3bp3Tcffff7/mzZtX4+tQuwEADVFNazdrokv64YcfFBYWZnYMAACqtX//fnXo0MHsGA0KtRsA0JB5Uu2+6aabdMcdd6h37946ffq0Hn/8cX3zzTfavn27mjdvLumXJnqXLl00c+ZMx3HNmjWTv79/ja9D7QYANGRnq93ciS6pZcuWkn75sM7lfwQAAFCXSktLFRYW5qhT+B9qNwCgIfLE2r1y5Uqn14sWLVL79u21adMmxcXFOcabNWum4ODgGp+3vLxc5eXljteV9+9RuwEADUlNazdNdMnxUzJ/f3+KOQCgweEnz1VRuwEADZkn1+6SkhJJUmBgoNN4dna2XnvtNQUHB2vo0KGaNm2amjVr5vI86enpSk1NrTJO7QYANERnq9000QEAAAAAgOx2uyZNmqTY2Fh169bNMX7nnXeqY8eOCg0NVV5enh599FHt2LFDb731lstzJSUlacqUKY7XlXf6AQDgiWiiAwAAAAAAJSYm6ptvvtFnn33mND5+/HjHny+//HKFhISof//+2rVrlzp37lztuaxWq6xWa53mBQCgvnjG48IBAAAAAECdmThxot577z2tWbPmrA9F7dOnjyRp586d9RENAADTcSc6AAAAAAAXKMMw9OCDD+rtt9/W2rVrFRERcdZjtm7dKkkKCQmp43QAADQMNNEBAAAAALhAJSYmavHixVq2bJlatmypwsJCSVJAQID8/Py0a9cuLV68WIMHD1abNm2Ul5enyZMnKy4uTtHR0SanBwCgftBEBwAAAADgApWVlSVJ6tu3r9P4woULNWbMGPn4+Ojjjz/W3LlzVVZWprCwMI0YMULJyckmpAUAwBw00QEAAAAAuEAZhnHG/WFhYVq3bl09pQEAoGGiiQ7AbQ4dOqSJEyeqpKREAQEBev7559WuXTuzYwEAAAAA0CjYbDbl5eWpuLhYgYGBio6OlsViMTsW0OjRRAfgFkOGDNGxY8ccr0+ePKmRI0eqRYsWeu+990xMBgAAAACA58vJyVFmZqbj2QWSFBwcrISEBMXFxZmYDGj8vM0OAMDz/bqB3qlTJz3xxBPq1KmTJOnYsWMaMmSIiekAAAAAAPBsOTk5SklJUWRkpDIyMrRixQplZGQoMjJSKSkpysnJMTsi0KhxJzqAWjl06JCjgf7uu+/K399fknT11VertLRUw4YN07Fjx3To0CGWdgEAAAAA4BzZbDZlZmYqJiZGaWlp8vb+5Z7YqKgopaWlKTk5WVlZWYqNjWVpF6CO0EQHUCsTJ06U9Msd6JUN9Er+/v7q2LGj9u7dq4kTJ+qNN94wIyIAoBE5efKk9u3bZ3YMoEbCw8Pl6+trdgwAgIfLy8tTYWGhpk2b5migV/L29lZ8fLwSExOVl5enHj16mJQSaNxoogOolZKSEknS+PHjq90/btw4TZ8+3TEPAIDa2Ldvn8uaAzQ08+fPV5cuXcyOAQDwcMXFxZKkiIiIavdXjlfOA+B+NNEB1EpAQIBOnjyp+fPn6+qrr66y/8UXX3TMAwCgtsLDwzV//nyzYzQqe/fu1axZszR16lR17NjR7DiNSnh4uNkRAACNQGBgoCQpPz9fUVFRVfbn5+c7zQPgfjTRAdTK888/r5EjR2rPnj0qLS11WtKltLRUe/fudcwDAKC2fH19ubO3jnTs2JHPFgCABig6OlrBwcHKzs52WhNdkux2u7KzsxUSEqLo6GgTUwKNm/fZpwCAa+3atVOLFi0kScOGDdPo0aOVk5Oj0aNHa9iwYZKkFi1a8FBRAAAAAADOg8ViUUJCgnJzc5WcnKxt27bp+PHj2rZtm5KTk5Wbm6sJEybwUFGgDnEnOoBae++99zRkyBAdO3ZMe/fu1fTp0x37WrRooffee8/EdAAAAAAAeLa4uDilpqYqMzNTiYmJjvGQkBClpqYqLi7OxHRA40cTHYBbvPfeezp06JAmTpyokpISBQQE6Pnnn+cOdAAAAAAA3CAuLk6xsbHKy8tTcXGxAgMDFR0dzR3oQD2giQ7Abdq1a6c33njD7BgAAAAAADRKFotFPXr0MDsGcMFhTXQAAAAAAAAAAFygiQ4AAAAAAAAAgAs00QEAAAAAAAAAcIEmOgAAAAAAAAAALvBgUQBuY7PZeEo4AAAAAAAAGhWa6ADcIicnR5mZmSosLHSMBQcHKyEhQXFxcSYmAwAAAAAAAM4fy7kAqLWcnBylpKQoMjJSGRkZWrFihTIyMhQZGamUlBTl5OSYHREAAAAAAAA4LzTRAdSKzWZTZmamYmJilJaWpqioKDVr1kxRUVFKS0tTTEyMsrKyZLPZzI4KAAAAAAAAnDOa6ABqJS8vT4WFhYqPj5e3t/NfKd7e3oqPj9eBAweUl5dnUkIAAAAAAADg/NFEB1ArxcXFkqSIiIhq91eOV84DAAAAAAAAPAlNdAC1EhgYKEnKz8+vdn/leOU8AAAAAAAAwJPQRAdQK9HR0QoODlZ2drbsdrvTPrvdruzsbIWEhCg6OtqkhAAAAAAAAMD5o4kOoFYsFosSEhKUm5ur5ORkbdu2TcePH9e2bduUnJys3NxcTZgwQRaLxeyoAAAAAAAAwDlrYnYAAJ4vLi5OqampyszMVGJiomM8JCREqampiouLMzEdAAAAAAAAcP5oogNwi7i4OMXGxiovL0/FxcUKDAxUdHQ0d6ADAAAAAADAo9FEB+A2FotFPXr0MDsGAAAAAAAA4DasiQ4AAAAAAAAAgAs00QEAAAAAAAAAcIEmOgAAAAAAAAAALtBEBwAAAAAAAADABR4sCsBtbDab8vLyVFxcrMDAQEVHR8tisZgdCwAAAAAAADhvNNEBuEVOTo4yMzNVWFjoGAsODlZCQoLi4uJMTAYAAAAAAACcP5roAGotJydHKSkpuuqqq3T77bfL19dXJ0+e1IYNG5SSkqLU1FQa6QAAAAAAAPBIDX5N9JycHA0dOlShoaHy8vLSO++847TfMAxNnz5dISEh8vPz04ABA/T999+bExa4ANlsNmVmZqpLly7avXu3nn32Wc2ePVvPPvusdu/erS5duigrK0s2m83sqAAAAAAAAMA5a/BN9LKyMl1xxRXKyMiodv9TTz2lf/zjH5o3b56+/PJLNW/eXAMHDtTJkyfrOSlwYcrLy1NhYaF27Nihzp07KyMjQytWrFBGRoY6d+6sHTt26MCBA8rLyzM7KgAAAAAAAHDOGvxyLoMGDdKgQYOq3WcYhubOnavk5GTdcsstkqRXXnlFQUFBeuedd3THHXdUe1x5ebnKy8sdr0tLS90fHLhAHD58WJLUp08fpaWlydv7l+/moqKilJaWpqSkJH355ZeOeQAAAAAAAIAnafB3op9Jfn6+CgsLNWDAAMdYQECA+vTpo9zcXJfHpaenKyAgwLGFhYXVR1ygUTpy5Igk6dprr3U00Ct5e3vrmmuucZoHAAAAAAAAeBKPbqIXFhZKkoKCgpzGg4KCHPuqk5SUpJKSEse2f//+Os0JNGatWrWSJH366aey2+1O++x2uz777DOneQAAAAAAAIAnafDLudQFq9Uqq9VqdgygUWjbtq0kacOGDUpOTlZ8fLwiIiKUn5+v7OxsbdiwwWkeAAAAAAAA4Ek8uokeHBwsSSoqKlJISIhjvKioSN27dzcpFXBhiY6OVnBwsAICArR7924lJiY69oWEhKhLly4qLS1VdHS0iSkBAAAAAACA8+PRy7lEREQoODhYq1evdoyVlpbqyy+/VExMjInJgAuHxWJRQkKCvvvuO0VEROjhhx/WI488oocfflidOnXSd999pwkTJshisZgdFQAAAAAAADhnDf5O9GPHjmnnzp2O1/n5+dq6dasCAwMVHh6uSZMmKS0tTRdffLEiIiI0bdo0hYaGavjw4eaFBi4wcXFxSk1NVWZmptNDfUNCQpSamqq4uDgT0wEAAAAAAADnr8E30Tdu3Kh+/fo5Xk+ZMkWSNHr0aC1atEiPPPKIysrKNH78eB05ckTXXHONVq5cKV9fX7MiAxekuLg4xcbGKi8vT8XFxQoMDFR0dDR3oAMAAAAAAMCjNfgmet++fWUYhsv9Xl5emjlzpmbOnFmPqQBUx2KxqEePHmbHAAAAAAAAANzGo9dEBwAAAAAAAACgLtFEBwAAAAAAAADAhQa/nAsAz2Gz2VgTHQAAAAAAAI0KTXQAbpGTk6PMzEwVFhY6xoKDg5WQkKC4uDgTkwEAAAAAAADnj+VcANRaTk6OUlJSFBkZqYyMDK1YsUIZGRmKjIxUSkqKcnJyzI4IAAAAAAAAnBea6ABqxWazKTMzUzExMUpLS1NUVJSaNWumqKgopaWlKSYmRllZWbLZbGZHBQAAAPAb6enp6t27t1q2bKn27dtr+PDh2rFjh9OckydPKjExUW3atFGLFi00YsQIFRUVmZQYAID6RxMdQK3k5eWpsLBQ8fHx8vZ2/ivF29tb8fHxOnDggPLy8kxKCAAAAMCVdevWKTExUevXr9eqVat06tQp3XjjjSorK3PMmTx5spYvX66lS5dq3bp1Kigo0K233mpiagAA6hdrogOoleLiYklSREREtfsrxyvnAQAAAGg4Vq5c6fR60aJFat++vTZt2qS4uDiVlJToxRdf1OLFi3X99ddLkhYuXKhLL71U69ev11VXXWVGbAAA6hV3ogOolcDAQElSfn5+tfsrxyvnAWicMjIy1KlTJ/n6+qpPnz7asGHDGefPnTtXl1xyifz8/BQWFqbJkyfr5MmT9ZQWAAC4UlJSIul///t906ZNOnXqlAYMGOCY07VrV4WHhys3N9flecrLy1VaWuq0AQDgqWiiA6iV6OhoBQcHKzs7W3a73Wmf3W5Xdna2QkJCFB0dbVJCAHXtjTfe0JQpU5SSkqLNmzfriiuu0MCBA3Xw4MFq5y9evFiPPfaYUlJS9N///lcvvvii3njjDT3++OP1nBwAAPya3W7XpEmTFBsbq27dukmSCgsL5ePjo1atWjnNDQoKUmFhoctzpaenKyAgwLGFhYXVZXQAAOoUTXQAtWKxWJSQkKDc3FwlJydr27ZtOn78uLZt26bk5GTl5uZqwoQJslgsZkcFUEfmzJmj++67T2PHjtVll12mefPmqVmzZnrppZeqnf/FF18oNjZWd955pzp16qQbb7xRo0aNOuPd69zNBgBA3UtMTNQ333yjJUuW1PpcSUlJKikpcWz79+93Q0IAAMxBEx1ArcXFxSk1NVW7d+9WYmKiBg8erMTEROXn5ys1NVVxcXFmRwRQRyoqKrRp0yann3h7e3trwIABLn/iffXVV2vTpk2Opvnu3bu1YsUKDR482OV1uJsNAIC6NXHiRL333ntas2aNOnTo4BgPDg5WRUWFjhw54jS/qKhIwcHBLs9ntVrl7+/vtAEA4Kl4sCgAt4iLi1NsbKzy8vJUXFyswMBARUdHcwc60MgdPnxYNptNQUFBTuNBQUH69ttvqz3mzjvv1OHDh3XNNdfIMAydPn1aDzzwwBmXc0lKStKUKVMcr0tLS2mkAwDgBoZh6MEHH9Tbb7+ttWvXKiIiwml/z5491bRpU61evVojRoyQJO3YsUP79u1TTEyMGZEBAKh3NNEBuI3FYlGPHj3MjgGggVu7dq2eeOIJZWZmqk+fPtq5c6cefvhh/fWvf9W0adOqPcZqtcpqtdZzUgAAGr/ExEQtXrxYy5YtU8uWLR3rnAcEBMjPz08BAQEaN26cpkyZosDAQPn7++vBBx9UTEyMrrrqKpPTAwBQP2iiAwCA89a2bVtZLBYVFRU5jZ/pJ97Tpk3TH//4R917772SpMsvv1xlZWUaP368pk6dKm9vVpsDAKC+ZGVlSZL69u3rNL5w4UKNGTNGkvTMM8/I29tbI0aMUHl5uQYOHKjMzMx6TgoAgHn4VyoAADhvPj4+6tmzp1avXu0Ys9vtWr16tcufeB8/frxKo7xy6SfDMOouLAAAqMIwjGq3yga6JPn6+iojI0PFxcUqKyvTW2+9dcb10AEAaGy4Ex0AANTKlClTNHr0aPXq1UtXXnml5s6dq7KyMo0dO1aSdPfdd+uiiy5Senq6JGno0KGaM2eOevTo4VjOZdq0aRo6dCjPUQAAAAAANDg00QEAQK3cfvvtOnTokKZPn67CwkJ1795dK1eudDxsdN++fU53nicnJ8vLy0vJycn68ccf1a5dOw0dOlSzZs0y6y0AAAAAAOASTXQAbmOz2ZSXl6fi4mIFBgYqOjqau0qBC8TEiRM1ceLEavetXbvW6XWTJk2UkpKilJSUekgGAAAAAEDt0EQH4BY5OTnKzMxUYWGhYyw4OFgJCQmKi4szMRkAAAAAAABw/niwKIBay8nJUUpKiiIjI5WRkaEVK1YoIyNDkZGRSklJUU5OjtkRAQAAAAAAgPNCEx1ArdhsNmVmZiomJkZpaWmKiopSs2bNFBUVpbS0NMXExCgrK0s2m83sqAAAAAAAAMA5o4kOoFby8vJUWFio+Ph4pwcHSpK3t7fi4+N14MAB5eXlmZQQAAAAAAAAOH800QHUSnFxsSQpIiKi2v2V45XzAAAAAAAAAE9CEx1ArQQGBkqS8vPzq91fOV45DwAAAAAAAPAkNNEB1Ep0dLSCg4OVnZ0tu93utM9utys7O1shISGKjo42KSEAAAAAAABw/miiA6gVi8WihIQE5ebmKjk5Wdu2bdPx48e1bds2JScnKzc3VxMmTJDFYjE7KgAAAAAAAHDOmpgdAIDni4uLU2pqqjIzM5WYmOgYDwkJUWpqquLi4kxMBwAAAAAAAJw/mugA3CIuLk6xsbHKy8tTcXGxAgMDFR0dzR3oAAAAAAAA8Gg00QG4jcViUY8ePcyOAQAAAAAAALgNa6IDAAAAAAAAAOACTXQAAAAAAAAAAFygiQ4AAAAAAAAAgAs00QEAAAAAAAAAcIEHiwJwmxMnTuiFF17QDz/8oA4dOuj++++Xn5+f2bEAAAAAAACA80YTHYBbTJ06VZ9//rnj9caNG/XOO+8oNjZWs2bNMjEZAAAAAAAAcP5YzgVArVU20Js2bao777xTr732mu688041bdpUn3/+uaZOnWp2RAAAAAAAAOC80EQHUCsnTpxwNNAXLlyoDz74QGPHjtUHH3yghQsXOhrpJ06cMDsqAAAAAAAAcM5oogOolRdeeEGSZLfbddddd+nnn3/WqVOn9PPPP+uuu+6S3W53mgcAAAAAAAB4EproAGrlhx9+kCTZbLZq91eOV84DAAAAAAAAPAlNdAC1EhgY6NZ5AAAAAAAAQENCEx1Araxbt86t8wAAAAAAAICGhCY6gFopLy93eh0cHKzp06crODj4jPMAAAAAAAAAT9DE7AAAGpfCwkLNnDnT7BgAAAAAAACAW3AnOgC3ef311zV8+HD16tVLw4cP1+uvv252JAAAAAAAAKBWaKIDqBUfHx/Hn0eNGqX169dr4MCBWr9+vUaNGlXtPAAAAAAAAMBTsJwLLmgnT57Uvn37zI7h0Tp06KDdu3c7XhcWFmrWrFnVzvvuu+/qM1qjEx4eLl9fX7NjAAAAAAAAXFA8volus9k0Y8YMvfbaayosLFRoaKjGjBmj5ORkeXl5mR0PDdy+ffs0fvx4s2NcEHbv3s1nXUvz589Xly5dzI4BAAAAAABwQfH4Jvrs2bOVlZWll19+WVFRUdq4caPGjh2rgIAAPfTQQ2bHQwMXHh6u+fPnmx3D402dOlWHDh1yub9du3bV3p2OcxMeHm52BAAAAAAAgAuOxzfRv/jiC91yyy26+eabJUmdOnXS66+/rg0bNrg8pry8XOXl5Y7XpaWldZ4TDZOvry939rrB0qVLFR8frx9//LHKvosuukjZ2dkmpAIAAAAAAABqz+MfLHr11Vdr9erVjrWW//Of/+izzz7ToEGDXB6Tnp6ugIAAxxYWFlZfcYFGKzs7W8uWLVPnzp0lSZ07d9ayZctooAMAAAAAAMCjeXwT/bHHHtMdd9yhrl27qmnTpurRo4cmTZqk+Ph4l8ckJSWppKTEse3fv78eEwONV0BAgB599FFJ0qOPPqqAgACTEwEAAAAAAAC14/HLubz55pvKzs7W4sWLFRUVpa1bt2rSpEkKDQ3V6NGjqz3GarXKarXWc1IAAAAAAAAAgKfx+Cb6X/7yF8fd6JJ0+eWXa+/evUpPT3fZRAcAAAAAAAAAoCY8fjmX48ePy9vb+W1YLBbZ7XaTEgEAAAAAAAAAGguPvxN96NChmjVrlsLDwxUVFaUtW7Zozpw5uueee8yOBgAAAAAAAADwcB7fRH/uuec0bdo0JSQk6ODBgwoNDdX999+v6dOnmx0NAAAAAAAAAODhPL6J3rJlS82dO1dz5841OwoAAAAAAAAAoJHx+DXRAQAAAAAAAACoKx5/J/qFpqioSCUlJWbHAFzau3ev03+BhiogIEBBQUFmxwAAAAAAAA0cTXQPUlRUpLv+eLdOVZSbHQU4q1mzZpkdATijpj5WvfbqKzTSAQAAAADAGdFE9yAlJSU6VVGuE5HXye4bYHYcAPBY3idLpN3rVFJSQhMdAAAAAACcEU10D2T3DZC9eVuzYwAAAAAAAABAo8eDRQEAAAAAAAAAcIE70T2Q94kjZkcAAI/G36MAAAAAAKCmaKJ7IL/8HLMjAAAAAAAAAMAFgSa6BzoRESe7XyuzYwCAx/I+cYQvJAEAAAAAQI3QRPdAdr9WPFgUAAAPUVRUpJKSErNjAC7t3bvX6b9AQxUQEKCgoCCzYwAAgAsQTXQP5H2Sf4gDQG3w9yjqS1FRke764906VVFudhTgrGbNmmV2BOCMmvpY9dqrr9BIrwM5OTl6+umntWnTJh04cEBvv/22hg8f7tg/ZswYvfzyy07HDBw4UCtXrqznpAAAmIMmugcJCAhQUx+rtHud2VEAwOM19bEqICDA7Bho5EpKSnSqolwnIq+T3Zf/fwOA8+V9skTavU4lJSU00etAWVmZrrjiCt1zzz269dZbq51z0003aeHChY7XVqu1vuIBAGA6mugeJCgoSK+9+go/CUeDtnfvXs2aNUtTp05Vx44dzY4DuMRPwlGf7L4BLMUGAGiwBg0apEGDBp1xjtVqVXBwcI3PWV5ervLy//0Sq7S09LzzAQBgNproHiYoKIimDzxCx44d1aVLF7NjAAAAAHCDtWvXqn379mrdurWuv/56paWlqU2bNi7np6enKzU1tR4TAgBQd7zNDgAAAAAAABqum266Sa+88opWr16t2bNna926dRo0aJBsNpvLY5KSklRSUuLY9u/fX4+JAQBwL+5EBwAAAAAALt1xxx2OP19++eWKjo5W586dtXbtWvXv37/aY6xWK+umAwAaDe5EBwAAAAAANRYZGam2bdtq586dZkcBAKBe0EQHAAAAAAA19sMPP+inn35SSEiI2VEAAKgXLOcCAAAAAMAF7NixY053lefn52vr1q0KDAxUYGCgUlNTNWLECAUHB2vXrl165JFH9Lvf/U4DBw40MTUAAPWHJjoAAAAAABewjRs3ql+/fo7XU6ZMkSSNHj1aWVlZysvL08svv6wjR44oNDRUN954o/7617+y5jkA4ILBci4AAKDWMjIy1KlTJ/n6+qpPnz7asGHDGecfOXJEiYmJCgkJkdVqVZcuXbRixYp6SgsAAH6tb9++MgyjyrZo0SL5+fnpww8/1MGDB1VRUaE9e/Zo/vz5CgoKMjs2AAD1hjvRAQBArbzxxhuaMmWK5s2bpz59+mju3LkaOHCgduzYofbt21eZX1FRoRtuuEHt27fXv/71L1100UXau3evWrVqVf/hAQAAAAA4C5rouKCdPHlS+/btMztGo7J3716n/8J9wsPD5evra3YMoIo5c+bovvvu09ixYyVJ8+bN0/vvv6+XXnpJjz32WJX5L730koqLi/XFF1+oadOmkqROnTrVZ2QAAAAAAGqMJjouaPv27dP48ePNjtEozZo1y+wIjc78+fPVpUsXs2MATioqKrRp0yYlJSU5xry9vTVgwADl5uZWe8y7776rmJgYJSYmatmyZWrXrp3uvPNOPfroo7JYLNUeU15ervLycsfr0tJS974RAAAAAABcoImOC1p4eLjmz59vdgygRsLDw82OAFRx+PBh2Wy2KuuiBgUF6dtvv632mN27d+uTTz5RfHy8VqxYoZ07dyohIUGnTp1SSkpKtcekp6crNTXV7fkBAAAAADgbmui4oPn6+nJnLwDUM7vdrvbt22v+/PmyWCzq2bOnfvzxRz399NMum+hJSUmaMmWK43VpaanCwsLqKzIAAAAA4AJGEx0AAJy3tm3bymKxqKioyGm8qKhIwcHB1R4TEhKipk2bOi3dcumll6qwsFAVFRXy8fGpcozVapXVanVveAAAAAAAasDb7AAAAMBz+fj4qGfPnlq9erVjzG63a/Xq1YqJian2mNjYWO3cuVN2u90x9t133ykkJKTaBjoAAAAAAGaiiQ4AAGplypQpWrBggV5++WX997//1YQJE1RWVqaxY8dKku6++26nB49OmDBBxcXFevjhh/Xdd9/p/fff1xNPPKHExESz3gIAAAAAAC6xnAsAAKiV22+/XYcOHdL06dNVWFio7t27a+XKlY6Hje7bt0/e3v/73j4sLEwffvihJk+erOjoaF100UV6+OGH9eijj5r1FgAAAAAAcIkmOgAAqLWJEydq4sSJ1e5bu3ZtlbGYmBitX7++jlMBAAAAAFB7dbKcy/79+/XDDz84Xm/YsEGTJk3S/Pnz6+JyAADgHFCnAQDwfNRzAADqT5000e+8806tWbNGklRYWKgbbrhBGzZs0NSpUzVz5sy6uCQAAKgh6jQAAJ6Peg4AQP2pkyb6N998oyuvvFKS9Oabb6pbt2764osvlJ2drUWLFtXFJQEAQA1RpwEA8HzUcwAA6k+dNNFPnTolq9UqSfr44481bNgwSVLXrl114MCBurgkAACoIeo0AACej3oOAED9qZMmelRUlObNm6dPP/1Uq1at0k033SRJKigoUJs2berikgAAoIao0wAAeD7qOQAA9adOmuizZ8/WCy+8oL59+2rUqFG64oorJEnvvvuu4+dmAADAHNRpAAA8H/UcAID606QuTtq3b18dPnxYpaWlat26tWN8/PjxatasWV1cEgAA1BB1GgAAz0c9BwCg/tTJneiSZBiGNm3apBdeeEFHjx6VJPn4+FDMAQBoAKjTAAB4Puo5AAD1o07uRN+7d69uuukm7du3T+Xl5brhhhvUsmVLzZ49W+Xl5Zo3b15dXBYAANQAdRoAAM9HPQcAoP7UyZ3oDz/8sHr16qWff/5Zfn5+jvH/+7//0+rVq+vikgAAoIao0wAAeD7qOQAA9adO7kT/9NNP9cUXX8jHx8dpvFOnTvrxxx/r4pIAAKCGqNMAAHg+6jkAAPWnTu5Et9vtstlsVcZ/+OEHtWzZsi4uCQAAaog6DQCA56OeAwBQf+qkiX7jjTdq7ty5jtdeXl46duyYUlJSNHjw4Lq4JAAAqCHqNAAAno96DgBA/amT5Vz+/ve/a+DAgbrssst08uRJ3Xnnnfr+++/Vtm1bvf7663VxSQAAUEPU6frnfeKI2REAwKPx92hV1HMAAOpPnTTRO3TooP/85z9asmSJ8vLydOzYMY0bN07x8fFODzwBAAD1jzpd//zyc8yOAABoZKjnAADUnzppoktSkyZNdNddd9XV6QEAQC1Qp+vXiYg42f1amR0DADyW94kjfCFZDeo5AAD1o06a6K+88soZ9999991uvd6PP/6oRx99VB988IGOHz+u3/3ud1q4cKF69erl1usAANAY1HedhmT3ayV787ZmxwAANCLUcwAA6k+dNNEffvhhp9enTp3S8ePH5ePjo2bNmrm1mP/888+KjY1Vv3799MEHH6hdu3b6/vvv1bp1a7ddAwCAxqQ+6zQAAKgb1HMAAOpPnTTRf/755ypj33//vSZMmKC//OUvbr3W7NmzFRYWpoULFzrGIiIi3HoNAAAak/qs0wAAoG5QzwEAqD/e9XWhiy++WE8++WSVb8tr691331WvXr00cuRItW/fXj169NCCBQvOeEx5eblKS0udNgAALmR1VacBAED9oZ4DAFA36q2JLv3y0JOCggK3nnP37t3KysrSxRdfrA8//FATJkzQQw89pJdfftnlMenp6QoICHBsYWFhbs0EAIAnqos6DQAA6hf1HAAA96uT5Vzeffddp9eGYejAgQN6/vnnFRsb69Zr2e129erVS0888YQkqUePHvrmm280b948jR49utpjkpKSNGXKFMfr0tJSGukAgAtGfdZpAABQN6jnAADUnzppog8fPtzptZeXl9q1a6frr79ef//73916rZCQEF122WVOY5deeqn+/e9/uzzGarXKarW6NQcAAJ6iPus0AACoG9RzAADqT5000e12e12ctlqxsbHasWOH09h3332njh071lsGAAA8SX3WaQAAUDeo5wAA1J96XRO9LkyePFnr16/XE088oZ07d2rx4sWaP3++EhMTzY4GAAAAAAAAAPBwbrsT/ddrjJ/NnDlz3HVZ9e7dW2+//baSkpI0c+ZMRUREaO7cuYqPj3fbNQAA8HRm1WkAAOA+1HMAAMzhtib6li1bajTPy8vLXZd0GDJkiIYMGeL28wIA0FiYWacBAIB7UM8BADCH25roa9ascdepAACAm1GnAQDwfNRzAADM4fFrogMAAAAAAAAAUFfcdif6b23cuFFvvvmm9u3bp4qKCqd9b731Vl1dFgAA1AB1GgAAz0c9BwCgftTJnehLlizR1Vdfrf/+9796++23derUKW3btk2ffPKJAgIC6uKSAACghqjTAAB4Puo5AAD1p06a6E888YSeeeYZLV++XD4+Pnr22Wf17bff6g9/+IPCw8Pr4pIAAKCGqNMAAHg+6jkAAPWnTprou3bt0s033yxJ8vHxUVlZmby8vDR58mTNnz+/Li4JAABqiDoNAIDno54DAFB/6qSJ3rp1ax09elSSdNFFF+mbb76RJB05ckTHjx+vi0sCAIAaok4DAOD5qOcAANQftzbRK4t2XFycVq1aJUkaOXKkHn74Yd13330aNWqU+vfv785LAgCAGqJOAwDg+ajnAADUvybuPFl0dLR69+6t4cOHa+TIkZKkqVOnqmnTpvriiy80YsQIJScnu/OSAACghqjTAAB4Puo5AAD1z61N9HXr1mnhwoVKT0/XrFmzNGLECN1777167LHH3HkZAABwHqjTAAB4Puo5AAD1z63LuVx77bV66aWXdODAAT333HPas2ePrrvuOnXp0kWzZ89WYWGhOy8HAADOAXUaAADPRz0HAKD+1cmDRZs3b66xY8dq3bp1+u677zRy5EhlZGQoPDxcw4YNq4tLAgCAGqJOAwDg+ajnAADUnzppov/a7373Oz3++ONKTk5Wy5Yt9f7779f1JQEAQA1RpwEA8HzUcwAA6pZb10T/rZycHL300kv697//LW9vb/3hD3/QuHHj6vKSAACghqjTAAB4Puo5AAB1z+13ohcUFOiJJ55Qly5d1LdvX+3cuVP/+Mc/VFBQoAULFuiqq65y9yUBAEANUacBAPB87q7nOTk5Gjp0qEJDQ+Xl5aV33nnHab9hGJo+fbpCQkLk5+enAQMG6Pvvv3fjOwIAoGFz653ogwYN0scff6y2bdvq7rvv1j333KNLLrnEnZcAAADniToNAIDnq4t6XlZWpiuuuEL33HOPbr311ir7n3rqKf3jH//Qyy+/rIiICE2bNk0DBw7U9u3b5evrW6trAwDgCdzaRG/atKn+9a9/aciQIbJYLO48NQAAqCXqNAAAnq8u6vmgQYM0aNCgavcZhqG5c+cqOTlZt9xyiyTplVdeUVBQkN555x3dcccdbskAAEBD5tYm+rvvvuvO0wEAADeiTgMA4Pnqu57n5+ersLBQAwYMcIwFBASoT58+ys3NddlELy8vV3l5ueN1aWlpnWcFAKCuuH1NdAAAAAAA0DgUFhZKkoKCgpzGg4KCHPuqk56eroCAAMcWFhZWpzkBAKhLNNEBAAAAAIBbJSUlqaSkxLHt37/f7EgAAJw3mugAAAAAAKBawcHBkqSioiKn8aKiIse+6litVvn7+zttAAB4KproAAAAAACgWhEREQoODtbq1asdY6Wlpfryyy8VExNjYjIAAOqPWx8sCgAAAAAAPMuxY8e0c+dOx+v8/Hxt3bpVgYGBCg8P16RJk5SWlqaLL75YERERmjZtmkJDQzV8+HDzQgMAUI9oogMAAAAAcAHbuHGj+vXr53g9ZcoUSdLo0aO1aNEiPfLIIyorK9P48eN15MgRXXPNNVq5cqV8fX3NigwAQL2iiQ4AAAAAwAWsb9++MgzD5X4vLy/NnDlTM2fOrMdUAAA0HDTRAQAA6pj3yRKzIwCAR+PvUQAAYCaa6AAAAHUkICBATX2s0u51ZkcBAI/X1MeqgIAAs2MAAIALEE10AACAOhIUFKTXXn1FJSXcQYmGa+/evZo1a5amTp2qjh07mh0HcCkgIEBBQUFmxwAAABcgmugAAAB1KCgoiKYPPELHjh3VpUsXs2MAAAAADY632QEAAAAAAAAAAGioaKIDAAAAAAAAAOACTXQAAAAAAAAAAFygiQ4AAAAAAAAAgAs00QEAQK1lZGSoU6dO8vX1VZ8+fbRhw4YaHbdkyRJ5eXlp+PDhdRsQAAAAAIDzRBMdAADUyhtvvKEpU6YoJSVFmzdv1hVXXKGBAwfq4MGDZzxuz549+vOf/6xrr722npICAAAAAHDuaKIDAIBamTNnju677z6NHTtWl112mebNm6dmzZrppZdecnmMzWZTfHy8UlNTFRkZedZrlJeXq7S01GkDAAAAAKA+0EQHAADnraKiQps2bdKAAQMcY97e3howYIByc3NdHjdz5ky1b99e48aNq9F10tPTFRAQ4NjCwsJqnR0AAAAAgJqgiQ4AAM7b4cOHZbPZFBQU5DQeFBSkwsLCao/57LPP9OKLL2rBggU1vk5SUpJKSkoc2/79+2uVGwAAAACAmmpidgAAAHDhOHr0qP74xz9qwYIFatu2bY2Ps1qtslqtdZgMAAAAAIDq0UQHAADnrW3btrJYLCoqKnIaLyoqUnBwcJX5u3bt0p49ezR06FDHmN1ulyQ1adJEO3bsUOfOnes2NAAAAAAA54DlXAAAwHnz8fFRz549tXr1aseY3W7X6tWrFRMTU2V+165d9fXXX2vr1q2ObdiwYerXr5+2bt3KWucAAAAAgAaHO9EBAECtTJkyRaNHj1avXr105ZVXau7cuSorK9PYsWMlSXfffbcuuugipaeny9fXV926dXM6vlWrVpJUZRwAAAAAgIaAJjoAAKiV22+/XYcOHdL06dNVWFio7t27a+XKlY6Hje7bt0/e3vz4DQAAAADgmWiiAwCAWps4caImTpxY7b61a9ee8dhFixa5PxAAAAAAAG7CbWEAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXGh0TfQnn3xSXl5emjRpktlRAAAAAAAAAAAerlE10b/66iu98MILio6ONjsKAAAAAAAAAKARaDRN9GPHjik+Pl4LFixQ69atzzi3vLxcpaWlThsAAAAAAAAAAL/VaJroiYmJuvnmmzVgwICzzk1PT1dAQIBjCwsLq4eEAAAAAAAAAABP0yia6EuWLNHmzZuVnp5eo/lJSUkqKSlxbPv376/jhAAAAAAAAAAAT9TE7AC1tX//fj388MNatWqVfH19a3SM1WqV1Wqt42QAAAAAAAAAAE/n8U30TZs26eDBg/r973/vGLPZbMrJydHzzz+v8vJyWSwWExMCAAAAAAAAADyVxzfR+/fvr6+//tppbOzYserataseffRRGugAAAAAAAAAgPPm8U30li1bqlu3bk5jzZs3V5s2baqMAwAAAAAAAABwLhrFg0UBAAAAAAAAAKgLHn8nenXWrl1rdgQAAAAAAAAAQCPAnegAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAJdmzJghLy8vp61r165mxwIAoN40MTsAAAAAAABo2KKiovTxxx87XjdpQjsBAHDhoOoBAAAAAIAzatKkiYKDg2s8v7y8XOXl5Y7XpaWldRELAIB6wXIuAAAAAADgjL7//nuFhoYqMjJS8fHx2rdv3xnnp6enKyAgwLGFhYXVU1IAANyPJjoAAAAAAHCpT58+WrRokVauXKmsrCzl5+fr2muv1dGjR10ek5SUpJKSEse2f//+ekwMAIB7sZwLAAAAAABwadCgQY4/R0dHq0+fPurYsaPefPNNjRs3rtpjrFarrFZrfUUEAKBOcSc6AAAAAACosVatWqlLly7auXOn2VEAAKgXNNEBAAAAAECNHTt2TLt27VJISIjZUQAAqBc00QEAAAAAgEt//vOftW7dOu3Zs0dffPGF/u///k8Wi0WjRo0yOxoAAPWCNdEBAAAAAIBLP/zwg0aNGqWffvpJ7dq10zXXXKP169erXbt2ZkcDAKBe0EQHAAAAAAAuLVmyxOwIAACYiuVcAAAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAai0jI0OdOnWSr6+v+vTpow0bNricu2DBAl177bVq3bq1WrdurQEDBpxxPgAAAAAAZqKJDgAAauWNN97QlClTlJKSos2bN+uKK67QwIEDdfDgwWrnr127VqNGjdKaNWuUm5ursLAw3Xjjjfrxxx/rOTkAAAAAAGfXxOwAAADAs82ZM0f33Xefxo4dK0maN2+e3n//fb300kt67LHHqszPzs52ev3Pf/5T//73v7V69Wrdfffd1V6jvLxc5eXljtelpaVufAfwJCdPntS+ffvMjtGo7N271+m/cJ/w8HD5+vqaHQMAAAC15PFN9PT0dL311lv69ttv5efnp6uvvlqzZ8/WJZdcYnY0AAAavYqKCm3atElJSUmOMW9vbw0YMEC5ubk1Osfx48d16tQpBQYGupyTnp6u1NTUWueF59u3b5/Gjx9vdoxGadasWWZHaHTmz5+vLl26mB0DAAAAteTxTfR169YpMTFRvXv31unTp/X444/rxhtv1Pbt29W8eXOz4wEA0KgdPnxYNptNQUFBTuNBQUH69ttva3SORx99VKGhoRowYIDLOUlJSZoyZYrjdWlpqcLCws4vNDxaeHi45s+fb3YMoEbCw8PNjgAAAAA38Pgm+sqVK51eL1q0SO3bt9emTZsUFxdnUioAAFATTz75pJYsWaK1a9eecckDq9Uqq9Vaj8nQUPn6+nJnLwAAAIB65fFN9N8qKSmRpDP+JJx1VQEAcI+2bdvKYrGoqKjIabyoqEjBwcFnPPZvf/ubnnzySX388ceKjo6uy5gAAAAAAJw3b7MDuJPdbtekSZMUGxurbt26uZyXnp6ugIAAx8bPwQEAOD8+Pj7q2bOnVq9e7Riz2+1avXq1YmJiXB731FNP6a9//atWrlypXr161UdUAAAAAADOS6NqoicmJuqbb77RkiVLzjgvKSlJJSUljm3//v31lBAAgMZnypQpWrBggV5++WX997//1YQJE1RWVqaxY8dKku6++26nB4/Onj1b06ZN00svvaROnTqpsLBQhYWFOnbsmFlvAQAAAAAAlxrNci4TJ07Ue++9p5ycHHXo0OGMc1lXFQAA97n99tt16NAhTZ8+XYWFherevbtWrlzpeNjovn375O39v+/ts7KyVFFRodtuu83pPCkpKZoxY0Z9RgcAAAAA4Kw8voluGIYefPBBvf3221q7dq0iIiLMjgQAwAVn4sSJmjhxYrX71q5d6/R6z549dR8IAAAAAAA38fgmemJiohYvXqxly5apZcuWKiwslCQFBATIz8/P5HQAAAAAAAAAAE/m8WuiZ2VlqaSkRH379lVISIhje+ONN8yOBgAAAAAAAADwcB5/J7phGGZHAAAAAAAAAAA0Uh5/JzoAAAAAAAAAAHWFJjoAAAAAAAAAAC7QRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF2iiAwAAAAAAAADgAk10AAAAAAAAAABcoIkOAAAAAAAAAIALNNEBAAAAAAAAAHChidkBAAAAAAAA0DidPHlS+/btMzsGUCPh4eHy9fU1OwYaIJroAAAAAAAAqBP79u3T+PHjzY4B1Mj8+fPVpUsXs2OgAaKJDgAAAAAAgDoRHh6u+fPnmx2jUdm7d69mzZqlqVOnqmPHjmbHaVTCw8PNjoAGiiY6AAAAAAAA6oSvry939taRjh078tkC9YQHiwIAAAAAAAAA4AJNdAAAAAAAAAAAXGA5FwAAAAAAgP+vqKhIJSUlZscAXNq7d6/Tf4GGKiAgQEFBQWbHcAua6AAAAAAAAPqlgX7XH+/WqYpys6MAZzVr1iyzIwBn1NTHqtdefaVRNNJpogMAAAAAAEgqKSnRqYpynYi8TnbfALPjAIDH8j5ZIu1ep5KSkkbRRGdNdAAAAAAAgF8zDLMTAIBna2R/j3InOgAAAAAAwK/45eeYHQEA0IDQRAfgNhUVFVq2bJkKCgoUGhqqW265RT4+PmbHAgAALthsNuXl5am4uFiBgYGKjo6WxWIxOxYAmO7kRb+X4dPC7BgA4LG8Ko7J98fNZsdwG5roANxi3rx5Wrp0qWw2m9PYyJEj9cADD5iYDAAAVCcnJ0eZmZkqLCx0jAUHByshIUFxcXEmJgMA8wQEBKipj1VqRI0fADBLUx+rAgIax/MlaKIDqLV58+ZpyZIlat26tcaNG6eYmBjl5ubqxRdf1JIlSySJRjoAAA1ITk6OUlJSFBMTo2nTpikiIkL5+fnKzs5WSkqKUlNTaaQDqCIjI0NPP/20CgsLdcUVV+i5557TlVdeaXYstwoKCtJrr76ikpISs6MALu3du1ezZs3S1KlT1bFjR7PjAC4FBAQ0ioeKSjTRAdRSRUWFli5dqtatW2vp0qVq0uSXv1aGDBmim266SSNHjtTSpUt1zz33sLQLAAANgM1mU2ZmpmJiYpSWliZvb29JUlRUlNLS0pScnKysrCzFxsaytAsAhzfeeENTpkzRvHnz1KdPH82dO1cDBw7Ujh071L59e7PjuVVQUFCjafqgcevYsaO6dOlidgzggkATHUCtLFu2TDabTePGjXM00Cs1adJE99xzj/7+979r2bJlGjlypEkpAQBApby8PBUWFmratGmOBnolb29vxcfHKzExUXl5eerRo4dJKQE0NHPmzNF9992nsWPHSvrl16jvv/++XnrpJT322GMmp0NDdvLkSe3bt8/sGI3K3r17nf4L9wkPD5evr6/ZMdAA0UQHUCsFBQWSpJiYmGr3V45XzgMAAOYqLi6WJEVERFS7v3K8ch4AVFRUaNOmTUpKSnKMeXt7a8CAAcrNza32mPLycpWXlztel5aW1nlONEz79u3T+PHjzY7RKM2aNcvsCI3O/Pnzubsf1aKJDqBWQkNDJUm5ubkaMmRIlf2V/6O6ch4AADBXYGCgJCk/P19RUVFV9ufn5zvNA4DDhw/LZrNVWeIkKChI3377bbXHpKenKzU1tT7ioYELDw/X/PnzzY4B1Eh4eLjZEdBA0UQHUCu33HKL5s2bpxdffFE33XST05Iup0+f1ksvvSSLxaJbbrnFxJQAAKBSdHS0goODlZ2d7bQmuiTZ7XZlZ2crJCRE0dHRJqYE4OmSkpI0ZcoUx+vS0lKFhYWZmAhm8fX15c5eAB7P++xTAMA1Hx8fjRw5Uj///LNGjhyp5cuX6/Dhw1q+fLnTOA8VBQCgYbBYLEpISFBubq6Sk5O1bds2HT9+XNu2bVNycrJyc3M1YcIEHioKwKFt27ayWCwqKipyGi8qKlJwcHC1x1itVvn7+zttAAB4Ku5EB1BrDzzwgCRp6dKl+vvf/+4Yt1gsuuOOOxz7AQBAwxAXF6fU1FRlZmYqMTHRMR4SEqLU1FTFxcWZmA5AQ+Pj46OePXtq9erVGj58uKRffrmyevVqTZw40dxwAADUA5roANzigQce0D333KNly5apoKBAoaGhuuWWW7gDHQCABiouLk6xsbHKy8tTcXGxAgMDFR0dzR3oAKo1ZcoUjR49Wr169dKVV16puXPnqqysTGPHjjU7GgAAdY4mOgC3qVzaBQAAeAaLxaIePXqYHQOAB7j99tt16NAhTZ8+XYWFherevbtWrlxZ5WGjAAA0RjTRAQAAAADAWU2cOJHlWwAAFyQeLAoAAAAAAAAAgAs00QEAAAAAAAAAcIEmOgAAAAAAAAAALtBEBwAAAAAAAADABZroAAAAAAAAAAC4QBMdAAAAAAAAAAAXmpgdoCEwDEOSVFpaanISAAD+p7IuVdYp/A+1GwDQEFG7XaN2AwAaoprWbproko4ePSpJCgsLMzkJAABVHT16VAEBAWbHaFCo3QCAhozaXRW1GwDQkJ2tdnsZfEUuu92ugoICtWzZUl5eXmbHATxaaWmpwsLCtH//fvn7+5sdB/BohmHo6NGjCg0Nlbc3K7D9GrUbcB9qN+A+1G7XqN2A+1C7Afepae2miQ7ArUpLSxUQEKCSkhKKOQAAHoDaDQCAZ6F2A/WPr8YBAAAAAAAAAHCBJjoAAAAAAAAAAC7QRAfgVlarVSkpKbJarWZHAQAANUDtBgDAs1C7gfrHmugAAAAAAAAAALjAnegAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAZwXLy8vzZgxw+wYTr766itdffXVat68uby8vLR161azIwEAUO+o0QAAeCZqONBw0UQHGphFixbJy8vLaWvfvr369eunDz74wOx4tbZ9+3bNmDFDe/bscet5T506pZEjR6q4uFjPPPOMXn31VXXs2NHl/D179mjs2LHq3LmzfH19FRwcrLi4OKWkpLg1FwCg8aBGn59zqdGdOnWq8hn/dhszZoxb8wEAGj9q+Pk5lxq+du1al7X7jjvucGsuwAxNzA4AoHozZ85URESEDMNQUVGRFi1apMGDB2v58uUaMmSI2fHO2/bt25Wamqq+ffuqU6dObjvvrl27tHfvXi1YsED33nvvGefu3LlTvXv3lp+fn+655x516tRJBw4c0ObNmzV79mylpqa6LRcAoPGhRp+bc6nRc+fO1bFjx6rd9/zzz+vLL7/UVVdd5bZsAIALCzX83JxLDa/00EMPqXfv3k5j7swEmIUmOtBADRo0SL169XK8HjdunIKCgvT66697dHGvKwcPHpQktWrV6qxzn3nmGR07dkxbt26t8i165XkAAHCFGn1uzqVGDx8+vNrxjz76SBs2bNCwYcP0wAMPuDEdAOBCQg0/N+dSwytde+21uu222+ooEWAelnMBPESrVq3k5+enJk2cv/sqKyvTn/70J4WFhclqteqSSy7R3/72NxmGIUk6ceKEunbtqq5du+rEiROO44qLixUSEqKrr75aNptNkjRmzBi1aNFCu3fv1sCBA9W8eXOFhoZq5syZjvOdyZYtWzRo0CD5+/urRYsW6t+/v9avX+/Yv2jRIo0cOVKS1K9fP8dPu9auXXvG837yySe69tpr1bx5c7Vq1Uq33HKL/vvf/zr2jxkzRtddd50kaeTIkfLy8lLfvn1dnm/Xrl3q0KFDtT9Da9++/VnfJwAAv0aNdl+Nrk5hYaH++Mc/6qKLLtLChQud9nl5eWnixIl655131K1bN1mtVkVFRWnlypXndA0AwIWJGl63Nbw6X375pW666SYFBASoWbNmuu666/T555/X+rxAXaOJDjRQJSUlOnz4sA4dOqRt27ZpwoQJOnbsmO666y7HHMMwNGzYMD3zzDO66aabNGfOHF1yySX6y1/+oilTpkiS/Pz89PLLL2vnzp2aOnWq49jExESVlJRo0aJFslgsjnGbzaabbrpJQUFBeuqpp9SzZ0+lpKScda3wbdu26dprr9V//vMfPfLII5o2bZry8/PVt29fffnll5KkuLg4PfTQQ5Kkxx9/XK+++qpeffVVXXrppS7P+/HHH2vgwIE6ePCgZsyYoSlTpuiLL75QbGysY723+++/X48//rikX3469uqrrzq919/q2LGj9u/fr08++eSM7wkAgOpQo39RFzX6t+x2u+666y799NNPWrx4sQIDA6vM+eyzz5SQkKA77rhDTz31lE6ePKkRI0bop59+qvF1AAAXBmr4L+qyhh89elSHDx922ux2u6RfGvdxcXEqLS1VSkqKnnjiCR05ckTXX3+9NmzYcNZzA6YyADQoCxcuNCRV2axWq7Fo0SKnue+8844hyUhLS3Mav+222wwvLy9j586djrGkpCTD29vbyMnJMZYuXWpIMubOnet03OjRow1JxoMPPugYs9vtxs0332z4+PgYhw4dcoxLMlJSUhyvhw8fbvj4+Bi7du1yjBUUFBgtW7Y04uLiHGOV116zZk2NPo/u3bsb7du3N3766SfH2H/+8x/D29vbuPvuux1ja9asMSQZS5cuPes5v/nmG8PPz8+QZHTv3t14+OGHjXfeeccoKyurUSYAwIWJGu2sLmr0b82cOdOQZKSmpla7X5Lh4+Pj9Hn+5z//MSQZzz333DlfDwDQOFHDndVFDa+cW92Wn59v2O124+KLLzYGDhxo2O12x3HHjx83IiIijBtuuKFG2QGzcCc60EBlZGRo1apVWrVqlV577TX169dP9957r9566y3HnBUrVshisTi+da70pz/9SYZhOD1lfMaMGYqKitLo0aOVkJCg6667rspxlSZOnOj4c+XPpCsqKvTxxx9XO99ms+mjjz7S8OHDFRkZ6RgPCQnRnXfeqc8++0ylpaXn/BkcOHBAW7du1ZgxY5zuPIuOjtYNN9ygFStWnPM5JSkqKkpbt27VXXfdpT179ujZZ5/V8OHDFRQUpAULFpzXOQEAFw5qdN3V6F/79NNPHQ9JS05OdjlvwIAB6ty5s1MGf39/7d69u9YZAACNCzW87mv49OnTHZ9x5RYcHKytW7fq+++/15133qmffvrJcZd6WVmZ+vfvr5ycHMcd60BDxINFgQbqyiuvdHrgyahRo9SjRw9NnDhRQ4YMkY+Pj/bu3avQ0FC1bNnS6djKn23t3bvXMebj46OXXnpJvXv3lq+vrxYuXCgvL68q1/X29nYq0JLUpUsXSXL8rOu3Dh06pOPHj+uSSy6psu/SSy+V3W7X/v37FRUVVbM3//9V5nd13g8//FBlZWVq3rz5OZ1X+uU9vfrqq7LZbNq+fbvee+89PfXUUxo/frwiIiI0YMCAcz4nAODCQI2u2xotST/99JNGjRql1q1bKzs7W97eru/9CQ8PrzLWunVr/fzzz+d1bQBA40UNr/safvnll1f77+nvv/9ekjR69GiXx5aUlKh169bndV2grnEnOuAhvL291a9fPx04cMBRfM7Vhx9+KEk6efLkeZ+jsbFYLLr88suVlJSkt99+W5KUnZ1tcioAgCehRruXYRgaPXq0CgoKtGjRIoWGhp5x/q/XnP3teQAAOBNqeP2pvMv86aefrnKneuXWokULk1MCrtFEBzzI6dOnJUnHjh2T9MsDMgsKCnT06FGned9++61jf6W8vDzNnDlTY8eOVY8ePXTvvfeqpKSkyjXsdnuVnz9/9913kqROnTpVm6tdu3Zq1qyZduzYUWXft99+K29vb4WFhUlStd/Ku1KZ39V527Zte97fjlen8o6EAwcOuO2cAIALAzXa+by1qdFz5szR+++/r0mTJunmm28+r3MAAFBT1HDn87r739mVKpde8/f314ABA6rdmjZt6vbrAu5CEx3wEKdOndJHH30kHx8fx8/IBg8eLJvNpueff95p7jPPPCMvLy8NGjTIceyYMWMUGhqqZ599VosWLVJRUZEmT55c7bV+fT7DMPT888+radOm6t+/f7XzLRaLbrzxRi1btszpp2hFRUVavHixrrnmGvn7+0uSoxgfOXLkrO85JCRE3bt318svv+w0/5tvvtFHH32kwYMHn/Uc1fn000916tSpKuOVa79V97M2AABcoUb/b35ta/RXX32lpKQk9ezZU08++eR5nQMAgJqihv9vfm1r+Nn07NlTnTt31t/+9jfHFxa/dujQoTq5LuAurIkONFAffPCB45vugwcPavHixfr+++/12GOPOQrl0KFD1a9fP02dOlV79uzRFVdcoY8++kjLli3TpEmTHN/0pqWlaevWrVq9erVatmyp6OhoTZ8+XcnJybrtttuciqSvr69Wrlyp0aNHq0+fPvrggw/0/vvv6/HHH1e7du1c5k1LS9OqVat0zTXXKCEhQU2aNNELL7yg8vJyPfXUU4553bt3l8Vi0ezZs1VSUiKr1arrr79e7du3r/a8Tz/9tAYNGqSYmBiNGzdOJ06c0HPPPaeAgADNmDHjvD7b2bNna9OmTbr11lsVHR0tSdq8ebNeeeUVBQYGatKkSed1XgDAhYEa/Qt31+jjx4/r9ttv16lTpzRkyBC9+eab1c4LCgrSDTfccM7nBwCAGv6Luvh39tl4e3vrn//8pwYNGqSoqCiNHTtWF110kX788UetWbNG/v7+Wr58eZ1cG3ALA0CDsnDhQkOS0+br62t0797dyMrKMux2u9P8o0ePGpMnTzZCQ0ONpk2bGhdffLHx9NNPO+Zt2rTJaNKkifHggw86HXf69Gmjd+/eRmhoqPHzzz8bhmEYo0ePNpo3b27s2rXLuPHGG41mzZoZQUFBRkpKimGz2ZyOl2SkpKQ4jW3evNkYOHCg0aJFC6NZs2ZGv379jC+++KLKe1ywYIERGRlpWCwWQ5KxZs2aM34mH3/8sREbG2v4+fkZ/v7+xtChQ43t27c7zVmzZo0hyVi6dOkZz2UYhvH5558biYmJRrdu3YyAgACjadOmRnh4uDFmzBhj165dZz0eAHBhokZX5c4anZ+fX+XzrW677rrrnN5rYmJilXN17NjRGD169BmvBwC4cFDDq3L3v7NrOnfLli3GrbfearRp08awWq1Gx44djT/84Q/G6tWrz3oNwExehsETdwD8YsyYMfrXv/5V7U+rAACAeajRAAB4Jmo40DiwJjoAAAAAAAAAAC7QRAcAAAAAAAAAwAWa6AAAAAAAAAAAuMCa6AAAAAAAAAAAuMCd6AAAAAAAAAAAuEATHQAAAAAAAAAAF5qYHaAhsNvtKigoUMuWLeXl5WV2HAAAJEmGYejo0aMKDQ2Vtzffe/8atRsA0BBRu12jdgMAGqKa1m6a6JIKCgoUFhZmdgwAAKq1f/9+dejQwewYDQq1GwDQkFG7q6J2AwAasrPVbproklq2bCnplw/L39/f5DQAAPyitLRUYWFhjjqF/6F2AwAaImq3a9RuAEBDVNPaTRNdcvyUzN/fn2IOAGhw+MlzVdRuAEBDRu2uitoNAGjIzla7WaQNAAAAAAAAAAAXaKIDAAAAAAAAAOACTXQAAAAAAAAAAFygiQ4AAAAAAAAAgAs00QEAAAAAAAAAcIEmOgAAAAAAAAAALtBEBwAAAAAAAADAhSZmBwDQeNhsNuXl5am4uFiBgYGKjo6WxWIxOxYAAHCB2g0AgGehdgPmoIkOwC1ycnKUmZmpwsJCx1hwcLASEhIUFxdnYjIAAFAdajcAAJ6F2g2Yh+VcANRaTk6OUlJSFBkZqYyMDK1YsUIZGRmKjIxUSkqKcnJyzI4IAAB+hdoNAIBnoXYD5vIyDMMwO4TZSktLFRAQoJKSEvn7+5sdB/AoNptN8fHxioyMVFpamry9//fdnN1uV3JysvLz8/Xaa6/xEzPgHFGfXOOzAc4ftRuoO9Qn1/hsgPNH7QbqTk3rE3eiA6iVvLw8FRYWKj4+3qmQS5K3t7fi4+N14MAB5eXlmZQQAAD8GrUbAADPQu0GzEcTHUCtFBcXS5IiIiKq3V85XjkPAACYi9oNAIBnoXYD5qOJDqBWAgMDJUn5+fnV7q8cr5wHAADMRe0GAMCzULsB89FEB1Ar0dHRCg4OVnZ2tux2u9M+u92u7OxshYSEKDo62qSEAADg16jdAAB4Fmo3YD6a6ABqxWKxKCEhQbm5uUpOTta2bdt0/Phxbdu2TcnJycrNzdWECRN4uAkAAA0EtRsAAM9C7QbM52UYhmF2CLPxlHCg9nJycpSZmanCwkLHWEhIiCZMmKC4uDgTkwGei/rkGp8NUHvUbsD9qE+u8dkAtUftBtyvpvWJJroo5oC72Gw25eXlqbi4WIGBgYqOjuabcKAWqE+u8dkA7kHtBtyL+uQanw3gHtRuwL1qWp+a1GOmc5aVlaWsrCzt2bNHkhQVFaXp06dr0KBBkqSTJ0/qT3/6k5YsWaLy8nINHDhQmZmZCgoKMjE1cOGyWCzq0aOH2TEAAEANUbsBAPAs1G7AHA16TfQOHTroySef1KZNm7Rx40Zdf/31uuWWW7Rt2zZJ0uTJk7V8+XItXbpU69atU0FBgW699VaTUwMXLpvNpi1btmj16tXasmWLbDab2ZEAAAAAAACAWmnQd6IPHTrU6fWsWbOUlZWl9evXq0OHDnrxxRe1ePFiXX/99ZKkhQsX6tJLL9X69et11VVXmREZuGBVtzZbcHCwEhISWJsNAAAAAAAAHqtB34n+azabTUuWLFFZWZliYmK0adMmnTp1SgMGDHDM6dq1q8LDw5Wbm3vGc5WXl6u0tNRpA3D+cnJylJKSosjISGVkZGjFihXKyMhQZGSkUlJSlJOTY3ZEAAAAAAAA4Lw0+Cb6119/rRYtWshqteqBBx7Q22+/rcsuu0yFhYXy8fFRq1atnOYHBQU53QlbnfT0dAUEBDi2sLCwOnwHQONms9mUmZmpmJgYpaWlKSoqSs2aNVNUVJTS0tIUExOjrKwslnYBAAAAAACAR2rwTfRLLrlEW7du1ZdffqkJEyZo9OjR2r59e63OmZSUpJKSEse2f/9+N6UFLjx5eXkqLCxUfHy8vL2d/0rx9vZWfHy8Dhw4oLy8PJMSAjDTk08+KS8vL02aNMkxdvLkSSUmJqpNmzZq0aKFRowYoaKiIvNCAgAAAABwBg2+ie7j46Pf/e536tmzp9LT03XFFVfo2WefVXBwsCoqKnTkyBGn+UVFRQoODj7jOa1Wq/z9/Z02AOenuLhYkhQREVHt/srxynkALhxfffWVXnjhBUVHRzuN82BwAAAAAIAnafBN9N+y2+0qLy9Xz5491bRpU61evdqxb8eOHdq3b59iYmJMTAhcWAIDAyVJ+fn51e6vHK+cB+DCcOzYMcXHx2vBggVq3bq1Y7ykpEQvvvii5syZo+uvv149e/bUwoUL9cUXX2j9+vUuz8fzTAAAAAAAZmnQTfSkpCTl5ORoz549+vrrr5WUlKS1a9cqPj5eAQEBGjdunKZMmaI1a9Zo06ZNGjt2rGJiYnTVVVeZHR24YERHRys4OFjZ2dmy2+1O++x2u7KzsxUSElLlTlQAjVtiYqJuvvlmpweASzrvB4PzPBMAAAAAgFkadBP94MGDuvvuu3XJJZeof//++uqrr/Thhx/qhhtukCQ988wzGjJkiEaMGKG4uDgFBwfrrbfeMjk1cGGxWCxKSEhQbm6ukpOTtW3bNh0/flzbtm1TcnKycnNzNWHCBFksFrOjAqgnS5Ys0ebNm5Wenl5l3/k+GJznmQAAAAAAzNLE7ABn8uKLL55xv6+vrzIyMpSRkVFPiQBUJy4uTqmpqcrMzFRiYqJjPCQkRKmpqYqLizMxHYD6tH//fj388MNatWqVfH193XZeq9Uqq9XqtvMBAAAAAFBTDbqJDsBzxMXFKTY2Vnl5eSouLlZgYKCio6O5Ax24wGzatEkHDx7U73//e8eYzWZTTk6Onn/+eX344YeOB4P/+m70mjwYHAAAAAAAM9BEBwAAbtO/f399/fXXTmNjx45V165d9eijjyosLMzxYPARI0ZI4sHgAAAAAICGjSY6ALfIyclRZmam05rGwcHBSkhIYDkX4ALSsmVLdevWzWmsefPmatOmjWO88sHggYGB8vf314MPPsiDwQEAAAAADVaDfrAoAM+Qk5OjlJQURUZGKiMjQytWrFBGRoYiIyOVkpKinJwcsyMCaEB4MDgAAAAAwJN4GYZhmB3CbKWlpQoICFBJSYn8/f3NjgN4FJvNpvj4eEVGRiotLU3e3v/7bs5utys5OVn5+fl67bXXWB8dOEfUJ9f4bAAADRH1yTU+GwBAQ1TT+sSd6ABqJS8vT4WFhYqPj3dqoEuSt7e34uPjdeDAAeXl5ZmUEAAAAAAAADh/rIkOoFaKi4slSREREdXurxyvnAcAABoOm82mvLw8FRcXKzAwUNHR0fxyDAAAAPgN7kQHUCuBgYGSpPz8/Gr3V45XzgMAAA1DTk6O4uPjNXnyZP31r3/V5MmTFR8fz7NMgAvck08+KS8vL02aNMkxdvLkSSUmJqpNmzZq0aKFRowYoaKiIvNCAgBQz2iiA6iV6OhoBQcHKzs7W3a73Wmf3W5Xdna2QkJCFB0dbVJCAADwWzwUHEB1vvrqK73wwgtV/rf75MmTtXz5ci1dulTr1q1TQUGBbr31VpNSAgBQ/2iiA6gVi8WihIQE5ebmKjk5Wdu2bdPx48e1bds2JScnKzc3VxMmTOCn4QAANBA2m02ZmZmKiYlRWlqaoqKi1KxZM0VFRSktLU0xMTHKysqSzWYzOyqAenTs2DHFx8drwYIFat26tWO8pKREL774oubMmaPrr79ePXv21MKFC/XFF19o/fr1Ls9XXl6u0tJSpw0AAE9FEx1ArcXFxSk1NVW7d+9WYmKiBg8erMTEROXn5ys1NVVxcXFmRwQAAP8fDwUHUJ3ExETdfPPNGjBggNP4pk2bdOrUKafxrl27Kjw8XLm5uS7Pl56eroCAAMcWFhZWZ9kBAKhrPFgUgFvExcUpNjaWh5MBANDA8VBwAL+1ZMkSbd68WV999VWVfYWFhfLx8VGrVq2cxoOCglRYWOjynElJSZoyZYrjdWlpKY10AIDHookOwG0sFot69OhhdgwAAHAGv34oeFRUVJX9PBQcuLDs379fDz/8sFatWiVfX1+3nddqtcpqtbrtfAAAmInlXAAAAIALCA8FB/BrmzZt0sGDB/X73/9eTZo0UZMmTbRu3Tr94x//UJMmTRQUFKSKigodOXLE6biioiIFBwebExoAgHpGEx2A29hsNm3ZskWrV6/Wli1beCAZAAANEA8FB/Br/fv319dff62tW7c6tl69eik+Pt7x56ZNm2r16tWOY3bs2KF9+/YpJibGxOQAANQflnMB4BY5OTnKyMhQUVGRYywoKEiJiYk8WBQAgAam8qHgmZmZSkxMdIyHhITwUHDgAtOyZUt169bNaax58+Zq06aNY3zcuHGaMmWKAgMD5e/vrwcffFAxMTG66qqrzIgMAEC9o4kOoNZycnI0ffr0KuNFRUWaPn26Zs6cyT/GAQBoYHgoOICaeuaZZ+Tt7a0RI0aovLxcAwcOVGZmptmxAACoN16GYRhmhzBbaWmpAgICVFJSIn9/f7PjAB7FZrNp2LBhKisrk5eXl379V0rl6+bNm+vdd9/lH+XAOaI+ucZnAwBoiKhPrvHZAAAaoprWJ9ZEB1ArmzdvVllZmSTpqquuUkZGhlasWKGMjAzHzzvLysq0efNmM2MCAAAAAAAA54UmOoBa+fDDDyVJERERmjVrlqKiotSsWTNFRUVp1qxZ6tSpk9M8AAAAAAAAwJPQRAdQK4WFhZKkm266Sd7ezn+leHt7a+DAgU7zAAAAAAAAAE9CEx1ArQQHB0uSVq5cKbvd7rTPbrfro48+cpoHAAAAAAAAeBKa6ABqpfJO8/z8fE2dOlXbtm3T8ePHtW3bNk2dOlX5+flO8wAAAAAAAABP0sTsAAA82+9//3s1b95cZWVl+vLLL5Wbm+vYV7m8S/PmzfX73//erIgAAAAAAADAeeNOdAC1YrFY9Oijj0pStcu5SNKjjz4qi8VS79kAAAAAAACA2qKJDqDW4uLiNHPmTAUFBTmNBwUFaebMmYqLizMpGQAAAAAAAFA7NNEBuMX27dt16NAhp7FDhw5p+/btJiUCAAAAAAAAao810QHU2rx587RkyRL5+/urRYsWKi8vl9Vq1bFjx7RkyRJJ0gMPPGBySgAAAAAAAODccSc6gFqpqKjQ0qVL5eXlpdLSUhUUFOinn35SQUGBSktL5eXlpaVLl6qiosLsqAAAAAAAAMA5o4kOoFaWLVsmm80mwzAkSVdeeaWef/55XXnllZIkwzBks9m0bNkyM2MCAAAAAAAA54UmOoBa2bNnj+PPy5cv16hRo1RUVKRRo0Zp+fLl1c4DAAAAAAAAPAVrogOolY0bN0qS2rVrp/vuu0+FhYWOfcHBwWrbtq0OHz7smAcAAAAAAAB4Eu5EB1ArdrtdknTo0CFFREQoIyNDK1asUEZGhiIiInT48GGneQAAAAAAAIAn4U50ALXSvn17HTp0SJK0fft2LViwQHa7Xd7e3srPz3eaBwAAAAAAAHga7kQHUCujRo1y/LmkpERbt25VXl6etm7dqpKSkmrnAQAAAAAAAJ6CJjqAWikvL3d63bJlS/Xq1UstW7Y84zwAAAAAAADAE7CcC4BaadGihdPro0ePVvsQ0d/OAwAAAAAAADwBd6IDqJUvvvhCknTRRRfp7bffVrdu3dSuXTt169ZNb7/9ti666CKneQAAAAAAAIAnadBN9PT0dPXu3VstW7ZU+/btNXz4cO3YscNpTt++feXl5eW0PfDAAyYlBi48P/74oySpoKBATz/9tCZMmKCXX35ZEyZM0NNPP62CggKneQAAAAAAAIAnadDLuaxbt06JiYnq3bu3Tp8+rccff1w33nijtm/frubNmzvm3XfffZo5c6bjdbNmzcyIC1yQOnTooI0bN+qaa67R999/r8TERMe+kJAQxcbG6rPPPlOHDh1MTAkAAAAAAACcnwbdRF+5cqXT60WLFql9+/batGmT4uLiHOPNmjVTcHBwfccDIOn+++/XO++8o/Xr1+vdd9/Vt99+q+LiYgUGBqpr164aNmyYYx4AAAAAAADgaRr0ci6/VVJSIkkKDAx0Gs/Ozlbbtm3VrVs3JSUl6fjx42c8T3l5uUpLS502AOfHz89PsbGxOnXqlIYNG6YNGzaoS5cu2rBhg4YNG6ZTp04pNjZWfn5+ZkcFAAAAAAAAzpmXYRiG2SFqwm63a9iwYTpy5Ig+++wzx/j8+fPVsWNHhYaGKi8vT48++qiuvPJKvfXWWy7PNWPGDKWmplYZLykpkb+/f53kBxq7qVOn6vPPP68yHhsbq1mzZpmQCPB8paWlCggIoD5Vg88GANAQUZ9c47MBADRENa1PHtNEnzBhgj744IOzrq38ySefqH///tq5c6c6d+5c7Zzy8nKVl5c7XpeWliosLIxiDtTSsWPHlJ6eroKCAoWGhiopKUktWrQwOxbgsfjHpmt8NgCAhoj65BqfDQCgIappffKI5VwmTpyo9957T2vWrDnrwwn79OkjSdq5c6fLOVarVf7+/k4bgNrJycnRvffeq88//1z5+fn6/PPPde+99yonJ8fsaAAAAAAAAMB5a9BNdMMwNHHiRL399tv65JNPFBERcdZjtm7dKkkKCQmp43QAKuXk5CglJUWRkZHKyMjQihUrlJGRocjISKWkpNBIBwAAAAAAgMdqYnaAM0lMTNTixYu1bNkytWzZUoWFhZKkgIAA+fn5adeuXVq8eLEGDx6sNm3aKC8vT5MnT1ZcXJyio6NNTg9cGGw2mzIzMxUTE6O0tDR5e//y3VxUVJTS0tKUnJysrKwsxcbGymKxmJwWAAAAAADPZbPZlJeXp+LiYgUGBio6Opp/awP1oEE30bOysiRJffv2dRpfuHChxowZIx8fH3388ceaO3euysrKFBYWphEjRig5OdmEtMCFKS8vT4WFhZo2bZoMw9CWLVucinl8fLwSExOVl5enHj16mB0XAAAAAACPlJOTo8zMTMdNppIUHByshIQExcXFmZgMaPwadBP9bM88DQsL07p16+opDYDqFBcXS5IKCgo0Y8YMHTp0yLGvXbt2Gj9+vNM8AAAAAABwbiqXUY2JidG0adMUERGh/Px8ZWdnKyUlRampqTTSgTrUoNdEB9DwBQYGSpJmzZrl1ECXpEOHDmnWrFlO8wAAAAAAQM39dhnVqKgoNWvWzLGMakxMjLKysmSz2cyOCjRaNNEB1EpUVJTjz02aNNGdd96p1157TXfeeaeaNGlS7TwAAAAAAFAzlcuoxsfHO55DVsnb21vx8fE6cOCA8vLyTEoINH400QHUypYtWxx/7tmzp9q1a6e8vDy1a9dOPXv2rHYeAAAAAAComcrlUSMiIqrdXznOMqpA3WnQa6IDaPjefPNNSVKXLl20ceNGffnll459FotFXbp00Xfffac333xTffr0MSsmAAAAAAAeqXJ51Pz8/Gp/5Z2fn+80D4D70UQHUCvHjh2TJH333XeKiYnRlVdeKavVqvLycm3YsEG5ublO8wAAAAAAQM1FR0crODhY2dnZSktLc1rSxW63Kzs7WyEhIYqOjjYxJdC40UQHUCtdunTRjh07ZLVa9de//tVpHfShQ4fq5ptvVnl5ubp06WJiSgAAAAAAPJPFYlFCQoJSUlKUnJys+Ph4RUREKD8/X9nZ2crNzVVqaqosFovZUYFGiyY6gFq55pprtHz5cpWXl2vq1Km6++67HcX8lVdeUXl5uWMeAAAAAAA4d3FxcUpNTVVmZqYSExMd4yEhIUpNTVVcXJyJ6YDGjyY6gFr59TItX375pdOa6K7mAQAAAACAcxMXF6fY2Fjl5eWpuLhYgYGBio6O5g50oB7QRAdQK5UPLomOjlZeXl6V/ZXjPOAEAAAAAIDasVgs6tGjh9kxgAuO99mnAIBrlQ84OXz4sLy8vJz2eXl56fDhwzzgBAAAAAAAAB6LJjqAWrFYLOrcubMKCgrUpEkT9e/fXwkJCerfv7+aNGmigoICRUZG8vMyAAAAAAAAeCSWcwFQKxUVFVq/fr2sVqsqKiq0evVqrV69WtIvd6JbrVatX79eFRUV8vHxMTktAAAAAAAAcG5oogOolWXLlslms8lmsykmJkZXXnmlfH19dfLkSW3YsEG5ubmOeSNHjjQ5LQAAAAAAAHBuaKIDqJUff/xRktSrVy/NmjVL3t7/WyXqlltu0SOPPKKNGzc65gEAAAAAAACehCY6ALfo0qWLTp8+rWXLlqmgoEChoaG65ZZbdPHFF2vjxo1mxwMAAAAAAADOC010ALVy6aWX6p133tG///1vvf766zIMw7EvMzPTsQ76pZdealZEAAAAAAAA4Lx5n30KALjWvn17SVJ5ebkk6YYbbtCCBQt0ww03OI1XzgPQuGVlZSk6Olr+/v7y9/dXTEyMPvjgA8f+kydPKjExUW3atFGLFi00YsQIFRUVmZgYAAAAAIAzo4kOoFa6du0qSfL29paXl5dWrVql++67T6tWrZK3t7djjfTKeQAatw4dOujJJ5/Upk2btHHjRl1//fW65ZZbtG3bNknS5MmTtXz5ci1dulTr1q1TQUGBbr31VpNTAwAAAADgGsu5AKiV9957T5Jkt9t11VVX6aKLLlJ5ebmsVqt+/PFHrV+/3jFv5MiRZkYFUA+GDh3q9HrWrFnKysrS+vXr1aFDB7344otavHixrr/+eknSwoULdemll2r9+vW66qqrXJ63vLzc8csWSSotLa2bNwAAAAAA+H/s3XtYlHX+//HXgAx4gFFSTgkeKiUlzEwLacnME6bpZrZlrbrZSbFvaodd0hU1XTpsq+6GWpmypWRSqeWaZZ7IxErTUFstTUVDUFMOHhhwmN8f/Zh1kvHEwD3A83Fdc+3cn/t93/Oeua58L+/5zOeD32AmOoBKycnJkSQ9++yz2r9/vz744AMtX75cH3zwgQ4cOKBnnnnGKQ5A3WGz2bRo0SKdOnVKMTEx2rJli0pLS9WjRw9HTGRkpCIiIpSZmXnBeyUnJ8tisTge4eHhVZ0+AAAAAACSmIkOoJLCwsIkSXa7XQsXLlRWVpaOHz+uwMBARUdHa8WKFU5xAGq/7du3KyYmRsXFxWrUqJGWLFmidu3aadu2bTKbzWrcuLFTfHBwsHJzcy94z8TERI0bN85xXFhYSCMdAAAAAFAtaKIDqJQBAwZozpw5euutt9SnTx917NjRce7s2bOaN2+evL29NWDAAAOzBFCd2rZtq23btqmgoEDvv/++hg0bpvXr11fqnr6+vvL19XVThgAAAAAAXDqWcwFQKWazWYMHD9aJEyc0ePBgffzxxzp27Jg+/vhjp3Gz2Wx0qgCqidls1rXXXqtOnTopOTlZHTp00MyZMxUSEqKSkhLl5+c7xefl5SkkJMSYZAEAAAAAuAhmogOotCeeeEKStHjxYr366quOcS8vL91///2O8wDqprKyMlmtVnXq1Ek+Pj5avXq1Bg0aJEnavXu3srOzFRMTY3CWAAAAAABUjCY6ALdo166dmjVrpry8PMdYs2bN1K5dOwOzAlDdEhMTFR8fr4iICBUVFSktLU3r1q3Tp59+KovFohEjRmjcuHEKDAxUQECAnnzyScXExOjWW281OnUAAAAAACpEEx1ApWVkZCgpKUkxMTGaOHGiWrVqpX379mnhwoVKSkrS5MmTFRcXZ3SaAKrBkSNHNHToUB0+fFgWi0XR0dH69NNP1bNnT0nS9OnT5eXlpUGDBslqtap3796aNWuWwVkDAAAAAOCayW63241OwmiFhYWyWCwqKChQQECA0ekANYrNZtODDz6o1q1ba+rUqfLy+t9WC2VlZZowYYL27dunBQsWyNvb28BMgZqH+uQanw0AwBPVxPo0e/ZszZ49W/v375cktW/fXhMnTlR8fLwkqbi4WE8//bQWLVrk9AV4cHDwZb1OTfxsAAC136XWJzYWBVApWVlZys3N1YMPPqizZ88qPT1dM2fOVHp6us6ePasHH3xQhw8fVlZWltGpAgAAAPiN5s2b68UXX9SWLVu0efNmde/eXQMGDNDOnTslSWPHjtXHH3+s9PR0rV+/Xjk5ObrnnnsMzhoAgOrFci4AKuX48eOSpDVr1uj//u//ZLPZHOfmzJmjgQMHOsUBAAAA8Bz9+/d3Op42bZpmz56tTZs2qXnz5nrrrbeUlpam7t27S5Lmz5+v66+/Xps2bbrgniZWq1VWq9VxXFhYWDVvAACAasBMdACVEhgYKEn64IMPFBAQoGeeeUYffPCBnnnmGQUEBOiDDz5wigMAAADgmWw2mxYtWqRTp04pJiZGW7ZsUWlpqXr06OGIiYyMVEREhDIzMy94r+TkZFksFscjPDy8qtMHAKDK0EQHUCmRkZGSJB8fH7333nvq16+frrrqKvXr10/vvfeefHx8nOIAAAAAeJbt27erUaNG8vX11RNPPKElS5aoXbt2ys3NldlsVuPGjZ3ig4ODlZube8F7JiYmqqCgwPE4ePBgFb4DAACqFk10AJWyfPlySVJpaakmTZqknTt36vTp09q5c6cmTZqk0tJSpzgAAAAAnqVt27batm2bvvrqK40cOVLDhg3T999/X6l7+vr6KiAgwOkBAEBNxZroAColJydHkvTss8/qnXfeUUJCguNcaGionnnmGf397393xAEAAADwLGazWddee60kqVOnTvrmm280c+ZM/eEPf1BJSYny8/OdZqPn5eUpJCTEoGwBAKh+NNEBVEpYWJgkyW63a+HChcrKytLx48cVGBio6OhorVixwikOAAAAgGcrKyuT1WpVp06d5OPjo9WrV2vQoEGSpN27dys7O1sxMTEGZwkAQPWhiQ6gUgYMGKA5c+borbfeUp8+fdSxY0fHubNnz2revHny9vbWgAEDDMwSAAAAQEUSExMVHx+viIgIFRUVKS0tTevWrdOnn34qi8WiESNGaNy4cQoMDFRAQICefPJJxcTE6NZbbzU6dQAAqg1NdACVYjabNXjwYC1atEiDBw/Www8/rJiYGGVmZmrevHk6ceKE7r//fpnNZqNTBQAAAPAbR44c0dChQ3X48GFZLBZFR0fr008/Vc+ePSVJ06dPl5eXlwYNGiSr1arevXtr1qxZBmcNAED1MtntdrvRSRitsLBQFotFBQUFbHYCXKE5c+YoPT1dNpvNMebt7a3BgwfriSeeMDAzoOaiPrnGZwMA8ETUJ9f4bAAAnuhS6xMz0QG4xRNPPKGHH35Yy5YtU05OjsLCwjRgwABmoAMAAAAAAKBGo4kOwG3Kl3YBAAAAAAAAagsvoxO4kOTkZHXu3Fn+/v4KCgrSwIEDtXv3bqeY4uJiJSQk6KqrrlKjRo00aNAg5eXlGZQxAAAAAAAAAKA28egm+vr165WQkKBNmzZp1apVKi0tVa9evXTq1ClHzNixY/Xxxx8rPT1d69evV05Oju655x4DswYAAAAAAAAA1BYevZzLypUrnY5TU1MVFBSkLVu2KC4uTgUFBXrrrbeUlpam7t27S5Lmz5+v66+/Xps2bdKtt95a4X2tVqusVqvjuLCwsOreBAAAAAAAAACgxvLomei/VVBQIEkKDAyUJG3ZskWlpaXq0aOHIyYyMlIRERHKzMx0eZ/k5GRZLBbHIzw8vGoTB+oIm82mrVu3avXq1dq6datsNpvRKQEAAAAAAACV4tEz0c9VVlamMWPGKDY2VlFRUZKk3Nxcmc1mNW7c2Ck2ODhYubm5Lu+VmJiocePGOY4LCwtppAOVlJGRoVmzZjn9txcSEqJRo0YpLi7OwMwAAAAAAACAK1djZqInJCRox44dWrRoUaXv5evrq4CAAKcHgCuXkZGhpKQktW7dWikpKVqxYoVSUlLUunVrJSUlKSMjw+gUAQAAAAAAgCtSI5roo0eP1vLly7V27Vo1b97cMR4SEqKSkhLl5+c7xefl5SkkJKSaswTqJpvNplmzZikmJkZTp05V+/bt1aBBA7Vv315Tp05VTEyMZs+ezdIuAAAAAAAAqJE8uolut9s1evRoLVmyRGvWrFGrVq2cznfq1Ek+Pj5avXq1Y2z37t3Kzs5WTExMdacL1ElZWVnKzc3Vgw8+KC8v539SvLy89OCDD+rw4cPKysoyKEMAAAAAAADgynn0mugJCQlKS0vTsmXL5O/v71hr2WKxqH79+rJYLBoxYoTGjRunwMBABQQE6Mknn1RMTIxuvfVWg7MH6objx49L0nlfcpUrHy+PAwAAAAAAAGoSj56JPnv2bBUUFKhbt24KDQ11PN577z1HzPTp09WvXz8NGjRIcXFxCgkJ0Ycffmhg1kDdEhgYKEnat29fhefLx8vjAAAAAAAAgJrEo2ei2+32i8b4+fkpJSVFKSkp1ZARgN+Kjo5WSEiIFi5cqKlTpzot6VJWVqaFCxcqNDRU0dHRBmYJAAAAAAAAXBmPnokOwPN5e3tr1KhRyszM1IQJE7Rz506dPn1aO3fu1IQJE5SZmamRI0fK29vb6FQBAAAAAACAy+bRM9EB1AxxcXGaPHmyZs2apYSEBMd4aGioJk+erLi4OAOzAwAAAAAAAK4cTXQAbhEXF6fY2FhlZWXp+PHjCgwMVHR0NDPQAQAAAAAAUKPRRAfgNt7e3urYsaPRaQAAAAAAAABuw5roAAAAAAAAAAC4QBMdAAAAAAAAAAAXaKIDAAAAAAAAAOACTXQAAAAAAAAAAFygiQ4AAAAAAAAAgAs00QEAAAAAAAAAcIEmOgAAAAAAAAAALtBEBwAAAAAAAADABZroAAAAAAAAAAC4UM/oBADUHjabTVlZWTp+/LgCAwMVHR0tb29vo9MCAAAAAAAArliVNNEPHjwok8mk5s2bS5K+/vprpaWlqV27dnrssceq4iUBGCwjI0OzZs1Sbm6uYywkJESjRo1SXFycgZkBuBTUbgAAahZqNwAA1adKlnMZMmSI1q5dK0nKzc1Vz5499fXXX2v8+PGaMmVKVbwkAANlZGQoKSlJLVq0UFxcnDp27Ki4uDi1aNFCSUlJysjIMDpFABdB7QYAoGahdgMAUH2qpIm+Y8cOdenSRZK0ePFiRUVFaePGjVq4cKFSU1Or4iUBGMRms2nWrFlq3LixvvrqK2VkZGjr1q3KyMjQV199pcaNG2v27Nmy2WxGpwrgAqjdAADULNRuAACqT5U00UtLS+Xr6ytJ+vzzz3X33XdLkiIjI3X48OGqeEkABsnKylJubq5OnDhR4fkTJ07o8OHDysrKqubMAFwOajcAADULtRsAgOpTJU309u3ba86cOfriiy+0atUq9enTR5KUk5Ojq666qipeEoBBzl0DvV49520Wzj0+Nw6A56F2AwBQs1C7AQCoPlXSRH/ppZf0+uuvq1u3bnrggQfUoUMHSdJHH33k+LkZgNrhiy++cDzv3LmzUlJStGLFCqWkpKhz584VxgHwPNRuAABqFmo3AADVx2S32+1VcWObzabCwkI1adLEMbZ//341aNBAQUFBVfGSV6ywsFAWi0UFBQUKCAgwOh2gRnn00Uf1448/qkGDBvroo4+cZp+fPXtWd999t06fPq3rrrtOb775poGZAjVPddcnajcAAJVD7XaN2g0A8ESXWp+qZCa6JNntdm3ZskWvv/66ioqKJElms1kNGjSoqpcEYACTySRJOn36tCZOnKidO3fq9OnT2rlzpyZOnKjTp087xQHwXNRuAABqFmo3AADVo97FQy7fgQMH1KdPH2VnZ8tqtapnz57y9/fXSy+9JKvVqjlz5lTFywIwQMeOHfXDDz/Iy8tLP/74oxISEhzngoKC5OXlpbKyMnXs2NHALAFcDLUbAICahdoNAED1qZKZ6E899ZRuvvlmnThxQvXr13eM//73v9fq1aur4iUBGKR8vcWysjLl5+ere/fuGjlypLp3764TJ06orKzMKQ6AZ6J2AwBQs1C7AQCoPlUyE/2LL77Qxo0bZTabncZbtmypn3/+uSpeEoBBbrzxRjVu3Fj5+fkqLS3VmjVrtGbNGqeYJk2a6MYbbzQmQQCXhNoNAEDNQu0GAKD6VMlM9LKyMtlstvPGDx06JH9//6p4SQAG8fb21rhx42QymZw2FZWkevXqyWQyaezYsfL29jYoQwCXgtoNAEDNQu0GAKD6VEkTvVevXpoxY4bj2GQy6eTJk0pKSlLfvn2r4iUBGCguLk6TJ09W06ZNncabNWumyZMnKy4uzqDMAFwqajcAADULtRsAgOpjstvtdnff9NChQ+rdu7fsdrt+/PFH3Xzzzfrxxx/VtGlTZWRkKCgoyN0vWSmFhYWyWCwqKChQQECA0ekANdbJkyeVnJysnJwchYWFKTExUY0aNTI6LaDGqs76RO0GAKDyqN2uUbsBAJ7oUutTlTTRJens2bNatGiRsrKydPLkSd1000168MEHnTY88RQUc6Dyxo8fry+//PK88djYWE2bNs2AjICar7rrE7UbAIDKoXa7Ru0GAHgiw5voNQnFHKic8gZ6vXr1dMMNN6hp06Y6duyYtm/frrNnz9JIB64Q9ck1PhsAgCeiPrnGZwMA8ESXWp/quTxTCW+//fYFzw8dOrQqXhaAAc6cOaMvv/xSXl5estls2rp1q+OcyWSSl5eXvvzyS505c8YjZ8QA+BW1GwCAmoXaDQBA9amSmehNmjRxOi4tLdXp06dlNpvVoEEDHT9+3N0vWSl8Iw5cuRkzZmjp0qWSfv1vf8SIEYqJiVFmZqbeeustnThxQpI0cOBAjRkzxrhEgRqoOusTtRsAgMqjdrtG7QYAeKJLrU9eVfHiJ06ccHqcPHlSu3fv1m233aZ33323Kl4SgEEOHjwoSQoICFB6err69eunq666Sv369VN6errjH6DyOACeidoNAEDNQu0GAKD6VEkTvSLXXXedXnzxRT311FPV9ZIAqoHVapUkRUZGql495xWi6tWrp7Zt2zrFAag5qN0AANQs1G4AAKpGtTXRpV8bajk5OdX5kgCqWKtWrSRJ3377rUpKSpzOlZSUONZIL48DULNQuwEAqFmo3QAAuF+VbCz60UcfOR3b7XYdPnxYr732mmJjY6viJQEYJCIiQpJ09uxZ3XXXXbr33nvVt29frVixQu+//77Onj3rFAfAM1G7AQCoWajdAABUnyrZWNTLy3mCu8lkUrNmzdS9e3e9+uqrCg0NdfdLVgobnABXrqSkRPHx8TKZTI6G+bnq1asnu92uTz75RGaz2YAMgZqrOusTtRsAgMqjdrtG7QYAeKJLrU9VMhO9rKysKm4LwAOZzWYNHjxYixYtqvD82bNndf/999NABzycu2p3cnKyPvzwQ+3atUv169dX165d9dJLLzn2R5Ck4uJiPf3001q0aJGsVqt69+6tWbNmKTg42C05AABQF/B3NwAA1ada10S/EhkZGerfv7/CwsJkMpm0dOlSp/PDhw+XyWRyevTp08eYZIE6ql27dpU6D6D2WL9+vRISErRp0yatWrVKpaWl6tWrl06dOuWIGTt2rD7++GOlp6dr/fr1ysnJ0T333GNg1gAAAAAAuOa2mejjxo275Nh//OMflxx76tQpdejQQQ8//LDLP7D79Omj+fPnO459fX0v+f4AKsdms2nWrFkKCwtTbm6u04wYLy8vhYSEaPbs2YqNjZW3t7eBmQL4raqo3StXrnQ6Tk1NVVBQkLZs2aK4uDgVFBTorbfeUlpamrp37y5Jmj9/vq6//npt2rRJt95666W/AQAA6piq+rsbAABcmNua6Fu3br2kOJPJdFn3jY+PV3x8/AVjfH19FRIScsn3tFqtslqtjuPCwsLLygnA/2RlZSk3N1eS1LhxY7Vs2VJ2u10mk0n79+9XTk6OI65jx45GpgrgN6qqdp+roKBAkhQYGChJ2rJli0pLS9WjRw9HTGRkpCIiIpSZmemyiU7tBgCgemo3AAA4n9ua6GvXrnXXrS7bunXrFBQUpCZNmqh79+6aOnWqrrrqKpfxycnJmjx5cjVmCNReR44ckfTrBqL5+fnatm2b0/l69erp7NmzjjgAnqOqa3dZWZnGjBmj2NhYRUVFSZJyc3NlNpvVuHFjp9jg4GDHF3IVoXYDAGDs390AANRlHr8m+sX06dNHb7/9tlavXq2XXnpJ69evV3x8vGw2m8trEhMTVVBQ4HgcPHiwGjMGapf//ve/kn7dQLQi5ePlcQDqjoSEBO3YscPlxsOXg9oNAAAAADCK22ai/9bmzZu1ePFiZWdnq6SkxOnchx9+6LbXuf/++x3Pb7jhBkVHR+uaa67RunXrdOedd1Z4ja+vL+umA25ybvO8S5cuiomJxpQRMgAAeMNJREFUkZ+fn4qLi5WZmamvv/76vDgAnsmdtXv06NFavny5MjIy1Lx5c8d4SEiISkpKlJ+f7zQbPS8v74JLs1G7AQA4X3X93Q0AQF1XJTPRFy1apK5du+q///2vlixZotLSUu3cuVNr1qyRxWKpipd0aN26tZo2bao9e/ZU6esA+NW+ffscz7du3aqZM2fqpZde0syZM53WbDw3DoDncVftttvtGj16tJYsWaI1a9aoVatWTuc7deokHx8frV692jG2e/duZWdnKyYmxm3vBwCA2s5dtTs5OVmdO3eWv7+/goKCNHDgQO3evdsppri4WAkJCbrqqqvUqFEjDRo0SHl5ee5+SwAAeKwqaaL/7W9/0/Tp0/Xxxx/LbDZr5syZ2rVrl+677z5FRERUxUs6HDp0SL/88otCQ0Or9HUA/OrcGS+lpaVO5849/u3MGACexV21OyEhQQsWLFBaWpr8/f2Vm5ur3NxcnTlzRpJksVg0YsQIjRs3TmvXrtWWLVv0pz/9STExMS43FQUAAOdzV+1ev369EhIStGnTJq1atUqlpaXq1auXTp065YgZO3asPv74Y6Wnp2v9+vXKycnRPffcUxVvCwAAj1Qly7ns3btXd911lyTJbDbr1KlTMplMGjt2rLp3735ZG4OdPHnSaVb5vn37tG3bNgUGBiowMFCTJ0/WoEGDFBISor179+q5557Ttddeq969e7v9fQE4n7+/v+O5j4+Pfve73ykyMlK7du3SF1984WiknxsHwPO4q3bPnj1bktStWzen8fnz52v48OGSpOnTp8vLy0uDBg2S1WpV7969NWvWLLe9FwAA6gJ31e6VK1c6HaempiooKEhbtmxRXFycCgoK9NZbbyktLU3du3eX9Gtdv/7667Vp0ya+BAcA1AlV0kRv0qSJioqKJElXX321duzYoRtuuEH5+fk6ffr0Zd1r8+bNuuOOOxzH48aNkyQNGzZMs2fPVlZWlv79738rPz9fYWFh6tWrl1544QXWTQWqyU033aRvv/1WkmSz2bRmzRqtWbNGkuTt7e0UB8Bzuat22+32i8b4+fkpJSVFKSkpV5wvAAB1nTv/7j5XQUGBJCkwMFCStGXLFpWWlqpHjx6OmMjISEVERCgzM9NlE91qtcpqtTqOCwsLrzgnAACM5tYm+o4dOxQVFaW4uDitWrVKN9xwgwYPHqynnnpKa9as0apVq1xu9ulKt27dLvgH+aefflrZtAFUQvkSDZJkMpnUsWNHNW3aVMeOHVNWVlaFcQA8R1XUbgAAUHWqsnaXlZVpzJgxio2NVVRUlCQpNzdXZrPZaUNwSQoODlZubq7LeyUnJ1/Wr9ABAPBkbm2iR0dHq3Pnzho4cKAGDx4sSRo/frx8fHy0ceNGDRo0SBMmTHDnSwIwmJfX/7ZWsNlsTpuJuooD4Dmo3QAA1CxVWbsTEhK0Y8cObdiwodJ5JiYmOn5JLv06Ez08PLzS9wUAwAhubaKvX79e8+fPV3JysqZNm6ZBgwbpkUce0V/+8hd3vgzgNsXFxcrOzjY6jRqtadOmkn6diVJSUqITJ044zjVp0kRms1l5eXlq2rSpfvjhB6PSrBUiIiLk5+dndBqoZajdAADULFVVu0ePHq3ly5crIyNDzZs3d4yHhISopKRE+fn5TrPR8/LyFBIS4vJ+vr6+LLMKAKg1TPZLWbz0Mp06dUqLFy9WamqqvvjiC1177bUaMWKEhg0bdsEia5TCwkJZLBYVFBQoICDA6HRQjX744Qc99thjRqcBXJI33nhDbdq0MToNVKPqrE/UbgAAKq8m1m673a4nn3xSS5Ys0bp163Tdddc5nS8oKFCzZs307rvvatCgQZKk3bt3KzIy8oJrov8WtRsA4IkutT5VSRP9XHv27NH8+fP1zjvvKDc3V3369NFHH31UlS952SjmdRcz0d3j22+/1Zw5c+Tj46PS0lLHuNlsVklJiZ544gk2FnUDZqLXPUbVJ2o3AABXpibW7lGjRiktLU3Lli1T27ZtHeMWi0X169eXJI0cOVIrVqxQamqqAgIC9OSTT0qSNm7ceMk5UrsBAJ7IY5ro0q/fkC9cuFCJiYnKz8+XzWar6pe8LBRzoPIyMjI0a9Ysp82FQkNDNXLkSMXFxRmYGVBzGVmfqN0AAFy+mli7TSZThePz58/X8OHDJf06+ejpp5/Wu+++K6vVqt69e2vWrFmXNeOd2g0A8ESXWp/cuib6b2VkZGjevHn64IMP5OXlpfvuu08jRoyoypcEYJC4uDjFxsZqxYoVevXVV/X000+rb9++8vb2Njo1AJeB2g0AQM1S2dp9KfPq/Pz8lJKSopSUlMqkCgBAjeX2JnpOTo5SU1OVmpqqPXv2qGvXrvrnP/+p++67Tw0bNnT3ywHwIN7e3o6fgLZt25YGOlBDULsBAKhZqN0AAFQvtzbR4+Pj9fnnn6tp06YaOnSoHn74Yac11QAAgGehdgMAULNQuwEAqH5ubaL7+Pjo/fffV79+/ZiBCgBADUDtBgCgZqF2AwBQ/dzaRL/U3b8BAIBnoHYDAFCzULsBAKh+XkYnAAAAAAAAAACAp6KJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAueHwTPSMjQ/3791dYWJhMJpOWLl3qdN5ut2vixIkKDQ1V/fr11aNHD/3444/GJAsAAAAAAAAAqFU8vol+6tQpdejQQSkpKRWef/nll/XPf/5Tc+bM0VdffaWGDRuqd+/eKi4uruZMAQAAAAAAAAC1TT2jE7iY+Ph4xcfHV3jObrdrxowZmjBhggYMGCBJevvttxUcHKylS5fq/vvvr85UAQAAAAAAAAC1jMfPRL+Qffv2KTc3Vz169HCMWSwW3XLLLcrMzHR5ndVqVWFhodMDAAAAAAAAAIDfqtFN9NzcXElScHCw03hwcLDjXEWSk5NlsVgcj/Dw8CrNEwAAAAAAAABQM9XoJvqVSkxMVEFBgeNx8OBBo1MCAAAAAAAAAHigGt1EDwkJkSTl5eU5jefl5TnOVcTX11cBAQFODwAAAAAAAAAAfqtGN9FbtWqlkJAQrV692jFWWFior776SjExMQZmBgAAAAAAAACoDeoZncDFnDx5Unv27HEc79u3T9u2bVNgYKAiIiI0ZswYTZ06Vdddd51atWqlv/71rwoLC9PAgQONSxoAAAAAAAAAUCt4fBN98+bNuuOOOxzH48aNkyQNGzZMqampeu6553Tq1Ck99thjys/P12233aaVK1fKz8/PqJQBAAAAAAAAALWExzfRu3XrJrvd7vK8yWTSlClTNGXKlGrMCgAAAAAAAABQF9ToNdEBAAAAAAAAAKhKNNEBAAAAAAAAAHCBJjoAAAAAAAAAAC7QRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF2iiAwAAAAAAAADgQj2jE8DlycvLU0FBgdFpAC4dOHDA6X8BT2WxWBQcHGx0GgAAAAAAwMPRRK9B8vLy9NAfh6q0xGp0KsBFTZs2zegUgAvyMftqwTtv00gHAAAAAAAXRBO9BikoKFBpiVVnWt+uMj+L0ekAQI3lVVwg/bReBQUFNNEBAAAAAMAF0USvgcr8LCpr2NToNAAAAAAAAACg1mNjUQAA4FYZGRnq37+/wsLCZDKZtHTpUqfzdrtdEydOVGhoqOrXr68ePXroxx9/NCZZAAAAAAAugiY6AABwq1OnTqlDhw5KSUmp8PzLL7+sf/7zn5ozZ46++uorNWzYUL1791ZxcXE1ZwoAAAAAwMWxnAsAAHCr+Ph4xcfHV3jObrdrxowZmjBhggYMGCBJevvtXzd4Xbp0qe6///4Kr7NarbJa/7exdmFhofsTBwAAgNsVFxcrOzvb6DSASxIRESE/Pz+j04AHookOAACqzb59+5Sbm6sePXo4xiwWi2655RZlZma6bKInJydr8uTJ1ZUmAAAA3CQ7O1uPPfaY0WkAl+SNN95QmzZtjE4DHogmOgAAqDa5ubmSpODgYKfx4OBgx7mKJCYmaty4cY7jwsJChYeHV02SAADUMRkZGXrllVe0ZcsWHT58WEuWLNHAgQMd5+12u5KSkvTmm28qPz9fsbGxmj17tq677jrjkkaNERERoTfeeMPoNGqVAwcOaNq0aRo/frxatGhhdDq1SkREhNEpwEPRRAcAAB7P19dXvr6+RqcBAECtVL6fycMPP6x77rnnvPPl+5n8+9//VqtWrfTXv/5VvXv31vfff8+yB7goPz8/ZvZWkRYtWvDZAtWEJjoAAKg2ISEhkqS8vDyFhoY6xvPy8nTjjTcalBUAAHUb+5kAAHBhXkYnAAAA6o5WrVopJCREq1evdowVFhbqq6++UkxMjIGZAQCAilxsPxNXkpOTZbFYHA+WYQMA1GQ00QEAgFudPHlS27Zt07Zt2yT9+sf3tm3blJ2dLZPJpDFjxmjq1Kn66KOPtH37dg0dOlRhYWFOa68CAADPUJn9TAoKChyPgwcPVmmeAABUJZZzAQAAbrV582bdcccdjuPyDUGHDRum1NRUPffcczp16pQee+wx5efn67bbbtPKlStZUxUAgFqE/UwAALUJTXQAAOBW3bp1k91ud3neZDJpypQpmjJlSjVmBQAArgT7mQAAwHIuAAAAAADABfYzAQCAmegAAAAAANRpJ0+e1J49exzH5fuZBAYGKiIiwrGfyXXXXadWrVrpr3/9K/uZAADqFJroAAAAAADUYexnAgDAhdFEr4G8zuQbnQIA1Gj8OwoAAPA/7GcCAMCF0USvgervyzA6BQAAAAAAAACoE2ii10BnWsWprH5jo9MAgBrL60w+X0gCAAAAAIBLQhO9Biqr31hlDZsanQYAAAAAAAAA1HpeRicAAAAAAAAAAICnookOAAAAAAAAAIALNNEBAAAAAAAAAHCBJjoAAAAAAAAAAC7QRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF2iiAwAAAAAAAADgAk10AAAAAAAAAABcqPFN9EmTJslkMjk9IiMjjU4LAAAAAAAAAFAL1DM6AXdo3769Pv/8c8dxvXq14m0BAAAAAAAAAAxWK7rN9erVU0hIiNFpAAAAAAAAAABqmRq/nIsk/fjjjwoLC1Pr1q314IMPKjs7+4LxVqtVhYWFTg8AAAAAAAAAAH6rxs9Ev+WWW5Samqq2bdvq8OHDmjx5sn73u99px44d8vf3r/Ca5ORkTZ48uZozBQAAAAAAni4vL08FBQVGpwG4dODAAaf/BTyVxWJRcHCw0Wm4RY1vosfHxzueR0dH65ZbblGLFi20ePFijRgxosJrEhMTNW7cOMdxYWGhwsPDqzxXAAAAAADgufLy8vTQH4eqtMRqdCrARU2bNs3oFIAL8jH7asE7b9eKRnqNb6L/VuPGjdWmTRvt2bPHZYyvr698fX2rMSv38irmG3EAqAz+HQUAAEBFCgoKVFpi1ZnWt6vMz2J0OgBQY3kVF0g/rVdBQQFNdE908uRJ7d27V3/84x+NTsXtLBaLfMy+0k/rjU4FAGo8H7OvLBb+MAIAAMD5yvwsKmvY1Og0AAAeosY30Z955hn1799fLVq0UE5OjpKSkuTt7a0HHnjA6NTcLjg4WAveeZu12eDRDhw4oGnTpmn8+PFq0aKF0ekALtWmtdkAAAAAAEDVqfFN9EOHDumBBx7QL7/8ombNmum2227Tpk2b1KxZM6NTqxLBwcE0fVAjtGjRQm3atDE6DQAAAAAAAKBSanwTfdGiRUanAAAAAAAAAACopbyMTgAAAAAAAAAAAE9FEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKCJDgAAAAAAAACACzTRAQAAAAAAAABwgSY6AAAAAAAAAAAu0EQHAAAAAAAAAMAFmugAAAAAAAAAALhAEx0AAAAAAAAAABdoogMAAAAAAAAA4AJNdAAAAAAAAAAAXKhndAIAAAAAAACexOtMvtEpAECNVtv+HaWJDgAAAAAAcI76+zKMTgEA4EFoogMAAAAAAJzjTKs4ldVvbHQaAFBjeZ3Jr1VfSNJEBwAAAAAAOEdZ/cYqa9jU6DQAAB6CjUUBAAAAAAAAAHCBJjoAAAAAAAAAAC7QRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF2iiAwAAAAAAAADgAk10AAAAAAAAAABcoIkOAAAAAAAAAIALNNEBAAAAAAAAAHChntEJAAAAADCGzWZTVlaWjh8/rsDAQEVHR8vb29votAAAAACPQhMdAAAAqIMyMjL02muv6ciRI46xoKAgjR49WnFxcQZmBgDG8youMDoFAKjRatu/ozTRAQAAgDomIyNDEydOPG/8yJEjmjhxoqZMmUIjHUCdZLFY5GP2lX5ab3QqAFDj+Zh9ZbFYjE7DLWiiAwAAAHWIzWbT5MmTHcddunTR0KFD9fbbb+vrr7+WJE2ePFmfffYZS7sAqHOCg4O14J23VVBQu2ZQonY5cOCApk2bpvHjx6tFixZGpwO4ZLFYFBwcbHQabkETHQAAAKhDMjMzZbPZJEkrVqxQgwYNJEkvv/yyTp8+rb59+8pmsykzM1O33XabkakCgCGCg4NrTdMHtVuLFi3Upk0bo9MA6gSa6AAAAKgxiouLlZ2dbXQaNdo///lPSVJkZKQOHTp03vm2bdtq9+7d+uc//6mgoKDqTq9WiYiIkJ+fn9FpAAAAoJJoogMAAKDGyM7O1mOPPWZ0GrXCrl27LvhZHjlyhM+6kt544w1mCAIAANQCNNEBAACqUF5eHuuqupHVatX48eONTqNGmz9/vnJyctSgQQONGTNGubm5mjdvnh5++GGFhIRoxowZOn36tMLCwvSnP/3J6HRrNKvVqh9++MHoNGqN2rSuKgAAqFloogMAAEOkpKTolVdeUW5urjp06KB//etf6tKli9FpuVVeXp4efOiPOltaYnQqwHlOnz6tv/3tb47jefPmOZ3PycnRtGnTqjstwKV6PmYtXPAOjXQAAFDtvIxOAAAA1D3vvfeexo0bp6SkJH377bfq0KGDevfurSNHjhidmtuV/f8NHAEAlcO/p8ZLSUlRy5Yt5efnp1tuuUVff/210SkBAFAtmImOOo3NydzvwIEDTv8L92FzMtQm//jHP/Too486loqYM2eO/vOf/2jevHn6y1/+cl681WqV1Wp1HBcWFlZbrpURHBysWbNSdPDgQaNTqTVKS0t17Ngxo9OoFRYvXqyTJ0+eN96oUSPdd999BmRU+zRt2lQ+Pj5Gp1FrhIeHMwvdQOVfgM+ZM0e33HKLZsyYod69e2v37t1sQowL4u9u9+Pv7qrD391wxWS32+1GJ2G0wsJCWSwWFRQUKCAgwOh0UI1++OEHNsxCjcHmZHVPba1PJSUlatCggd5//30NHDjQMT5s2DDl5+dr2bJl510zadIkTZ48+bzx2vbZ4OKo3ahJqN11T22t3ZJ0yy23qHPnznrttdckSWVlZQoPD9eTTz55yV+Ah4eH18rPBhdG7UZNQu2uey61djMTHXVaRESE3njjDaPTAC5JRESE0SkAbnHs2DHZbLbzZhMGBwdr165dFV6TmJiocePGOY7L/xBH3UPtRk1C7UZtUVJSoi1btigxMdEx5uXlpR49eigzM7PCa5KTkyv8Ahx1D7UbNQm1G67QREed5ufnxzeMAFAD+Pr6ytfX1+g04AGo3QBQ/fgCHJVB7QZQG9SajUXZ4AQAgJqhadOm8vb2Vl5entN4Xl6eQkJCDMoKAAC4k6+vrwICApweAADUVLWiiV6+wUlSUpK+/fZbdejQQb1799aRI0eMTg0AAPyG2WxWp06dtHr1asdYWVmZVq9erZiYGAMzAwAAFeELcABAXVcrmuj/+Mc/9Oijj+pPf/qT2rVrpzlz5qhBgwaaN29ehfFWq1WFhYVODwAAUH3GjRunN998U//+97/13//+VyNHjtSpU6f0pz/9yejUAADAb/AFOACgrqvxa6KzwQkAADXPH/7wBx09elQTJ05Ubm6ubrzxRq1cufK8tVYBAIBnGDdunIYNG6abb75ZXbp00YwZM/gCHABQZ9T4JjobnAAAUDONHj1ao0ePNjoNAABwCfgCHABQl9X4JvqV8PX1la+vr9FpAAAAAABQY/AFOACgrqrxa6KzwQkAAAAAAAAAoKrU+CY6G5wAAAAAAAAAAKpKrVjOhQ1OAAAAAAAAAABVoVY00dngBAAAAAAAAABQFWpFE11igxMAAAAAAAAAgPvVmiZ6ZdjtdklSYWGhwZkAAPA/5XWpvE7hf6jdAABPRO12jdoNAPBEl1q7aaJLKioqkiSFh4cbnAkAAOcrKiqSxWIxOg2PQu0GAHgyavf5qN0AAE92sdptsvMVucrKypSTkyN/f3+ZTCaj0wFqtMLCQoWHh+vgwYMKCAgwOh2gRrPb7SoqKlJYWJi8vLyMTsejULsB96F2A+5D7XaN2g24D7UbcJ9Lrd000QG4VWFhoSwWiwoKCijmAADUANRuAABqFmo3UP34ahwAAAAAAAAAABdoogMAAAAAAAAA4AJNdABu5evrq6SkJPn6+hqdCgAAuATUbgAAahZqN1D9WBMdAAAAAAAAAAAXmIkOAAAAAAAAAIALNNEBAAAAAAAAAHCBJjoAAAAAAAAAAC7QRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF2iiAwAAAAAAAADgAk10AAAAAAAAAABcoIkOAAAAAAAAAIALNNEBAAAAAAAAAHCBJjoAAAAAAAAAAC7QRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF2iiA7ggk8mkSZMmGZ2Gk2+++UZdu3ZVw4YNZTKZtG3bNqNTAgDAI1C3AQCoPajrgOegiQ4YJDU1VSaTyekRFBSkO+64Q5988onR6VXa999/r0mTJmn//v1uvW9paakGDx6s48ePa/r06XrnnXfUokWLC16Tl5enZ555RpGRkWrQoIEaNmyoTp06aerUqcrPz3drfgCA2om6fWUup26vW7fO8dkuWLCgwpjY2FiZTCZFRUW5NU8AQN1CXb8yV1rXyx+BgYG69dZbtXDhQrfmBVSHekYnANR1U6ZMUatWrWS325WXl6fU1FT17dtXH3/8sfr162d0elfs+++/1+TJk9WtWze1bNnSbffdu3evDhw4oDfffFOPPPLIReO/+eYb9e3bVydPntRDDz2kTp06SZI2b96sF198URkZGfrss8/clh8AoHajbl+ey63bkuTn56e0tDQ99NBDTuP79+/Xxo0b5efn57b8AAB1G3X98lxJXf+///s/de7cWZL0yy+/6L333tNDDz2k/Px8JSQkuC03oKrRRAcMFh8fr5tvvtlxPGLECAUHB+vdd9+t0UW7qhw5ckSS1Lhx44vG5ufn6/e//728vb21detWRUZGOp2fNm2a3nzzzapIEwBQS1G3L8/l1O1yffv21UcffaRjx46padOmjvG0tDQFBwfruuuu04kTJ9ydKgCgDqKuX54rqeu/+93vdO+99zqOR44cqdatWystLY0mOmoUlnMBPEzjxo1Vv3591avn/B3XqVOn9PTTTys8PFy+vr5q27at/v73v8tut0uSzpw5o8jISEVGRurMmTOO644fP67Q0FB17dpVNptNkjR8+HA1atRIP/30k3r37q2GDRsqLCxMU6ZMcdzvQrZu3ar4+HgFBASoUaNGuvPOO7Vp0ybH+dTUVA0ePFiSdMcddzh+urVu3boL3nfNmjX63e9+p4YNG6px48YaMGCA/vvf/zrODx8+XLfffrskafDgwTKZTOrWrZvL+73++uv6+eef9Y9//OO8BrokBQcHa8KECY5jV+vNtWzZUsOHD79g7gCAuom67b66XW7AgAHy9fVVenq603haWpruu+8+eXt7n3eNyWTS6NGjtXTpUkVFRcnX11ft27fXypUrL/p6AACUo667v67/ltlsVpMmTc77jAFPRxMdMFhBQYGOHTumo0ePaufOnRo5cqRj6ZFydrtdd999t6ZPn64+ffroH//4h9q2batnn31W48aNkyTVr19f//73v7Vnzx6NHz/ecW1CQoIKCgqUmprq9EenzWZTnz59FBwcrJdfflmdOnVSUlKSkpKSLpjvzp079bvf/U7fffednnvuOf31r3/Vvn371K1bN3311VeSpLi4OP3f//2fJOn555/XO++8o3feeUfXX3+9y/t+/vnn6t27t44cOaJJkyZp3Lhx2rhxo2JjYx3ruD3++ON6/vnnJf36k7B33nnH6b3+1kcffaT69es7fesNAEBlULd/VRV1u1yDBg00YMAAvfvuu46x7777Tjt37tSQIUNcXrdhwwaNGjVK999/v15++WUVFxdr0KBB+uWXXy76mgCAuom6/quqrOtFRUU6duyYjh07ph9++EGTJk3Sjh07NGzYsIteC3gUOwBDzJ8/3y7pvIevr689NTXVKXbp0qV2SfapU6c6jd977712k8lk37Nnj2MsMTHR7uXlZc/IyLCnp6fbJdlnzJjhdN2wYcPskuxPPvmkY6ysrMx+11132c1ms/3o0aOOcUn2pKQkx/HAgQPtZrPZvnfvXsdYTk6O3d/f3x4XF+cYK3/ttWvXXtLnceONN9qDgoLsv/zyi2Psu+++s3t5edmHDh3qGFu7dq1dkj09Pf2i92zSpIm9Q4cOl/T6dvv577VcixYt7MOGDbvk+wAAah/qtrOqqNvnxi5fvtxuMpns2dnZdrvdbn/22WftrVu3ttvtdvvtt99ub9++vdO1kuxms9nps/3uu+/skuz/+te/Luk9AQDqDuq6s6qs6799eHl52adNm3ZJeQGehJnogMFSUlK0atUqrVq1SgsWLNAdd9yhRx55RB9++KEjZsWKFfL29nZ8m1zu6aeflt1ud9o9fNKkSWrfvr2GDRumUaNG6fbbbz/vunKjR492PC//GXRJSYk+//zzCuNtNps+++wzDRw4UK1bt3aMh4aGasiQIdqwYYMKCwsv+zM4fPiwtm3bpuHDhyswMNAxHh0drZ49e2rFihWXfU9JKiwslL+//xVdCwBARajbVVe3z9WrVy8FBgZq0aJFstvtWrRokR544IELXtOjRw9dc801TvkEBATop59+qnQ+AIDaibpe9XV94sSJjs/4vffe0wMPPKDx48dr5syZlbovUN1YgAgwWJcuXZw2MnnggQfUsWNHjR49Wv369ZPZbNaBAwcUFhZ2XkO4/OdYBw4ccIyZzWbNmzdPnTt3lp+fn+bPny+TyXTe63p5eTkVXklq06aNJDl+rvVbR48e1enTp9W2bdvzzl1//fUqKyvTwYMH1b59+0t78/9fef6u7vvpp5/q1KlTatiw4WXdNyAgQEVFRZd1DQAAF0Ldrrq6fS4fHx8NHjxYaWlp6tKliw4ePHjBpVwkKSIi4ryxJk2asAkpAMAl6nrV1/UbbrhBPXr0cBzfd999Kigo0F/+8hcNGTJEzZo1u6L7AtWNmeiAh/Hy8tIdd9yhw4cP68cff7yie3z66aeSpOLi4iu+R20QGRmpH374QSUlJZW6T/kGMAAA/BZ1u+oMGTJE27Zt06RJk9ShQwe1a9fugvEVbTgq6ZI2aQMAQKKuV5c777xTxcXF+vrrr41OBbhkNNEBD3T27FlJ0smTJyVJLVq0UE5Oznmzqnft2uU4Xy4rK0tTpkzRn/70J3Xs2FGPPPKICgoKznuNsrKy837e/MMPP0iSWrZsWWFezZo1U4MGDbR79+7zzu3atUteXl4KDw+XpAq/bXelPH9X923atOkVfevdv39/nTlzRh988MElxTdp0kT5+flOYyUlJTp8+PBlvzYAoO6gbjvf90rr9m/ddtttioiI0Lp16y46Cx0AAHehrjvf1111/Vy//YyBmoAmOuBhSktL9dlnn8lsNjt+Hta3b1/ZbDa99tprTrHTp0+XyWRSfHy849rhw4crLCxMM2fOVGpqqvLy8jR27NgKX+vc+9ntdr322mvy8fHRnXfeWWG8t7e3evXqpWXLljn9xCwvL09paWm67bbbFBAQIEmOIvvbpnRFQkNDdeONN+rf//63U/yOHTv02WefqW/fvhe9R0WeeOIJhYaG6umnn3b8H5JzHTlyRFOnTnUcX3PNNcrIyHCKeeONN5iJDgBwibr9v/jK1u3fMplM+uc//6mkpCT98Y9/dMs9AQC4EOr6/+LdXdfPtXz5cklShw4d3H5voKqwJjpgsE8++cTxDfaRI0eUlpamH3/8UX/5y18cBbB///664447NH78eO3fv18dOnTQZ599pmXLlmnMmDGOTbSmTp2qbdu2afXq1fL391d0dLQmTpyoCRMm6N5773Uqfn5+flq5cqWGDRumW265RZ988on+85//6Pnnn7/gmmRTp07VqlWrdNttt2nUqFGqV6+eXn/9dVmtVr388suOuBtvvFHe3t566aWXVFBQIF9fX3Xv3l1BQUEV3veVV15RfHy8YmJiNGLECJ05c0b/+te/ZLFYNGnSpCv6bJs0aaIlS5aob9++uvHGG/XQQw+pU6dOkqRvv/1W7777rmJiYhzxjzzyiJ544gkNGjRIPXv21HfffadPP/1UTZs2vaLXBwDUPtTtX1VF3a7IgAEDNGDAALfdDwCAc1HXf1WVdf2LL75QcXGxJOn48eP66KOPtH79et1///2KjIys1L2BamUHYIj58+fbJTk9/Pz87DfeeKN99uzZ9rKyMqf4oqIi+9ixY+1hYWF2Hx8f+3XXXWd/5ZVXHHFbtmyx16tXz/7kk086XXf27Fl7586d7WFhYfYTJ07Y7Xa7fdiwYfaGDRva9+7da+/Vq5e9QYMG9uDgYHtSUpLdZrM5XS/JnpSU5DT27bff2nv37m1v1KiRvUGDBvY77rjDvnHjxvPe45tvvmlv3bq13dvb2y7Jvnbt2gt+Jp9//rk9NjbWXr9+fXtAQIC9f//+9u+//94pZu3atXZJ9vT09Ave61w5OTn2sWPH2tu0aWP38/OzN2jQwN6pUyf7tGnT7AUFBY44m81m//Of/2xv2rSpvUGDBvbevXvb9+zZY2/RooV92LBhl/x6AIDah7p9PnfX7UuNvf322+3t27d3GpNkT0hIOC+WGg4AqAh1/XxVVdfPfZjNZntkZKR92rRp9pKSkoveA/AkJrudnXaAumb48OF6//33WX8MAIAagLoNAEDtQV0HaibWRAcAAAAAAAAAwAWa6AAAAAAAAAAAuEATHQAAAAAAAAAAF1gTHQAAAAAAAAAAF5iJDgAAAAAAAACAC/WMTsATlJWVKScnR/7+/jKZTEanAwCAJMlut6uoqEhhYWHy8uJ773NRuwEAnoja7Rq1GwDgiS61dtNEl5STk6Pw8HCj0wAAoEIHDx5U8+bNjU7Do1C7AQCejNp9Pmo3AMCTXax200SX5O/vL+nXDysgIMDgbAAA+FVhYaHCw8MddQr/Q+0GAHgiardr1G4AgCe61NpNE11y/JQsICCAYg4A8Dj85Pl81G4AgCejdp+P2g0A8GQXq90s0gYAAAAAAAAAgAs00QEAAAAAAAAAcIEmOgAAAAAAAAAALtBEBwAAAAAAAADABZroAAAAAAAAAAC4QBMdAAAAAAAAAAAXaKIDAAAAAAAAAOBCPaMTAFB72Gw2ZWVl6fjx4woMDFR0dLS8vb2NTgsAALhw5swZvf766zp06JCaN2+uxx9/XPXr1zc6LQAA4MLJkyeVnJysnJwchYWFKTExUY0aNTI6LaDWo4kOwC0yMjI0a9Ys5ebmOsZCQkI0atQoxcXFGZgZAACoyPjx4/Xll186jjdv3qylS5cqNjZW06ZNMzAzAABQkSeeeEK7du1yHO/bt0/9+vVTZGSk5syZY2BmQO3Hci4AKi0jI0NJSUlq3bq1UlJStGLFCqWkpKh169ZKSkpSRkaG0SkCAIBzlDfQfXx8NGTIEC1YsEBDhgyRj4+PvvzyS40fP97oFAEAwDnKG+gmk0m9evXS3Llz1atXL5lMJu3atUtPPPGE0SkCtZrJbrfbjU7CaIWFhbJYLCooKFBAQIDR6QA1is1m04MPPqjWrVtr6tSp8vL633dzZWVlmjBhgvbt26cFCxawtAtwmahPrvHZAFfuzJkzio+Pl4+Pj/7zn//IbDY7zpWUlOiuu+5SaWmpPvnkE5Z2AS4T9ck1Phvgyp08eVL9+vWTyWTS8uXL9cMPPziWUW3Tpo369esnu92u5cuXs7QLcJkutT551Ez02bNnKzo6WgEBAQoICFBMTIw++eSTC16Tnp6uyMhI+fn56YYbbtCKFSuqKVsAkpSVlaXc3Fw9+OCDTg10SfLy8tKDDz6ow4cPKysry6AMAQDAuV5//XVJ0uDBg50a6JJkNpt17733OsUBAABjJScnS5JuuOEGjRgxQmPHjtULL7ygsWPHasSIEYqKinKKA+B+HtVEb968uV588UVt2bJFmzdvVvfu3TVgwADt3LmzwviNGzfqgQce0IgRI7R161YNHDhQAwcO1I4dO6o5c6DuOn78uCSpVatWFZ4vHy+PAwAAxjp06JAkqW/fvrLZbNq6datWr16trVu3ymazqW/fvk5xAADAWDk5OZJ+ncRW0TKq27dvd4oD4H4etbFo//79nY6nTZum2bNna9OmTWrfvv158TNnzlSfPn307LPPSpJeeOEFrVq1Sq+99toFN1SwWq2yWq2O48LCQje9A6DuCQwMlPTrhiYV/Xe6b98+pzgAAGCs5s2ba/PmzZozZ4727Nlz3qbg11xzjSMOAAAYLzQ0VPv27VOzZs2cllFt3769pk6dqvvuu0/Hjh1TaGiowZkCtZdHzUQ/l81m06JFi3Tq1CnFxMRUGJOZmakePXo4jfXu3VuZmZkXvHdycrIsFovjER4e7ra8gbomOjpaISEhWrhwocrKypzOlZWVaeHChQoNDVV0dLRBGQIAgHM9/vjjkqQNGzaoRYsWTrPZWrRooS+//NIpDgAAGKt80unRo0dVUlLidK6kpETHjh1zigPgfh7XRN++fbsaNWokX19fPfHEE1qyZInatWtXYWxubq6Cg4OdxoKDg51m01QkMTFRBQUFjsfBgwfdlj9Q13h7e2vUqFHKzMzUhAkTtHPnTp0+fVo7d+7UhAkTlJmZqZEjR7KpKAAAHsJsNjvWQv/222+1YcMG/fLLL9qwYYO+/fbb82IAAICxTp8+7XgeHx+vadOm6YcfftC0adMUHx9fYRwA9/Ko5VwkqW3bttq2bZsKCgr0/vvva9iwYVq/fr3LRvqV8PX1la+vr9vuB9R1cXFxmjx5smbNmqWEhATHeGhoqCZPnqy4uDgDswMAAOfKyspSSUmJoqOjlZWVpXfffVfvvvuu43z5eFZWljp27GhgpgAAQPrf8qgtWrTQgQMHtGrVKq1atcpxvnycZVSBquNxTXSz2axrr71WktSpUyd98803mjlzpl5//fXzYkNCQpSXl+c0lpeXp5CQkGrJFcD/xMXFKTY2VllZWTp+/LgCAwMVHR3NDHQAADxM+WbfL774okwmk15//XUdOnRIzZs31+OPPy673a6+ffuyKTgAAB6ifBnVq6++Wv/617/00ksvKScnR2FhYfrzn/+sF1980fEFOYCq4XHLufxWWVmZ0yag54qJidHq1audxlatWuVyDXUAVcvb21sdO3bUnXfeqY4dO9JAB+qg2bNnKzo6WgEBAQoICFBMTIw++eQTx/ni4mIlJCToqquuUqNGjTRo0KDzvhAHULXO3RS8fv36GjNmjP7+979rzJgxql+/PpuCAwDgYc5dRvXFF1/UkCFDlJKSoiFDhujFF19kGVWgGnhUEz0xMVEZGRnav3+/tm/frsTERK1bt04PPvigJGno0KFKTEx0xD/11FNauXKlXn31Ve3atUuTJk3S5s2bNXr0aKPeAgAAdVrz5s314osvasuWLdq8ebO6d++uAQMGaOfOnZKksWPH6uOPP1Z6errWr1+vnJwc3XPPPQZnDdQtbAoOAEDNU76M6k8//aSEhAT17dtXCQkJ2rdvH8uoAtXAo5ZzOXLkiIYOHarDhw/LYrEoOjpan376qXr27ClJys7OlpfX//r+Xbt2VVpamiZMmKDnn39e1113nZYuXaqoqCij3gIAAHVa//79nY6nTZum2bNna9OmTWrevLneeustpaWlqXv37pKk+fPn6/rrr9emTZt06623GpEyUOeUz2ZLSkrShAkT9OCDD6pVq1bat2+fFi5cqMzMTE2ePJnZbAAAeBiWUQWMY7Lb7XajkzBaYWGhLBaLCgoKFBAQYHQ6AABIqvn1yWazKT09XcOGDdPWrVuVm5urO++8UydOnFDjxo0dcS1atNCYMWM0duxYl/eyWq1Oy7sVFhYqPDy8xn42gCfIyMjQrFmzlJub6xgLDQ3VyJEjmc0GXKGaXrurEp8NAMATXWp98qiZ6AAAoObbvn27YmJiVFxcrEaNGmnJkiVq166dtm3bJrPZ7NRAl6Tg4GCnJl5FkpOTNXny5CrMGqh7mM0GAAAAXBqa6AAAwK3atm2rbdu2qaCgQO+//76GDRum9evXV+qeiYmJGjdunOO4fCY6gMop3xQcAAAAgGs00QEAgFuZzWZde+21kqROnTrpm2++0cyZM/WHP/xBJSUlys/Pd5qNnpeXp5CQkAve09fXV76+vlWZNgAAAAAAFfK6eAgAAMCVKysrk9VqVadOneTj46PVq1c7zu3evVvZ2dmKiYkxMEMAAACgZjhz5oxmzJihZ555RjNmzNCZM2eMTgmoE5iJDgAA3CYxMVHx8fGKiIhQUVGR0tLStG7dOn366aeyWCwaMWKExo0bp8DAQAUEBOjJJ59UTEyMbr31VqNTBwAAADza+PHj9eWXXzqON2/erKVLlyo2NlbTpk0zMDOg9mMmOgAAcJsjR45o6NChatu2re6880598803+vTTT9WzZ09J0vTp09WvXz8NGjRIcXFxCgkJ0Ycffmhw1gAAAIBnK2+g+/j4aMiQIVqwYIGGDBkiHx8fffnllxo/frzRKQK1mslut9uNTsJohYWFslgsKigoUEBAgNHpAAAgifp0IXw2AABPRH1yjc8GuHJnzpxRfHy8fHx89J///Edms9lxrqSkRHfddZdKS0v1ySefqH79+gZmCtQ8l1qfmIkOAAAAAAAAeKjXX39dkjR48GCnBrokmc1m3XvvvU5xANyPJjoAAAAAAADgoQ4dOiRJ6tu3b4Xny8fL4wC4H010AAAAAAAAwEM1b95ckrRixYoKz5ePl8cBcD+a6AAAAAAAAICHevzxxyVJ6enpOnPmjLZu3arVq1dr69atOnPmjN5//32nOADuV8/oBAAAAAAAAABUrH79+oqNjdWXX36p+Pj4CmNiY2PZVBSoQsxEBwAAAAAAADxY7969K3UeQOXQRAcAAAAAAAA8lM1m06xZs9S1a1ctWbJEUVFRatasmaKiorRkyRJ17dpVs2fPls1mMzpVoNaiiQ4AAAAAAAB4qKysLOXm5qpBgwa69957tWPHDh09elQ7duzQvffeqwYNGujw4cPKysoyOlWg1mJNdAAAAAAAAMBDHT9+XJL0+eefq0mTJhoxYoRiYmKUmZmpt956S59//rlTHAD3YyY6AAAAAAAA4KECAgIkSf7+/lq0aJGuvvpqbdu2TVdffbUWLVokf39/pzgA7sdMdAAAAAAAAMBD/fTTT5KkBg0aaOjQocrLy3OcCw4OVoMGDVRUVKSffvpJnTt3NipNoFZjJjoAAAAAAADgoXJzcyVJeXl5Kikp0dNPP633339fTz/9tEpKShxN9fI4AO7HTHQAAAAAAADAQ4WEhEj6dda5yWTSq6++6jgXGhqq4OBg5eXlOeIAuB9NdAAAAAAAAMBDtW7dWpJ0+vRpvf/++/r+++91/PhxBQYGql27drr33nud4gC4H8u5AAAAAABQRyQnJ6tz587y9/dXUFCQBg4cqN27d1/wmtTUVJlMJqeHn59fNWUMoLCwUJJUVFSk+++/X4cOHVKHDh106NAh3X///SoqKnKKA+B+zEQHAAAAAKCOWL9+vRISEtS5c2edPXtWzz//vHr16qXvv/9eDRs2dHldQECAU7PdZDJVR7oAJAUGBkqSevToobVr1zot5+Lt7a0ePXro888/d8QBcD9mogMAAAAAUEesXLlSw4cPV/v27dWhQwelpqYqOztbW7ZsueB1JpNJISEhjkdwcHA1ZQwgOjpaISEhOn36tN577z21bNlS/v7+atmypd577z2dPn1aoaGhio6ONjpVoNZiJjoAAAAAAHVUQUGBJF10BuvJkyfVokULlZWV6aabbtLf/vY3tW/f3mW81WqV1Wp1HLPMBHDlvL29NWrUKE2cOFEbN250jBcVFTnWQ58yZYq8vb2NShGo9ZiJDgAAAABAHVRWVqYxY8YoNjZWUVFRLuPatm2refPmadmyZVqwYIHKysrUtWtXHTp0yOU1ycnJslgsjkd4eHhVvAWgzkhLS6vUeQCVw0x0AAAAAADqoISEBO3YsUMbNmy4YFxMTIxiYmIcx127dtX111+v119/XS+88EKF1yQmJmrcuHGO48LCQhrpwBU6efKkdu3aJZPJpOXLl+uHH37Q8ePHFRgYqDZt2qhfv37atWuXTp48qUaNGhmdLlArMRMdAAAAAIA6ZvTo0Vq+fLnWrl2r5s2bX9a1Pj4+6tixo/bs2eMyxtfXVwEBAU4PAFcmOTlZktSzZ081bNhQHTt21J133qmOHTuqYcOG6tGjh1McAPejiQ4AAAAAQB1ht9s1evRoLVmyRGvWrFGrVq0u+x42m03bt29XaGhoFWQI4LdycnIkSffdd1+F5wcPHuwUB8D9aKIDAAAAAFBHJCQkaMGCBUpLS5O/v79yc3OVm5urM2fOOGKGDh2qxMREx/GUKVP02Wef6aefftK3336rhx56SAcOHNAjjzxixFsA6pywsDBJ0uLFi1VQUKDRo0dr8ODBGj16tAoKCpSenu4UB8D9WBMdAAAAAIA6Yvbs2ZKkbt26OY3Pnz9fw4cPlyRlZ2fLy+t/c+5OnDihRx99VLm5uWrSpIk6deqkjRs3ql27dtWVNlCnJSYmql+/fvrss8/02WefOcaPHj2qAQMGOMUBqBo00QEAAAAAqCPsdvtFY9atW+d0PH36dE2fPr2KMgJwMY0aNZKPj49KS0slSYGBgXr00Uf15ptv6vjx45J+3auATUWBqkMTHQAAAAAAAPBQBQUFjga6JB0/flwvvfSSU0xpaakKCgpksViqOz2gTmBNdAAAAAAAAMBDjR8/XpLUpUsXLVu2TFFRUWrWrJmioqK0bNkyde7c2SkOgPvRRAcAAAAAAAA8VF5eniQpOjpajz/+uHbs2KGjR49qx44devzxx3XDDTc4xQFwP5roAAAAAAAAgIcKDg6WJM2dO1etW7dWSkqKVqxYoZSUFLVu3Vrz5s1zigPgfjTRAQAAAAAAAA81ZcoUx/M///nPKikpUWZmpkpKSvTnP/+5wjgA7sXGogAAAAAAAICHOnDggOP5gAEDLhgXGBhYHSkBdQ4z0QEAAAAAAAAPdfz4cbfGAbh8NNEBAAAAAAAAD9W4cWNJ0g033KAlS5YoKipKzZo1U1RUlJYsWeLYWLQ8DoD7eVQTPTk5WZ07d5a/v7+CgoI0cOBA7d69+4LXpKamymQyOT38/PyqKWMAAAAAAACgelgsFr322mtKT0/Xa6+9JovFYnRKQJ3gUU309evXKyEhQZs2bdKqVatUWlqqXr166dSpUxe8LiAgQIcPH3Y8zl0rCgAAAAAAAKip8vPzJUnbt2/XhAkTtHPnTp0+fVo7d+7UhAkTtH37dqc4AO7nURuLrly50uk4NTVVQUFB2rJli+Li4lxeZzKZFBIScsmvY7VaZbVaHceFhYWXnywAAAAAAABQxco3C3300Uf1wQcfKCEhwXHuqquu0iOPPKK5c+eyqShQhTxqJvpvFRQUSNJF/xE4efKkWrRoofDwcA0YMEA7d+68YHxycrIsFovjER4e7racAQAAAAAAAHeJjo5WSEiI5s2bd97mob/88ovmz5+v0NBQRUdHG5QhUPt5bBO9rKxMY8aMUWxsrKKiolzGtW3bVvPmzdOyZcu0YMEClZWVqWvXrjp06JDLaxITE1VQUOB4HDx4sCreAgAAAAAAAFAp3t7eys/Pl81mkySFhIRo4sSJjlUZbDabTpw4IW9vbyPTBGo1j22iJyQkaMeOHVq0aNEF42JiYjR06FDdeOONuv322/Xhhx+qWbNmev31111e4+vrq4CAAKcHAACovEvZJLxbt27nbQr+xBNPGJQxAAAA4NmOHj2q4uJiSVKzZs2Um5urKVOmKDc3V0FBQZKk4uJiHT161Mg0gVrNI5voo0eP1vLly7V27Vo1b978sq718fFRx44dtWfPnirKDgAAuHKpm4Q/+uijTpuCv/zyywZlDAAAAHi20aNHS5JatmypuXPnKioqSs2aNVNUVJTefPNNtWjRwikOgPt51MaidrtdTz75pJYsWaJ169apVatWl30Pm82m7du3q2/fvlWQIQAAuJBL3SS8QYMGbAoOAAAAXILyPQNLS0s1YMAAx/jRo0c1YMAAXX311U5xANzPo2aiJyQkaMGCBUpLS5O/v79yc3OVm5urM2fOOGKGDh2qxMREx/GUKVP02Wef6aefftK3336rhx56SAcOHNAjjzxixFsAAADncLVJ+MKFC9W0aVNFRUUpMTFRp0+fvuB92BQcAAAAdZXFYpEk/fzzzzKZTOrVq5fmzp2rXr16yWQy6eeff3aKA+B+HtVEnz17tgoKCtStWzeFhoY6Hu+9954jJjs7W4cPH3YcnzhxQo8++qiuv/569e3bV4WFhdq4caPatWtnxFsAAAD/n6tNwocMGaIFCxZo7dq1SkxM1DvvvKOHHnrogvdiU3AAAADUVa+88orjeVpamuLj43XgwAHFx8crLS2twjgA7mWy2+12o5MwWmFhoSwWiwoKCthkFADgMWp6fRo5cqQ++eQTbdiw4YJ7nKxZs0Z33nmn9uzZo2uuueaS7l3TPxsAQO1EfXKNzwa4cuPHj9eXX3550bjY2FhNmzatGjICao9LrU8eNRMdAADUDpezSfgtt9wiSWwKDgAAAFQgJyfHrXEALh9NdAAA4DZ2u12jR4/WkiVLtGbNmkvaJHzbtm2SpNDQ0CrODgAAAKh5wsLCJElms7nC8+Xj5XEA3I8mOgAAcJuLbRK+d+9evfDCC9qyZYv279+vjz76SEOHDlVcXJyio6MNzh4AAADwPP369ZMklZSUqF69eo49hoYMGaJ69eqppKTEKQ6A+9UzOgEAAFB7zJ49W5LUrVs3p/H58+dr+PDhMpvN+vzzzzVjxgydOnVK4eHhGjRokCZMmGBAtgAAAIDny8/Pdzw/e/as1q9fr61bt6qwsFBnz56tMA6Ae9FEBwAAbnOx/crDw8O1fv36asoGAAAAqPk2bNggSfL29pbNZtPPP/+sn3/+2XG+fHzDhg2Kj483Kk2gVqOJDgAAAAAAAHgoq9UqSbLZbPLy8lJISIi8vLxUVlam3Nxc2Ww2pzgA7kcTHQAAAAAAAPBQISEhjuddunTRH//4R7Vq1Ur79u3TO++8o02bNp0XB8C9aKIDAAAAAAAAHs5kMmnfvn1KSEhwjAUHB8tkMl10WUUAlUMTHQAAAAAAAPBQubm5kn7df+iXX35R9+7dFRkZqV27dikjI8PRQC+PA+B+NNEBAAAAAAAAD9W8eXNt3rxZV199tX7++WetWbNGa9ascZwvH2/evLmBWQK1m5fRCQAAAAAAAACo2OOPPy7p15nm/v7+Tuf8/f0dM9DL4wC4H010AAAAAAAAwEPVr19fkZGRstlsKioqcjpXVFQkm82myMhI1a9f36AMgdqPJjoAAAAAAADgoWw2m3bt2nXBmF27dslms1VTRkDdw5roAAAAAAAAgIdat26d43mHDh1ksVhUVFQkf39/FRQU6LvvvnPE3XnnnQZlCdRuNNEBAAAAAAAAD/Xyyy9Lkry9vTV9+nR5ef1vYYmysjL17NlTNptNL7/8Mk10oIqwnAsAAAAAAADgoUpKSiRJPXv2dGqgS5KXl5e6d+/uFAfA/WiiAwAAAAAAAB7KbDZLklatWqXi4mKlp6dr5syZSk9PV3FxsdasWeMUB8D9WM4FAAAAAAAA8FDPPfecXnjhBdlsNvXp08fpXEpKilMcgKrBTHQAAAAAAADAQ3Xr1s2tcQAuH010AAAAAAAAwEPZbLbz1kL/LS8vL9lstmrKCKh7aKIDAAAAAAAAHmrZsmUqKyvT3XffrSZNmjida9Kkie6++26VlZVp2bJlBmUI1H400QEAAAAAAAAPlZOTI0lq27bteZuHms1mtWnTxikOgPuxsSgAAAAAAADgocLCwiRJr7zyirp27aqJEyeqVatW2rdvnxYuXKi///3vTnEA3I+Z6AAAAAAAAICH6tevnyTJx8dHY8eO1ezZszVs2DDNnj1bY8eOlY+Pj1McAPejiQ4AAAAAQB2RnJyszp07y9/fX0FBQRo4cKB279590evS09MVGRkpPz8/3XDDDVqxYkU1ZAtAknbt2iVJKi0t1eDBg7Vjxw4dPXpUO3bs0ODBg1VaWuoUB8D9aKIDAAAAAFBHrF+/XgkJCdq0aZNWrVql0tJS9erVS6dOnXJ5zcaNG/XAAw9oxIgR2rp1qwYOHKiBAwdqx44d1Zg5UHcdP37crXEALh9NdAAAAAAA6oiVK1dq+PDhat++vTp06KDU1FRlZ2dry5YtLq+ZOXOm+vTpo2effVbXX3+9XnjhBd1000167bXXqjFzoO7y8/NzPF+8eLFiY2PVqlUrxcbGavHixRXGAXAvNhYFAAAAAKCOKigokCQFBga6jMnMzNS4ceOcxnr37q2lS5e6vMZqtcpqtTqOCwsLK5coUIelpaVJksxmsx544AHZbDZJ0r59+7Rp0yaZzWaVlJQoLS1NsbGxRqYK1FrMRAcAAADqKJvNpq1bt2r16tXaunWr449yAHVDWVmZxowZo9jYWEVFRbmMy83NVXBwsNNYcHCwcnNzXV6TnJwsi8XieISHh7stb6CuOXLkiCSppKREXl5eGjJkiBYsWKAhQ4bIy8tLJSUlTnEA3I+Z6AAAAEAdlJGRoVmzZjk1wUJCQjRq1CjFxcUZmBmA6pKQkKAdO3Zow4YNbr93YmKi0+z1wsJCGunAFWrWrJmOHj0qLy8v+fr6Ki0tzTE73d/fXzabTWVlZWrWrJnBmQK1FzPRAQAAgDomIyNDSUlJat26tVJSUrRixQqlpKSodevWSkpKUkZGhtEpAqhio0eP1vLly7V27Vo1b978grEhISHKy8tzGsvLy1NISIjLa3x9fRUQEOD0AHBlbrnlFkm//nrk5MmTTueKiopUVlbmFAfA/WiiAwAAAHWIzWbTrFmzFBMTo8mTJ6ukpESZmZkqKSnR5MmTFRMTo9mzZ7O0C1BL2e12jR49WkuWLNGaNWvUqlWri14TExOj1atXO42tWrVKMTExVZUmgHPk5+c7HXt5eem+++6Tl5fXBeMAuA/LuaBOKy4uVnZ2ttFpAJckIiKC3dYBAJWWlZWl3Nxc9e/fX3/84x/PW86lf//+2rhxo7KystSxY0cDMwVQFRISEpSWlqZly5bJ39/f8W+AxWJR/fr1JUlDhw7V1VdfreTkZEnSU089pdtvv12vvvqq7rrrLi1atEibN2/WG2+8Ydj7AOoSs9nsdFxWVqbFixdfNA6A+9BER52WnZ2txx57zOg0gEvyxhtvqE2bNkanAQCo4Y4fPy5Jmjt3rmJiYvTXv/5VrVq10r59+7Rw4ULNnTvXKQ5A7TJ79mxJUrdu3ZzG58+fr+HDh0v69e+kc2e4du3aVWlpaZowYYKef/55XXfddVq6dOkFNyMF4D7Lli1zPF+8eLGee+45/fLLL7rqqqv08ssv67777nPEjRw50qg0gVqNJjrqtIiICGZPuNmBAwc0bdo0jR8/Xi1atDA6nVolIiLC6BQAALVA48aNJUlRUVGaOnWqo1HWvn17TZ06VU899ZS2b9/uiANQu9jt9ovGrFu37ryxwYMHa/DgwVWQEYCLsVqtjuf333+/Yw30oqIi3X///RXGAXAvmuio0/z8/JjZW0VatGjBZwsAAAAAQCX5+vqquLhYkhwN9HLnHvv6+lZrXkBdwsaiAAAAQB1SvunY9u3bNWHCBO3cuVOnT5/Wzp07NWHCBG3fvt0pDgAAGOvcX9C/+eabioqKUrNmzRQVFaU333yzwjgA7sVMdAAAAKAOCQwMlCQ9+uij+vjjj5WQkOA4FxoaqkceeURz5851xAEAAGP98ssvjuePPvqo4/nRo0edjn/55ReWAQWqCE10AAAAoA6Jjo5WSEiIdu7cqXfeeUc7duzQ8ePHFRgYqKioKCUlJSk0NFTR0dFGpwoAAHTpm32zKThQdVjOBQAAAKhDvL29NWrUKGVmZiopKUlms1kxMTEym81KSkpSZmamRo4cKW9vb6NTBQAAkho1aiTp1xo+Z84cmUwmSZLJZNKcOXMcNbs8DoD7eVQTPTk5WZ07d5a/v7+CgoI0cOBA7d69+6LXpaenKzIyUn5+frrhhhu0YsWKasgWAAAAqJni4uI0efJk/fTTT0pISFDfvn2VkJCgffv2afLkyYqLizM6RQAA8P99+eWXkn5tmj/xxBOy2+2SJLvdrieeeMLRVC+PA+B+HrWcy/r165WQkKDOnTvr7Nmzev7559WrVy99//33atiwYYXXbNy4UQ888ICSk5PVr18/paWlaeDAgfr2228VFRVVze8AAAAAqBni4uIUGxurrKwsx3Iu0dHRzEAHAMDD5OTkSJLOnj1b4fny8fI4AO7nUTPRV65cqeHDh6t9+/bq0KGDUlNTlZ2drS1btri8ZubMmerTp4+effZZXX/99XrhhRd000036bXXXnN5jdVqVWFhodMDAABU3qX8qqy4uFgJCQm66qqr1KhRIw0aNEh5eXkGZQzUbd7e3urYsaPuvPNOdezYkQY6AAAeKDg42PHcx8fH6dy5x+fGAXAvj2qi/1ZBQYEkKTAw0GVMZmamevTo4TTWu3dvZWZmurwmOTlZFovF8QgPD3dPwgAA1HHlvyrbtGmTVq1apdLSUvXq1UunTp1yxIwdO1Yff/yx0tPTtX79euXk5Oiee+4xMGsAAADAcx07dszxvLS01OncucfnxgFwL49azuVcZWVlGjNmjGJjYy+4LEtubu5537QFBwcrNzfX5TWJiYkaN26c47iwsJBGOgAAbrBy5Uqn49TUVAUFBWnLli2Ki4tTQUGB3nrrLaWlpal79+6SpPnz5+v666/Xpk2bdOuttxqRNgAAAOCxDhw44HTcsmVLPfLII5o7d67279/vMg6A+3hsEz0hIUE7duzQhg0b3H5vX19f+fr6uv2+AADA2W9/VbZlyxaVlpY6/YosMjJSERERyszMdNlEt1qtslqtjmOWYgMAAEBd0ahRI6fj/fv3a8KECReNA+A+Hrmcy+jRo7V8+XKtXbtWzZs3v2BsSEjIeeuo5uXlKSQkpCpTBAAAF1HRr8pyc3NlNpvVuHFjp9iL/YqMpdgAAABQV5277vn777+v2NhYtWrVSrGxsXr//fcrjAPgXh7VRLfb7Ro9erSWLFmiNWvWqFWrVhe9JiYmRqtXr3YaW7VqlWJiYqoqTQAAcAnKf1W2aNGiSt8rMTFRBQUFjsfBgwfdkCEAAADg+c6cOeN4fu+99+rLL7/Uvn379OWXX+ree++tMA6Ae3nUci4JCQlKS0vTsmXL5O/v75iRZrFYVL9+fUnS0KFDdfXVVys5OVmS9NRTT+n222/Xq6++qrvuukuLFi3S5s2b9cYbbxj2PgAAqOvKf1WWkZHh9KuykJAQlZSUKD8/32k2+sV+RcZSbChXXFys7Oxso9MALklERIT8/PyMTgMAUMNdffXVTmufXygOQNXwqCb67NmzJUndunVzGp8/f76GDx8uScrOzpaX1/8m0Hft2lVpaWmaMGGCnn/+eV133XVaunTpBTcjBQAAVcNut+vJJ5/UkiVLtG7duvN+VdapUyf5+Pho9erVGjRokCRp9+7dys7O5ldkuCTZ2dl67LHHjE4DuCRvvPGG2rRpY3QaAIAa7rnnntOAAQMkSc2aNdPRo0cd54KCgnTkyBFHHICq4VFNdLvdftGYdevWnTc2ePBgDR48uAoyAgAAl+NivyqzWCwaMWKExo0bp8DAQAUEBOjJJ59UTEyMy01FgXNFRETwi0M3O3DggKZNm6bx48erRYsWRqdTq0RERBidAgCgFvjpp58cz48ePapOnTqpY8eO2rp1q7Zs2eIU17FjRyNSBGo9j2qiAwCAmu1SflU2ffp0eXl5adCgQbJarerdu7dmzZpVzZmipvLz82NmbxVp0aIFny0AAB7o+PHjkqQ2bdrohx9+0JYtW5ya59ddd51+/PFHRxwA96OJDgAA3OZSflXm5+enlJQUpaSkVENGAAAAQM0WGBgo6dd9AVu0aKHk5GTl5OQoLCxMiYmJOnDggBISEhxxANyPJjoAAAAAAADgoaKjoxUSEqKFCxdq6tSpmjZtmuNcWVmZFi5cqNDQUEVHRxuYJVC70UQHAAAAAAAAPJS3t7dGjRqlpKQkjR8/Xl26dJGvr6+sVqu+/vprbdq0SZMnT5a3t7fRqQK1Fk10AAAAAAAAwIPFxcXpD3/4g9LT05WZmekY9/b21h/+8AfFxcUZmB1Q+9FEBwAAAAAAADxYRkaG3nvvPd16663q0qWL/Pz8VFxcrK+//lrvvfee2rVrRyMdqEJeRicAAAAAAAAAoGI2m02zZs1STEyMpkyZopYtW8psNqtly5aaMmWKYmJiNHv2bNlsNqNTBWotZqIDAAAAAAAAHiorK0u5ubnq37+//vjHPyo3N9dxLiQkRP3799fGjRuVlZWljh07GpgpUHvRRAcAAAAAAAA81PHjxyVJb775pnx9fZ3OnThxQm+++aZTHAD3o4kOAAAAAAAAeKjGjRs7nt9000166KGH1KpVK+3bt08LFixwbDR6bhwA92JNdAAAAAAAAMBDlZWVSZL8/f01adIklZSUKDMzUyUlJZo0aZL8/f2d4gC4HzPRAQAAAAAAAA+VlZUlSSoqKtLdd98tq9XqOOfr6+s4zsrKUufOnQ3JEajtmIkOAAAAAAAAAIALzEQHAAAAAAAAPFR0dLSkX5dzee+99/Sf//xHOTk5CgsL01133aU//OEPKioqcsQBcD+a6AAAAAAAAICH8vL6dSGJoqIi/f73v3dazmXu3LmO4/I4AO7Hf10AAAAAAACAh8rPz3c8Ly0tdTp37vG5cQDciyY6AAAAAAAA4KEaN24sSYqIiNBVV13ldK5p06aKiIhwigPgfjTRAQAAAAAAgBrA29vb6ZglXIDqUen/0g4ePKhDhw45jr/++muNGTNGb7zxRmVvDQAAqgn1HAAAz0WdBuq28mVasrOzZbVa9cwzz+iDDz7QM888I6vVquzsbKc4AO5X6Sb6kCFDtHbtWklSbm6uevbsqa+//lrjx4/XlClTKp0gAACoetRzAAA8F3UaqNvOXc7FbDbr73//uwYNGqS///3v8vX1ZTkXoBpUuom+Y8cOdenSRZK0ePFiRUVFaePGjVq4cKFSU1Mre3sAAFANqOcAAHgu6jQASbJYLFqwYIGmT5+uv/71r5o+fbreeecdWSwWo1MDar1KN9FLS0vl6+srSfr888919913S5IiIyN1+PDhyt4eAABUA+o5AACeizoN1G3ly7Ts2LFDSUlJMpvNiomJkdlsVlJSknbs2OEUB8D9Kt1Eb9++vebMmaMvvvhCq1atUp8+fSRJOTk55+0YDAAAPBP1HAAAz0WdBuq2wMBASdIjjzyin376SQkJCerbt68SEhK0b98+PfLII05xANyv0k30l156Sa+//rq6deumBx54QB06dJAkffTRR46fmwEAAM9GPQcAwHNRp4G6LTo6WiEhIdq5c6feeustDRw4UDfffLMGDhyouXPnaufOnQoNDVV0dLTRqQK1Vr3K3qBbt246duyYCgsL1aRJE8f4Y489pgYNGlT29gAAoBpQzwEA8FzUaaBu8/b21qhRozRx4kTdddddjvHNmzdr6dKlkqQpU6bI29vboAyB2q/SM9ElyW63a8uWLXr99ddVVFQkSTKbzRRzAABqEOo5AACeizoN1G3ff/99pc4DqJxKz0Q/cOCA+vTpo+zsbFmtVvXs2VP+/v566aWXZLVaNWfOHHfkCQAAqhD1HAAAz0WdBuq2kpISpaeny2QyyW63n3feZDIpPT1dDz/8sMxmswEZArVfpWeiP/XUU7r55pt14sQJ1a9f3zH++9//XqtXr67s7QEAQDWgngMA4Lmo00DdtmzZMtlsNkcD3c/PTw0aNJCfn5+kX3+pYrPZtGzZMiPTBGq1SjfRv/jiC02YMOG8b7patmypn3/+ubK3BwAA1YB6DgCA53Jnnc7IyFD//v0VFhYmk8nkWE/ZlXXr1slkMp33yM3Nvdy3AeAKHThwwOm4uLhYp0+fVnFx8QXjALhPpZvoZWVlstls540fOnRI/v7+lb09AACoBtRzAAA8lzvr9KlTp9ShQwelpKRc1nW7d+/W4cOHHY+goKDLuh7Alfvmm2+cjtu1a6dXX31V7dq1u2AcAPepdBO9V69emjFjhuPYZDLp5MmTSkpKUt++fSt7ewAAUA2o5wAAeC531un4+HhNnTpVv//97y/ruqCgIIWEhDgeXl4XbidYrVYVFhY6PQBcmdLSUsfzDz74QI8++qjy8/P16KOP6oMPPqgwDoB7VXpj0VdffVW9e/dWu3btVFxcrCFDhujHH39U06ZN9e6777ojRwAAUMWo5wAAeC5PqNM33nijrFaroqKiNGnSJMXGxl4wPjk5WZMnT66W3IDarqioyPF88ODBKisrcxyf+4XWuXEA3KvSTfTmzZvru+++06JFi5SVlaWTJ09qxIgRevDBB502PAEAAJ6Leg4AgOcysk6HhoZqzpw5uvnmm2W1WjV37lx169ZNX331lW666SaX1yUmJmrcuHGO48LCQoWHh1dprkBtZTabHbPMz22g//b4t/smAHCfSjfRJalevXp66KGH3HErAABgEOo5AACey6g63bZtW7Vt29Zx3LVrV+3du1fTp0/XO++84/I6X19f+fr6VkeKQK3XrFkznTp1yum4cePGys/P19GjR53GAVSNSjfR33777QueHzp0aGVfAgAAVDHqOQAAnsvT6nSXLl20YcOGan1NoC4bMWKE/vrXvzqOjx496tQ8PzcOQNWodBP9qaeecjouLS3V6dOnZTab1aBBA/7oBgCgBqCeAwDguTytTm/btk2hoaHV+ppAXVZSUuJ07O3tLR8fH5WWlspms7mMA+A+lW6inzhx4ryxH3/8USNHjtSzzz5b2dsDAIBqQD0HAMBzubNOnzx5Unv27HEc79u3T9u2bVNgYKAiIiKUmJion3/+2TH7fcaMGWrVqpXat2+v4uJizZ07V2vWrNFnn31WuTcF4JI1btxY0q+biJaVlclmszk1z8vHy+MAuJ9b1kT/reuuu04vvviiHnroIe3atasqXgIAAFQx6jkAAJ7rSuv05s2bdccddziOyzf/HDZsmFJTU3X48GFlZ2c7zpeUlOjpp5/Wzz//rAYNGig6Olqff/650z0AVI/fbip6sXEA7lMlTXTp101PcnJyqur2AACgGlDPAQDwXFdSp7t16ya73e7yfGpqqtPxc889p+eee+5K0gPgJsePH3c89/Hx0eDBg9W3b1+tWLFC6enpKi0tPS8OgHtVuon+0UcfOR3b7XYdPnxYr732mmJjYyt7ewAAUA3cWc8zMjL0yiuvaMuWLTp8+LCWLFmigQMHOs4PHz5c//73v52u6d27t1auXHnF+QMAUJvxdzdQtx07dkySZDabZbFYlJaWprS0NElSUFCQ8vPzVVJS4ogD4H6VbqKf+0exJJlMJjVr1kzdu3fXq6++eln3utgf3b+1bt26Cn9CdvjwYYWEhFzWawMAUJe5s56fOnVKHTp00MMPP6x77rmnwpg+ffpo/vz5jmNfX9/LzhkAgLrCnXUaQM2zd+9eSZLFYpGXl5fTOZPJJIvFoqNHjzriALhfpZvo7lx36VL+6K7I7t27FRAQ4DgOCgpyW04AANQF7qzn8fHxio+Pv2CMr68vX3gDAHCJWO8YqNuKi4slSUePHlXjxo113333KSwsTDk5Ofrss8+Un5/vFAfA/apsTfQrcSl/dFckKCjosnYgtlqtslqtjuPCwsLLfk0AAHDl1q1bp6CgIDVp0kTdu3fX1KlTddVVV7mMp3YDAACgroqKitKGDRvk7e2tgoICLV682HHOZDLJ29tbNptNUVFRBmYJ1G5X1EQv3737UvzjH/+4kpe4LDfeeKOsVquioqI0adKki64Jl5ycrMmTJ1d5XgAAeDKj6nmfPn10zz33qFWrVtq7d6+ef/55xcfHKzMzU97e3hVeQ+0GANQ1nvZ3NwDjXHPNNZIkm8123jm73e4YL48D4H5X1ETfunXrJcWZTKYruf0lCw0N1Zw5c3TzzTfLarVq7ty56tatm7766ivddNNNLq9LTEx0+j8khYWFCg8Pr9JcAQDwNEbV8/vvv9/x/IYbblB0dLSuueYarVu3TnfeeWeF11C7AQB1jaf83Q3AeOXLtbgrDsDlu6Im+tq1a92dxxVp27at2rZt6zju2rWr9u7dq+nTp+udd95xeZ2vry8bmAEA6jxPqeetW7dW06ZNtWfPHpdNdGo3AKCu8ZQ6DcB4x44dkyTVq1dPZWVlTvskeHt7y2Qy6ezZs444AO7ndfGQmqVLly7as2eP0WkAAIBLdOjQIf3yyy8KDQ01OhUAAADA4+zdu1eS1Lx5cy1evFgtW7aUv7+/WrZsqffee0/Nmzd3igPgfm7ZWHTz5s1avHixsrOzVVJS4nTuww8/dMdLXLJt27bxRzgAAFfAXfX85MmTTl9o79u3T9u2bVNgYKACAwM1efJkDRo0SCEhIdq7d6+ee+45XXvtterdu7fb3gsAALWNJ/3dDaB6FRcXS5L279+ve++91zFeVFTkdFweB8D9Kj0TfdGiReratav++9//asmSJSotLdXOnTu1Zs0aWSyWy7rXyZMntW3bNm3btk3S//7ozs7OlvTreqhDhw51xM+YMUPLli3Tnj17tGPHDo0ZM0Zr1qxRQkJCZd8WAAB1ijvr+ebNm9WxY0d17NhR0q8bo3Xs2FETJ06Ut7e3srKydPfdd6tNmzYaMWKEOnXqpC+++ILlWgAAcMGddRpAzXPDDTe4NQ7A5av0TPS//e1vmj59uhISEuTv76+ZM2eqVatWevzxxy97RvjmzZt1xx13OI7LNxAbNmyYUlNTdfjwYUdDXZJKSkr09NNP6+eff1aDBg0UHR2tzz//3OkeAADg4txZz7t16ya73e7y/KefflrZdAEAqFPcWacB1Dw9e/bU7NmzLykOQNWo9Ez0vXv36q677pIkmc1mnTp1SiaTSWPHjtUbb7xxWfcq/6P7t4/U1FRJUmpqqtatW+eIf+6557Rnzx6dOXNGv/zyi9auXUsDHQCAK+DOeg4AANyLOg3Uba+88opb4wBcvko30Zs0aaKioiJJ0tVXX60dO3ZIkvLz83X69OnK3h4AAFQD6jkAAJ6LOg3Ubbt27XJrHIDLd8VN9PKiHRcXp1WrVkmSBg8erKeeekqPPvqoHnjgAd15553uyRIAAFQJ6jkAAJ6LOg1AktNSiV5ezq28c48vtKQigMq54jXRo6Oj1blzZw0cOFCDBw+WJI0fP14+Pj7auHGjBg0apAkTJrgtUQAA4H7UcwAAPBd1GoAklZWVOZ7/tlF+7vG5cQDc64qb6OvXr9f8+fOVnJysadOmadCgQXrkkUf0l7/8xZ35AQCAKkQ9BwDAc1GnAUiSzWZzPLfb7QoPD1fLli21f/9+HTx4sMI4AO51xcu5/O53v9O8efN0+PBh/etf/9L+/ft1++23q02bNnrppZeUm5vrzjwBAEAVoJ4DAOC5qNMAJKlRo0ZOxwcPHtQXX3zh1ECvKA6A+1R6Y9GGDRvqT3/6k9avX68ffvhBgwcPVkpKiiIiInT33Xe7I0cAAFDFqOcAAHgu6jRQt7Vq1cqtcQAuX6Wb6Oe69tpr9fzzz2vChAny9/fXf/7zH3feHgAAVAPqOQAAnos6DdQ9DRs2dGscgMt3xWui/1ZGRsb/a+/+Y6uq7/+Bv1qEWzT2OoZeQFvEKYpuwtTZFd1nmpB06AxMh2jmYOCPYOIy7TZj1eHUsSZTBI1sHRpS0RllW4ZTDFNZkDAZxh8k0yiTyQpOWn9MbwGhONrvH365s7MXAdt7btvHIzlpz7nvI89LSN/2ec8571i0aFH8/ve/j9LS0rjwwgvj0ksv7a7/PABQAOZzAChe5mnonwYMGNCt44D995lK9DfffDMaGxujsbExNmzYEOPHj4+77rorLrzwQp9+AUAvYT4HgOJlngZWrVqV+76kpCQ6Ojq63F+1alVcf/31Bc8H/cEBl+gTJ06Mp556KoYOHRrTpk2LmTNnxvHHH9+d2QCAHmY+B4DiZZ4GIiI+/PDD3PcfL9D/d//j44DudcAl+sCBA+N3v/tdfPOb33S7CAD0UuZzAChe5mkg4qNnnbe2tkZExJAhQ+Lf//537rXPf/7z8e677+bGAT3jgEv0P/7xj92ZAwBIgPkcAIqXeRqIiJg0aVLcf//9ERGdCvSIyBXoe8YBPaM06QAAAAAAQNcqKyu7dRyw/5ToAAAAAFCkhgwZ0q3jgP2nRAcAAACAIrVjx47c9+Xl5Z1e+/j+x8cB3euAn4kOAAAAAPSsxYsX574fM2ZMpFKp2Lp1axx66KHR1tYWa9euzY0788wzk4oJfZoSHQAAAACKVGtra0REHHfccbnC/OOOPfbY2LBhQ24c0P2U6L1MS0tLZLPZpGNAXk1NTZ2+QrFKp9ORyWSSjgEAALBXX/jCF6K5uTlee+21Ll/fsGFDbhzQM5TovUhLS0tc8t1p8eGutqSjwKeaM2dO0hFgrwYOSsUD9y9WpAMAAEXthz/8YfzlL3+JiIgBAwbE1KlT45xzzonHH388Hn744di9e3duHNAzlOi9SDabjQ93tcWOY74e7WXppOMA9FqlO7MRrz8d2WxWiQ4AABS1J554Ivf97t2748EHH4wHH3ywy3EXXXRRIaNBv6FE74Xay9LRfsjQpGMAAAAA0MNWr14dERGHH354vP322594fc/x1atXK9Ghh5QmHQAAAAAA2LsLLrggHnvssTjjjDNi1KhRccYZZ8Rjjz0W559/ftLRoM9zJToAAAAAFKkzzjgjXnrppVi8eHF8+9vf7rQG2X/+85+4//77c+OAnuFKdAAAAAAoUhdccEGUlJTEBx98EFOmTIlHH3003nnnnXj00UdjypQp8cEHH0RJSUlccMEFSUeFPsuV6AAAPailpSWy2WzSMSCvpqamTl+hWKXTaQuCA/3SoEGDYurUqfHQQw/Fe++9F3Pnzv3EmKlTp8agQYMSSAf9gxIdAKCHtLS0xCXfnRYf7mpLOgp8qo/fGg7FaOCgVDxw/2JFOtAvzZo1KyIilixZEu3t7bnjpaWlceGFF+ZeB3qGEh0AoIdks9n4cFdb7Djm69Felk46DkCvVbozG/H605HNZpXoQL81a9asmDlzZjzyyCPx5ptvxogRI2LSpEmuQIcCUKIDAPSw9rJ0tB8yNOkYAAD0coMGDYopU6YkHQP6HQuLAgAAAABAHkp0AAAAAADIQ4kOAAAAAAB5KNEBAACgn1i1alWcd955MWLEiCgpKYmlS5d+6jkrV66MU045JVKpVBx77LHR2NjY4zkBoJgo0QEAAKCf2L59e4wdOzYWLFiwT+M3btwY5557bpx99tmxbt26uPrqq+Oyyy6LP/3pTz2cFACKx0FJBwAAAAAKY+LEiTFx4sR9Ht/Q0BCjRo2KuXPnRkTEmDFjYvXq1TFv3ryoqanJe15bW1u0tbXl9ltbWw88NAAkzJXoAAAAQJfWrFkTEyZM6HSspqYm1qxZs9fz6uvrI51O57aKioqejAkAPUqJDgAAAHSpubk5MplMp2OZTCZaW1tjx44dec+rq6uLbDab2zZv3tzTUQGgx3icCwAAANCtUqlUpFKppGMAQLdwJToA0K1WrVoV5513XowYMSJKSkpi6dKlnV7v6OiI2bNnx/Dhw2Pw4MExYcKEeO2115IJCwDs1bBhw6KlpaXTsZaWligvL4/BgwcnlAoACkuJDgB0q+3bt8fYsWNjwYIFXb7+i1/8Iu66665oaGiItWvXxiGHHBI1NTWxc+fOAicFAD5NdXV1rFixotOxJ598MqqrqxNKBACF53EuAEC3mjhxYkycOLHL1zo6OmL+/Plx4403xqRJkyIiYvHixZHJZGLp0qVx0UUXdXleW1tbtLW15fZbW1u7PzgA9APbtm2LDRs25PY3btwY69atiyFDhkRlZWXU1dXFv/71r1i8eHFERMyaNSvuvvvuuPbaa2PmzJnx5z//OZYsWRLLli1L6i0AQMEVVYm+atWquO222+L555+PLVu2xB/+8IeYPHnyXs9ZuXJl1NbWxssvvxwVFRVx4403xve+972C5AUA9s/GjRujubk5JkyYkDuWTqejqqoq1qxZk7dEr6+vj5tvvrlQMQGgz3ruuefi7LPPzu3X1tZGRMT06dOjsbExtmzZEps2bcq9PmrUqFi2bFlcc801ceedd8ZRRx0V9957b9TU1BQ8O73Tzp07O/2bgmJWWVkZZWVlScegCBVVib7n9u+ZM2fG+eef/6njN27cGOeee27MmjUrfvOb38SKFSvisssui+HDh5vQAaAINTc3R0REJpPpdDyTyeRe60pdXV3ul/yIj65Er6io6JmQANCHnXXWWdHR0ZH39cbGxi7PefHFF3swFX3Zpk2b4oorrkg6BuyThQsXxujRo5OOQREqqhJ9b7d/d6WhoSFGjRoVc+fOjYiIMWPGxOrVq2PevHl7LdHdEg4AvUsqlYpUKpV0DAAA9lNlZWUsXLgw6Rh9SlNTU8yZMyduuOGGGDlyZNJx+pTKysqkI1CkiqpE319r1qzpdDt4RERNTU1cffXVez3PLeEAkIxhw4ZFRERLS0sMHz48d7ylpSXGjRuXUCoAAHpKWVmZK3t7yMiRI/3dQoGUJh3gs2hubu7ydvDW1tbYsWNH3vPq6uoim83mts2bN/d0VAAgPnqu6rBhw2LFihW5Y62trbF27dqorq5OMBkAAAB0rVdfiX6g3BIOAD1n27ZtsWHDhtz+xo0bY926dTFkyJCorKyMq6++On72s5/FcccdF6NGjYqf/OQnMWLEiE9dTBwAAACS0KtL9GHDhkVLS0unYy0tLVFeXh6DBw9OKBUA9G/PPfdcnH322bn9PQuCTp8+PRobG+Paa6+N7du3xxVXXBHvv/9+nHnmmbF8+fIoKytLKjIAAADk1atL9Orq6nj88cc7HXvyySfdDg4ACTrrrLOio6Mj7+slJSVxyy23xC233FLAVAAAAHBgiuqZ6Nu2bYt169bFunXrIuK/t39v2rQpIj56lvm0adNy42fNmhWvv/56XHvttfHqq6/GL3/5y1iyZElcc801ScQHAAAAAKCPKaor0T/t9u8tW7bkCvWIjxYnW7ZsWVxzzTVx5513xlFHHRX33ntv1NTUFDx7IZXueD/pCAC9mp+jAAAAwL4qqhL9027/bmxs7PKcF198sQdTFZ/BG1clHQEAAAAAoF8oqhKdfbNj1P9F++DDko4B0GuV7njfB5IAAADAPlGi90Ltgw+L9kOGJh0DAAAAAKDPK6qFRQEAAAAAoJi4Eh0AoIdZzBbgs/FzFABIkhIdAKCHeQY/AABA76VEBwDoYRYFB/hsLAoOACRJiQ4A0MMsCg4AANB7WVgUAAAAAADyUKIDAAAAAEAeSnQAAAAAAMhDiQ4AAAAAAHko0QEAAAAAIA8lOgAAAAAA5KFEBwAAAACAPJToAAAAAACQhxIdAAAAAADyUKIDAAAAAEAeSnQAAAAAAMhDiQ4AAAAAAHko0QEAAAAAIA8lOgAAAAAA5KFEBwAAAACAPJToAAAAAACQhxIdAAAAAADyUKIDAAAAAEAeByUdAAAAAKBYtLS0RDabTToG5NXU1NTpKxSrdDodmUwm6RjdQokOANDDSnf6RRzgs/BzlEJpaWmJS747LT7c1ZZ0FPhUc+bMSToC7NXAQal44P7FfaJIV6IDAPSQdDodAwelIl5/OukoAL3ewEGpSKfTScegj8tms/HhrrbYcczXo73MvzeAA1W6Mxvx+tORzWaV6AAA5JfJZOKB+xe7JZyi1tTUFHPmzIkbbrghRo4cmXQcyKsv3RJO8WsvS0f7IUOTjgFAkVCiAwD0oEwmo/ShVxg5cmSMHj066RgAAFB0lOi9kOcBAnw2fo4CAAAA+0qJ3ot4ripA9/FcVQAAAGBfKNF7Ec9VpTfwXFV6C89VBQAAAPaFEr2X8VxVegvPVQUAAACgLyhNOgAA0L/89Kc/jZKSkk7bCSeckHQsAOhXFixYEEcffXSUlZVFVVVVPPvss3nHNjY2fmLuLisrK2BaAEiWK9EBgII76aST4qmnnsrtH3SQ/yUBgEJ5+OGHo7a2NhoaGqKqqirmz58fNTU1sX79+jjiiCO6PKe8vDzWr1+f2y8pKSlUXABInN9YAYCCO+igg2LYsGFJxwCAfumOO+6Iyy+/PGbMmBEREQ0NDbFs2bJYtGhRXHfddV2eU1JSsl9zd1tbW7S1teX2W1tbP1toAEiQx7kAAAX32muvxYgRI+KYY46J73znO7Fp06a9jm9ra4vW1tZOGwCw/3bt2hXPP/98TJgwIXestLQ0JkyYEGvWrMl73rZt22LkyJFRUVERkyZNipdffnmvf059fX2k0+ncVlFR0W3vAQAKTYkOABRUVVVVNDY2xvLly+NXv/pVbNy4Mb72ta/F1q1b857jF3EA6B7vvPNO7N69OzKZTKfjmUwmmpubuzzn+OOPj0WLFsUjjzwSDzzwQLS3t8f48ePjjTfeyPvn1NXVRTabzW2bN2/u1vcBAIXkcS4AQEFNnDgx9/3JJ58cVVVVMXLkyFiyZElceumlXZ5TV1cXtbW1uf3W1lZFOgAUSHV1dVRXV+f2x48fH2PGjIlf//rXceutt3Z5TiqVilQqVaiIANCjivJKdKuEA0D/cdhhh8Xo0aNjw4YNecekUqkoLy/vtAEA+2/o0KExYMCAaGlp6XS8paVln595PnDgwPjyl7+817kbAPqSoivR96wSftNNN8ULL7wQY8eOjZqamnjrrbfynlNeXh5btmzJbU1NTQVMDAB8Ftu2bYt//OMfMXz48KSjAECfN2jQoDj11FNjxYoVuWPt7e2xYsWKTleb783u3bvjb3/7m7kbgH6j6Er0j68SfuKJJ0ZDQ0McfPDBsWjRorzn7FklfM/2v892+18WJwOA5PzoRz+Kp59+Ov75z3/GM888E9/61rdiwIABcfHFFycdDQD6hdra2rjnnnvivvvui1deeSWuvPLK2L59e8yYMSMiIqZNmxZ1dXW58bfccks88cQT8frrr8cLL7wQl1xySTQ1NcVll12W1FsAgIIqqmei71kl/OOT9f6sEt7e3h6nnHJK/PznP4+TTjop7/j6+vq4+eabuzU7ALBv3njjjbj44ovj3XffjcMPPzzOPPPM+Otf/xqHH3540tEAoF+YOnVqvP322zF79uxobm6OcePGxfLly3MXpG3atClKS/97zd17770Xl19+eTQ3N8fnPve5OPXUU+OZZ56JE088Mam3AAAFVVQl+t5WCX/11Ve7PGfPKuEnn3xyZLPZuP3222P8+PHx8ssvx1FHHdXlORYnA4DkPPTQQ0lHAIB+76qrroqrrrqqy9dWrlzZaX/evHkxb968AqQCgOJUVCX6gbBKOAAAANCdSne8n3QEgF6tr/0cLaoS3SrhAAAAQNIGb1yVdAQAikhRlegfXyV88uTJEfHfVcLz3Wb2v/asEn7OOef0YFIAAACgr9ox6v+iffBhSccA6LVKd7zfpz6QLKoSPeKjVcKnT58ep512Wpx++ukxf/78T6wSfuSRR0Z9fX1EfLRK+Fe/+tU49thj4/3334/bbrvNKuEAAADAAWsffFi0HzI06RgAFImiK9GtEg4AAAAAQLEouhI9wirhAAAAAAAUh9JPHwIAAAAAAP2TEh0AAAAAAPJQogMAAAAAQB5KdAAAAAAAyEOJDgAAAAAAeSjRAQAAAAAgDyU6AAAAAADkoUQHAAAAAIA8Dko6AAAAAEAxKd2ZTToCQK/W136OKtEBAAAAIiKdTsfAQamI159OOgpArzdwUCrS6XTSMbqFEh0AAAAgIjKZTDxw/+LIZvvWFZT0LU1NTTFnzpy44YYbYuTIkUnHgbzS6XRkMpmkY3QLJToAAADA/5fJZPpM6UPfNnLkyBg9enTSMaBfsLAoAAAAAADkoUQHAAAAAIA8lOgAAAAAAJCHEh0AAAAAAPJQogMAAAAAQB5KdAAAAAAAyEOJDgAAAAAAeSjRAQAAAAAgDyU6AAAAAADkoUQHAAAAAIA8lOgAAAAAAJCHEh0AAAAAAPJQogMAAAAAQB5KdAAAAAAAyEOJDgAAAAAAeSjRAQAAAAAgDyU6AAAAAADkoUQHAAAAAIA8lOgAAAAAAJCHEh0AAAAAAPJQogMAiViwYEEcffTRUVZWFlVVVfHss88mHQkAAAA+4aCkA0CSdu7cGZs2bUo6Rp/S1NTU6Svdp7KyMsrKypKOAd3i4Ycfjtra2mhoaIiqqqqYP39+1NTUxPr16+OII45IOh5FzNzd/czdPcfcDWDu7gnm7p5j7iafko6Ojo6kQySttbU10ul0ZLPZKC8vTzoOBfT3v/89rrjiiqRjwD5ZuHBhjB49OukYFFBfnp+qqqriK1/5Stx9990REdHe3h4VFRXx/e9/P6677rpPjG9ra4u2trbcfmtra1RUVPTJvxv2ztxNb2Lu7n/68tz9Wfm76b/M3fQm5u7+Z1/nJ1ei069VVlbGwoULk44B+6SysjLpCNAtdu3aFc8//3zU1dXljpWWlsaECRNizZo1XZ5TX18fN998c6EiUsTM3fQm5m4Acze9i7mbfJTo9GtlZWU+YQQosHfeeSd2794dmUym0/FMJhOvvvpql+fU1dVFbW1tbn/Plej0P+ZuAOhdzN1AX2BhUQCg6KVSqSgvL++0AQAHbn8X+P7tb38bJ5xwQpSVlcWXvvSlePzxxwuUFACSp0QHAApq6NChMWDAgGhpael0vKWlJYYNG5ZQKgDoP/Ys8H3TTTfFCy+8EGPHjo2ampp46623uhz/zDPPxMUXXxyXXnppvPjiizF58uSYPHlyvPTSSwVODgDJUKIDAAU1aNCgOPXUU2PFihW5Y+3t7bFixYqorq5OMBkA9A933HFHXH755TFjxow48cQTo6GhIQ4++OBYtGhRl+PvvPPO+MY3vhE//vGPY8yYMXHrrbfGKaecklsgHAD6uqIs0d1WBgB9W21tbdxzzz1x3333xSuvvBJXXnllbN++PWbMmJF0NADo0/Ys8D1hwoTcsU9b4HvNmjWdxkdE1NTU5B0fEdHW1hatra2dNgDorYquRHdbGQD0fVOnTo3bb789Zs+eHePGjYt169bF8uXLP7HYKADQvfa2wHdzc3OX5zQ3N+/X+IiI+vr6SKfTuc2C4AD0ZkVXohfitjKfiANA8q666qpoamqKtra2WLt2bVRVVSUdCQDoJnV1dZHNZnPb5s2bk44EAAesqEr0Qt1W5hNxAAAA+qMDWeB72LBh+70geCqVivLy8k4bAPRWRVWiF+q2Mp+IAwAA0B8dyALf1dXVncZHRDz55JMWBAeg3zgo6QBJSKVSkUqlko4BAAAABVdbWxvTp0+P0047LU4//fSYP39+pwW+p02bFkceeWTU19dHRMQPfvCD+PrXvx5z586Nc889Nx566KF47rnnYuHChUm+DQAomKIq0Qt1WxkAAAD0V1OnTo233347Zs+eHc3NzTFu3LhOC3xv2rQpSkv/e+P6+PHj48EHH4wbb7wxrr/++jjuuONi6dKl8cUvfjGptwAABVVUj3NxWxkAAAD0vL0t8L1y5cpobGzsNH7KlCmxfv36aGtri5deeinOOeecAicGgOQU1ZXoEcncVtbR0REREa2trd3/hgDgAO2Zl/bMU/yXuRuAYmTuzs/cDUAx2te5u+hK9CRuK9u6dWtERFRUVHTvmwGAbrB169ZIp9NJxygq5m4Aipm5+5PM3QAUs0+bu0s6fEQe7e3t8eabb8ahhx4aJSUlSceBXq21tTUqKipi8+bNUV5ennQc6NU6Ojpi69atMWLEiE4fIGPuhu5k7obuY+7Oz9wN3cfcDd1nX+duJTrQrVpbWyOdTkc2mzWZA0AvYO4GgN7F3A2F56NxAAAAAADIQ4kOAAAAAAB5KNGBbpVKpeKmm26KVCqVdBQAYB+YuwGgdzF3Q+F5JjoAAAAAAOThSnQAAAAAAMhDiQ4AAAAAAHko0QEAAAAAIA8lOgAAAAAA5KFEBwAAAACAPJToAAAAAACQhxIdAAAAAADyUKIDAAAAAEAe/w+70z4sJrVuWwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "Q1 = Data.quantile(0.25)\n", "Q3 = Data.quantile(0.75)\n", "IQR = Q3 - Q1\n", "\n", "lower_bound = Q1 - 1.5 * IQR\n", "upper_bound = Q3 + 1.5 * IQR\n", "\n", "filtered_features = Data[~((Data < lower_bound) | (Data > upper_bound)).any(axis=1)]\n", "\n", "print(\"Original shape:\", Data.shape)\n", "print(\"Shape after removing outliers:\", filtered_features.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "f8rVsMbsvyCl", "outputId": "7931f296-3958-43ba-f8ba-448f09239c4f" }, "execution_count": 18, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original shape: (1041, 13)\n", "Shape after removing outliers: (716, 13)\n" ] } ] }, { "cell_type": "code", "source": [ "fig, axes = plt.subplots(4, 3, figsize=(15, 15))\n", "axes = axes.flatten()\n", "for i, column in enumerate(filtered_features.columns):\n", " if column == 'Output':\n", " continue\n", " sns.boxplot(data=filtered_features[column], ax=axes[i])\n", " axes[i].set_title(f'Boxplot of {column}')\n", " axes[i].set_xlabel('')\n", " axes[i].set_ylabel('Values')\n", "\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 646 }, "id": "P2OPysU4wTGy", "outputId": "d6d7911c-d742-4aa4-f872-a22a69883248" }, "execution_count": 20, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAXRCAYAAABxVdQKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1xUdf7H8fcAAooyiMptBdTKu6hrZqNl3hEvaZmtrnnLy2ZQKd2WNFHTKLtoJWq2Kpa6bvbTTDOveanEMs28lampWAhWBqgJKJzfHy2zTTDeYJgBXs/H4zzynO/3fM/nO/tYP85nzvkek2EYhgAAAAAAAAAAQCFuzg4AAAAAAAAAAABXRREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdwA0zmUyaNGmSs8OwsWvXLrVt21Y+Pj4ymUzau3evs0MCAMClkL8BAChbyN2A81FEB1xQUlKSTCaTzRYQEKCOHTvqo48+cnZ4xXbo0CFNmjRJJ06cKNFxL126pP79++vs2bOaMWOG3nnnHYWHhxfZd+vWrdbPdvfu3YXahw0bpqpVq5ZofACA8o38fWNuNH+bTCZVqlRJ9erV05AhQ/T999+XaFwAgPKP3H1jbiR3v/feezbHc3Nz1atXL7m5uWnBggUlGh/gCB7ODgCAfVOmTFHdunVlGIbS09OVlJSkHj16aPXq1erVq5ezw7thhw4d0uTJk9WhQwfVqVOnxMY9duyYTp48qbfeeksjR4685vMmTZqk1atXl1gcAICKjfx9fW4kfz/66KNq3bq1Ll26pD179mjevHn68MMPtX//foWEhJRYbACAioHcfX1u9Lt3gUuXLum+++7T2rVr9dZbb+nBBx8ssdgAR6GIDriwqKgo3Xrrrdb9ESNGKDAwUP/+97/LdCJ3lDNnzkiS/Pz8rvmcFi1aaM2aNdqzZ4/++te/OigyAEBFQv6+PjeSv++8807dd999kqThw4erfv36evTRR7Vo0SLFxcU5IkwAQDlG7r4+N5K7C1y6dEn333+/1qxZozfffFMjRowo4egAx2A5F6AM8fPzU+XKleXhYfv714ULF/T4448rNDRUXl5eatCggV5++WUZhiFJunjxoho2bKiGDRvq4sWL1vPOnj2r4OBgtW3bVnl5eZL+t4zJ999/r8jISPn4+CgkJERTpkyxjnclX331laKiouTr66uqVauqc+fO2rlzp7U9KSlJ/fv3lyR17NjR+sjc1q1brzjuxx9/rDvvvFM+Pj7y8/NTnz599M0331jbhw0bprvuukuS1L9/f5lMJnXo0OGq8T7yyCOqXr26y60vBwAoP8jfJZ+//6xTp06SpOPHj1/3uQAA/Bm52zG5+/LlyxowYIBWrVqlOXPmaNSoUdd0HuAKKKIDLiwzM1M///yzfvrpJx08eFBjxozR+fPn9cADD1j7GIahu+++WzNmzFD37t316quvqkGDBnryyScVGxsrSapcubIWLVqko0ePavz48dZzo6OjlZmZqaSkJLm7u1uP5+XlqXv37goMDNT06dPVqlUrxcfHKz4+/orxHjx4UHfeeae+/vprPfXUU3r22Wd1/PhxdejQQZ9//rkkqX379nr00UclSc8884zeeecdvfPOO2rUqJHdcTdt2qTIyEidOXNGkyZNUmxsrHbs2KF27dpZ13b7xz/+oWeeeUbS7494v/POOzZztcfX11fjxo3T6tWrtWfPnqv2BwDgasjfv3Nk/v6zY8eOSZJq1Khx3ecCAEDu/p0jc/fly5c1cOBArVy5UomJifrHP/5x1XMAl2IAcDkLFy40JBXavLy8jKSkJJu+77//viHJmDp1qs3x++67zzCZTMbRo0etx+Li4gw3Nzdj+/btxvLlyw1JxsyZM23OGzp0qCHJeOSRR6zH8vPzjZ49exqenp7GTz/9ZD0uyYiPj7fu9+3b1/D09DSOHTtmPZaammpUq1bNaN++vfVYwbW3bNlyTZ9HixYtjICAAOOXX36xHvv6668NNzc3Y8iQIdZjW7ZsMSQZy5cvv+qYf+ybkZFhVK9e3bj77rttPgcfH59rig8AAMMgf/+ZI/P3ggULjJ9++slITU01PvzwQ6NOnTqGyWQydu3adU2xAQBgGOTuP3Nk7g4PDzckGYmJidcUC+BquBMdcGGJiYnauHGjNm7cqMWLF6tjx44aOXKkVqxYYe2zdu1aubu7W39hLvD444/LMAybN4pPmjRJTZo00dChQ/Xwww/rrrvuKnRegZiYGOufTSaTYmJilJubq02bNhXZPy8vTxs2bFDfvn1Vr1496/Hg4GD9/e9/16effqqsrKzr/gxOnz6tvXv3atiwYfL397cej4iIUNeuXbV27drrHvPPzGazxo4dqw8++EBfffVVsccDAFRs5G/H5+8HH3xQtWrVUkhIiHr27KkLFy5o0aJFNuvZAgBwrcjdjs/d6enp8vDwUN26dYs1DuAsFNEBF3bbbbepS5cu6tKliwYNGqQPP/xQjRs3tiZVSTp58qRCQkJUrVo1m3MLHtE6efKk9Zinp6cWLFig48eP69y5c1q4cKFMJlOh67q5udkkY0mqX7++JFkf4fqzn376Sb/99psaNGhQqK1Ro0bKz8/XqVOnrn3y/1UQv71xf/75Z124cOG6x/2zxx57TH5+fqyNDgAoNvK34/P3xIkTtXHjRn388cfat2+fUlNTNXjw4BseDwBQsZG7HZ+7p0+frrCwMN1333367LPPbngcwFkoogNliJubmzp27KjTp0/ryJEjNzTG+vXrJUnZ2dk3PEZ5xN3oAABHIX+XvGbNmqlLly7q2LGjmjVrVujFbwAAFAe5u+QFBwdr48aNMpvN6tmzp77++mtnhwRcF4roQBlz+fJlSdL58+clSeHh4UpNTdW5c+ds+n377bfW9gL79u3TlClTNHz4cLVs2VIjR45UZmZmoWvk5+fr+++/tzn23XffSZLq1KlTZFy1atVSlSpVdPjw4UJt3377rdzc3BQaGipJRf4Cb09B/PbGrVmzpnx8fK55vCsZO3as/Pz8NHny5BIZDwCAAuRv23FLMn8DAOAI5G7bcUsid9erV0/r16+Xm5ubIiMj+XEBZQpFdKAMuXTpkjZs2CBPT0/rI2M9evRQXl6eZs2aZdN3xowZMplMioqKsp47bNgwhYSE6LXXXlNSUpLS09M1bty4Iq/1x/EMw9CsWbNUqVIlde7cucj+7u7u6tatm1atWmXz2Fl6erqWLl2qO+64Q76+vpJkTbwZGRlXnXNwcLBatGihRYsW2fQ/cOCANmzYoB49elx1jGtVcDf6qlWrtHfv3hIbFwBQsZG//9ffEfkbAICSRu7+X/+Szt3NmjXThx9+qPPnz6tr16768ccfS2RcwNF47hFwYR999JH1V+0zZ85o6dKlOnLkiP75z39ak2Lv3r3VsWNHjR8/XidOnFDz5s21YcMGrVq1SmPHjtVNN90kSZo6dar27t2rzZs3q1q1aoqIiNDEiRM1YcIE3XfffTYJ0dvbW+vWrdPQoUPVpk0bffTRR/rwww/1zDPPqFatWnbjnTp1qjZu3Kg77rhDDz/8sDw8PPTmm28qJydH06dPt/Zr0aKF3N3d9eKLLyozM1NeXl7q1KmTAgICihz3pZdeUlRUlCwWi0aMGKGLFy/qjTfekNlsLvE1zB977DHNmDFDX3/9NXfIAQBuCPn7d6WZvwEAKA5y9+9KK3dbLBatWLFCvXv3VteuXfXJJ5+oRo0aJTY+4BAGAJezcOFCQ5LN5u3tbbRo0cKYM2eOkZ+fb9P/3Llzxrhx44yQkBCjUqVKxi233GK89NJL1n67d+82PDw8jEceecTmvMuXLxutW7c2QkJCjF9//dUwDMMYOnSo4ePjYxw7dszo1q2bUaVKFSMwMNCIj4838vLybM6XZMTHx9sc27NnjxEZGWlUrVrVqFKlitGxY0djx44dheb41ltvGfXq1TPc3d0NScaWLVuu+Jls2rTJaNeunVG5cmXD19fX6N27t3Ho0CGbPlu2bDEkGcuXL7/iWFfrGx8fb0gyfHx8rjoOAAAFyN+FlWb+BgDgepG7CyvN3P2f//zHcHNzM1q3bm1kZWVddSzAmUyGYRilVrEH4PKGDRum9957z7ruGwAAcH3kbwAAyhZyN1C2sCY6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANjBmugAAAAAAAAAANjBnegAAAAAAAAAANhBER0AAAAAAAAAADs8nB2AK8rPz1dqaqqqVasmk8nk7HAAABWUYRg6d+6cQkJC5ObG795XQu4GALgCcve1I3cDAFzBteZuiuhFSE1NVWhoqLPDAABAknTq1CnVrl3b2WG4NHI3AMCVkLuvjtwNAHAlV8vdFNGLUK1aNUm/f3i+vr5OjgYAUFFlZWUpNDTUmpdgH7kbAOAKyN3XjtwNAHAF15q7KaIXoeBRMl9fX5I5AMDpeMT56sjdAABXQu6+OnI3AMCVXC13s0gbAAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHR7ODgAAAACAc2VmZmr8+PFKT09XYGCgpk2bJrPZ7OywAACAHbm5uVq1apVSU1MVEhKiPn36yNPT09lhAeUWRXQAAACgAhs0aJB+/PFH6/5PP/2kPn366C9/+YuWLFnixMgAAEBR5s6dq+XLlysvL8/mWP/+/fXQQw85MTKg/GI5FwAAAKCC+mMB/bbbbtOsWbN02223SZJ+/PFHDRo0yJnhAQCAP5k7d66WLVsmX19fPfHEE/q///s/PfHEE/L19dWyZcs0d+5cZ4cIlEvciQ4AAABUQJmZmdYC+tq1a1WlShVJ0vTp0/Xbb7+pR48e+vHHH5WZmcnSLgAAuIDc3FwtX75c1atX1/Lly+Xh8XtZr1evXurevbv69++v5cuX68EHH2RpF6CEUUQH/is7O1spKSnODgO4orCwMHl7ezs7DABAOTB+/HhJv9+BXlBAL1ClShW1bt1au3bt0vjx4zVr1ixnhAgAAP5g1apVysvL04gRI6wF9AIeHh568MEH9corr2jVqlXq37+/k6IEyieK6MB/paSkaPTo0c4OA7iiefPmqX79+s4OAwBQDqSnp0uShgwZUuSLRQcPHqxdu3ZZ+wEAAOdKTU2VJFksliLbC44X9ANQciiiA/8VFhamefPmOTuMcuPkyZOaNm2axo8fr/DwcGeHU26EhYU5OwQAQDkRGBion376SbGxscrNzbUeL3ixaMFj4IGBgc4KEQAA/EFISIgkKTk5Wb169SrUnpycbNMPQMmhiA78l7e3N3f4OkB4eDifKwAALmjatGnq06ePtYB+2223aciQIXr77bf1xRdfWI9PmzbNmWECAID/6tOnj+bOnav58+ere/fuNku6XL58WQsWLJC7u7v69OnjxCiB8snN2QEAAAAAcD7DMJSfny/DMJwdCgAAKIKnp6f69++vX3/9Vf3799fq1av1888/a/Xq1TbHeakoUPK4Ex0AAACogApeLOrl5aWcnBzt2rVLu3btsrZ7enoqNzeXF4sCAOBCHnroIUnS8uXL9corr1iPu7u7a8CAAdZ2ACWLO9EBAACACqjghaGvvPKKVq1apaZNm6pWrVpq2rSpVq1apZdfftmmHwAAcA0PPfSQVq1apXbt2qlu3bpq166dVq1aRQEdcCCK6AAAAEAFVPDC0Lffflu//vqrvvnmG/3000/65ptv9Ouvv+qdd96x6QcAAFzD3Llz1adPH3322Wc6fvy4PvvsM+t66QAcg+VcAAAAgAqo4MWiX3zxhb744gvr8by8PA0bNsymHwAAcA1z587VsmXLVL16dY0YMUIWi0XJycmaP3++li1bJknckQ44AHeiAwAAABWQ2WwudKx3797X1A8AAJS+3NxcLV++XNWrV9fy5cvVq1cv1ahRQ7169bI5npub6+xQgXKHIjoAAABQAZ04caLQsdWrV19TPwAAUPpWrVqlvLw8jRgxQh4etotLeHh46MEHH1ReXp5WrVrlpAiB8osiOgAAAFABjRgxQpLk5eVV5ItFvby8bPoBAADnSk1NlSRZLJYi2wuOF/QDUHJYEx0AAACogPLy8iRJw4YNk9ls1qxZs2zaBw0apAULFlj7AQAA5woJCZEkJScnq1evXoXak5OTbfoBKDnciQ4AAABUQO7u7pKkpKSkItuXLFli0w8AADhXnz595O7urvnz5+vy5cs2bZcvX9aCBQvk7u6uPn36OClCoPyiiA4AAABUQPPnz5ck5eTkKC0tzaYtLS1NOTk5Nv0AlA95eXl69tlnVbduXVWuXFk33XSTnnvuORmGYe1jGIYmTpyo4OBgVa5cWV26dNGRI0dsxjl79qwGDRokX19f+fn5acSIETp//nxpTweoUDw9PdW/f3/9+uuv6t+/v1avXq2ff/5Zq1evtjnu6enp7FCBcociOgAAuGYJCQlq3bq1qlWrpoCAAPXt21eHDx+26ZOdna3o6GjVqFFDVatWVb9+/ZSenn7Fca/lyzqAklWnTh2ZTCZJ0oABAxQZGam3335bkZGRGjBggCTJZDKpTp06TowSQEl78cUXNWfOHM2aNUvffPONXnzxRU2fPl1vvPGGtc/06dP1+uuva+7cufr888/l4+OjyMhIZWdnW/sMGjRIBw8e1MaNG7VmzRpt375do0ePdsaUgArloYce0oABA5SVlaVXXnlF9913n1555RVlZWVpwIABeuihh5wdIlAumYw//twMSVJWVpbMZrMyMzPl6+vr7HCAMum7777T6NGjNW/ePNWvX9/Z4QBlkivmo+7du2vAgAFq3bq1Ll++rGeeeUYHDhzQoUOH5OPjI0kaM2aMPvzwQyUlJclsNismJkZubm767LPP7I774osvKiEhQYsWLVLdunX17LPPav/+/Tp06JC8vb2vGpcrflZAWdGxY0cV9ZXAZDJpy5YtTogIKLvKQj7q1auXAgMDbZ4y6devnypXrqzFixfLMAyFhITo8ccf1xNPPCFJyszMVGBgoJKSkjRgwAB98803aty4sXbt2qVbb71VkrRu3Tr16NFDP/zwwzWtx1wWPivAleXm5mrVqlVKTU1VSEiI+vTpwx3owA241nzEi0UBAMA1W7dunc1+UlKSAgICtHv3brVv316ZmZmaP3++li5dqk6dOkmSFi5cqEaNGmnnzp26/fbbC41pGIZmzpypCRMmWNdvfPvttxUYGKj333/fekcsAMfYsmWLTpw4oREjRigvL8+61ip3oAPlU9u2bTVv3jx99913ql+/vr7++mt9+umnevXVVyVJx48fV1pamrp06WI9x2w2q02bNkpOTtaAAQOUnJwsPz8/awFdkrp06SI3Nzd9/vnnuueeewpdNycnx7pMlPR70QLAjStY2gVA6aCIDgAAblhmZqYkyd/fX5K0e/duXbp0yeaLd8OGDRUWFqbk5OQii+jX8mX9z/giDpSsOnXqaPPmzc4OA0Ap+Oc//6msrCw1bNhQ7u7uysvL07Rp0zRo0CBJsr4jITAw0Oa8wMBAa1taWpoCAgJs2j08POTv71/oHQsFEhISNHny5JKeDgAApYI10QEAwA3Jz8/X2LFj1a5dOzVt2lTS71+qPT095efnZ9P3j1+8/+xavqz/WUJCgsxms3ULDQ0t5mwAAKgY3n33XS1ZskRLly7Vnj17tGjRIr388statGiRQ68bFxenzMxM63bq1CmHXg8AgJLEnegAAOCGREdH68CBA/r0009L/dpxcXGKjY217mdlZVFIBwDgGjz55JP65z//aX3Sq1mzZjp58qQSEhI0dOhQBQUFSZLS09MVHBxsPS89PV0tWrSQJAUFBenMmTM2416+fFlnz561nv9nXl5e8vLycsCMAABwPJe6E33OnDmKiIiQr6+vfH19ZbFY9NFHH1nbO3ToIJPJZLP9+a3DKSkp6tmzp6pUqaKAgAA9+eSTunz5cmlPBQCAci0mJkZr1qzRli1bVLt2bevxoKAg5ebmKiMjw6Z/enq63S/Vf/yyfq3neHl5Wf+9ULABAICr++233+TmZlsKcHd3V35+viSpbt26CgoKslniKSsrS59//rksFoskyWKxKCMjQ7t377b2+fjjj5Wfn682bdqUwiwAAChdLnUneu3atfXCCy/olltukWEYWrRokfr06aOvvvpKTZo0kSSNGjVKU6ZMsZ5TpUoV65/z8vLUs2dPBQUFaceOHTp9+rSGDBmiSpUq6fnnny/1+QAAUN4YhqFHHnlEK1eu1NatW1W3bl2b9latWqlSpUravHmz+vXrJ0k6fPiwUlJSrF+8/+yPX9YL7nAr+LI+ZswYh84HwO/y8vK0b98+nT17Vv7+/oqIiJC7u7uzwwLgAL1799a0adMUFhamJk2a6KuvvtKrr76qBx98UJJkMpk0duxYTZ06Vbfccovq1q2rZ599ViEhIerbt68kqVGjRurevbtGjRqluXPn6tKlS4qJidGAAQMUEhLixNkBAOAYLlVE7927t83+tGnTNGfOHO3cudNaRK9SpYrdu9I2bNigQ4cOadOmTQoMDFSLFi303HPP6emnn9akSZPk6enp8DkAAFCeRUdHa+nSpVq1apWqVatmXbPcbDarcuXKMpvNGjFihGJjY+Xv7y9fX1898sgjslgsNi8VbdiwoRISEnTPPfdc05d1AI6zfft2zZ492+YdBEFBQXr44YfVvn17J0YGwBHeeOMNPfvss3r44Yd15swZhYSE6B//+IcmTpxo7fPUU0/pwoULGj16tDIyMnTHHXdo3bp18vb2tvZZsmSJYmJi1LlzZ7m5ualfv356/fXXnTElAAAczqWK6H+Ul5en5cuX68KFCzZ3ri1ZskSLFy9WUFCQevfurWeffdZ6N3pycrKaNWtm82KyyMhIjRkzRgcPHlTLli2LvFZOTo5ycnKs+1lZWQ6aFQAAZducOXMk/b7E2h8tXLhQw4YNkyTNmDHD+mU6JydHkZGRmj17tk3/w4cPKzMz07p/LV/WAZS87du3Kz4+XhaLRc8++6zq1q2r48ePa8mSJYqPj9fkyZMppAPlTLVq1TRz5kzNnDnTbh+TyaQpU6bYPAX+Z/7+/lq6dKkDIgQAwPW4XBF9//79slgsys7OVtWqVbVy5Uo1btxYkvT3v/9d4eHhCgkJ0b59+/T000/r8OHDWrFihSQpLS3NpoAuybr/xztr/iwhIUGTJ0920IwAACg/DMO4ah9vb28lJiYqMTHxmse5li/rAEpWXl6eZs+eLYvFosmTJ+vAgQNKTk6Wv7+/Jk+erPj4eM2ZM0ft2rVjaRcAAABUaC5XRG/QoIH27t2rzMxMvffeexo6dKi2bdumxo0ba/To0dZ+zZo1U3BwsDp37qxjx47ppptuuuFrxsXFKTY21rqflZWl0NDQYs0DAAAAcGX79u1TWlqaevfurcGDBxdazqVXr17asWOH9u3bZ/eJTgAArkd2drZSUlKcHQZwRWFhYTwRi0Jcroju6empm2++WdLvLyfbtWuXXnvtNb355puF+ha89fvo0aO66aabFBQUpC+++MKmT3p6uiTZXUddkry8vOTl5VVSUwAAAABc3tmzZyVJb731ltq2bVtoOZd//etfNv0AACiulJQUmxskAVc0b9481a9f39lhwMW4XBH9z/Lz823WK/+jvXv3SpKCg4MlSRaLRdOmTdOZM2cUEBAgSdq4caN8fX2tS8IAAAAAkPz8/CT9/oTn1KlT5ebmJklq0qSJpk6dqscee0z79++39gMAoLjCwsI0b948Z4dRbpw8eVLTpk3T+PHjFR4e7uxwyo2wsDBnhwAX5FJF9Li4OEVFRSksLEznzp3T0qVLtXXrVq1fv17Hjh3T0qVL1aNHD9WoUUP79u3TuHHj1L59e0VEREiSunXrpsaNG2vw4MGaPn260tLSNGHCBEVHR3OnOQAAAAAAgBN5e3tzh68DhIeH87kCDuZSRfQzZ85oyJAhOn36tMxmsyIiIrR+/Xp17dpVp06d0qZNmzRz5kxduHBBoaGh6tevnyZMmGA9393dXWvWrNGYMWNksVjk4+OjoUOH8pIyAAAA4E8yMjIkSQcOHNCECRM0aNAgm+VcDhw4YNMPAAAAqKhcqog+f/58u22hoaHatm3bVccIDw/X2rVrSzIsAAAAoNzx9/eXJI0cOVKrV69WdHS0tS04OFgjR47UW2+9Ze0HAAAAVFQuVUQHAAAAUDoiIiIUFBSkgwcP6p133tGBAwd09uxZ+fv7q2nTpoqPj1dwcLB16UQAAACgonJzdgAAAAAASp+7u7sefvhhJScnKz4+Xp6enrJYLPL09FR8fLySk5M1ZswYubu7OztUAAAAwKm4Ex0AAACooNq3b6/Jkydr9uzZhZZzmTx5stq3b+/E6AAAAADXQBEdAAAAqMDat2+vdu3aad++fdblXCIiIrgDHQAAAPgviugAAABABefu7q6WLVs6OwwAAADAJbEmOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYwZroAAAAQAWXl5fHi0UBAAAAOyiiAwAAABXY9u3bNXv2bKWlpVmPBQUF6eGHH1b79u2dGBkAAADgGljOBQAAAKigtm/frvj4eNWrV0+JiYlau3atEhMTVa9ePcXHx2v79u3ODhEAAABwOoroAAAAQAWUl5en2bNny2KxaPLkycrNzVVycrJyc3M1efJkWSwWzZkzR3l5ec4OFQAAAHAqlnMBAAAAKqB9+/YpLS1NvXv31uDBgwst59K7d2/t2LFD+/btU8uWLZ0YKQAAAOBcFNEBAACACujs2bOSpH/961+yWCx69tlnVbduXR0/flxLlizRv/71L5t+AAAAQEXFci4AAABABeTn5ydJatq0qaZOnaomTZqoSpUqatKkiaZOnaqmTZva9AMAAAAqKoroAAAAAAAAAADYQREdAAAAqIAyMjIkSfv379eECRN08OBB/fbbbzp48KAmTJig/fv32/QDAAAAKirWRAcAAAAqIH9/f0nSqFGjtHr1akVHR1vbgoODNXLkSP3rX/+y9gMAAAAqKoroAAAAQAUUERGhoKAgHTx4UO+8844OHDigs2fPyt/fX02bNlV8fLyCg4MVERHh7FABAAAAp2I5FwAAAKACcnd318MPP6zk5GTFx8fL09NTFotFnp6eio+PV3JyssaMGSN3d3dnhwoAAAA4FXeil3Hp6enKzMx0dhhAISdPnrT5L+BqzGazAgMDnR0GADhV+/btNXnyZM2ePbvQci6TJ09W+/btnRgdAAAA4Booopdh6enpemDwEF3KzXF2KIBd06ZNc3YIQJEqeXpp8TtvU0gHUOG1b99e7dq10759+6zLuURERHAHOgAAAPBfFNHLsMzMTF3KzdHFencp39vs7HAAoMxwy86Uvt+mzMxMiugAoN+XdmnZsqWzwwAAAABcEkX0ciDf26x8n5rODgMAAAAAAAAAyh1eLAoAAK7Z9u3b1bt3b4WEhMhkMun999+3aTeZTEVuL730kt0xJ02aVKh/w4YNHTwTAAAAAACuDUV0AABwzS5cuKDmzZsrMTGxyPbTp0/bbAsWLJDJZFK/fv2uOG6TJk1szvv0008dET4AAAAAANeN5VwAAMA1i4qKUlRUlN32oKAgm/1Vq1apY8eOqlev3hXH9fDwKHQugNKTl5fHi0UBAAAAOyiiAwAAh0hPT9eHH36oRYsWXbXvkSNHFBISIm9vb1ksFiUkJCgsLMxu/5ycHOXk5Fj3s7KySiRmoCLavn27Zs+erbS0NOuxoKAgPfzww2rfvr0TIwMAAABcA8u5AAAAh1i0aJGqVaume++994r92rRpo6SkJK1bt05z5szR8ePHdeedd+rcuXN2z0lISJDZbLZuoaGhJR0+UCFs375d8fHxqlevnhITE7V27VolJiaqXr16io+P1/bt250dIgAAAOB0FNEBAIBDLFiwQIMGDZK3t/cV+0VFRal///6KiIhQZGSk1q5dq4yMDL377rt2z4mLi1NmZqZ1O3XqVEmHD5R7eXl5mj17tiwWi6ZOnaomTZqoSpUqatKkiaZOnSqLxaI5c+YoLy/P2aECAAAATkURHQAAlLhPPvlEhw8f1siRI6/7XD8/P9WvX19Hjx6128fLy0u+vr42G4Drs2/fPqWlpWnQoEFyc7P9WuDm5qZBgwbp9OnT2rdvn5MiBAAAAFwDRXQAAFDi5s+fr1atWql58+bXfe758+d17NgxBQcHOyAyAAXOnj0rSapbt26R7QXHC/oBAAAAFRVFdAAAcM3Onz+vvXv3au/evZKk48ePa+/evUpJSbH2ycrK0vLly+3ehd65c2fNmjXLuv/EE09o27ZtOnHihHbs2KF77rlH7u7uGjhwoEPnAlR0/v7+kn7//3FRCo4X9ANQPtSpU0cmk6nQFh0dLUnKzs5WdHS0atSooapVq6pfv35KT0+3GSMlJUU9e/ZUlSpVFBAQoCeffFKXL192xnQAACgVFNEBAMA1+/LLL9WyZUu1bNlSkhQbG6uWLVtq4sSJ1j7Lli2TYRh2i+DHjh3Tzz//bN3/4YcfNHDgQDVo0ED333+/atSooZ07d6pWrVqOnQxQwUVERCgoKEhLlixRfn6+TVt+fr6WLFmi4OBgRUREOClCAI6wa9cunT592rpt3LhRktS/f39J0rhx47R69WotX75c27ZtU2pqqs1LwvPy8tSzZ0/l5uZqx44dWrRokZKSkmz+LQAAQHnj4ewAAABA2dGhQwcZhnHFPqNHj9bo0aPttp84ccJmf9myZSURGoDr5O7urocffljx8fGaMGGCBg0apLp16+r48eNasmSJkpOTNXnyZLm7uzs7VAAl6M8/Ur/wwgu66aabdNdddykzM1Pz58/X0qVL1alTJ0nSwoUL1ahRI+3cuVO33367NmzYoEOHDmnTpk0KDAxUixYt9Nxzz+npp5/WpEmT5Onp6YxpAQDgUC51J/qcOXMUERFhfUGYxWLRRx99ZG3nsTIAAACg5LRv316TJ0/W999/r+joaPXo0UPR0dE6fvy4Jk+erPbt2zs7RAAOlJubq8WLF+vBBx+UyWTS7t27denSJXXp0sXap2HDhgoLC1NycrIkKTk5Wc2aNVNgYKC1T2RkpLKysnTw4EG718rJyVFWVpbNBgBAWeFSd6LXrl1bL7zwgm655RYZhqFFixapT58++uqrr9SkSRONGzdOH374oZYvXy6z2ayYmBjde++9+uyzzyT977GyoKAg7dixQ6dPn9aQIUNUqVIlPf/8806eHQAAAOB62rdvr3bt2mnfvn06e/as/P39FRERwR3oQAXw/vvvKyMjQ8OGDZMkpaWlydPTU35+fjb9AgMDlZaWZu3zxwJ6QXtBmz0JCQmaPHlyyQUPAEApcqkieu/evW32p02bpjlz5mjnzp2qXbs2j5UBAAAADuDu7m591wGAimP+/PmKiopSSEiIw68VFxen2NhY635WVpZCQ0Mdfl0AAEqCSy3n8kd5eXlatmyZLly4IIvFwmNlAAAAAACUkJMnT2rTpk0aOXKk9VhQUJByc3OVkZFh0zc9PV1BQUHWPn9eVrVgv6BPUby8vKxLtxZsAACUFS5XRN+/f7+qVq0qLy8vPfTQQ1q5cqUaN27s8MfKzGazdePXcAAAAABAebZw4UIFBASoZ8+e1mOtWrVSpUqVtHnzZuuxw4cPKyUlRRaLRZJksVi0f/9+nTlzxtpn48aN8vX1VePGjUtvAgAAlCKXWs5Fkho0aKC9e/cqMzNT7733noYOHapt27Y59Jo8VgYAAAAAqCjy8/O1cOFCDR06VB4e/ysLmM1mjRgxQrGxsfL395evr68eeeQRWSwW3X777ZKkbt26qXHjxho8eLCmT5+utLQ0TZgwQdHR0fLy8nLWlAAAcCiXK6J7enrq5ptvlvT7r+C7du3Sa6+9pr/97W/Wx8r+eDf6nx8r++KLL2zGu9bHykj2AAAAAICKYNOmTUpJSdGDDz5YqG3GjBlyc3NTv379lJOTo8jISM2ePdva7u7urjVr1mjMmDGyWCzy8fHR0KFDNWXKlNKcAgAApcrliuh/lp+fr5ycHJvHyvr16yep6MfKpk2bpjNnziggIEASj5UBAAAAAPBH3bp1k2EYRbZ5e3srMTFRiYmJds8PDw/X2rVrHRUeAAAux6WK6HFxcYqKilJYWJjOnTunpUuXauvWrVq/fj2PlQEAAAAAAAAASp1LFdHPnDmjIUOG6PTp0zKbzYqIiND69evVtWtXSTxWBgAAAAAAAAAoXS5VRJ8/f/4V23msDAAAAAAAAABQmtycHQAAAAAAAAAAAK6KIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOzycHQAAAABwI7Kzs5WSkuLsMIArCgsLk7e3t7PDAAAAQDFQRAcAAECZlJKSotGjRzs7DOCK5s2bp/r16zs7DAAAABQDRXQAAACUSWFhYZo3b56zwyg3Tp48qWnTpmn8+PEKDw93djjlRlhYmLNDAAAAQDFRRAcAAECZ5O3tzR2+DhAeHs7nCgAAAPwBLxYFAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANjh4ewAUHxuFzOcHQIAlCn8vXnjtm/frpdeekm7d+/W6dOntXLlSvXt29faPmzYMC1atMjmnMjISK1bt+6K4yYmJuqll15SWlqamjdvrjfeeEO33XabI6YAAAAAAMB1oYheDlQ+vt3ZIQAAKogLFy6oefPmevDBB3XvvfcW2ad79+5auHChdd/Ly+uKY/7nP/9RbGys5s6dqzZt2mjmzJmKjIzU4cOHFRAQUKLxAwAAAABwvSiilwMX67ZXfmU/Z4cBAGWG28UMfoC8QVFRUYqKirpiHy8vLwUFBV3zmK+++qpGjRql4cOHS5Lmzp2rDz/8UAsWLNA///nPYsULAAAAAEBxUUQvB/Ir+ynfp6azwwAAQJK0detWBQQEqHr16urUqZOmTp2qGjVqFNk3NzdXu3fvVlxcnPWYm5ubunTpouTkZLvXyMnJUU5OjnU/Kyur5CYAAAAAAMAf8GJRAABQYrp37663335bmzdv1osvvqht27YpKipKeXl5Rfb/+eeflZeXp8DAQJvjgYGBSktLs3udhIQEmc1m6xYaGlqi8wAAAAAAoAB3ogMAgBIzYMAA65+bNWumiIgI3XTTTdq6das6d+5cYteJi4tTbGysdT8rK4tCOgAAAADAIbgTHQAAOEy9evVUs2ZNHT16tMj2mjVryt3dXenp6TbH09PTr7iuupeXl3x9fW02AAAAAAAcgSI6AABwmB9++EG//PKLgoODi2z39PRUq1attHnzZuux/Px8bd68WRaLpbTCBAAAAADALoroAADgmp0/f1579+7V3r17JUnHjx/X3r17lZKSovPnz+vJJ5/Uzp07deLECW3evFl9+vTRzTffrMjISOsYnTt31qxZs6z7sbGxeuutt7Ro0SJ98803GjNmjC5cuKDhw4eX9vQAAAAAACiENdEBAMA1+/LLL9WxY0frfsG65EOHDtWcOXO0b98+LVq0SBkZGQoJCVG3bt303HPPycvLy3rOsWPH9PPPP1v3//a3v+mnn37SxIkTlZaWphYtWmjdunWFXjYKAAAAAIAzUEQHAADXrEOHDjIMw277+vXrrzrGiRMnCh2LiYlRTExMcUIDAAAAAMAhWM4FAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsMOliugJCQlq3bq1qlWrpoCAAPXt21eHDx+26dOhQweZTCab7aGHHrLpk5KSop49e6pKlSoKCAjQk08+qcuXL5fmVAAAAAAAAAAA5YCHswP4o23btik6OlqtW7fW5cuX9cwzz6hbt246dOiQfHx8rP1GjRqlKVOmWPerVKli/XNeXp569uypoKAg7dixQ6dPn9aQIUNUqVIlPf/886U6HwAAAAAAAABA2eZSd6KvW7dOw4YNU5MmTdS8eXMlJSUpJSVFu3fvtulXpUoVBQUFWTdfX19r24YNG3To0CEtXrxYLVq0UFRUlJ577jklJiYqNze3tKcEAAAAAIBL+fHHH/XAAw+oRo0aqly5spo1a6Yvv/zS2m4YhiZOnKjg4GBVrlxZXbp00ZEjR2zGOHv2rAYNGiRfX1/5+flpxIgROn/+fGlPBQCAUuFSRfQ/y8zMlCT5+/vbHF+yZIlq1qyppk2bKi4uTr/99pu1LTk5Wc2aNVNgYKD1WGRkpLKysnTw4MEir5OTk6OsrCybDQAAAACA8ubXX39Vu3btVKlSJX300Uc6dOiQXnnlFVWvXt3aZ/r06Xr99dc1d+5cff755/Lx8VFkZKSys7OtfQYNGqSDBw9q48aNWrNmjbZv367Ro0c7Y0oAADicSy3n8kf5+fkaO3as2rVrp6ZNm1qP//3vf1d4eLhCQkK0b98+Pf300zp8+LBWrFghSUpLS7MpoEuy7qelpRV5rYSEBE2ePNlBMwEAAAAAwDW8+OKLCg0N1cKFC63H6tata/2zYRiaOXOmJkyYoD59+kiS3n77bQUGBur999/XgAED9M0332jdunXatWuXbr31VknSG2+8oR49eujll19WSEhI6U4KAAAHc9k70aOjo3XgwAEtW7bM5vjo0aMVGRmpZs2aadCgQXr77be1cuVKHTt27IavFRcXp8zMTOt26tSp4oYPAAAAAIDL+eCDD3Trrbeqf//+CggIUMuWLfXWW29Z248fP660tDR16dLFesxsNqtNmzZKTk6W9PsT4H5+ftYCuiR16dJFbm5u+vzzz4u8Lk+AAwDKMpcsosfExGjNmjXasmWLateufcW+bdq0kSQdPXpUkhQUFKT09HSbPgX7QUFBRY7h5eUlX19fmw0AAAAAgPLm+++/15w5c3TLLbdo/fr1GjNmjB599FEtWrRI0v+e4C7qCe+CtrS0NAUEBNi0e3h4yN/f/4pPgJvNZusWGhpa0lMDAMBhXKqIbhiGYmJitHLlSn388cc2j5TZs3fvXklScHCwJMlisWj//v06c+aMtc/GjRvl6+urxo0bOyRuAAAAAADKgvz8fP31r3/V888/r5YtW2r06NEaNWqU5s6d69Dr8gQ4AKAsc6kienR0tBYvXqylS5eqWrVqSktLU1pami5evChJOnbsmJ577jnt3r1bJ06c0AcffKAhQ4aoffv2ioiIkCR169ZNjRs31uDBg/X1119r/fr1mjBhgqKjo+Xl5eXM6QEAAAAA4FTBwcGFbjBr1KiRUlJSJP3vCe6invAuaAsKCrK5cU2SLl++rLNnz/IEOACgXHKpIvqcOXOUmZmpDh06KDg42Lr95z//kSR5enpq06ZN6tatmxo2bKjHH39c/fr10+rVq61juLu7a82aNXJ3d5fFYtEDDzygIUOGaMqUKc6aFgAAAAAALqFdu3Y6fPiwzbHvvvtO4eHhkn5/yWhQUJA2b95sbc/KytLnn38ui8Ui6fcnwDMyMrR7925rn48//lj5+fnWJVcBAChPPJwdwB8ZhnHF9tDQUG3btu2q44SHh2vt2rUlFRYAAAAAAOXCuHHj1LZtWz3//PO6//779cUXX2jevHmaN2+eJMlkMmns2LGaOnWqbrnlFtWtW1fPPvusQkJC1LdvX0m/37nevXt36zIwly5dUkxMjAYMGKCQkBAnzg4AAMdwqSI6AAAAAABwnNatW2vlypWKi4vTlClTVLduXc2cOVODBg2y9nnqqad04cIFjR49WhkZGbrjjju0bt06eXt7W/ssWbJEMTEx6ty5s9zc3NSvXz+9/vrrzpgSAAAORxEdAAAAAIAKpFevXurVq5fddpPJpClTplxxWVR/f38tXbrUEeEBAOByXGpNdAAAAAAAAAAAXAlFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwo9hF9FOnTumHH36w7n/xxRcaO3as5s2bV9yhAQBACSBXAwBQtpHLAQBwrmIX0f/+979ry5YtkqS0tDR17dpVX3zxhcaPH3/FN3kDAIDSQa4GAKBsI5cDAOBcxS6iHzhwQLfddpsk6d1331XTpk21Y8cOLVmyRElJScUdHgAAFBO5GgCAso1cDgCAcxW7iH7p0iV5eXlJkjZt2qS7775bktSwYUOdPn26uMMDAIBiIlcDAFC2kcsBAHCuYhfRmzRporlz5+qTTz7Rxo0b1b17d0lSamqqatSoUewAAQBA8ZCrAQAo28jlAAA4V7GL6C+++KLefPNNdejQQQMHDlTz5s0lSR988IH1cTMAAOA85GoAAMo2cjkAAM7lUdwBOnTooJ9//llZWVmqXr269fjo0aNVpUqV4g4PAACKiVwNAEDZRi4HAMC5in0nuiQZhqHdu3frzTff1Llz5yRJnp6eJHMAAFwEuRoAgLKNXA4AgPMU+070kydPqnv37kpJSVFOTo66du2qatWq6cUXX1ROTo7mzp1bEnECAIAbVJK5evv27XrppZe0e/dunT59WitXrlTfvn0l/f7SswkTJmjt2rX6/vvvZTab1aVLF73wwgsKCQmxO+akSZM0efJkm2MNGjTQt99+e0PzBQCgvOF7t3Olp6crMzPT2WEAhZw8edLmv4CrMZvNCgwMdHYYJaLYRfTHHntMt956q77++mubF5rcc889GjVqVHGHBwAAxVSSufrChQtq3ry5HnzwQd177702bb/99pv27NmjZ599Vs2bN9evv/6qxx57THfffbe+/PLLK47bpEkTbdq0ybrv4VHsf6IAAFBu8L3bedLT0/XA4CG6lJvj7FAAu6ZNm+bsEIAiVfL00uJ33i4XhfRif0P95JNPtGPHDnl6etocr1Onjn788cfiDg8AAIqpJHN1VFSUoqKiimwzm83auHGjzbFZs2bptttuU0pKisLCwuyO6+HhoaCgoOuKBQCAioLv3c6TmZmpS7k5uljvLuV7m50dDgCUGW7ZmdL325SZmUkRXZLy8/OVl5dX6PgPP/ygatWqFXd4AABQTM7M1ZmZmTKZTPLz87tivyNHjigkJETe3t6yWCxKSEi4YtE9JydHOTn/uyMsKyurpEIGAMDl8L3b+fK9zcr3qensMAAATlLsF4t269ZNM2fOtO6bTCadP39e8fHx6tGjR3GHBwAAxeSsXJ2dna2nn35aAwcOlK+vr91+bdq0UVJSktatW6c5c+bo+PHjuvPOO60vTStKQkKCzGazdQsNDXXEFAAAcAl87wYAwLmKfSf6K6+8osjISDVu3FjZ2dn6+9//riNHjqhmzZr697//XRIxAgCAYnBGrr506ZLuv/9+GYahOXPmXLHvH5eHiYiIUJs2bRQeHq53331XI0aMKPKcuLg4xcbGWvezsrIopAMAyi2+dwMA4FzFLqLXrl1bX3/9tZYtW6Z9+/bp/PnzGjFihAYNGqTKlSuXRIwAAKAYSjtXFxTQT548qY8//viKd6EXxc/PT/Xr19fRo0ft9vHy8pKXl1dxQwUAoEzgezcAAM5V7CK69PvLwB544IGSGAoAADhAaeXqggL6kSNHtGXLFtWoUeO6xzh//ryOHTumwYMHOyBCAADKJr53AwDgPMUuor/99ttXbB8yZEhxLwEAAIqhJHP1+fPnbe4QP378uPbu3St/f38FBwfrvvvu0549e7RmzRrl5eUpLS1NkuTv7y9PT09JUufOnXXPPfcoJiZGkvTEE0+od+/eCg8PV2pqquLj4+Xu7q6BAwde71QBACiX+N4NAIBzFbuI/thjj9nsX7p0Sb/99ps8PT1VpUoVkjkAAE5Wkrn6yy+/VMeOHa37BeuSDx06VJMmTdIHH3wgSWrRooXNeVu2bFGHDh0kSceOHdPPP/9sbfvhhx80cOBA/fLLL6pVq5buuOMO7dy5U7Vq1bqeaQIAUG7xvRsAAOcqdhH9119/LXTsyJEjGjNmjJ588sniDg8AAIqpJHN1hw4dZBiG3fYrtRU4ceKEzf6yZcuuKwYAACoavncDAOBcbo4Y9JZbbtELL7xQ6NdyAADgGsjVAACUbeRyAABKj0OK6NLvLz1JTU111PAAAKCYyNUAAJRt5HIAAEpHsZdzKVj7tIBhGDp9+rRmzZqldu3aFXd4AABQTORqAADKNnI5AADOVewiet++fW32TSaTatWqpU6dOumVV14p7vAAAKCYyNUAAJRt5HIAAJyr2EX0/Pz8kogDAAA4CLkaAICyjVwOAIBzOWxNdAAAAAAAAAAAyrobuhM9Njb2mvu++uqrN3IJXAe37ExnhwAAZUpF+HuTXA0AQNlGLgcAwHXcUBH9q6++uqZ+JpPpRobHNTKbzark6SV9v83ZoQBAmVPJ00tms9nZYTgMuRoAgLKNXA4AgOu4oSL6li1bSjoO3IDAwEAtfudtZWaW/zsqUfacPHlS06ZN0/jx4xUeHu7scIBCzGazAgMDnR2Gw5CrAQAo28jlAAC4jmK/WLQkJSQkaMWKFfr2229VuXJltW3bVi+++KIaNGhg7ZOdna3HH39cy5YtU05OjiIjIzV79mybQkhKSorGjBmjLVu2qGrVqho6dKgSEhLk4eFS0y0RgYGB5boIhLIvPDxc9evXd3YYAAAAAAAAwA0pkaryl19+qXfffVcpKSnKzc21aVuxYsU1j7Nt2zZFR0erdevWunz5sp555hl169ZNhw4dko+PjyRp3Lhx+vDDD7V8+XKZzWbFxMTo3nvv1WeffSZJysvLU8+ePRUUFKQdO3bo9OnTGjJkiCpVqqTnn3++JKYLAECZU1K5GgAAOAe5HAAA53Er7gDLli1T27Zt9c0332jlypW6dOmSDh48qI8//vi615pdt26dhg0bpiZNmqh58+ZKSkpSSkqKdu/eLUnKzMzU/Pnz9eqrr6pTp05q1aqVFi5cqB07dmjnzp2SpA0bNujQoUNavHixWrRooaioKD333HNKTEws9A8NAAAqgpLM1QAAoPSRywEAcK5iF9Gff/55zZgxQ6tXr5anp6dee+01ffvtt7r//vsVFhZWrLEL1vr29/eXJO3evVuXLl1Sly5drH0aNmyosLAwJScnS5KSk5PVrFkzmyVOIiMjlZWVpYMHDxZ5nZycHGVlZdlsAACUF47M1QAAwPHI5QAAOFexi+jHjh1Tz549JUmenp66cOGCTCaTxo0bp3nz5t3wuPn5+Ro7dqzatWunpk2bSpLS0tLk6ekpPz8/m76BgYFKS0uz9vnzGuEF+wV9/iwhIUFms9m6hYaG3nDcAAC4GkflagAAUDrI5QAAOFexi+jVq1fXuXPnJEl/+ctfdODAAUlSRkaGfvvttxseNzo6WgcOHNCyZcuKG+JVxcXFKTMz07qdOnXK4dcEAKC0OCpXAwCA0kEuBwDAuW64iF6QtNu3b6+NGzdKkvr376/HHntMo0aN0sCBA9W5c+cbGjsmJkZr1qzRli1bVLt2bevxoKAg5ebmKiMjw6Z/enq6goKCrH3S09MLtRe0FcXLy0u+vr42GwAAZZ0jczUAAHA8cjkAAK7hhovoERERatOmjZo1a6b+/ftLksaPH6/Y2Filp6erX79+mj9//nWNaRiGYmJitHLlSn388ceqW7euTXurVq1UqVIlbd682Xrs8OHDSklJkcVikSRZLBbt379fZ86csfbZuHGjfH191bhx4xudLgAAZY4jcjUAACg95HIAAFzDDRfRt23bpiZNmighIUGNGjXS0KFD9dlnn+mf//ynPvjgA73yyiuqXr36dY0ZHR2txYsXa+nSpapWrZrS0tKUlpamixcvSpLMZrNGjBih2NhYbdmyRbt379bw4cNlsVh0++23S5K6deumxo0ba/Dgwfr666+1fv16TZgwQdHR0fLy8rrR6QIAUOY4IlcDAIDS44hcPmnSJJlMJputYcOG1vbs7GxFR0erRo0aqlq1qvr161foae+UlBT17NlTVapUUUBAgJ588kldvny5ROYMAIAruuEi+p133qkFCxbo9OnTeuONN3TixAndddddql+/vl588UW7L/G8kjlz5igzM1MdOnRQcHCwdfvPf/5j7TNjxgz16tVL/fr1U/v27RUUFKQVK1ZY293d3bVmzRq5u7vLYrHogQce0JAhQzRlypQbnSoAAGWSI3I1AAAoPY7K5U2aNNHp06et26effmptGzdunFavXq3ly5dr27ZtSk1N1b333mttz8vLU8+ePZWbm6sdO3Zo0aJFSkpK0sSJE4s9XwAAXFWxXyzq4+Oj4cOHa9u2bfruu+/Uv39/JSYmKiwsTHffffd1jWUYRpHbsGHDrH28vb2VmJios2fP6sKFC1qxYkWhtc7Dw8O1du1a/fbbb/rpp5/08ssvy8PDo7hTBQCgTCrJXA0AAEpfSedyDw8PBQUFWbeaNWtKkjIzMzV//ny9+uqr6tSpk1q1aqWFCxdqx44d2rlzpyRpw4YNOnTokBYvXqwWLVooKipKzz33nBITE5Wbm2v3mjk5OcrKyrLZAAAoK4pdRP+jm2++Wc8884wmTJigatWq6cMPPyzJ4QEAQDGRqwEAKNtKIpcfOXJEISEhqlevngYNGqSUlBRJ0u7du3Xp0iV16dLF2rdhw4YKCwtTcnKyJCk5OVnNmjVTYGCgtU9kZKSysrJ08OBBu9dMSEiQ2Wy2bqGhodcdNwAAzlJit2dv375dCxYs0P/93//Jzc1N999/v0aMGFFSwwMAgGIiV7uG9PR0ZWZmOjsMoJCTJ0/a/BdwNWaz2aZwWxGVRC5v06aNkpKS1KBBA50+fVqTJ0/WnXfeqQMHDigtLU2enp7y8/OzOScwMNC6dExaWlqh/x0K9q+0vExcXJxiY2Ot+1lZWRTSAQBlRrGK6KmpqUpKSlJSUpKOHj2qtm3b6vXXX9f9998vHx+fkooRAADcIHK1a0lPT9cDg4foUm6Os0MB7Jo2bZqzQwCKVMnTS4vfebvCFdJLOpdHRUVZ/xwREaE2bdooPDxc7777ripXrlySodvw8vKSl5eXw8YHAMCRbriIHhUVpU2bNqlmzZoaMmSIHnzwQTVo0KAkYwMAAMVArnY9mZmZupSbo4v17lK+t9nZ4QBAmeGWnSl9v02ZmZkVqoheGrncz89P9evX19GjR9W1a1fl5uYqIyPD5m709PR067vIgoKC9MUXX9iMkZ6ebm0DAKA8uuEieqVKlfTee++pV69ecnd3L8mYAABACSBXu658b7PyfWo6OwwAgIsrjVx+/vx5HTt2TIMHD1arVq1UqVIlbd68Wf369ZMkHT58WCkpKbJYLJIki8WiadOm6cyZMwoICJAkbdy4Ub6+vmrcuLFDYgQAwNluuIj+wQcflGQcAACghJGrAQAo2xyRy5944gn17t1b4eHhSk1NVXx8vNzd3TVw4ECZzWaNGDFCsbGx8vf3l6+vrx555BFZLBbdfvvtkqRu3bqpcePGGjx4sKZPn660tDRNmDBB0dHRLNcCACi3SuzFogAAAAAAwLX98MMPGjhwoH755RfVqlVLd9xxh3bu3KlatWpJkmbMmCE3Nzf169dPOTk5ioyM1OzZs63nu7u7a82aNRozZowsFot8fHw0dOhQTZkyxVlTAgDA4SiiAwAAAABQQSxbtuyK7d7e3kpMTFRiYqLdPuHh4Vq7dm1JhwYAgMtyc3YAAAAAAAAAAAC4KoroAAAAAAAAAADYQREdAABcs+3bt6t3794KCQmRyWTS+++/b9NuGIYmTpyo4OBgVa5cWV26dNGRI0euOm5iYqLq1Kkjb29vtWnTRl988YWDZgAAAAAAwPWhiA4AAK7ZhQsX1Lx5c7vrpE6fPl2vv/665s6dq88//1w+Pj6KjIxUdna23TH/85//KDY2VvHx8dqzZ4+aN2+uyMhInTlzxlHTAAAAAADgmlFEBwAA1ywqKkpTp07VPffcU6jNMAzNnDlTEyZMUJ8+fRQREaG3335bqamphe5Y/6NXX31Vo0aN0vDhw9W4cWPNnTtXVapU0YIFCxw4EwAAAAAArg1FdAAAUCKOHz+utLQ0denSxXrMbDarTZs2Sk5OLvKc3Nxc7d692+YcNzc3denSxe45kpSTk6OsrCybDQAAAAAAR6CIDgAASkRaWpokKTAw0OZ4YGCgte3Pfv75Z+Xl5V3XOZKUkJAgs9ls3UJDQ4sZPQAAAAAARaOIDgAAypy4uDhlZmZat1OnTjk7JAAAAABAOUURHQAAlIigoCBJUnp6us3x9PR0a9uf1axZU+7u7td1jiR5eXnJ19fXZgMAAAAAwBE8nB0AAAAoH+rWraugoCBt3rxZLVq0kCRlZWXp888/15gxY4o8x9PTU61atdLmzZvVt29fSVJ+fr42b96smJiYUoocAADgytwuZjg7BAAoU8rb35sU0QEAwDU7f/68jh49at0/fvy49u7dK39/f4WFhWns2LGaOnWqbrnlFtWtW1fPPvusQkJCrAVySercubPuuecea5E8NjZWQ4cO1a233qrbbrtNM2fO1IULFzR8+PDSnh4AAECRKh/f7uwQAABORBEdAABcsy+//FIdO3a07sfGxkqShg4dqqSkJD311FO6cOGCRo8erYyMDN1xxx1at26dvL29reccO3ZMP//8s3X/b3/7m3766SdNnDhRaWlpatGihdatW1foZaMAAADOcrFue+VX9nN2GABQZrhdzChXP0BSRAcAANesQ4cOMgzDbrvJZNKUKVM0ZcoUu31OnDhR6FhMTAzLtwAAAJeVX9lP+T41nR0GAMBJeLEoAAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgyI6AAAAAAAAAAB2UEQHAAAAAAAAAMAOiugAAAAAAAAAANhBER0AAAAAAAAAADsoogMAAAAAAAAAYAdFdAAAAAAAAAAA7HCpIvr27dvVu3dvhYSEyGQy6f3337dpHzZsmEwmk83WvXt3mz5nz57VoEGD5OvrKz8/P40YMULnz58vxVkAAAAAAAAAAMoLlyqiX7hwQc2bN1diYqLdPt27d9fp06et27///W+b9kGDBungwYPauHGj1qxZo+3bt2v06NGODh0AAAAAAAAAUA55ODuAP4qKilJUVNQV+3h5eSkoKKjItm+++Ubr1q3Trl27dOutt0qS3njjDfXo0UMvv/yyQkJCSjxmAAAAAAAAAED55VJ3ol+LrVu3KiAgQA0aNNCYMWP0yy+/WNuSk5Pl5+dnLaBLUpcuXeTm5qbPP//c7pg5OTnKysqy2QAAAAAAAAAAKFNF9O7du+vtt9/W5s2b9eKLL2rbtm2KiopSXl6eJCktLU0BAQE253h4eMjf319paWl2x01ISJDZbLZuoaGhDp0HAAAAAAAAAKBscKnlXK5mwIAB1j83a9ZMERERuummm7R161Z17tz5hseNi4tTbGysdT8rK4tCOgAAAAAAAACgbN2J/mf16tVTzZo1dfToUUlSUFCQzpw5Y9Pn8uXLOnv2rN111KXf11n39fW12QAAAAAAAAAAKNNF9B9++EG//PKLgoODJUkWi0UZGRnavXu3tc/HH3+s/Px8tWnTxllhAgAAAAAAAADKKJdazuX8+fPWu8ol6fjx49q7d6/8/f3l7++vyZMnq1+/fgoKCtKxY8f01FNP6eabb1ZkZKQkqVGjRurevbtGjRqluXPn6tKlS4qJidGAAQMUEhLirGkBAAAAAAAAAMoolyqif/nll+rYsaN1v2Cd8qFDh2rOnDnat2+fFi1apIyMDIWEhKhbt2567rnn5OXlZT1nyZIliomJUefOneXm5qZ+/frp9ddfL/W5AAAA2ON2McPZIQBAmcLfmwAAwJlcqojeoUMHGYZht339+vVXHcPf319Lly4tybAAAABKVOXj250dAgAAAADgGrlUER0AAKAiuFi3vfIr+zk7DAAoM9wuZvADJAAAcBqK6AAAAKUsv7Kf8n1qOjsMAAD0wgsvKC4uTo899phmzpwpScrOztbjjz+uZcuWKScnR5GRkZo9e7YCAwOt56WkpGjMmDHasmWLqlatqqFDhyohIUEeHpQZAADlj5uzAwAAAAAAAKVv165devPNNxUREWFzfNy4cVq9erWWL1+ubdu2KTU1Vffee6+1PS8vTz179lRubq527NihRYsWKSkpSRMnTiztKQAAUCr4iRgAAAAAgArm/PnzGjRokN566y1NnTrVejwzM1Pz58/X0qVL1alTJ0nSwoUL1ahRI+3cuVO33367NmzYoEOHDmnTpk0KDAxUixYt9Nxzz+npp5/WpEmT5Onp6axpOYxbdqazQwCAMqW8/b1JER0AAAAAgAomOjpaPXv2VJcuXWyK6Lt379alS5fUpUsX67GGDRsqLCxMycnJuv3225WcnKxmzZrZLO8SGRmpMWPG6ODBg2rZsmWh6+Xk5CgnJ8e6n5WV5aCZlSyz2axKnl7S99ucHQoAlDmVPL1kNpudHUaJoIgOAABKVJ06dXTy5MlCxx9++GElJiYWOp6UlKThw4fbHPPy8lJ2drbDYgQAoCJbtmyZ9uzZo127dhVqS0tLk6enp/z8/GyOBwYGKi0tzdrnjwX0gvaCtqIkJCRo8uTJJRB96QoMDNTid95WZmb5uqMS5cPJkyc1bdo0jR8/XuHh4c4OByjEbDYXyhdlFUV0AABQonbt2qW8vDzr/oEDB9S1a1f179/f7jm+vr46fPiwdd9kMjk0RgAAKqpTp07pscce08aNG+Xt7V1q142Li1NsbKx1PysrS6GhoaV2/eIIDAwsN0UglE/h4eGqX7++s8MAyjWK6AAAoETVqlXLZv+FF17QTTfdpLvuusvuOSaTSUFBQY4ODQCACm/37t06c+aM/vrXv1qP5eXlafv27Zo1a5bWr1+v3NxcZWRk2NyNnp6ebs3VQUFB+uKLL2zGTU9Pt7YVxcvLS15eXiU8GwAASoebswMAAADlV25urhYvXqwHH3zwineXnz9/XuHh4QoNDVWfPn108ODBK46bk5OjrKwsmw0AAFxd586dtX//fu3du9e63XrrrRo0aJD1z5UqVdLmzZut5xw+fFgpKSmyWCySJIvFov379+vMmTPWPhs3bpSvr68aN25c6nMCAMDRuBMdAAA4zPvvv6+MjAwNGzbMbp8GDRpowYIFioiIUGZmpl5++WW1bdtWBw8eVO3atYs8p6yuqwoAgLNVq1ZNTZs2tTnm4+OjGjVqWI+PGDFCsbGx8vf3l6+vrx555BFZLBbdfvvtkqRu3bqpcePGGjx4sKZPn660tDRNmDBB0dHR3G0OACiXuBMdAAA4zPz58xUVFaWQkBC7fSwWi4YMGaIWLVrorrvu0ooVK1SrVi29+eabds+Ji4tTZmamdTt16pQjwgcAoEKaMWOGevXqpX79+ql9+/YKCgrSihUrrO3u7u5as2aN3N3dZbFY9MADD2jIkCGaMmWKE6MGAMBxuBMdAAA4xMmTJ7Vp0yabL93XolKlSmrZsqWOHj1qtw/rqgIAUHK2bt1qs+/t7a3ExEQlJibaPSc8PFxr1651cGQAALgG7kQHAAAOsXDhQgUEBKhnz57XdV5eXp7279+v4OBgB0UGAAAAAMC1o4gOAABKXH5+vhYuXKihQ4fKw8P2wbchQ4YoLi7Ouj9lyhRt2LBB33//vfbs2aMHHnhAJ0+e1MiRI0s7bAAAAAAACmE5FwAAUOI2bdqklJQUPfjgg4XaUlJS5Ob2v9/xf/31V40aNUppaWmqXr26WrVqpR07dqhx48alGTIAAAAAAEWiiA4AAEpct27dZBhGkW1/Xnd1xowZmjFjRilEBQAAAADA9WM5FwAAAAAAAAAA7KCIDgAAAAAAAACAHRTRAQAAAAAAAACwgzXRAQAASplbdqazQwCAMoW/NwEAgDNRRAcAACglZrNZlTy9pO+3OTsUAChzKnl6yWw2OzsMAABQAVFEBwAAKCWBgYFa/M7byszkjkq4npMnT2ratGkaP368wsPDnR0OUIjZbFZgYKCzwwAAABUQRXQAAIBSFBgYSBEILi08PFz169d3dhgAAACAy+DFogAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADscKki+vbt29W7d2+FhITIZDLp/ffft2k3DEMTJ05UcHCwKleurC5duujIkSM2fc6ePatBgwbJ19dXfn5+GjFihM6fP1+KswAAAAAAAAAAlBcuVUS/cOGCmjdvrsTExCLbp0+frtdff11z587V559/Lh8fH0VGRio7O9vaZ9CgQTp48KA2btyoNWvWaPv27Ro9enRpTQEAAAAAAAAAUI54ODuAP4qKilJUVFSRbYZhaObMmZowYYL69OkjSXr77bcVGBio999/XwMGDNA333yjdevWadeuXbr11lslSW+88YZ69Oihl19+WSEhIaU2FwAAAAAAAABA2edSd6JfyfHjx5WWlqYuXbpYj5nNZrVp00bJycmSpOTkZPn5+VkL6JLUpUsXubm56fPPP7c7dk5OjrKysmw2AAAAAAAAAADKTBE9LS1NkhQYGGhzPDAw0NqWlpamgIAAm3YPDw/5+/tb+xQlISFBZrPZuoWGhpZw9AAAAAAAAACAsqjMFNEdKS4uTpmZmdbt1KlTzg4JAAAAAAAAAOACykwRPSgoSJKUnp5uczw9Pd3aFhQUpDNnzti0X758WWfPnrX2KYqXl5d8fX1tNgAAAAAAAAAAykwRvW7dugoKCtLmzZutx7KysvT555/LYrFIkiwWizIyMrR7925rn48//lj5+flq06ZNqccMAAAAAAAAACjbPJwdwB+dP39eR48ete4fP35ce/fulb+/v8LCwjR27FhNnTpVt9xyi+rWratnn31WISEh6tu3rySpUaNG6t69u0aNGqW5c+fq0qVLiomJ0YABAxQSEuKkWQEAAAAAAAAAyiqXKqJ/+eWX6tixo3U/NjZWkjR06FAlJSXpqaee0oULFzR69GhlZGTojjvu0Lp16+Tt7W09Z8mSJYqJiVHnzp3l5uamfv366fXXXy/1uQAAAAAAAAAAyj6XKqJ36NBBhmHYbTeZTJoyZYqmTJlit4+/v7+WLl3qiPAAAAAAAAAAABVMmVkTHQAAuL5JkybJZDLZbA0bNrziOcuXL1fDhg3l7e2tZs2aae3ataUULQAAAAAAV0cRHQAAlKgmTZro9OnT1u3TTz+123fHjh0aOHCgRowYoa+++kp9+/ZV3759deDAgVKMGAAAAAAA+yiiAwCAEuXh4aGgoCDrVrNmTbt9X3vtNXXv3l1PPvmkGjVqpOeee05//etfNWvWrFKMGAAAAAAA+yiiAwCAEnXkyBGFhISoXr16GjRokFJSUuz2TU5OVpcuXWyORUZGKjk5+YrXyMnJUVZWls0GAAAAAIAjUEQHAAAlpk2bNkpKStK6des0Z84cHT9+XHfeeafOnTtXZP+0tDQFBgbaHAsMDFRaWtoVr5OQkCCz2WzdQkNDS2wOAAAAAAD8EUV0AABQYqKiotS/f39FREQoMjJSa9euVUZGht59990SvU5cXJwyMzOt26lTp0p0fAAAAAAAClBEBwAADuPn56f69evr6NGjRbYHBQUpPT3d5lh6erqCgoKuOK6Xl5d8fX1tNgAAcHVz5sxRRESENX9aLBZ99NFH1vbs7GxFR0erRo0aqlq1qvr161coV6ekpKhnz56qUqWKAgIC9OSTT+ry5culPRUAAEoNRXQAAOAw58+f17FjxxQcHFxku8Vi0ebNm22Obdy4URaLpTTCAwCgwqldu7ZeeOEF7d69W19++aU6deqkPn366ODBg5KkcePGafXq1Vq+fLm2bdum1NRU3Xvvvdbz8/Ly1LNnT+Xm5mrHjh1atGiRkpKSNHHiRGdNCQAAh/NwdgAAAKD8eOKJJ9S7d2+Fh4crNTVV8fHxcnd318CBAyVJQ4YM0V/+8hclJCRIkh577DHdddddeuWVV9SzZ08tW7ZMX375pebNm+fMaQAAUG717t3bZn/atGmaM2eOdu7cqdq1a2v+/PlaunSpOnXqJElauHChGjVqpJ07d+r222/Xhg0bdOjQIW3atEmBgYFq0aKFnnvuOT399NOaNGmSPD09i7xuTk6OcnJyrPu8FBwAUJZwJzoAACgxP/zwgwYOHKgGDRro/vvvV40aNbRz507VqlVL0u+Pf58+fdrav23btlq6dKnmzZun5s2b67333tP777+vpk2bOmsKAABUGHl5eVq2bJkuXLggi8Wi3bt369KlS+rSpYu1T8OGDRUWFqbk5GRJUnJyspo1a2bzYvDIyEhlZWVZ72YvCi8FBwCUZdyJDgAASsyyZcuu2L5169ZCx/r376/+/fs7KCIAAPBn+/fvl8ViUXZ2tqpWraqVK1eqcePG2rt3rzw9PeXn52fTPzAwUGlpaZKktLQ0mwJ6QXtBmz1xcXGKjY217mdlZVFIBwCUGRTRAQAAAACoQBo0aKC9e/cqMzNT7733noYOHapt27Y59JpeXl7y8vJy6DUAAHAUiugAAAAAAFQgnp6euvnmmyVJrVq10q5du/Taa6/pb3/7m3Jzc5WRkWFzN3p6erqCgoIkSUFBQfriiy9sxktPT7e2AQBQHrEmOgAAAAAAFVh+fr5ycnLUqlUrVapUSZs3b7a2HT58WCkpKbJYLJIki8Wi/fv368yZM9Y+GzdulK+vrxo3blzqsQMAUBq4Ex0AAAAAgAoiLi5OUVFRCgsL07lz57R06VJt3bpV69evl9ls1ogRIxQbGyt/f3/5+vrqkUcekcVi0e233y5J6tatmxo3bqzBgwdr+vTpSktL04QJExQdHc1yLQCAcosiOgAAAAAAFcSZM2c0ZMgQnT59WmazWREREVq/fr26du0qSZoxY4bc3NzUr18/5eTkKDIyUrNnz7ae7+7urjVr1mjMmDGyWCzy8fHR0KFDNWXKFGdNCQAAh6OIDgAAAABABTF//vwrtnt7eysxMVGJiYl2+4SHh2vt2rUlHRoAAC6LNdEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCjzBXRJ02aJJPJZLM1bNjQ2p6dna3o6GjVqFFDVatWVb9+/ZSenu7EiAEAAAAAAAAAZVWZK6JLUpMmTXT69Gnr9umnn1rbxo0bp9WrV2v58uXatm2bUlNTde+99zoxWgAAAAAAAABAWeXh7ABuhIeHh4KCggodz8zM1Pz587V06VJ16tRJkrRw4UI1atRIO3fu1O23317aoQIAAAAAAAAAyrAyWUQ/cuSIQkJC5O3tLYvFooSEBIWFhWn37t26dOmSunTpYu3bsGFDhYWFKTk52W4RPScnRzk5Odb9rKwsh88Bric7O1spKSnODqPcOHnypM1/UTLCwsLk7e3t7DAAwCWQu0sWudsxyN0A8D/k7pJF7nYMcjeKUuaK6G3atFFSUpIaNGig06dPa/Lkybrzzjt14MABpaWlydPTU35+fjbnBAYGKi0tze6YCQkJmjx5soMjh6tLSUnR6NGjnR1GuTNt2jRnh1CuzJs3T/Xr13d2GADgEsjdjkHuLlnkbgD4H3K3Y5C7Sxa5G0Upc0X0qKgo658jIiLUpk0bhYeH691331XlypVvaMy4uDjFxsZa97OyshQaGlrsWFG2hIWFad68ec4OA7iisLAwZ4cAAC6D3I2ygNwNAP9D7kZZQO5GUcpcEf3P/Pz8VL9+fR09elRdu3ZVbm6uMjIybO5GT09PL3IN9QJeXl7y8vIqhWjhyry9vfmlEQCAMoTcDQBA2ULuBlBWuTk7gOI6f/68jh07puDgYLVq1UqVKlXS5s2bre2HDx9WSkqKLBaLE6MEAKBiSEhIUOvWrVWtWjUFBASob9++Onz48BXPSUpKkslkstlYgxAAAAAA4CrK3J3oTzzxhHr37q3w8HClpqYqPj5e7u7uGjhwoMxms0aMGKHY2Fj5+/vL19dXjzzyiCwWi92XigIAgJKzbds2RUdHq3Xr1rp8+bKeeeYZdevWTYcOHZKPj4/d83x9fW2K7SaTqTTCBQAAAADgqspcEf2HH37QwIED9csvv6hWrVq64447tHPnTtWqVUuSNGPGDLm5ualfv37KyclRZGSkZs+e7eSoAQCoGNatW2ezn5SUpICAAO3evVvt27e3e57JZLri0msAAAAAADhLmSuiL1u27Irt3t7eSkxMVGJiYilFBAAA7MnMzJQk+fv7X7Hf+fPnFR4ervz8fP31r3/V888/ryZNmtjtn5OTo5ycHOt+VlZWyQQMAAAAAMCflPk10QEAgGvKz8/X2LFj1a5dOzVt2tRuvwYNGmjBggVatWqVFi9erPz8fLVt21Y//PCD3XMSEhJkNputW2hoqCOmAAAAAAAARXQAAOAY0dHROnDgwFWfIrNYLBoyZIhatGihu+66SytWrFCtWrX05ptv2j0nLi5OmZmZ1u3UqVMlHT4AAAAAAJLK4HIuAADA9cXExGjNmjXavn27ateufV3nVqpUSS1bttTRo0ft9vHy8pKXl1dxwwQAAAAA4Kq4Ex0AAJQYwzAUExOjlStX6uOPP1bdunWve4y8vDzt379fwcHBDogQAAAAAIDrw53oAACgxERHR2vp0qVatWqVqlWrprS0NEmS2WxW5cqVJUlDhgzRX/7yFyUkJEiSpkyZottvv10333yzMjIy9NJLL+nkyZMaOXKk0+YBAAAAAEABiugAAKDEzJkzR5LUoUMHm+MLFy7UsGHDJEkpKSlyc/vfw3C//vqrRo0apbS0NFWvXl2tWrXSjh071Lhx49IKGwAAAAAAuyiiAwCAEmMYxlX7bN261WZ/xowZmjFjhoMiAgAAAACgeCiiF6GgAJCVleXkSAAAFVlBHrqWwnRFR+4GALgCcve1I3cDAFzBteZuiuhFOHfunCQpNDTUyZEAAPB7XjKbzc4Ow6WRuwEAroTcfXXkbgCAK7la7jYZ/EReSH5+vlJTU1WtWjWZTCZnhwOUSVlZWQoNDdWpU6fk6+vr7HCAMskwDJ07d04hISE2a4ijMHI3UHzkbqD4yN3XjtwNFB+5Gyi+a83dFNEBOERWVpbMZrMyMzNJ5gAAlAHkbgAAyhZyN1B6+GkcAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQADuHl5aX4+Hh5eXk5OxQAAHANyN0AAJQt5G6g9LAmOgAAAAAAAAAAdnAnOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA4AAAAAAAAAgB0U0QEAAAAAAAAAsIMiOgAAAAAAAAAAdlBEBwAAAAAAAADADoroAAAAAAAAAADYQREdAAAAAAAAAAA7KKIDAAAAAAAAAGAHRXQAAAAAAAAAAOygiA7gmphMJk2aNMnZYdjYtWuX2rZtKx8fH5lMJu3du9fZIQEA4FLI3wAAlA3kbMC1UUQHnCwpKUkmk8lmCwgIUMeOHfXRRx85O7xiO3TokCZNmqQTJ06U6LiXLl1S//79dfbsWc2YMUPvvPOOwsPDiz1uhw4d1LRp0yLbTpw4IZPJpJdffrnY1wEAlG3k7xtzPfl769athT7jP27Lli2z6Z+Xl6eFCxeqQ4cO8vf3l5eXl+rUqaPhw4fryy+/LNF5AADKDnL2jbmR79wpKSl66KGHVKdOHXl5eSkgIEB9+/bVZ599Zvec9PR0PfHEE2rYsKGqVKkiHx8ftWrVSlOnTlVGRkaJzgkoDg9nBwDgd1OmTFHdunVlGIbS09OVlJSkHj16aPXq1erVq5ezw7thhw4d0uTJk9WhQwfVqVOnxMY9duyYTp48qbfeeksjR44ssXEBALge5O/rcyP5+9FHH1Xr1q0LHbdYLNY/X7x4Uffee6/WrVun9u3b65lnnpG/v79OnDihd999V4sWLVJKSopq165dYnMBAJQt5Ozrc705+7PPPlOPHj0kSSNHjlTjxo2VlpampKQk3XnnnXrttdf0yCOP2Jyza9cu9ejRQ+fPn9cDDzygVq1aSZK+/PJLvfDCC9q+fbs2bNhQYnMCioMiOuAioqKidOutt1r3R4wYocDAQP373/8u0wndUc6cOSNJ8vPzc24gAIAKjfx9fW4kf99555267777rtjnySef1Lp16zRjxgyNHTvWpi0+Pl4zZsy43lABAOUMOfv6XE/O/vXXX3XfffepcuXK+uyzz3TTTTdZ22JjYxUZGamxY8eqVatWatu2rSQpIyND99xzj9zd3fXVV1+pYcOGNmNOmzZNb731VslNCCgmlnMBXJSfn58qV64sDw/b37ouXLigxx9/XKGhofLy8lKDBg308ssvyzAMSb/fidWwYUM1bNhQFy9etJ539uxZBQcHq23btsrLy5MkDRs2TFWrVtX333+vyMhI+fj4KCQkRFOmTLGOdyVfffWVoqKi5Ovrq6pVq6pz587auXOntT0pKUn9+/eXJHXs2NH66NzWrVuvOO7HH3+sO++8Uz4+PvLz81OfPn30zTffWNuHDRumu+66S5LUv39/mUwmdejQwe54BY/vbd++Xf/4xz9Uo0YN+fr6asiQIfr111+vOk8AAK4V+bvk8ve1+uGHH/Tmm2+qa9euhQrokuTu7q4nnniCu9ABADbI2SWXs998802lpaXppZdesimgS1LlypW1aNEimUwmTZkyxeacH3/8Ua+++mqhArokBQYGasKECVecB1CauBMdcBGZmZn6+eefZRiGzpw5ozfeeMP6SFMBwzB09913a8uWLRoxYoRatGih9evX68knn9SPP/6oGTNmWBNUu3btNH78eL366quSpOjoaGVmZiopKUnu7u7WMfPy8tS9e3fdfvvtmj59utatW6f4+HhdvnzZJsH92cGDB3XnnXfK19dXTz31lCpVqqQ333xTHTp00LZt29SmTRu1b99ejz76qF5//XU988wzatSokSRZ/1uUTZs2KSoqSvXq1dOkSZN08eJFvfHGG2rXrp327NmjOnXq6B//+If+8pe/6Pnnn7c+4h0YGHjVzzgmJkZ+fn6aNGmSDh8+rDlz5ujkyZPWNVf/+Jn8/PPPhc6n4A4A+DPy9+8cmb/PnTtXZF6uUaOGTCaTPvroI12+fFmDBw++6lgAgIqLnP07R+Ts1atXy9vbW/fff3+R7XXr1tUdd9yhjz/+WBcvXlTlypX1wQcfqHLlyld92gxwGQYAp1q4cKEhqdDm5eVlJCUl2fR9//33DUnG1KlTbY7fd999hslkMo4ePWo9FhcXZ7i5uRnbt283li9fbkgyZs6caXPe0KFDDUnGI488Yj2Wn59v9OzZ0/D09DR++ukn63FJRnx8vHW/b9++hqenp3Hs2DHrsdTUVKNatWpG+/btrccKrr1ly5Zr+jxatGhhBAQEGL/88ov12Ndff224ubkZQ4YMsR7bsmWLIclYvnz5Vccs+IxbtWpl5ObmWo9Pnz7dkGSsWrXKeuyuu+4q8n+PP24vvfTSNc0FAFB+kb9tOSJ/F/S1t50+fdowDMMYN26cIcn46quvrilWAEDFQs625Yic7efnZzRv3vyKfR599FFDkrFv3z7DMAyjevXqVz0HcCUs5wK4iMTERG3cuFEbN27U4sWL1bFjR40cOVIrVqyw9lm7dq3c3d316KOP2pz7+OOPyzAMmzeLT5o0SU2aNNHQoUP18MMP66677ip0XoGYmBjrn00mk2JiYpSbm6tNmzYV2T8vL08bNmxQ3759Va9ePevx4OBg/f3vf9enn36qrKys6/4MTp8+rb1792rYsGHy9/e3Ho+IiFDXrl21du3a6x7zj0aPHq1KlSpZ98eMGSMPD49C49apU8f6v8Uft8WLFxfr+gCA8of87fj8PXHixCLzcsG1CmKuVq1asa4DACjfyNmOy9nnzp27ah4uaC+IOysri9yNMoXlXAAXcdttt9m85GTgwIFq2bKlYmJi1KtXL3l6eurkyZMKCQkplGgKHtU6efKk9Zinp6cWLFig1q1by9vbWwsXLrRZsqSAm5ubTVKWpPr160uSTpw4UWSsP/30k3777Tc1aNCgUFujRo2Un5+vU6dOqUmTJtc2+f8qiN/euOvXr9eFCxfk4+NzXeMWuOWWW2z2q1atquDg4ELz9PHxUZcuXQqdb+/zAABUXORvx+fvZs2aFZmXC/j6+kr6/Qs8AAD2kLMdl7OrVat21Txc0F7w2fr6+pK7UaZwJzrgotzc3NSxY0edPn1aR44cuaEx1q9fL0nKzs6+4TEAAMC1I3+XvoKXke3fv9/JkQAAyhJydslp1KiRDh8+rJycHLt99u3bp0qVKllvbmvYsKG+++475ebmllaYQLFQRAdc2OXLlyVJ58+flySFh4crNTW10K+13377rbW9wL59+zRlyhQNHz5cLVu21MiRI5WZmVnoGvn5+fr+++9tjn333XeSfl/WpCi1atVSlSpVdPjw4UJt3377rdzc3BQaGipJRf4Sb09B/PbGrVmz5g3fxSap0D9qzp8/r9OnT9udJwAAN4L8bTtucfP31URFRcnd3Z1l1wAA142cbTvujebsXr16KTs7W8uXLy+y/cSJE/rkk0/UqVMnVa5cWZLUu3dvXbx4Uf/3f/933dcDnIEiOuCiLl26pA0bNsjT09P66FiPHj2Ul5enWbNm2fSdMWOGTCaToqKirOcOGzZMISEheu2115SUlKT09HSNGzeuyGv9cTzDMDRr1ixVqlRJnTt3LrK/u7u7unXrplWrVtk8fpaenq6lS5fqjjvusD5aXZCAMzIyrjrn4OBgtWjRQosWLbLpf+DAAW3YsEE9evS46hhXMm/ePF26dMm6P2fOHF2+fNn6uQEAUFzk7//1L6n8fTWhoaEaNWqUNmzYoDfeeKNQe35+vl555RX98MMPDo0DAFC2kLP/17+4Ofsf//iHAgIC9OSTTxb6wSA7O1vDhw+XYRiaOHGi9fhDDz2k4OBgPf7449YfFf7ozJkzmjp16g3FAzgCa6IDLuKjjz6y/rp95swZLV26VEeOHNE///lPa3Ls3bu3OnbsqPHjx+vEiRNq3ry5NmzYoFWrVmns2LG66aabJElTp07V3r17tXnzZlWrVk0RERGaOHGiJkyYoPvuu88mMXp7e2vdunUaOnSo2rRpo48++kgffvihnnnmGdWqVctuvFOnTtXGjRt1xx136OGHH5aHh4fefPNN5eTkaPr06dZ+LVq0kLu7u1588UVlZmbKy8tLnTp1UkBAQJHjvvTSS4qKipLFYtGIESN08eJFvfHGGzKbzZo0aVKxPuPc3Fx17txZ999/vw4fPqzZs2frjjvu0N13312scQEAFRf5+3eOzN+ffPKJsrOzCx2PiIhQRESEJOmVV17RsWPH9Oijj2rFihXq1auXqlevrpSUFC1fvlzffvutBgwYUKw4AABlGzn7d47I2TVq1NB7772nnj176q9//atGjhypxo0bKy0tTUlJSTp69Khee+01tW3b1npO9erVtXLlSvXo0UMtWrTQAw88oFatWkmS9uzZo3//+9+yWCw3FA/gEAYAp1q4cKEhyWbz9vY2WrRoYcyZM8fIz8+36X/u3Dlj3LhxRkhIiFGpUiXjlltuMV566SVrv927dxseHh7GI488YnPe5cuXjdatWxshISHGr7/+ahiGYQwdOtTw8fExjh07ZnTr1s2oUqWKERgYaMTHxxt5eXk250sy4uPjbY7t2bPHiIyMNKpWrWpUqVLF6Nixo7Fjx45Cc3zrrbeMevXqGe7u7oYkY8uWLVf8TDZt2mS0a9fOqFy5suHr62v07t3bOHTokE2fLVu2GJKM5cuXX3Esw/jfZ7xt2zZj9OjRRvXq1Y2qVasagwYNMn755RebvnfddZfRpEmTIsc5fvy4Icl46aWXrnpNAED5Rv4urKTzd0Ffe9uf53X58mXjX//6l3HnnXcaZrPZqFSpkhEeHm4MHz7c+Oqrr656PQBA+UTOLqykc3aB48ePG6NGjTLCwsKMSpUqGTVr1jTuvvtu45NPPrF7TmpqqjFu3Dijfv36hre3t1GlShWjVatWxrRp04zMzMxrvjbgaCbDMIzSKNYDcD3Dhg3Te++9Z13/rbxKSkrS8OHDtWvXLpu3sQMAUBZVlPwNAEBZR84Gyg/WRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAO1gTHQAAAAAAAAAAO7gTHQAAAAAAAAAAOzycHYArys/PV2pqqqpVqyaTyeTscAAAFZRhGDp37pxCQkLk5sbv3ldC7gYAuAJy97UjdwMAXMG15m6K6EVITU1VaGios8MAAECSdOrUKdWuXdvZYbg0cjcAwJWQu6+O3A0AcCVXy90U0YtQrVo1Sb9/eL6+vk6OBgBQUWVlZSk0NNSal2AfuRsA4ArI3deO3A0AcAXXmrspoheh4FEyX19fkjkAwOl4xPnqyN0AAFdC7r46cjcAwJVcLXezSBsAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2OHh7AAAV5Gdna2UlBRnhwFcUVhYmLy9vZ0dBgC4BHI3ygJyNwD8D7kbZQG5G0WhiA78V0pKikaPHu3sMIArmjdvnurXr+/sMADAJZC7URaQuwHgf8jdKAvI3SgKRXTgv8LCwjRv3jxnh1FunDx5UtOmTdP48eMVHh7u7HDKjbCwMGeHAAAug9xdssjdjkHuBoD/IXeXLHK3Y5C7URSK6MB/eXt780ujA4SHh/O5AgAcgtztGORuAICjkLsdg9wNOB4vFgUAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAAAAAABgB0V0AAAAAAAAAADsoIgOAAAAAAAAAIAdFNEBAAAAAAAAALCDIjoAAAAAAAAAAHZQRAcAAAAAAAAAwA6K6AAAAAAAAAAA2EERHQAAAAAAAAAAOyiiAwAAAABQgW3fvl29e/dWSEiITCaT3n///Sv2X7Fihbp27apatWrJ19dXFotF69evL51gAQBwAoroAAAAAABUYBcuXFDz5s2VmJh4Tf23b9+url27au3atdq9e7c6duyo3r1766uvvnJwpAAAOAdFdAAAUOISExNVp04deXt7q02bNvriiy/s9r106ZKmTJmim266Sd7e3mrevLnWrVtXitECAFCxRUVFaerUqbrnnnuuqf/MmTP11FNPqXXr1rrlllv0/PPP65ZbbtHq1asdHCkAAM5BER0AAJSo//znP4qNjVV8fLz27Nmj5s2b/z979x4dVXX2cfw3ScgkIAQQMrk0EEQFQSAUhDeggm0gAqLYighqQhAoQiqS1koEEkEg4CXGKhqhhHgBAS2iLRSFlFQpqQiILW25CSQpkAFUEggywcy8f1imjpkJAeaSSb6ftfbyPfvsfc5zstbL03lmzz5KTEzU8ePHnY6fOXOmXn31Vb344ov617/+pUmTJunuu+9mNRsAAH7CarXq9OnTat26tcsxFotFFRUVDg0AAH9BER0AALhVdna2JkyYoJSUFHXp0kW5ublq2rSp8vLynI5/44039MQTT2jo0KG65ppr9PDDD2vo0KF67rnnvBw5AAC4HM8++6zOnDmje++91+WYrKwshYWF2VtMTIwXIwQA4MpQRAcAAG5TVVWlHTt2KCEhwd4XEBCghIQEFRUVOZ1jsVgUEhLi0BcaGqotW7a4vA+r2QAAqB9WrFih2bNna/Xq1QoPD3c5Lj09XeXl5fZWWlrqxSgBALgyFNEBAIDbnDx5UtXV1TKZTA79JpNJZWVlTuckJiYqOztb+/fvl9Vq1caNG7VmzRodO3bM5X1YzQYAgO+tXLlS48eP1+rVqx2+QHfGaDSqRYsWDg0AAH9BER0AAPjUCy+8oOuuu06dO3dWcHCwUlNTlZKSooAA1/8zhdVsAAD41ltvvaWUlBS99dZbGjZsmK/DAQDAo4J8HQAAAGg42rRpo8DAQJnNZod+s9msiIgIp3Patm2rtWvX6ty5c/ryyy8VFRWl6dOn65prrnF5H6PRKKPR6NbYAQBorM6cOaMDBw7Yjw8dOqRdu3apdevWateundLT03XkyBG9/vrrkr7bwiU5OVkvvPCC+vbta/+1WWhoqMLCwnzyDAAAeFK9XoleXV2tWbNmqUOHDgoNDVXHjh311FNPyWaz1TqvsLBQP/7xj2U0GnXttdcqPz/fOwEDANDIBQcHq1evXiooKLD3Wa1WFRQUKD4+vta5ISEhio6O1rfffqvf//73uuuuuzwdLgAAkLR9+3b17NlTPXv2lCSlpaWpZ8+eysjIkCQdO3ZMJSUl9vGLFy/Wt99+qylTpigyMtLepk6d6pP4AQDwtHq9En3hwoV65ZVX9Nprr6lr167avn27UlJSFBYWpkceecTpnEOHDmnYsGGaNGmSli9froKCAo0fP16RkZFKTEz08hMAAND4pKWlKTk5Wb1791afPn2Uk5OjyspKpaSkSJKSkpIUHR2trKwsSdInn3yiI0eOKC4uTkeOHNGTTz4pq9Wq3/zmN758DAAAGo2BAwfWuljthwvTCgsLPRsQAAD1TL0uom/dulV33XWXfX+12NhYvfXWW9q2bZvLObm5uerQoYOee+45SdINN9ygLVu26Pnnn3dZRLdYLLJYLPbjiooKNz4FAACNy6hRo3TixAllZGSorKxMcXFx2rBhg/1loyUlJQ77nZ87d04zZ87UwYMHddVVV2no0KF644031LJlSx89AQAAAAAA/1Ovi+j9+vXT4sWLtW/fPl1//fX6/PPPtWXLFmVnZ7ucU1RUVOOt4ImJiXr00UddzsnKytLs2bPdFTYAAI1eamqqUlNTnZ774eq1AQMG6F//+pcXogIAAAAA4NLV6yL69OnTVVFRoc6dOyswMFDV1dWaN2+e7r//fpdzysrK7CvdLjCZTKqoqNA333yj0NDQGnPS09OVlpZmP66oqFBMTIz7HgQAAAAAAAAA4JfqdRF99erVWr58uVasWKGuXbtq165devTRRxUVFaXk5GS33cdoNMpoNLrtegAAAAAAAACAhqFeF9Efe+wxTZ8+Xffdd58kqVu3biouLlZWVpbLInpERITMZrNDn9lsVosWLZyuQgcAAAAAAAAAwJWAiw/xnbNnzzq8eEySAgMDZbVaXc6Jj49XQUGBQ9/GjRsVHx/vkRgBAAAAAAAAAA1XvS6iDx8+XPPmzdO6det0+PBhvfvuu8rOztbdd99tH5Oenq6kpCT78aRJk3Tw4EH95je/0Z49e/Tyyy9r9erVmjZtmi8eAQAAAAAAAADgx+r1di4vvviiZs2apcmTJ+v48eOKiorSL37xC2VkZNjHHDt2TCUlJfbjDh06aN26dZo2bZpeeOEF/ehHP9Lvfvc7JSYm+uIRAAAAAAAAAAB+rF4X0Zs3b66cnBzl5OS4HJOfn1+jb+DAgfrss888FxgAAAAAAAAAoFGo19u5AAAAAAAAAADgSxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugAAAAAAAAAALhAER0AAAAAAAAAABcoogMAAAAAAAAA4AJFdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugAAAAAAAAAALhAER0AAAAAAAAAABcoogMAAAAAAAAA4AJFdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugAAAAAAAAAALhAER0AAAAAAAAAABcoogMAALdbtGiRYmNjFRISor59+2rbtm21js/JyVGnTp0UGhqqmJgYTZs2TefOnfNStAAAAAAAuEYRHQAAuNWqVauUlpamzMxM7dy5Uz169FBiYqKOHz/udPyKFSs0ffp0ZWZm6t///reWLl2qVatW6YknnvBy5AAAAAAA1EQRHQAAuFV2drYmTJiglJQUdenSRbm5uWratKny8vKcjt+6dav69++vMWPGKDY2VoMHD9bo0aMvunodAAAAAABvoIgOAADcpqqqSjt27FBCQoK9LyAgQAkJCSoqKnI6p1+/ftqxY4e9aH7w4EGtX79eQ4cOdXkfi8WiiooKhwYAAAAAgCcE+ToAAADQcJw8eVLV1dUymUwO/SaTSXv27HE6Z8yYMTp58qRuvvlm2Ww2ffvtt5o0aVKt27lkZWVp9uzZbo0dAAAAAABnWIkOAAB8qrCwUPPnz9fLL7+snTt3as2aNVq3bp2eeuopl3PS09NVXl5ub6WlpV6MGAAAAADQmLASHQAAuE2bNm0UGBgos9ns0G82mxUREeF0zqxZs/Tggw9q/PjxkqRu3bqpsrJSEydO1IwZMxQQUPM7f6PRKKPR6P4HAAAAAADgB1iJDgAA3CY4OFi9evVSQUGBvc9qtaqgoEDx8fFO55w9e7ZGoTwwMFCSZLPZPBcsAAAAAAB1wEp0AADgVmlpaUpOTlbv3r3Vp08f5eTkqLKyUikpKZKkpKQkRUdHKysrS5I0fPhwZWdnq2fPnurbt68OHDigWbNmafjw4fZiOgAAAAAAvsJKdAAA4FajRo3Ss88+q4yMDMXFxWnXrl3asGGD/WWjJSUlOnbsmH38zJkz9atf/UozZ85Uly5d9NBDDykxMVGvvvqqrx4BAIBG5aOPPtLw4cMVFRUlg8GgtWvXXnROYWGhfvzjH8toNOraa69Vfn6+x+MEAMBXWIkOAADcLjU1VampqU7PFRYWOhwHBQUpMzNTmZmZXogMAAD8UGVlpXr06KFx48bpZz/72UXHHzp0SMOGDdOkSZO0fPlyFRQUaPz48YqMjFRiYqIXIgYAwLsoogMAAAAA0IgNGTJEQ4YMqfP43NxcdejQQc8995wk6YYbbtCWLVv0/PPPU0QHADRIbOcCAAAAAADqrKioSAkJCQ59iYmJKioqcjnHYrGooqLCoQEA4C8oogMAAAAAgDorKyuzv+vkApPJpIqKCn3zzTdO52RlZSksLMzeYmJivBEqAABuQREdAAAAAAB4VHp6usrLy+2ttLTU1yEBAFBn7IkOAAAAAADqLCIiQmaz2aHPbDarRYsWCg0NdTrHaDTKaDR6IzwAANyOlegAAAAAAKDO4uPjVVBQ4NC3ceNGxcfH+ygiAAA8iyI6AAAAAACN2JkzZ7Rr1y7t2rVLknTo0CHt2rVLJSUlkr7biiUpKck+ftKkSTp48KB+85vfaM+ePXr55Ze1evVqTZs2zRfhAwDgcRTRAQAAAABoxLZv366ePXuqZ8+ekqS0tDT17NlTGRkZkqRjx47ZC+qS1KFDB61bt04bN25Ujx499Nxzz+l3v/udEhMTfRI/AACeVq+L6LGxsTIYDDXalClTXM7JyclRp06dFBoaqpiYGE2bNk3nzp3zYtQAAAAAAPiPgQMHymaz1Wj5+fmSpPz8fBUWFtaY89lnn8liseiLL77Q2LFjvR43AADeUq9fLPrpp5+qurrafrx7924NGjRII0eOdDp+xYoVmj59uvLy8tSvXz/t27dPY8eOlcFgUHZ2trfCBgAAAAAAAAA0EPW6iN62bVuH4wULFqhjx44aMGCA0/Fbt25V//79NWbMGEnfrWQfPXq0PvnkE4/HCgAAAAAAAABoeOr1di7fV1VVpTfffFPjxo2TwWBwOqZfv37asWOHtm3bJkk6ePCg1q9fr6FDh9Z6bYvFooqKCocGAAAAAAAAAEC9Xon+fWvXrtWpU6dq3WdtzJgxOnnypG6++WbZbDZ9++23mjRpkp544olar52VlaXZs2e7OWIAAAAAAAAAgL/zm5XoS5cu1ZAhQxQVFeVyTGFhoebPn6+XX35ZO3fu1Jo1a7Ru3To99dRTtV47PT1d5eXl9lZaWuru8AEAAAAAAAAAfsgvVqIXFxdr06ZNWrNmTa3jZs2apQcffFDjx4+XJHXr1k2VlZWaOHGiZsyYoYAA598ZGI1GGY1Gt8cNAAAAAAAAAPBvfrESfdmyZQoPD9ewYcNqHXf27NkahfLAwEBJks1m81h8AAAAAAAAAICGqd6vRLdarVq2bJmSk5MVFOQYblJSkqKjo5WVlSVJGj58uLKzs9WzZ0/17dtXBw4c0KxZszR8+HB7MR0AAAAAAAAAgLqq90X0TZs2qaSkROPGjatxrqSkxGHl+cyZM2UwGDRz5kwdOXJEbdu21fDhwzVv3jxvhgwAAAAAAAAAaCDqfRF98ODBLrdiKSwsdDgOCgpSZmamMjMzvRAZAAAAAAAAAKCh84s90QEAAAAAAAAA8AWK6AAAAAAAAAAAuEARHQAAAAAAAAAAFyiiAwAAAAAAAADgAkV0AAAAAAAAAABcoIgOAAAAAAAAAIALFNEBAAAAAAAAAHCBIjoAAAAAAAAAAC5QRAcAAAAAAAAAwAWK6AAAAAAAAAAAuEARHQAAuN2iRYsUGxurkJAQ9e3bV9u2bXM5duDAgTIYDDXasGHDvBgxAAAAAADOUUQHAAButWrVKqWlpSkzM1M7d+5Ujx49lJiYqOPHjzsdv2bNGh07dszedu/ercDAQI0cOdLLkQMAAAAAUBNFdAAA4FbZ2dmaMGGCUlJS1KVLF+Xm5qpp06bKy8tzOr5169aKiIiwt40bN6pp06YU0QEAAAAA9QJFdAAA4DZVVVXasWOHEhIS7H0BAQFKSEhQUVFRna6xdOlS3XfffWrWrJnLMRaLRRUVFQ4NAAAAAABPoIgOAADc5uTJk6qurpbJZHLoN5lMKisru+j8bdu2affu3Ro/fnyt47KyshQWFmZvMTExVxQ3AAAAAACuUEQHAAD1xtKlS9WtWzf16dOn1nHp6ekqLy+3t9LSUi9FCAAAAABobIJ8HQAAAGg42rRpo8DAQJnNZod+s9msiIiIWudWVlZq5cqVmjNnzkXvYzQaZTQaryhWAAAAAADqgpXoAADAbYKDg9WrVy8VFBTY+6xWqwoKChQfH1/r3LffflsWi0UPPPCAp8MEAAAAAKDOWIkOAADcKi0tTcnJyerdu7f69OmjnJwcVVZWKiUlRZKUlJSk6OhoZWVlOcxbunSpRowYoauvvtoXYQMAAAAA4BRFdAAA4FajRo3SiRMnlJGRobKyMsXFxWnDhg32l42WlJQoIMDxx3B79+7Vli1b9OGHH/oiZAAAAAAAXKKIDgAA3C41NVWpqalOzxUWFtbo69Spk2w2m4ejAgAAAADg0rEnOgAAAAAAAAAALlBEBwAAAAAAAADABYroAAAAAAAAAAC4QBEdAAAAAAAAAAAXKKIDAAAAAAAAAOACRXQAAAAAAAAAAFygiA4AAAAAAAAAgAsU0QEAAAAAAAAAcIEiOgAAAAAAAAAALlBEBwAAAACgkVu0aJFiY2MVEhKivn37atu2bbWOz8nJUadOnRQaGqqYmBhNmzZN586d81K0AAB4V5CvA8CVMZvNKi8v93UYQA3FxcUO/wXqm7CwMJlMJl+HAQAA4HOrVq1SWlqacnNz1bdvX+Xk5CgxMVF79+5VeHh4jfErVqzQ9OnTlZeXp379+mnfvn0aO3asDAaDsrOzffAEAAB4FkV0P2Y2m/XAg0k6X2XxdSiAS/PmzfN1CIBTTYKNevON1ymkAwCARi87O1sTJkxQSkqKJCk3N1fr1q1TXl6epk+fXmP81q1b1b9/f40ZM0aSFBsbq9GjR+uTTz7xatwAAHgLRXQ/Vl5ervNVFn1zzQBZQ8J8HQ4A+I2Ac+XSwb+ovLycIjoAAGjUqqqqtGPHDqWnp9v7AgIClJCQoKKiIqdz+vXrpzfffFPbtm1Tnz59dPDgQa1fv14PPvigy/tYLBZZLP9bAFZRUeG+hwAAwMMoojcA1pAwWZu18XUYAAAAAAA/c/LkSVVXV9dYWGAymbRnzx6nc8aMGaOTJ0/q5ptvls1m07fffqtJkybpiSeecHmfrKwszZ49262xAwDgLbxYFAAAAAAA1FlhYaHmz5+vl19+WTt37tSaNWu0bt06PfXUUy7npKenq7y83N5KS0u9GDEAAFeGlegAAAAAADRSbdq0UWBgoMxms0O/2WxWRESE0zmzZs3Sgw8+qPHjx0uSunXrpsrKSk2cOFEzZsxQQEDN9XpGo1FGo9H9DwAAgBdQRAcAAPAis9ms8vJyX4cB1FBcXOzwX6C+CQsL410mHhAcHKxevXqpoKBAI0aMkCRZrVYVFBQoNTXV6ZyzZ8/WKJQHBgZKkmw2m0fjBQDAFyiiAwAAeInZbNYDDybpfJXl4oMBH5k3b56vQwCcahJs1JtvvE4h3QPS0tKUnJys3r17q0+fPsrJyVFlZaVSUlIkSUlJSYqOjlZWVpYkafjw4crOzlbPnj3Vt29fHThwQLNmzdLw4cPtxfSGhC/AUV/xBTjqu4b0BThFdAAAAC8pLy/X+SqLvrlmgKwhYb4OBwD8RsC5cungX1ReXt5gPozXJ6NGjdKJEyeUkZGhsrIyxcXFacOGDfa/dUlJicPK85kzZ8pgMGjmzJk6cuSI2rZtq+HDhzfIL+H4Ahz+oCH+/x4ahob0BThFdAAAAC+zhoTJ2qyNr8MAAMAuNTXV5fYthYWFDsdBQUHKzMxUZmamFyLzLb4AB4DL09C+AK/XRfTY2FinP0mZPHmyFi1a5HTOqVOnNGPGDK1Zs0ZfffWV2rdvr5ycHA0dOtTT4QIAAAAAgAaIL8ABoHGr10X0Tz/9VNXV1fbj3bt3a9CgQRo5cqTT8VVVVRo0aJDCw8P1zjvvKDo6WsXFxWrZsqWXIgYAAAAAAAAANCT1uojetm1bh+MFCxaoY8eOGjBggNPxeXl5+uqrr7R161Y1adJE0ner2QEAAAAAAAAAuBwBFx9y6UpLS/Wf//zHfrxt2zY9+uijWrx48WVfs6qqSm+++abGjRsng8HgdMz777+v+Ph4TZkyRSaTSTfeeKPmz5/vsJrdGYvFooqKCocGAEBj4oncDQAAPIfcDQCA93ikiD5mzBht3rxZklRWVqZBgwZp27ZtmjFjhubMmXNZ11y7dq1OnTqlsWPHuhxz8OBBvfPOO6qurtb69es1a9YsPffcc5o7d26t187KylJYWJi9xcTEXFaMAAD4K0/kbgAA4DnkbgAAvMcjRfTdu3erT58+kqTVq1frxhtv1NatW7V8+XLl5+df1jWXLl2qIUOGKCoqyuUYq9Wq8PBwLV68WL169dKoUaM0Y8YM5ebm1nrt9PR0lZeX21tpaellxQgAgL/yRO4GAACeQ+4GAMB7PLIn+vnz52U0GiVJmzZt0p133ilJ6ty5s44dO3bJ1ysuLtamTZu0Zs2aWsdFRkaqSZMmCgwMtPfdcMMNKisrU1VVlYKDg53OMxqN9ngBAGiM3J27AQCAZ5G7AQDwHo+sRO/atatyc3P18ccfa+PGjbr99tslSUePHtXVV199yddbtmyZwsPDNWzYsFrH9e/fXwcOHJDVarX37du3T5GRkS4L6AAAwP25GwAAeBa5GwAA7/FIEX3hwoV69dVXNXDgQI0ePVo9evSQ9N2LPy/83KyurFarli1bpuTkZAUFOS6cT0pKUnp6uv344Ycf1ldffaWpU6dq3759WrdunebPn68pU6Zc+UMBANCAuTN3AwAAzyN3AwDgPR7ZzmXgwIE6efKkKioq1KpVK3v/xIkT1bRp00u61qZNm1RSUqJx48bVOFdSUqKAgP99DxATE6MPPvhA06ZNU/fu3RUdHa2pU6fq8ccfv/yHAQCgEXBn7pakRYsW6ZlnnlFZWZl69OihF198sdYP9KdOndKMGTO0Zs0affXVV2rfvr1ycnI0dOjQy3oeAAAaOnfnbgAA4JpHiuiSZLPZtGPHDn3xxRcaM2aMmjdvruDg4EtO5oMHD5bNZnN6rrCwsEZffHy8/va3v11OyAAANGruyt2rVq1SWlqacnNz1bdvX+Xk5CgxMVF79+5VeHh4jfFVVVUaNGiQwsPD9c477yg6OlrFxcVq2bKlm54MAICGyV25GwAA1M4jRfTi4mLdfvvtKikpkcVi0aBBg9S8eXMtXLhQFotFubm5nrgtAAC4TO7M3dnZ2ZowYYJSUlIkSbm5uVq3bp3y8vI0ffr0GuPz8vL01VdfaevWrWrSpIkkKTY21i3PBQBAQ8XnbgAAvMcje6JPnTpVvXv31tdff63Q0FB7/913362CggJP3BIAAFwBd+Xuqqoq7dixQwkJCfa+gIAAJSQkqKioyOmc999/X/Hx8ZoyZYpMJpNuvPFGzZ8/X9XV1S7vY7FYVFFR4dAAAGhM+NwNAID3eGQl+scff6ytW7cqODjYoT82NlZHjhzxxC0BAMAVcFfuPnnypKqrq2UymRz6TSaT9uzZ43TOwYMH9ec//1n333+/1q9frwMHDmjy5Mk6f/68MjMznc7JysrS7Nmz6xwXAAANDZ+7AQDwHo+sRLdarU5Xj/3nP/9R8+bNPXFLAABwBXyZu61Wq8LDw7V48WL16tVLo0aN0owZM2r9GXp6errKy8vtrbS01KMxAgBQ3/C5GwAA7/FIEX3w4MHKycmxHxsMBp05c0aZmZkaOnSoJ24JAACugLtyd5s2bRQYGCiz2ezQbzabFRER4XROZGSkrr/+egUGBtr7brjhBpWVlamqqsrpHKPRqBYtWjg0AAAaEz53AwDgPR4poj/33HP661//qi5duujcuXMaM2aM/SdlCxcu9MQtAQDAFXBX7g4ODlavXr0c9mK1Wq0qKChQfHy80zn9+/fXgQMHZLVa7X379u1TZGRkjZ+oAwCA7/C5GwAA7/HInug/+tGP9Pnnn2vlypX6+9//rjNnzuihhx7S/fff7/DCEwAAUD+4M3enpaUpOTlZvXv3Vp8+fZSTk6PKykqlpKRIkpKSkhQdHa2srCxJ0sMPP6yXXnpJU6dO1S9/+Uvt379f8+fP1yOPPOL25wQAoKHgczcAAN7jkSK6JAUFBemBBx7w1OUBAICbuSt3jxo1SidOnFBGRobKysoUFxenDRs22F82WlJSooCA//0YLiYmRh988IGmTZum7t27Kzo6WlOnTtXjjz9+xbEAANCQ8bkbAADv8EgR/fXXX6/1fFJSkiduCwAALpO7c3dqaqpSU1OdnissLKzRFx8fr7/97W+XdA8AABozPncDAOA9HimiT5061eH4/PnzOnv2rIKDg9W0aVOSOQAA9Qy5GwAA/0LuBgDAezzyYtGvv/7aoZ05c0Z79+7VzTffrLfeessTtwQAAFeA3A0AgH8hdwMA4D0eKaI7c91112nBggU1vi0HAAD1E7kbAAD/Qu4GAMAzvFZEl7576cnRo0e9eUsAAHAFyN0AAPgXcjcAAO7nkT3R33//fYdjm82mY8eO6aWXXlL//v09cUsAAHAFyN0AAPgXcjcAAN7jkSL6iBEjHI4NBoPatm2rn/zkJ3ruuec8cUsAAHAFyN0AAPgXcjcAAN7jkSK61Wr1xGUBAICHkLsBAPAv5G4AALzHq3uiAwAAAAAAAADgT9y2Ej0tLa3OY7Ozs911WwAAcJnI3QAA+BdyNwAAvuG2Ivpnn31Wp3EGg8Fdt8R/BXxzytchAIBf4d/N75C7AQDwL+RuAAB8w21F9M2bN7vrUrhEoYc+8nUIAAA/RO4GAMC/kLsBAPANj7xYFN71TYdbZQ1t6eswAMBvBHxzii8gAQAAAABAnXisiL59+3atXr1aJSUlqqqqcji3Zs0aT922UbKGtpS1WRtfhwEA8HPkbu9hSyEAuDT8u+kcuRsAAO/wSBF95cqVSkpKUmJioj788EMNHjxY+/btk9ls1t133+2JWwIAgCtA7vYufgkBALhS5G4AALzHI0X0+fPn6/nnn9eUKVPUvHlzvfDCC+rQoYN+8YtfKDIy0hO3BAAAV4Dc7V1sxQYAl4at2GoidwMA4D0eKaJ/8cUXGjZsmCQpODhYlZWVMhgMmjZtmn7yk59o9uzZnrgtAAC4TORu72IrNgDAlSJ3AwDgPQGeuGirVq10+vRpSVJ0dLR2794tSTp16pTOnj3riVsCAIArQO4GAMC/kLsBAPAetxbRLyTtW2+9VRs3bpQkjRw5UlOnTtWECRM0evRo/fSnP3XnLQEAwBUgdwMA4F/I3QAAeJ9bt3Pp3r27brrpJo0YMUIjR46UJM2YMUNNmjTR1q1b9fOf/1wzZ8505y0BAMAVIHcDAOBfyN0AAHifW4vof/nLX7Rs2TJlZWVp3rx5+vnPf67x48dr+vTp7rwNAABwE3I3AAD+hdwNAID3uXU7l1tuuUV5eXk6duyYXnzxRR0+fFgDBgzQ9ddfr4ULF6qsrMydtwMAAFeI3A0AgH/xVO5etGiRYmNjFRISor59+2rbtm21jj916pSmTJmiyMhIGY1GXX/99Vq/fv1l3RsAgPrOIy8WbdasmVJSUvSXv/xF+/bt08iRI7Vo0SK1a9dOd955pyduCQAArgC5GwAA/+LO3L1q1SqlpaUpMzNTO3fuVI8ePZSYmKjjx487HV9VVaVBgwbp8OHDeuedd7R3714tWbJE0dHR7ng0AADqHY8U0b/v2muv1RNPPKGZM2eqefPmWrdunadvCQAArgC5GwAA/3KluTs7O1sTJkxQSkqKunTpotzcXDVt2lR5eXlOx+fl5emrr77S2rVr1b9/f8XGxmrAgAHq0aOHOx4HAIB6x6NF9I8++khjx45VRESEHnvsMf3sZz/TX//6V0/eEgAAXAFyNwAA/uVKc3dVVZV27NihhIQEe19AQIASEhJUVFTkdM7777+v+Ph4TZkyRSaTSTfeeKPmz5+v6upql/exWCyqqKhwaAAA+Au3vlhUko4ePar8/Hzl5+frwIED6tevn37729/q3nvvVbNmzdx9OwAAcIXI3QAA+Bd35u6TJ0+qurpaJpPJod9kMmnPnj1O5xw8eFB//vOfdf/992v9+vU6cOCAJk+erPPnzyszM9PpnKysLM2ePfuSYgMAoL5waxF9yJAh2rRpk9q0aaOkpCSNGzdOnTp1cuctAACAG5G7AQDwL/Uhd1utVoWHh2vx4sUKDAxUr169dOTIET3zzDMui+jp6elKS0uzH1dUVCgmJsZbIQMAcEXcWkRv0qSJ3nnnHd1xxx0KDAx056UBAIAHkLsBAPAv7s7dbdq0UWBgoMxms0O/2WxWRESE0zmRkZFq0qSJw/1vuOEGlZWVqaqqSsHBwTXmGI1GGY3GK47XVwK+OeXrEADArzS0fzfdWkR///333Xk5AADgYeRuAAD8i7tzd3BwsHr16qWCggKNGDFC0ncrzQsKCpSamup0Tv/+/bVixQpZrVYFBHz3qrV9+/YpMjLSaQG9IQg99JGvQwAA+JDb90QHAAAAAAD+Iy0tTcnJyerdu7f69OmjnJwcVVZWKiUlRZKUlJSk6OhoZWVlSZIefvhhvfTSS5o6dap++ctfav/+/Zo/f74eeeQRXz6GR33T4VZZQ1v6OgwA8BsB35xqUF9AUkQHAABut2jRIj3zzDMqKytTjx499OKLL6pPnz5Ox+bn59s/pF9gNBp17tw5b4QKAECjN2rUKJ04cUIZGRkqKytTXFycNmzYYH/ZaElJiX3FuSTFxMTogw8+0LRp09S9e3dFR0dr6tSpevzxx331CB5nDW0pa7M2vg4DAOAjFNEBAIBbrVq1SmlpacrNzVXfvn2Vk5OjxMRE7d27V+Hh4U7ntGjRQnv37rUfGwwGb4ULAAAkpaamuty+pbCwsEZffHy8/va3v3k4KgAA6oeAiw8BAACou+zsbE2YMEEpKSnq0qWLcnNz1bRpU+Xl5bmcYzAYFBERYW8XVr65YrFYVFFR4dAAAAAAAPAEiugAAMBtqqqqtGPHDiUkJNj7AgIClJCQoKKiIpfzzpw5o/bt2ysmJkZ33XWX/vnPf9Z6n6ysLIWFhdlbTEyM254BAAAAAIDvq/dF9NjYWBkMhhptypQpF527cuVKGQwG+xvGAQCAZ508eVLV1dU1VpKbTCaVlZU5ndOpUyfl5eXpvffe05tvvimr1ap+/frpP//5j8v7pKenq7y83N5KS0vd+hwAAAAAAFxQ7/dE//TTT1VdXW0/3r17twYNGqSRI0fWOu/w4cP69a9/rVtuucXTIQIAgCsQHx+v+Ph4+3G/fv10ww036NVXX9VTTz3ldI7RaJTRaPRWiAAAAACARqzer0Rv27atwx6pf/zjH9WxY0cNGDDA5Zzq6mrdf//9mj17tq655hovRgsAQOPWpk0bBQYGymw2O/SbzWZFRETU6RpNmjRRz549deDAAU+ECAAAAADAJan3RfTvq6qq0ptvvqlx48bJYDC4HDdnzhyFh4froYceqtN1eTkZAADuERwcrF69eqmgoMDeZ7VaVVBQ4LDavDbV1dX6xz/+ocjISE+FCQAAAABAndX77Vy+b+3atTp16pTGjh3rcsyWLVu0dOlS7dq1q87XzcrK0uzZs688QAAAoLS0NCUnJ6t3797q06ePcnJyVFlZqZSUFElSUlKSoqOjlZWVJem7L7//7//+T9dee61OnTqlZ555RsXFxRo/frwvHwMAAAAAAEl+VkRfunSphgwZoqioKKfnT58+rQcffFBLlixRmzZt6nzd9PR0paWl2Y8rKioUExNzxfECANAYjRo1SidOnFBGRobKysoUFxenDRs22F82WlJSooCA//0Y7uuvv9aECRNUVlamVq1aqVevXtq6dau6dOniq0cAAAAAAMDOb4roxcXF2rRpk9asWeNyzBdffKHDhw9r+PDh9j6r1SpJCgoK0t69e9WxY8ca83g5GQAA7pWamqrU1FSn5woLCx2On3/+eT3//PNeiAoAAAAAgEvnN0X0ZcuWKTw8XMOGDXM5pnPnzvrHP/7h0Ddz5kydPn1aL7zwAqvLAQAAAAAAAACXxC+K6FarVcuWLVNycrKCghxD/v6+qiEhIbrxxhsdzrds2VKSavQDAAAAAAAAAHAxflFE37Rpk0pKSjRu3Lga5364ryoAAAAAAAAAAO7iF0X0wYMHy2azOT33w31Vfyg/P9/9AQEAAAAAAAAAGgWWcAMAAAAAAAAA4AJFdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugAAAAAAAAAALhAER0AAAAAAAAAABcoogMAAAAAAAAA4AJFdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuBPk6AFy5gHPlvg4BAPwK/24CAAAAAIC6oojux8LCwtQk2Cgd/IuvQwEAv9Mk2KiwsDBfhwEAAAAAAOo5iuh+zGQy6c03Xld5OSsqUf8UFxdr3rx5mjFjhtq3b+/rcIAawsLCZDKZfB0GGil+DQEAl4Z/NwEAgC9RRPdzJpOJIhDqtfbt2+v666/3dRgAUC/wKzIAuHz8igwAAPgKRXQAAAAv4VdkqM/4FRnqO35FBgAAfIUiOgAAgBfxKzLUd/yKDAAAAHAU4OsAAAAAAAAAAACoryiiAwAAAAAAAADgAkV0AAAAAAAAAABcoIgOAAAAAAAAAIALFNEBAAAAAAAAAHCBIjoAAHC7RYsWKTY2ViEhIerbt6+2bdtWp3krV66UwWDQiBEjPBsgAAAAAAB1RBEdAAC41apVq5SWlqbMzEzt3LlTPXr0UGJioo4fP17rvMOHD+vXv/61brnlFi9FCgAAAADAxVFEBwAAbpWdna0JEyYoJSVFXbp0UW5urpo2baq8vDyXc6qrq3X//fdr9uzZuuaaa7wYLQAAAAAAtaOIDgAA3Kaqqko7duxQQkKCvS8gIEAJCQkqKipyOW/OnDkKDw/XQw89VKf7WCwWVVRUODQAAHD52IoNAADXKKIDAAC3OXnypKqrq2UymRz6TSaTysrKnM7ZsmWLli5dqiVLltT5PllZWQoLC7O3mJiYK4obAIDGjK3YAACoHUV0AADgM6dPn9aDDz6oJUuWqE2bNnWel56ervLycnsrLS31YJQAADRsbMUGAEDtgnwdAAAAaDjatGmjwMBAmc1mh36z2ayIiIga47/44gsdPnxYw4cPt/dZrVZJUlBQkPbu3auOHTvWmGc0GmU0Gt0cPQAAjc+FrdjS09PtfZe6FdvHH3980ftYLBZZLBb7MVuxAQD8CSvRAQCA2wQHB6tXr14qKCiw91mtVhUUFCg+Pr7G+M6dO+sf//iHdu3aZW933nmnbrvtNu3atYttWgAA8DC2YgMA4OJYiQ4AANwqLS1NycnJ6t27t/r06aOcnBxVVlYqJSVFkpSUlKTo6GhlZWUpJCREN954o8P8li1bSlKNfgAA4HtXshVbWlqa/biiooJCOgDAb1BEBwAAbjVq1CidOHFCGRkZKisrU1xcnDZs2GBf4VZSUqKAAH4MBwBAfcBWbAAAXBxFdAAA4HapqalKTU11eq6wsLDWufn5+e4PCAAAOPX9rdhGjBgh6X9bsTnL5Re2Yvu+mTNn6vTp03rhhRdYXQ4AaJAoogMAAAAA0IixFRsAALWjiA4AAAAAQCPGVmwAANSOIjoAAAAAAI0cW7EBAOAaXyUDAAAAAAAAAOACRXQAAAAAAAAAAFygiA4AAAAAAAAAgAv1vogeGxsrg8FQo02ZMsXp+CVLluiWW25Rq1at1KpVKyUkJGjbtm1ejhoAAAAAAAAA0BDU+yL6p59+qmPHjtnbxo0bJUkjR450Or6wsFCjR4/W5s2bVVRUpJiYGA0ePFhHjhzxZtgAAAAAAAAAgAYgyNcBXEzbtm0djhcsWKCOHTtqwIABTscvX77c4fh3v/udfv/736ugoEBJSUkeixMAAAAAAAAA0PDU+yL691VVVenNN99UWlqaDAZDneacPXtW58+fV+vWrV2OsVgsslgs9uOKioorjhUAAAAAAAAA4P/q/XYu37d27VqdOnVKY8eOrfOcxx9/XFFRUUpISHA5JisrS2FhYfYWExPjhmgBAAAAAAAAAP7Or4roS5cu1ZAhQxQVFVWn8QsWLNDKlSv17rvvKiQkxOW49PR0lZeX21tpaam7QgYAAAAAAAAA+DG/2c6luLhYmzZt0po1a+o0/tlnn9WCBQu0adMmde/evdaxRqNRRqPRHWECAAAAAAAAABoQvymiL1u2TOHh4Ro2bNhFxz799NOaN2+ePvjgA/Xu3dsL0QEAAAAAAAAAGiK/2M7FarVq2bJlSk5OVlCQY90/KSlJ6enp9uOFCxdq1qxZysvLU2xsrMrKylRWVqYzZ854O2wAAAAAAAAAgJ/ziyL6pk2bVFJSonHjxtU4V1JSomPHjtmPX3nlFVVVVemee+5RZGSkvT377LPeDBkAAAAAAAAA0AD4xXYugwcPls1mc3qusLDQ4fjw4cOeDwgAAAAAAAAA0Cj4xUp0AAAAAAAAAAB8gSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugAAAAAAAAAALjgFy8WBQAAAAAA8JWAc+W+DgEA/EpD+3eTIjoAAAAAAIATYWFhahJslA7+xdehAIDfaRJsVFhYmK/DcAuK6AAAAAAAAE6YTCa9+cbrKi9vWCsq0TAUFxdr3rx5mjFjhtq3b+/rcIAawsLCZDKZfB2GW1BEBwAAAAAAcMFkMjWYIhAapvbt2+v666/3dRhAg8aLRQEAAAAAAAAAcIEiOgAAAAAAAAAALlBEBwAAAAAAAADABYroAAAAAAAAAAC4QBEdAAC43aJFixQbG6uQkBD17dtX27Ztczl2zZo16t27t1q2bKlmzZopLi5Ob7zxhhejBQAAAADANYroAADArVatWqW0tDRlZmZq586d6tGjhxITE3X8+HGn41u3bq0ZM2aoqKhIf//735WSkqKUlBR98MEHXo4cAAAAAICaKKIDAAC3ys7O1oQJE5SSkqIuXbooNzdXTZs2VV5entPxAwcO1N13360bbrhBHTt21NSpU9W9e3dt2bLFy5EDAAAAAFATRXQAAOA2VVVV2rFjhxISEux9AQEBSkhIUFFR0UXn22w2FRQUaO/evbr11ltdjrNYLKqoqHBoAAAAAAB4AkV0AADgNidPnlR1dbVMJpNDv8lkUllZmct55eXluuqqqxQcHKxhw4bpxRdf1KBBg1yOz8rKUlhYmL3FxMS47RkAAAAAAPg+iugAAMDnmjdvrl27dunTTz/VvHnzlJaWpsLCQpfj09PTVV5ebm+lpaXeCxYAAAAA0KgE+ToAAADQcLRp00aBgYEym80O/WazWRERES7nBQQE6Nprr5UkxcXF6d///reysrI0cOBAp+ONRqOMRqPb4gYAAAAAwBVWogMAALcJDg5Wr169VFBQYO+zWq0qKChQfHx8na9jtVplsVg8ESIAAAAAAJeElegAAMCt0tLSlJycrN69e6tPnz7KyclRZWWlUlJSJElJSUmKjo5WVlaWpO/2N+/du7c6duwoi8Wi9evX64033tArr7ziy8cAAAAAAEASRXQAAOBmo0aN0okTJ5SRkaGysjLFxcVpw4YN9peNlpSUKCDgfz+Gq6ys1OTJk/Wf//xHoaGh6ty5s958802NGjXKV48AAAAAAIAdRXQAAOB2qampSk1NdXruhy8MnTt3rubOneuFqAAAAAAAuHTsiQ4AAAAAAAAAgAsU0QEAAAAAAAAAcIEiOgAAAAAAAAAALlBEBwAAAACgkVu0aJFiY2MVEhKivn37atu2bS7HLlmyRLfccotatWqlVq1aKSEhodbxAAD4O4roAAAAAAA0YqtWrVJaWpoyMzO1c+dO9ejRQ4mJiTp+/LjT8YWFhRo9erQ2b96soqIixcTEaPDgwTpy5IiXIwcAwDsoogMAAAAA0IhlZ2drwoQJSklJUZcuXZSbm6umTZsqLy/P6fjly5dr8uTJiouLU+fOnfW73/1OVqtVBQUFXo4cAADvoIgOAAAAAEAjVVVVpR07dighIcHeFxAQoISEBBUVFdXpGmfPntX58+fVunVrl2MsFosqKiocGgAA/oIiOgAAAAAAjdTJkydVXV0tk8nk0G8ymVRWVlanazz++OOKiopyKMT/UFZWlsLCwuwtJibmiuIGAMCbKKIDAAAAAIDLsmDBAq1cuVLvvvuuQkJCXI5LT09XeXm5vZWWlnoxSgAArkyQrwMAAAAAAAC+0aZNGwUGBspsNjv0m81mRURE1Dr32Wef1YIFC7Rp0yZ179691rFGo1FGo/GK4wUAwBdYiQ4AAAAAQCMVHBysXr16ObwU9MJLQuPj413Oe/rpp/XUU09pw4YN6t27tzdCBQDAZ1iJDgAAAABAI5aWlqbk5GT17t1bffr0UU5OjiorK5WSkiJJSkpKUnR0tLKysiRJCxcuVEZGhlasWKHY2Fj73ulXXXWVrrrqKp89BwAAnkIRHQAAAACARmzUqFE6ceKEMjIyVFZWpri4OG3YsMH+stGSkhIFBPzvh+yvvPKKqqqqdM899zhcJzMzU08++aQ3QwcAwCsoogMAAAAA0MilpqYqNTXV6bnCwkKH48OHD3s+IAAA6hH2RAcAAAAAAAAAwAWK6AAAAAAAAAAAuEARHQAAAAAAAAAAFyiiAwAAAAAAAADgAkV0AAAAAAAAAABcqPdF9NjYWBkMhhptypQpLue8/fbb6ty5s0JCQtStWzetX7/eixEDAAAAAAAAABqKel9E//TTT3Xs2DF727hxoyRp5MiRTsdv3bpVo0eP1kMPPaTPPvtMI0aM0IgRI7R7925vhg0AAAAAAAAAaADqfRG9bdu2ioiIsLc//vGP6tixowYMGOB0/AsvvKDbb79djz32mG644QY99dRT+vGPf6yXXnrJ5T0sFosqKiocGgAAAAAAAAAA9b6I/n1VVVV68803NW7cOBkMBqdjioqKlJCQ4NCXmJiooqIil9fNyspSWFiYvcXExLg1bgAAAAAAAACAf/KrIvratWt16tQpjR071uWYsrIymUwmhz6TyaSysjKXc9LT01VeXm5vpaWl7goZAAAAAAAAAODHgnwdwKVYunSphgwZoqioKLde12g0ymg0uvWaAAAAAAAAAAD/5zdF9OLiYm3atElr1qypdVxERITMZrNDn9lsVkREhCfDAwAAAAAAAAA0QH6zncuyZcsUHh6uYcOG1TouPj5eBQUFDn0bN25UfHy8J8MDAAAAAAAAADRAflFEt1qtWrZsmZKTkxUU5Lh4PikpSenp6fbjqVOnasOGDXruuee0Z88ePfnkk9q+fbtSU1O9HTYAAAAAAAAAwM/5RRF906ZNKikp0bhx42qcKykp0bFjx+zH/fr104oVK7R48WL16NFD77zzjtauXasbb7zRmyEDAAAAAAAAABoAvyiiDx48WDabTddff32Nc4WFhcrPz3foGzlypPbu3SuLxaLdu3dr6NChXooUAABI0qJFixQbG6uQkBD17dtX27Ztczl2yZIluuWWW9SqVSu1atVKCQkJtY4HAAAAAMCb/KKIDgAA/MeqVauUlpamzMxM7dy5Uz169FBiYqKOHz/udHxhYaFGjx6tzZs3q6ioSDExMRo8eLCOHDni5cgBAAAAAKiJIjoAAHCr7OxsTZgwQSkpKerSpYtyc3PVtGlT5eXlOR2/fPlyTZ48WXFxcercubN+97vfyWq11nhROAAAAAAAvhB08SFA43Du3DmVlJT4OowGo7i42OG/cI927dopJCTE12EALlVVVWnHjh0OL/0OCAhQQkKCioqK6nSNs2fP6vz582rdurXLMRaLRRaLxX5cUVFx+UHDb5G73Yvc7RnkbgD4H3K3e5G7PYPcDWcoogP/VVJSookTJ/o6jAZn3rx5vg6hQVm8eLHT90MA9cXJkydVXV0tk8nk0G8ymbRnz546XePxxx9XVFSUEhISXI7JysrS7NmzryhW+D9yt2eQu92L3A0A/0Pu9gxyt3uRu+EMRXTgv9q1a6fFixf7OgygVu3atfN1CIBHLViwQCtXrlRhYWGtqz/S09OVlpZmP66oqFBMTIw3QkQ9Qu6GPyB3A8D/kLvhD8jdcIYiOvBfISEhfNMIAFeoTZs2CgwMlNlsdug3m82KiIiode6zzz6rBQsWaNOmTerevXutY41Go4xG4xXHC/9G7gYAwL+QuwH4K14sCgAA3CY4OFi9evVyeCnohZeExsfHu5z39NNP66mnntKGDRvUu3dvb4QKAAAAAECdsBIdAAC4VVpampKTk9W7d2/16dNHOTk5qqysVEpKiiQpKSlJ0dHRysrKkiQtXLhQGRkZWrFihWJjY1VWViZJuuqqq3TVVVf57DkAAAAAAJAoogMAADcbNWqUTpw4oYyMDJWVlSkuLk4bNmywv2y0pKREAQH/+zHcK6+8oqqqKt1zzz0O18nMzNSTTz7pzdABAAAAAKiBIjoAAHC71NRUpaamOj1XWFjocHz48GHPBwQAAAAAwGViT3QAAAAAAAAAAFygiA4AAAAAAAAAgAsU0QEAAAAAAAAAcIEiOgAAAAAAAAAALlBEBwAAAAAAAADABYroAAAAAAAAAAC4QBEdAAAAAAAAAAAXgnwdQH1ks9kkSRUVFT6OBADQmF3IQxfyElwjdwMA6gNyd92RuwEA9UFdczdFdCdOnz4tSYqJifFxJAAAfJeXwsLCfB1GvUbuBgDUJ+TuiyN3AwDqk4vlboONr8hrsFqtOnr0qJo3by6DweDrcAC/VFFRoZiYGJWWlqpFixa+DgfwSzabTadPn1ZUVJQCAtiBrTbkbuDKkbuBK0furjtyN3DlyN3Alatr7qaIDsAjKioqFBYWpvLycpI5AAB+gNwNAIB/IXcD3sNX4wAAAAAAAAAAuEARHQAAAAAAAAAAFyiiA/AIo9GozMxMGY1GX4cCAADqgNwNAIB/IXcD3sOe6AAAAAAAAAAAuMBKdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugAAAAAAAAAALhAER0AAAAAAAAAABcoogMAAAAAAAAA4AJFdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugArojBYNCTTz7p6zAcfPrpp+rXr5+aNWsmg8GgXbt2+TokAAB8gjwNAID/IX8D9Q9FdKCeys/Pl8FgcGjh4eG67bbb9Kc//cnX4V2xf/3rX3ryySd1+PBht173/PnzGjlypL766is9//zzeuONN9S+fXuX4w8fPqyUlBR17NhRISEhioiI0K233qrMzEy3xgUAaFjI05fnUvJ0bGxsjb/xD9vYsWPdGh8AoGEjf1+eS8nfhYWFLvP2fffd59a4AG8K8nUAAGo3Z84cdejQQTabTWazWfn5+Ro6dKj+8Ic/6I477vB1eJftX//6l2bPnq2BAwcqNjbWbdf94osvVFxcrCVLlmj8+PG1jj1w4IBuuukmhYaGaty4cYqNjdWxY8e0c+dOLVy4ULNnz3ZbXACAhok8fWkuJU/n5OTozJkzTs+99NJL+uSTT/R///d/bosNANB4kL8vzaXk7wseeeQR3XTTTQ597owJ8DaK6EA9N2TIEPXu3dt+/NBDD8lkMumtt97y6+TuKcePH5cktWzZ8qJjn3/+eZ05c0a7du2q8S36hesAAFAb8vSluZQ8PWLECKf9H374obZt26Y777xTkyZNcmN0AIDGgvx9aS4lf19wyy236J577vFQRID3sZ0L4Gdatmyp0NBQBQU5fgdWWVmpX/3qV4qJiZHRaFSnTp307LPPymazSZK++eYbde7cWZ07d9Y333xjn/fVV18pMjJS/fr1U3V1tSRp7Nixuuqqq3Tw4EElJiaqWbNmioqK0pw5c+zXq81nn32mIUOGqEWLFrrqqqv005/+VH/729/s5/Pz8zVy5EhJ0m233Wb/aVdhYWGt1/3zn/+sW265Rc2aNVPLli1111136d///rf9/NixYzVgwABJ0siRI2UwGDRw4ECX1/viiy/0ox/9yOnP0MLDwy/6nAAA/BB52n152pmysjI9+OCDio6O1rJlyxzOGQwGpaamau3atbrxxhtlNBrVtWtXbdiw4ZLuAQBofMjfns3fznzyySe6/fbbFRYWpqZNm2rAgAH661//esXXBTyFIjpQz5WXl+vkyZM6ceKE/vnPf+rhhx/WmTNn9MADD9jH2Gw23XnnnXr++ed1++23Kzs7W506ddJjjz2mtLQ0SVJoaKhee+01HThwQDNmzLDPnTJlisrLy5Wfn6/AwEB7f3V1tW6//XaZTCY9/fTT6tWrlzIzMy+6V/g///lP3XLLLfr888/1m9/8RrNmzdKhQ4c0cOBAffLJJ5KkW2+9VY888ogk6YknntAbb7yhN954QzfccIPL627atEmJiYk6fvy4nnzySaWlpWnr1q3q37+/fb+3X/ziF3riiSckfffTsTfeeMPhWX+offv2Ki0t1Z///OdanwkAAFfI09/xRJ7+IavVqgceeEBffvmlVqxYodatW9cYs2XLFk2ePFn33Xefnn76aZ07d04///nP9eWXX9b5PgCAho/8/R1P5u/Tp0/r5MmTDs1qtUr6rnB/6623qqKiQpmZmZo/f75OnTqln/zkJ9q2bdtFrw34hA1AvbRs2TKbpBrNaDTa8vPzHcauXbvWJsk2d+5ch/577rnHZjAYbAcOHLD3paen2wICAmwfffSR7e2337ZJsuXk5DjMS05Otkmy/fKXv7T3Wa1W27Bhw2zBwcG2EydO2Psl2TIzM+3HI0aMsAUHB9u++OILe9/Ro0dtzZs3t9166632vgv33rx5c53+HnFxcbbw8HDbl19+ae/7/PPPbQEBAbakpCR73+bNm22SbG+//fZFr7l7925baGioTZItLi7ONnXqVNvatWttlZWVdYoJANB4kacdeSJP/9CcOXNskmyzZ892el6SLTg42OHv+fnnn9sk2V588cVLvh8AoOEhfzvyRP6+MNZZO3TokM1qtdquu+46W2Jios1qtdrnnT171tahQwfboEGD6hQ74G2sRAfquUWLFmnjxo3auHGj3nzzTd12220aP3681qxZYx+zfv16BQYG2r91vuBXv/qVbDabw1vGn3zySXXt2lXJycmaPHmyBgwYUGPeBampqfb/+8JPpKuqqrRp0yan46urq/Xhhx9qxIgRuuaaa+z9kZGRGjNmjLZs2aKKiopL/hscO3ZMu3bt0tixYx1WnXXv3l2DBg3S+vXrL/maktS1a1ft2rVLDzzwgA4fPqwXXnhBI0aMkMlk0pIlSy7rmgCAxoU87bk8/X0ff/yx/UVpM2fOdDkuISFBHTt2dIihRYsWOnjw4BXHAABoOMjfns/fGRkZ9r/xhRYREaFdu3Zp//79GjNmjL788kv7KvXKykr99Kc/1UcffWRfsQ7UJ7xYFKjn+vTp4/DCk9GjR6tnz55KTU3VHXfcoeDgYBUXFysqKkrNmzd3mHvhZ1vFxcX2vuDgYOXl5emmm25SSEiIli1bJoPBUOO+AQEBDglakq6//npJsv+s64dOnDihs2fPqlOnTjXO3XDDDbJarSotLVXXrl3r9vD/dSF+V9f94IMPVFlZqWbNml3SdaXvnumNN95QdXW1/vWvf+mPf/yjnn76aU2cOFEdOnRQQkLCJV8TANB4kKc9m6cl6csvv9To0aPVqlUrLV++XAEBrtcBtWvXrkZfq1at9PXXX1/WvQEADRP52/P5u1u3bk4/T+/fv1+SlJyc7HJueXm5WrVqdVn3BTyFleiAnwkICNBtt92mY8eO2ZPPpfrggw8kSefOnbvsazQ0gYGB6tatm9LT0/Xuu+9KkpYvX+7jqAAA/oY87V42m03Jyck6evSo8vPzFRUVVev47+87+8PrAADgCvnbey6sMn/mmWdqrFS/0K666iofRwnURBEd8EPffvutJOnMmTOSvntB5tGjR3X69GmHcXv27LGfv+Dvf/+75syZo5SUFPXs2VPjx49XeXl5jXtYrdYaP33et2+fJCk2NtZpXG3btlXTpk21d+/eGuf27NmjgIAAxcTESJLTb+VduRC/q+u2adPmsr8dd+bCioRjx4657ZoAgMaDPO143SvJ09nZ2Vq3bp0effRRDRs27LKuAQBAXZC/Ha/r7s/ZF1zYdq1FixZKSEhw2po0aeL2+wJXiiI64GfOnz+vDz/8UMHBwfafkQ0dOlTV1dV66aWXHMY+//zzMhgMGjJkiH3u2LFjFRUVpRdeeEH5+fkym82aNm2a03t9/3o2m00vvfSSmjRpop/+9KdOxwcGBmrw4MF67733HH6KZjabtWLFCt18881q0aKFJNmT8alTpy76zJGRkYqLi9Nrr73mMH737t368MMPNXTo0Itew5mPP/5Y58+fr9F/Ye83Zz9rAwCgNuTp/42/0jz96aefKj09Xb169dKCBQsu6xoAANQF+ft/4680f19Mr1691LFjRz377LP2Lyy+78SJEx65L3Cl2BMdqOf+9Kc/2b/pPn78uFasWKH9+/dr+vTp9kQ5fPhw3XbbbZoxY4YOHz6sHj166MMPP9R7772nRx991P5N79y5c7Vr1y4VFBSoefPm6t69uzIyMjRz5kzdc889DkkyJCREGzZsUHJysvr27as//elPWrdunZ544gm1bdvWZbxz587Vxo0bdfPNN2vy5MkKCgrSq6++KovFoqeffto+Li4uToGBgVq4cKHKy8tlNBr1k5/8ROHh4U6v+8wzz2jIkCGKj4/XQw89pG+++UYvvviiwsLC9OSTT17W33bhwoXasWOHfvazn6l79+6SpJ07d+r1119X69at9eijj17WdQEAjQd5+jvuztNnz57VqFGjdP78ed1xxx1avXq103Emk0mDBg265OsDABo38vd3PPE5+2ICAgL0u9/9TkOGDFHXrl2VkpKi6OhoHTlyRJs3b1aLFi30hz/8wSP3Bq6IDUC9tGzZMpskhxYSEmKLi4uzvfLKKzar1eow/vTp07Zp06bZoqKibE2aNLFdd911tmeeecY+bseOHbagoCDbL3/5S4d53377re2mm26yRUVF2b7++mubzWazJScn25o1a2b74osvbIMHD7Y1bdrUZjKZbJmZmbbq6mqH+ZJsmZmZDn07d+60JSYm2q666ipb06ZNbbfddptt69atNZ5xyZIltmuuucYWGBhok2TbvHlzrX+TTZs22fr3728LDQ21tWjRwjZ8+HDbv/71L4cxmzdvtkmyvf3227Vey2az2f7617/apkyZYrvxxhttYWFhtiZNmtjatWtnGzt2rO2LL7646HwAQONFnq7JnXn60KFDNf6+ztqAAQMcnnXKlCk1rtW+fXtbcnJyrfcDADQO5O+a3P05u65jP/vsM9vPfvYz29VXX20zGo229u3b2+69915bQUHBRe8B+ILBZuMtOwAcjR07Vu+8847Tn1YBAADfIk8DAOB/yN+Af2NPdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgT3RAQAAAAAAAABwgZXoAAAAAAAAAAC4QBEdAAAAAAAAAAAXgnwdQH1ktVp19OhRNW/eXAaDwdfhAAAaKZvNptOnTysqKkoBAXzvXRtyNwCgPiB31x25GwBQH9Q1d1NEd+Lo0aOKiYnxdRgAAEiSSktL9aMf/cjXYdRr5G4AQH1C7r44cjcAoD65WO6miO5E8+bNJX33x2vRooWPowEANFYVFRWKiYmx5yW4Ru4GANQH5O66I3cDAOqDuuZuiuhOXPgpWYsWLUjmAACf4yfOF0fuBgDUJ+TuiyN3AwDqk4vlbjZpAwAAAAAAAADABb8ron/00UcaPny4oqKiZDAYtHbtWpdjJ02aJIPBoJycHK/FBwAAAAAAAABoOPyuiF5ZWakePXpo0aJFtY5799139be//U1RUVFeigwAAAAAAAAA0ND43Z7oQ4YM0ZAhQ2odc+TIEf3yl7/UBx98oGHDhl30mhaLRRaLxX5cUVFxxXECAAAAAAAAAPyf361Evxir1aoHH3xQjz32mLp27VqnOVlZWQoLC7O3mJgYD0cJAAAAAAAAAPAHDa6IvnDhQgUFBemRRx6p85z09HSVl5fbW2lpqQcjBAAAAAAAAAD4C7/bzqU2O3bs0AsvvKCdO3fKYDDUeZ7RaJTRaPRgZAAAAAAAAAAAf9SgVqJ//PHHOn78uNq1a6egoCAFBQWpuLhYv/rVrxQbG+vr8IBGo7q6Wp999pkKCgr02Wefqbq62tchAQAAAAAAAJelQa1Ef/DBB5WQkODQl5iYqAcffFApKSk+igpoXD766CO9/PLLKisrs/dFRERo8uTJuvXWW30YGQBvWrRokZ555hmVlZWpR48eevHFF9WnTx+nYwcOHKi//OUvNfqHDh2qdevWeTpUAAAAAABq5XdF9DNnzujAgQP240OHDmnXrl1q3bq12rVrp6uvvtphfJMmTRQREaFOnTp5O1Sg0fnoo4+UmZmp+Ph4zZo1Sx06dNChQ4e0fPlyZWZmavbs2RTSgUZg1apVSktLU25urvr27aucnBwlJiZq7969Cg8PrzF+zZo1qqqqsh9/+eWX6tGjh0aOHOnNsAEAAAAAcMrvtnPZvn27evbsqZ49e0qS0tLS1LNnT2VkZPg4MqBxq66u1ssvv6z4+HjNnTtXXbt2VdOmTdW1a1fNnTtX8fHxeuWVV9jaBWgEsrOzNWHCBKWkpKhLly7Kzc1V06ZNlZeX53R869atFRERYW8bN25U06ZNKaIDAAAAAOoFv1uJPnDgQNlstjqPP3z4sOeCAWD397//XWVlZZo1a5YCAhy/nwsICND999+vKVOm6O9//7v9SzAADU9VVZV27Nih9PR0e19AQIASEhJUVFRUp2ssXbpU9913n5o1a+ZyjMVikcVisR9XVFRcftDwW+fOnVNJSYmvwwBq1a5dO4WEhPg6DACoF8jd8Afkbjjjd0V0APXTV199JUnq0KGD0/MX+i+MA9AwnTx5UtXV1TKZTA79JpNJe/bsuej8bdu2affu3Vq6dGmt47KysjR79uwrihX+r6SkRBMnTvR1GECtFi9erOuvv97XYQBAvUDuhj8gd8MZiugA3KJ169aSvntPQdeuXWucP3TokMM4AHBm6dKl6tatm8uXkF6Qnp6utLQ0+3FFRYViYmI8HR7qmXbt2mnx4sW+DqPBKC4u1rx58zRjxgy1b9/e1+E0GO3atfN1CABQb5C73Yvc7RnkbjhDER2AW3Tv3l0RERFavny55s6d67Cli9Vq1fLlyxUZGanu3bv7MEoAntamTRsFBgbKbDY79JvNZkVERNQ6t7KyUitXrtScOXMueh+j0Sij0XhFscL/hYSEsErIA9q3b8/fFQDgEeRuzyB3A57ndy8WBVA/BQYGavLkySoqKtLMmTP1z3/+U2fPntU///lPzZw5U0VFRXr44YcVGBjo61ABeFBwcLB69eqlgoICe5/ValVBQYHi4+Nrnfv222/LYrHogQce8HSYAAAAAADUGSvRAbjNrbfeqtmzZ+vll1/WlClT7P2RkZGaPXu2br31Vh9GB8Bb0tLSlJycrN69e6tPnz7KyclRZWWlUlJSJElJSUmKjo5WVlaWw7ylS5dqxIgRuvrqq30RNgAAAAAATlFEB+BWt956q/r376+///3v+uqrr9S6dWt1796dFehAIzJq1CidOHFCGRkZKisrU1xcnDZs2GB/2WhJSYnDlk+StHfvXm3ZskUffvihL0IGAAAAAMAliugA3C4wMFA9e/b0dRgAfCg1NVWpqalOzxUWFtbo69Spk2w2m4ejAgAAAADg0rEnOgAAAAAAAAAALlBEBwAAAAAAAADABYroAAAAAAAAAAC4wJ7oANyuqqpK7733no4ePaqoqCjdddddCg4O9nVYAAAAAAAAwCWjiA7ArXJzc/X222+rurraoW/kyJGaNGmSDyMDAAAAAAAALh3buQBwm9zcXK1cuVItWrTQr3/9a/3+97/Xr3/9a7Vo0UIrV65Ubm6ur0MEAAAAcBEfffSRhg8frqioKBkMBq1du9bhvM1mU0ZGhiIjIxUaGqqEhATt37/fN8ECAOAFFNEBuEVVVZXefvtttWrVSm+//bbuuOMOXX311brjjjsc+quqqnwdKgAAAIBaVFZWqkePHlq0aJHT808//bR++9vfKjc3V5988omaNWumxMREnTt3zsuRAgDgHRTRAbjFe++9p+rqaj300EMKCnLcKSooKEjjxo1TdXW13nvvPR9FCAAAAKAuhgwZorlz5+ruu++ucc5msyknJ0czZ87UXXfdpe7du+v111/X0aNHa6xYBwCgoaCIDsAtjh49KkmKj493ev5C/4VxAAAAAPzPoUOHVFZWpoSEBHtfWFiY+vbtq6KiIpfzLBaLKioqHBoAAP6CIjoAt4iKipIkl//D+UL/hXEAAAAA/E9ZWZkkyWQyOfSbTCb7OWeysrIUFhZmbzExMR6NEwAAd6KIDsAt7rrrLgUGBmrp0qX69ttvHc59++23ysvLU2BgoO666y4fRQgAAADAV9LT01VeXm5vpaWlvg4JAIA6o4gOwC2Cg4M1cuRIff311xo5cqT+8Ic/6OTJk/rDH/7g0B8cHOzrUAEAAABcpoiICEmS2Wx26DebzfZzzhiNRrVo0cKhAQDgL4IuPgQA6mbSpEmSpLffflvPPfecvT8wMFD33Xef/TwAAAAA/9ShQwdFRESooKBAcXFxkqSKigp98sknevjhh30bHAAAHkIRHYBbTZo0SePGjdN7772no0ePKioqSnfddRcr0AEAAAA/cebMGR04cMB+fOjQIe3atUutW7dWu3bt9Oijj2ru3Lm67rrr1KFDB82aNUtRUVEaMWKE74IGAMCDKKIDcLsLW7sAAAAA8D/bt2/XbbfdZj9OS0uTJCUnJys/P1+/+c1vVFlZqYkTJ+rUqVO6+eabtWHDBoWEhPgqZAAAPIoiOgAAAAAAsBs4cKBsNpvL8waDQXPmzNGcOXO8GBUAAL7Di0UBAAAAAAAAAHCBlejAf507d04lJSW+DgOoVbt27fiZLAAAAAAAgBdRRAf+q6SkRBMnTvR1GECtFi9erOuvv97XYQAAAAAAADQaFNGB/2rXrp0WL17s6zAajOLiYs2bN08zZsxQ+/btfR1Og9GuXTtfhwAAAAAAANCoUEQH/iskJIQVvh7Qvn17/q4AAAAAAADwW7xYFAAAAAAAAAAAFyiiAwAAAAAAAADgAkV0AAAAAAAAAABcoIgOAAAAAAAAAIALFNEBAAAAAAAAAHCBIjoAAAAAAAAAAC5QRAcAAAAAAAAAwAWK6AAAAAAAAAAAuEARHQAAAAAAAAAAFyiiAwAAAAAAAADggt8V0T/66CMNHz5cUVFRMhgMWrt2rf3c+fPn9fjjj6tbt25q1qyZoqKilJSUpKNHj/ouYAAAAAAAAACA3/K7InplZaV69OihRYsW1Th39uxZ7dy5U7NmzdLOnTu1Zs0a7d27V3feeacPIgUAAAAAAAAA+LsgXwdwqYYMGaIhQ4Y4PRcWFqaNGzc69L300kvq06ePSkpK1K5dO2+ECAAAAAAAAABoIPyuiH6pysvLZTAY1LJlS5djLBaLLBaL/biiosILkQEAAAAAAAAA6ju/287lUpw7d06PP/64Ro8erRYtWrgcl5WVpbCwMHuLiYnxYpQAAAAAAAAAgPqqwRbRz58/r3vvvVc2m02vvPJKrWPT09NVXl5ub6WlpV6KEgAAAAAAAABQnzXI7VwuFNCLi4v15z//udZV6JJkNBplNBq9FB0AAAAAAAAAwF80uJXoFwro+/fv16ZNm3T11Vf7OiQAABqdRYsWKTY2ViEhIerbt6+2bdtW6/hTp05pypQpioyMlNFo1PXXX6/169d7KVoAAAAAAFzzu5XoZ86c0YEDB+zHhw4d0q5du9S6dWtFRkbqnnvu0c6dO/XHP/5R1dXVKisrkyS1bt1awcHBvgobAIBGY9WqVUpLS1Nubq769u2rnJwcJSYmau/evQoPD68xvqqqSoMGDVJ4eLjeeecdRUdHq7i4uNaXggMAAAAA4C1+V0Tfvn27brvtNvtxWlqaJCk5OVlPPvmk3n//fUlSXFycw7zNmzdr4MCB3goTAIBGKzs7WxMmTFBKSookKTc3V+vWrVNeXp6mT59eY3xeXp6++uorbd26VU2aNJEkxcbGejNkAAAAAABc8rsi+sCBA2Wz2Vyer+0cAADwrKqqKu3YsUPp6en2voCAACUkJKioqMjpnPfff1/x8fGaMmWK3nvvPbVt21ZjxozR448/rsDAQKdzLBaLLBaL/biiosK9DwIAAAAAwH81uD3RAQCA75w8eVLV1dUymUwO/SaTyb7F2g8dPHhQ77zzjqqrq7V+/XrNmjVLzz33nObOnevyPllZWQoLC7O3mJgYtz4HAAAAAAAXUEQHAAA+ZbVaFR4ersWLF6tXr14aNWqUZsyYodzcXJdz0tPTVV5ebm+lpaVejBgAAAAA0Jj43XYuAACg/mrTpo0CAwNlNpsd+s1msyIiIpzOiYyMVJMmTRy2brnhhhtUVlamqqoqpy8GNxqNMhqN7g0eAAAAAAAnWIkOAADcJjg4WL169VJBQYG9z2q1qqCgQPHx8U7n9O/fXwcOHJDVarX37du3T5GRkU4L6AAAAAAAeBNFdAAA4FZpaWlasmSJXnvtNf373//Www8/rMrKSqWkpEiSkpKSHF48+vDDD+urr77S1KlTtW/fPq1bt07z58/XlClTfPUIAAAAAADYsZ0LAABwq1GjRunEiRPKyMhQWVmZ4uLitGHDBvvLRktKShQQ8L/v8WNiYvTBBx9o2rRp6t69u6KjozV16lQ9/vjjvnoEAAAAAADsKKIDAAC3S01NVWpqqtNzhYWFNfri4+P1t7/9zcNRAQAAAABw6djOBQAAAAAAAAAAFyiiAwAAAAAAAADgAkV0AAAAAAAAAABcoIgOAAAAAAAAAIALFNEBAAAAAAAAAHCBIjoAAAAAAAAAAC5QRAcAAAAAAAAAwAWK6AAAAAAAAAAAuEARHQAAAAAAAAAAFyiiAwAAAAAAAADgAkV0AAAAAAAAAABcoIgOAAAAAAAAAIALFNEBAAAAAAAAAHCBIjoAAAAAAAAAAC5QRAcAAAAAAHVWXV2tWbNmqUOHDgoNDVXHjh311FNPyWaz+To0AAA8IsjXAQAAAAAAAP+xcOFCvfLKK3rttdfUtWtXbd++XSkpKQoLC9Mjjzzi6/AAAHA7iugAAAAAAKDOtm7dqrvuukvDhg2TJMXGxuqtt97Stm3bfBwZAACewXYuAAAAAACgzvr166eCggLt27dPkvT5559ry5YtGjJkiMs5FotFFRUVDg0AAH/BSnQAAAAAAFBn06dPV0VFhTp37qzAwEBVV1dr3rx5uv/++13OycrK0uzZs70YJQAA7sNKdAAAAAAAUGerV6/W8uXLtWLFCu3cuVOvvfaann32Wb322msu56Snp6u8vNzeSktLvRgxAABXhpXoAAAAAACgzh577DFNnz5d9913nySpW7duKi4uVlZWlpKTk53OMRqNMhqN3gwTAAC3YSU6AAAAAACos7NnzyogwLGcEBgYKKvV6qOIAADwLFaiAwAAAACAOhs+fLjmzZundu3aqWvXrvrss8+UnZ2tcePG+To0AAA8giI6AAAAAACosxdffFGzZs3S5MmTdfz4cUVFRekXv/iFMjIyfB0aAAAeQREdAAAAAADUWfPmzZWTk6OcnBxfhwIAgFewJzoAAAAAAAAAAC5QRAcAAAAAAAAAwAWK6AAAAAAAAAAAuEARHQAAAAAAAAAAFyiiAwAAAAAAAADgAkV0AAAAAAAAAABcoIgOAAAAAAAAAIALfldE/+ijjzR8+HBFRUXJYDBo7dq1DudtNpsyMjIUGRmp0NBQJSQkaP/+/b4JFgAAAAAAAADg1/yuiF5ZWakePXpo0aJFTs8//fTT+u1vf6vc3Fx98sknatasmRITE3Xu3DkvRwoAAAAAAAAA8HdBvg7gUg0ZMkRDhgxxes5msyknJ0czZ87UXXfdJUl6/fXXZTKZtHbtWt13333eDBUAAAAAAAAA4Of8biV6bQ4dOqSysjIlJCTY+8LCwtS3b18VFRW5nGexWFRRUeHQAAAAAAAAAABoUEX0srIySZLJZHLoN5lM9nPOZGVlKSwszN5iYmI8GicAAAAAAAAAwD80qCL65UpPT1d5ebm9lZaW+jokAAAAAAAAAEA90KCK6BEREZIks9ns0G82m+3nnDEajWrRooVDAwAAl2/RokWKjY1VSEiI+vbtq23btrkcm5+fL4PB4NBCQkK8GC0AAAAAAK41qCJ6hw4dFBERoYKCAntfRUWFPvnkE8XHx/swMgAAGo9Vq1YpLS1NmZmZ2rlzp3r06KHExEQdP37c5ZwWLVro2LFj9lZcXOzFiAEAAAAAcM3viuhnzpzRrl27tGvXLknfvUx0165dKikpkcFg0KOPPqq5c+fq/fff1z/+8Q8lJSUpKipKI0aM8GncAAA0FtnZ2ZowYYJSUlLUpUsX5ebmqmnTpsrLy3M5x2AwKCIiwt5++H4TAAAAAAB8JcjXAVyq7du367bbbrMfp6WlSZKSk5OVn5+v3/zmN6qsrNTEiRN16tQp3XzzzdqwYQM/CwcAwAuqqqq0Y8cOpaen2/sCAgKUkJCgoqIil/POnDmj9u3by2q16sc//rHmz5+vrl27uhxvsVhksVjsxxUVFe55AAAAAAAAfsDvVqIPHDhQNputRsvPz5f03Uq2OXPmqKysTOfOndOmTZt0/fXX+zZoAAAaiZMnT6q6urrGSnKTyaSysjKnczp16qS8vDy99957evPNN2W1WtWvXz/95z//cXmfrKwshYWF2VtMTIxbnwMAAAAAgAv8rogOAAAalvj4eCUlJSkuLk4DBgzQmjVr1LZtW7366qsu56Snp6u8vNzeSktLvRgxAAAAAKAx8bvtXAAAQP3Vpk0bBQYGymw2O/SbzWZFRETU6RpNmjRRz549deDAAZdjjEajjEbjFcUKAAAAAEBdsBIdAAC4TXBwsHr16qWCggJ7n9VqVUFBgeLj4+t0jerqav3jH/9QZGSkp8IEAAAAAKDOWIkOAADcKi0tTcnJyerdu7f69OmjnJwcVVZWKiUlRZKUlJSk6OhoZWVlSZLmzJmj//u//9O1116rU6dO6ZlnnlFxcbHGjx/vy8cAAAAAAEASRXQAAOBmo0aN0okTJ5SRkaGysjLFxcVpw4YN9peNlpSUKCDgfz+G+/rrrzVhwgSVlZWpVatW6tWrl7Zu3aouXbr46hEAAAAAALCjiA4AANwuNTVVqampTs8VFhY6HD///PN6/vnnvRAVAAAAAACXjj3RAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMAFiugAAAAAAAAAALhAER0AAAAAAAAAABcoogMAAAAAAAAA4EKQrwMAAABoTMxms8rLy30dBlBDcXGxw3+B+iYsLEwmk8nXYQAAgEaIIjoAAICXmM1mPfBgks5XWXwdCuDSvHnzfB0C4FSTYKPefON1CukAAMDrKKIDAAB4SXl5uc5XWfTNNQNkDQnzdTgA4DcCzpVLB/+i8vJyiugAAMDrKKIDAAB4mTUkTNZmbXwdBgAAAACgDnixKAAAAAAAAAAALlBEBwAAAAAAAADABYroAAAAAAAAAAC4QBEdAAAAAAAAAAAXKKIDAAAAAAAAAOACRXQAAAAAAAAAAFwI8nUAAAAAAAAA9ZXZbFZ5ebmvwwBqKC4udvgvUN+EhYXJZDL5Ogy3oIgOAAAAAADghNls1gMPJul8lcXXoQAuzZs3z9chAE41CTbqzTdebxCFdIroAAAAAAAATpSXl+t8lUXfXDNA1pAwX4cDAH4j4Fy5dPAvKi8vp4gOAAAAAADQ0FlDwmRt1sbXYQAAfIQXiwIAAAAAAAAA4AJFdAAAAAAAAAAAXKCIDgAAAAAALsmRI0f0wAMP6Oqrr1ZoaKi6deum7du3+zosAAA8gj3RAQAAAABAnX399dfq37+/brvtNv3pT39S27ZttX//frVq1crXoQEA4BFeKaKXlpbKYDDoRz/6kSRp27ZtWrFihbp06aKJEyd6IwQAAFALcjUAAP7Nm7l84cKFiomJ0bJly+x9HTp0cOs9AACoT7yyncuYMWO0efNmSVJZWZkGDRqkbdu2acaMGZozZ443QgAAALUgVwMA4N+8mcvff/999e7dWyNHjlR4eLh69uypJUuW1DrHYrGooqLCoQEA4C+8UkTfvXu3+vTpI0lavXq1brzxRm3dulXLly9Xfn6+N0IAAAC1IFcDAODfvJnLDx48qFdeeUXXXXedPvjgAz388MN65JFH9Nprr7mck5WVpbCwMHuLiYlxa0wAAHiSV4ro58+fl9FolCRt2rRJd955pySpc+fOOnbsmDdCAAAAtSBXAwDg37yZy61Wq3784x9r/vz56tmzpyZOnKgJEyYoNzfX5Zz09HSVl5fbW2lpqVtjAgDAk7xSRO/atatyc3P18ccfa+PGjbr99tslSUePHtXVV1/tjRAAAEAtyNUAAPg3b+byyMhIdenSxaHvhhtuUElJics5RqNRLVq0cGgAAPgLrxTRFy5cqFdffVUDBw7U6NGj1aNHD0nf7aN24edmAADAd8jVAAD4N2/m8v79+2vv3r0Offv27VP79u3deh8AAOqLIG/cZODAgTp58qQqKirUqlUre//EiRPVtGlTb4QAAABqQa4GAMC/eTOXT5s2Tf369dP8+fN17733atu2bVq8eLEWL17s1vsAAFBfeGUluiTZbDbt2LFDr776qk6fPi1JCg4O5oM5AAD1BLkaAAD/5q1cftNNN+ndd9/VW2+9pRtvvFFPPfWUcnJydP/997v1PgAA1BdeWYleXFys22+/XSUlJbJYLBo0aJCaN2+uhQsXymKx1PryEQAA4HnkagAA/Ju3c/kdd9yhO+64w63XBACgvvLKSvSpU6eqd+/e+vrrrxUaGmrvv/vuu1VQUODWe1VXV2vWrFnq0KGDQkND1bFjRz311FOy2WxuvQ8AAA2JN3M1AABwP3I5AACe45WV6B9//LG2bt2q4OBgh/7Y2FgdOXLErfdauHChXnnlFb322mvq2rWrtm/frpSUFIWFhemRRx5x670AAGgovJmrAQCA+5HLAQDwHK8U0a1Wq6qrq2v0/+c//1Hz5s3deq+tW7fqrrvu0rBhwyR99z8Y3nrrLW3bts2t9wEAoCHxZq4GAADuRy4HAMBzvLKdy+DBg5WTk2M/NhgMOnPmjDIzMzV06FC33qtfv34qKCjQvn37JEmff/65tmzZoiFDhricY7FYVFFR4dAAAGhMvJmrAQCA+5HLAQDwHK+sRH/uueeUmJioLl266Ny5cxozZoz279+vNm3a6K233nLrvaZPn66Kigp17txZgYGBqq6u1rx582p9S3hWVpZmz57t1jgAAPAn3szVAADA/cjlAAB4jldWov/oRz/S559/rieeeELTpk1Tz549tWDBAn322WcKDw93671Wr16t5cuXa8WKFdq5c6dee+01Pfvss3rttddczklPT1d5ebm9lZaWujUmAADqO3fn6kWLFik2NlYhISHq27dvnbdVW7lypQwGg0aMGHHJ9wQAoDHz5uduAAAaG6+sRJekoKAgPfDAAx6/z2OPPabp06frvvvukyR169ZNxcXFysrKUnJystM5RqNRRqPR47EBAFCfuStXr1q1SmlpacrNzVXfvn2Vk5OjxMRE7d27t9YP8YcPH9avf/1r3XLLLVccAwAAjZG3PncDANDYeKWI/vrrr9d6PikpyW33Onv2rAICHBfYBwYGymq1uu0e9YnZbFZ5ebmvwwBqKC4udvgvUN+EhYXJZDL5Oox6w525Ojs7WxMmTFBKSookKTc3V+vWrVNeXp6mT5/udE51dbXuv/9+zZ49Wx9//LFOnTpV5/sBAADvfu4GAKCx8UoRferUqQ7H58+f19mzZxUcHKymTZu6NZkPHz5c8+bNU7t27dS1a1d99tlnys7O1rhx49x2j/rCbDbrgQeTdL7K4utQAJfmzZvn6xAAp5oEG/XmG69TSP8vd+Xqqqoq7dixQ+np6fa+gIAAJSQkqKioyOW8OXPmKDw8XA899JA+/vjji97HYrHIYvlf/uOl4ACAxs6bn7sBAGhsvFJE//rrr2v07d+/Xw8//LAee+wxt97rxRdf1KxZszR58mQdP35cUVFR+sUvfqGMjAy33qc+KC8v1/kqi765ZoCsIWG+DgcA/EbAuXLp4F9UXl5OEf2/3JWrT548qerq6hp/V5PJpD179jids2XLFi1dulS7du2q8314KTgAAI68+bkbAIDGxmt7ov/QddddpwULFuiBBx5w+aH6cjRv3lw5OTnKyclx2zXrO2tImKzN2vg6DABAA+OpXP19p0+f1oMPPqglS5aoTZu657L09HSlpaXZjysqKhQTE+OJEAEA8FveyOUAADQGPiuiS9+99OTo0aO+DAEAANTiUnN1mzZtFBgYKLPZ7NBvNpsVERFRY/wXX3yhw4cPa/jw4fa+C+8xCQoK0t69e9WxY8ca83gpOAAAdcPnbgAArpxXiujvv/++w7HNZtOxY8f00ksvqX///t4IAQAA1MJduTo4OFi9evVSQUGBRowYIem7onhBQYFSU1NrjO/cubP+8Y9/OPTNnDlTp0+f1gsvvMDqcgAA6ojP3QAAeI5XiugXPkRfYDAY1LZtW/3kJz/Rc889540QAABALdyZq9PS0pScnKzevXurT58+ysnJUWVlpVJSUiRJSUlJio6OVlZWlkJCQnTjjTc6zG/ZsqUk1egHAACu8bkbAADP8UoR/cLPsgEAQP3kzlw9atQonThxQhkZGSorK1NcXJw2bNhgf9loSUmJAgIC3HY/AADA524AADzJp3uiAwCAhik1NdXp9i2SVFhYWOvc/Px89wcEAAAAAMBl8lgRPS0trc5js7OzPRUGAABwgVwNAIB/I5cDAOAdHiuif/bZZ3UaZzAYPBUCAACoBbkaAAD/Ri4HAMA7PFZE37x5s6cuDQAA3IBcDQCAfyOXAwDgHbzVCwAAAAAAAAAAF7z2YtHt27dr9erVKikpUVVVlcO5NWvWeCsMAADgArkaAAD/Ri4HAMAzvLISfeXKlerXr5/+/e9/691339X58+f1z3/+U3/+858VFhbmjRAAAEAtyNUAAPg3cjkAAJ7jlSL6/Pnz9fzzz+sPf/iDgoOD9cILL2jPnj2699571a5dO2+EAAAAakGuBgDAv5HLAQDwHK8U0b/44gsNGzZMkhQcHKzKykoZDAZNmzZNixcv9kYIAACgFuRqAAD8G7kcAADP8UoRvVWrVjp9+rQkKTo6Wrt375YknTp1SmfPnvVGCAAAoBbkagAA/Bu5HAAAz/FoEf1C0r711lu1ceNGSdLIkSM1depUTZgwQaNHj9ZPf/pTT4YAAABqQa4GAMC/kcsBAPC8IE9evHv37rrppps0YsQIjRw5UpI0Y8YMNWnSRFu3btXPf/5zzZw505MhAACAWpCrAQDwb+RyAAA8z6NF9L/85S9atmyZsrKyNG/ePP385z/X+PHjNX36dE/eFgAA1BG52jcCvjnl6xAAwK/w76Zr5HIAADzPo0X0W265RbfccotefPFFrV69Wvn5+RowYICuvfZaPfTQQ0pOTlZERIQnQwAAALUgV/tG6KGPfB0CAKCBIJcDAOB5Hi2iX9CsWTOlpKQoJSVFBw4c0LJly7Ro0SLNmjVLt99+u95//31vhAEAAFwgV3vXNx1ulTW0pa/DAAC/EfDNKb6AvAhyOQAAnuOVIvr3XXvttXriiSfUvn17paena926dd4OAQAA1IJc7XnW0JayNmvj6zAAAA0UuRwAAPfyahH9o48+Ul5enn7/+98rICBA9957rx566CFvhgAAAGpBrgYAwL+RywEAcD+PF9GPHj2q/Px85efn68CBA+rXr59++9vf6t5771WzZs08fXsAAHAR5GoAAPwbuRwAAM/yaBF9yJAh2rRpk9q0aaOkpCSNGzdOnTp18uQtAQDAJSBXAwDg38jlAAB4nkeL6E2aNNE777yjO+64Q4GBgZ68FQAAuAzkagAA/Bu5HAAAz/NoEZ23fwMAUL+RqwEA8G/kcgAAPC/A1wEAAAAAAAAAAFBfUUQHAAAAAAAAAMAFiugAAAAAAAAAALhAER0AAAAAAAAAABcoogMAAAAAAAAA4AJFdAAAAAAAAAAAXKCIDgAAAAAAAACACxTRAQAAAAAAAABwgSI6AAAAAAAAAAAuUEQHAAAAAAAAAMCFIF8HAAAAAAAAUJ8FfHPK1yEAgF9paP9uUkQHAAAAAACXbcGCBUpPT9fUqVOVk5Pj63A8IvTQR74OAQDgQxTRAQAAAADAZfn000/16quvqnv37r4OxaO+6XCrrKEtfR0GAPiNgG9ONagvICmiAwAAAACAS3bmzBndf//9WrJkiebOnevrcDzKGtpS1mZtfB0GAMBHGuSLRY8cOaIHHnhAV199tUJDQ9WtWzdt377d12EBAAAAANBgTJkyRcOGDVNCQsJFx1osFlVUVDg0AAD8RYNbif7111+rf//+uu222/SnP/1Jbdu21f79+9WqVStfhwYAAAAAQIOwcuVK7dy5U59++mmdxmdlZWn27NkejgoAAM9ocEX0hQsXKiYmRsuWLbP3dejQodY5FotFFovFfuxv34g3tLfdAvh/9u49Luoy////c0AZ1HTUkAEMT+UhNcEwCa3UlUQqV9sys1qRTf1twX606UgeUNPIDkYHVtKNsANp7pa26VJGodtXzBWj1kpLU/E0o1YMSgkG8/ujdXYnGIQcGBge99vtuun7el/XNa/3/OHLec17rjcaGv9uAgAA/HoHDx7UzJkztXHjRgUGBtZpTkpKiiwWi/O4tLRU4eHhDRUiAAAe5XNF9LfffltxcXGaOHGiNm3apK5du+ruu+/W9OnT3c5p7t+I+9Im/QAAAACApq2wsFDHjh3T5Zdf7uyrrKzU5s2b9fzzz6u8vFz+/v4uc4xGo4xGY2OHCgCAR/hcEf2bb77RsmXLZLFY9PDDD+tf//qX/u///k8BAQFKSEiocU5z/0acp4QDQP342lPCm6KMjAw98cQTslqtioiI0HPPPaehQ4fWOPbNN9/Uo48+qj179ujMmTPq3bu37r33Xv3+979v5KgBAEBdjB49Wv/+979d+hITE9WvXz89+OCD1QroAAA0dz5XRK+qqtKQIUP06KOPSpIGDx6snTt3KjMz020Rvbl/I85TwgEATcnq1atlsViUmZmp6OhopaenKy4uTrt371ZwcHC18Z07d9bs2bPVr18/BQQE6J133lFiYqKCg4MVFxfnhSsAAAC1ad++vQYOHOjS165dO1144YXV+gEA8AV+3g7A00JDQ9W/f3+XvksvvVTFxcVeiggAgJZl6dKlmj59uhITE9W/f39lZmaqbdu2ysrKqnH8yJEjdeONN+rSSy/VxRdfrJkzZ2rQoEH66KOPGjlyAAAAAACq87k70YcPH67du3e79H311Vfq3r27lyICAKDlqKioUGFhoVJSUpx9fn5+io2NVUFBwTnnOxwOffDBB9q9e7eWLFnidlxzfyg4AAC+Jj8/39shAADQYHzuTvR77rlHW7dude6tmpOTo+XLlyspKcnboQEA4PNOnDihyspKmc1ml36z2Syr1ep2nt1u1wUXXKCAgABdf/31eu6553Tttde6HZ+WliaTyeRszelZJgAAAACA5sXniuhXXHGF3nrrLb3++usaOHCgHnnkEaWnp+v222/3dmgAAMCN9u3bq6ioSP/617+0ePFiWSyWWu9oS0lJkd1ud7aDBw82XrAAAAAAgBbF57ZzkaQbbrhBN9xwg7fDAACgxQkKCpK/v79sNptLv81mU0hIiNt5fn5+uuSSSyRJkZGR+vLLL5WWlqaRI0fWOL65PxQcAAAAANB8+Nyd6AAAwHsCAgIUFRWlvLw8Z19VVZXy8vIUExNT53Wqqqpc9jwHAAAAAMBbfPJOdAAA4D0Wi0UJCQkaMmSIhg4dqvT0dJWVlSkxMVGSNGXKFHXt2lVpaWmSft7ffMiQIbr44otVXl6uDRs26JVXXtGyZcu8eRkAAAAAAEiiiA4AADxs0qRJOn78uObNmyer1arIyEjl5uY6HzZaXFwsP7///hiurKxMd999tw4dOqQ2bdqoX79+evXVVzVp0iRvXQIAAAAAAE4U0QEAgMclJycrOTm5xnO/fGDookWLtGjRokaICgAAAACA+mNPdAAAAAAAAAAA3OBOdAAAgEbmd9ru7RAAoFnh300AAOBNFNEBAAAaiclkUusAo/TNJm+HAgDNTusAo0wmk7fDAAAALRBFdAAAgEZiNpv16isvy27njko0PQcOHNDixYs1e/Zsde/e3dvhANWYTCbnQ6oBAAAaE0V0AACARmQ2mykCoUnr3r27+vTp4+0wAAAAgCaDB4sCAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEBwAAAAAAAADADYroAAAAAAAAAAC4QREdAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEBwAAAAAAAADADYroAAAAAAAAAAC4QREdAAAAAAAAAAA3Wnk7AAAAAAAAgKbM77Td2yEAQLPia/9uUkQHAAAAAACogclkUusAo/TNJm+HAgDNTusAo0wmk7fD8AiK6AAAAAAAADUwm8169ZWXZbf71h2V8A0HDhzQ4sWLNXv2bHXv3t3b4QDVmEwmmc1mb4fhERTRfYCv/TwCABoa/24CAACgrsxms88UgeCbunfvrj59+ng7DMCnUURvxvhZGQD8er70szIAAAAAANBwKKI3Y/ysDE0ZPytDU+dLPysDAAAAAAANhyJ6M8fPytDU8bMyAAAAAAAANGd+3g4AAAAAAAAAAICmiiI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4IbPF9Efe+wxGQwGzZo1y9uhAAAAAAAAAACaGZ8uov/rX//SCy+8oEGDBnk7FAAAAAAAAABAM+SzRfRTp07p9ttv14oVK9SpUydvhwMAAAAAAAAAaIZ8toielJSk66+/XrGxseccW15ertLSUpcGAAAAAAAAAIBPFtFXrVqlHTt2KC0trU7j09LSZDKZnC08PLyBIwQAwLdlZGSoR48eCgwMVHR0tLZt2+Z27IoVK3T11VerU6dO6tSpk2JjY2sdDwAAAABAY/K5IvrBgwc1c+ZMvfbaawoMDKzTnJSUFNntdmc7ePBgA0cJAIDvWr16tSwWi1JTU7Vjxw5FREQoLi5Ox44dq3F8fn6+Jk+erA8//FAFBQUKDw/XmDFjdPjw4UaOHAAAAACA6nyuiF5YWKhjx47p8ssvV6tWrdSqVStt2rRJzz77rFq1aqXKyspqc4xGozp06ODSAADAr7N06VJNnz5diYmJ6t+/vzIzM9W2bVtlZWXVOP61117T3XffrcjISPXr109/+ctfVFVVpby8vEaOHAAA1FVaWpquuOIKtW/fXsHBwZowYYJ2797t7bAAAGgQPldEHz16tP7973+rqKjI2YYMGaLbb79dRUVF8vf393aIAAD4rIqKChUWFro8k8TPz0+xsbEqKCio0xo//PCDzpw5o86dO7sdw/NMAADwrk2bNikpKUlbt27Vxo0bdebMGY0ZM0ZlZWXeDg0AAI9r5e0APK19+/YaOHCgS1+7du104YUXVusHAACedeLECVVWVspsNrv0m81m7dq1q05rPPjggwoLC6v14eBpaWlasGDBecUKAAB+vdzcXJfj7OxsBQcHq7CwUNdcc42XogIAoGH43J3oAACg+Xrssce0atUqvfXWW7U+24TnmQAA0LTY7XZJcvtLMn5FBgBoznzuTvSa5OfnezsEAABahKCgIPn7+8tms7n022w2hYSE1Dr3ySef1GOPPab3339fgwYNqnWs0WiU0Wg873gBAMD5q6qq0qxZszR8+HC3vwDnV2QAgOaMO9EBAIDHBAQEKCoqyuWhoGcfEhoTE+N23uOPP65HHnlEubm5GjJkSGOECgAAPCQpKUk7d+7UqlWr3I7hV2QAgOasRdyJDgAAGo/FYlFCQoKGDBmioUOHKj09XWVlZUpMTJQkTZkyRV27dlVaWpokacmSJZo3b55ycnLUo0cPWa1WSdIFF1ygCy64wGvXAQAAzi05OVnvvPOONm/erIsuusjtOH5FBgBoziiiAwAAj5o0aZKOHz+uefPmyWq1KjIyUrm5uc6HjRYXF8vP778/hlu2bJkqKip08803u6yTmpqq+fPnN2boAACgjhwOh/70pz/prbfeUn5+vnr27OntkAAAaDAU0QEAgMclJycrOTm5xnO/fFbJ/v37Gz4gAADgUUlJScrJydG6devUvn175y/JTCaT2rRp4+XoAADwLPZEBwAAAAAA9bJs2TLZ7XaNHDlSoaGhzrZ69WpvhwYAgMdxJzoAAAAAAKgXh8Ph7RAAAGg03IkOAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuEERHQAAAAAAAAAANyiiAwAAAAAAAADgBkV0AAAAAAAAAADcoIgOAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuEERHQAAAAAAAAAANyiiAwAAAAAAAADgBkV0AAAAAAAAAADcoIgOAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuEERHQAAAAAAAAAANyiiAwAAAAAAAADgBkV0AAAAAAAAAADcoIgOAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuEERHQAAAAAAAAAANyiiAwAAAAAAAADgBkV0AAAAAAAAAADcoIgOAAAAAAAAAIAbPllET0tL0xVXXKH27dsrODhYEyZM0O7du70dFgAAAAAAAACgmfHJIvqmTZuUlJSkrVu3auPGjTpz5ozGjBmjsrIyb4cGAAAAAAAAAGhGWnk7gIaQm5vrcpydna3g4GAVFhbqmmuu8VJUAAAAAAAAAIDmxifvRP8lu90uSercuXON58vLy1VaWurSAADAr5eRkaEePXooMDBQ0dHR2rZtm9uxn3/+uW666Sb16NFDBoNB6enpjRcoAAAAAADn4PNF9KqqKs2aNUvDhw/XwIEDaxyTlpYmk8nkbOHh4Y0cJQAAvmP16tWyWCxKTU3Vjh07FBERobi4OB07dqzG8T/88IN69eqlxx57TCEhIY0cLQAAAAAAtfP5InpSUpJ27typVatWuR2TkpIiu93ubAcPHmzECAEA8C1Lly7V9OnTlZiYqP79+yszM1Nt27ZVVlZWjeOvuOIKPfHEE7r11ltlNBobOVoAAAAAAGrnk3uin5WcnKx33nlHmzdv1kUXXeR2nNFo5EM7AAAeUFFRocLCQqWkpDj7/Pz8FBsbq4KCAo+9Tnl5ucrLy53HbMUGAAAAAGgoPnknusPhUHJyst566y198MEH6tmzp7dDAgCgRThx4oQqKytlNptd+s1ms6xWq8deh63YAAAAAACNxSeL6ElJSXr11VeVk5Oj9u3by2q1ymq16scff/R2aAAAwAPYig0AAAAA0Fh8cjuXZcuWSZJGjhzp0v/SSy9p6tSpjR8QAAAtRFBQkPz9/WWz2Vz6bTabRx8aylZsAAAAAIDG4pNFdIfD4e0Q0AydPn1axcXF3g7DZxw4cMDlT3hGt27dFBgY6O0wALcCAgIUFRWlvLw8TZgwQZJUVVWlvLw8JScnezc4+Bxyt2eRuxsGuRsA/ovc7Vnk7oZB7kZNfLKIDvwaxcXFmjFjhrfD8DmLFy/2dgg+Zfny5erTp4+3wwBqZbFYlJCQoCFDhmjo0KFKT09XWVmZEhMTJUlTpkxR165dlZaWJunnh5F+8cUXzr8fPnxYRUVFuuCCC3TJJZd47TrQ9JG7Gwa527PI3QDwX+TuhkHu9ixyN2pCER34j27dumn58uXeDgOoVbdu3bwdAnBOkyZN0vHjxzVv3jxZrVZFRkYqNzfX+bDR4uJi+fn997EsR44c0eDBg53HTz75pJ588kmNGDFC+fn5jR0+mhFyN5oDcjcA/Be5G80BuRs1MTjY+6Sa0tJSmUwm2e12dejQwdvhAABaKPJR3fFeAQCaAvJR3fFeAQCagrrmIz+3ZwAAAAAAANzIyMhQjx49FBgYqOjoaG3bts3bIQEA0CAoogMAAAAAgHpZvXq1LBaLUlNTtWPHDkVERCguLk7Hjh3zdmgAAHgcRXQAAAAAAFAvS5cu1fTp05WYmKj+/fsrMzNTbdu2VVZWlrdDAwDA4yiiAwAAAACAOquoqFBhYaFiY2OdfX5+foqNjVVBQUGNc8rLy1VaWurSAABoLiiiAwAAAACAOjtx4oQqKytlNptd+s1ms6xWa41z0tLSZDKZnC08PLwxQgUAwCMoogMAAAAAgAaVkpIiu93ubAcPHvR2SAAA1FkrbwcAAAAAAACaj6CgIPn7+8tms7n022w2hYSE1DjHaDTKaDQ2RngAAHgcd6IDAAAAAIA6CwgIUFRUlPLy8px9VVVVysvLU0xMjBcjAwCgYXAnOgAAAAAAqBeLxaKEhAQNGTJEQ4cOVXp6usrKypSYmOjt0AAA8DiK6AAAAAAAoF4mTZqk48ePa968ebJarYqMjFRubm61h40CAOALKKIDAAAAAIB6S05OVnJysrfDAACgwVFEr4HD4ZAklZaWejkSAEBLdjYPnc1LcI/cDQBoCsjddUfuBgA0BXXN3RTRa3Dy5ElJUnh4uJcjAQDg57xkMpm8HUaTRu4GADQl5O5zI3cDAJqSc+Vug4OvyKupqqrSkSNH1L59exkMBm+HAzRLpaWlCg8P18GDB9WhQwdvhwM0Sw6HQydPnlRYWJj8/Py8HU6TRu4Gzh+5Gzh/5O66I3cD54/cDZy/uuZuiugAGkRpaalMJpPsdjvJHACAZoDcDQBA80LuBhoPX40DAAAAAAAAAOAGRXQAAAAAAAAAANygiA6gQRiNRqWmpspoNHo7FAAAUAfkbgAAmhdyN9B42BMdAAAAAAAAAAA3uBMdAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEBwAAAAAAAADADYroAAAAAAAAAAC4QREdAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcIMiOgAAAAAAAAAAblBEB1AnBoNB8+fP93YYLv71r39p2LBhateunQwGg4qKirwdEgAATQJ5GwAA30FeB7yPIjrgZdnZ2TIYDC4tODhYo0aN0j/+8Q9vh3fevvjiC82fP1/79+/36LpnzpzRxIkT9d133+npp5/WK6+8ou7du9c6x2az6b777lO/fv3Utm1btWvXTlFRUVq0aJFKSko8Gh8AwDeRt3+d+uTt/Px853v76quv1jhm+PDhMhgMGjhwoEfjBAC0LOT1X+fX5vWzrXPnzrryyiv12muveTQuoCG18nYAAH62cOFC9ezZUw6HQzabTdnZ2bruuuv097//XTfccIO3w/vVvvjiCy1YsEAjR45Ujx49PLbu3r17deDAAa1YsULTpk075/h//etfuu6663Tq1CndcccdioqKkiRt375djz32mDZv3qz33nvPY/EBAHwbebt+6pu3JSkwMFA5OTm64447XPr379+vLVu2KDAw0GPxAQBaNvJ6/fyavP5///d/uuKKKyRJ3377rVavXq077rhDJSUlSkpK8lhsQEOhiA40EfHx8RoyZIjz+M4775TZbNbrr7/erJN2Qzl27JgkqWPHjuccW1JSohtvvFH+/v765JNP1K9fP5fzixcv1ooVKxoiTACAjyJv10998vZZ1113nd5++22dOHFCQUFBzv6cnByZzWb17t1b33//vadDBQC0QOT1+vk1ef3qq6/WzTff7Dy+66671KtXL+Xk5FBER7PAdi5AE9WxY0e1adNGrVq5ftdVVlame++9V+Hh4TIajerbt6+efPJJORwOSdKPP/6ofv36qV+/fvrxxx+d87777juFhoZq2LBhqqyslCRNnTpVF1xwgb755hvFxcWpXbt2CgsL08KFC53r1eaTTz5RfHy8OnTooAsuuECjR4/W1q1bneezs7M1ceJESdKoUaOcP93Kz8+vdd0PPvhAV199tdq1a6eOHTtq/Pjx+vLLL53np06dqhEjRkiSJk6cKIPBoJEjR7pd74UXXtDhw4e1dOnSagV0STKbzZozZ47z2N1+cz169NDUqVNrjR0A0DKRtz2Xt88aP368jEaj1qxZ49Kfk5OjW265Rf7+/tXmGAwGJScna+3atRo4cKCMRqMGDBig3Nzcc74eAABnkdc9n9d/KSAgQJ06dar2HgNNFUV0oImw2+06ceKEjh8/rs8//1x33XWXc+uRsxwOh37729/q6aef1tixY7V06VL17dtX999/vywWiySpTZs2Wrlypfbs2aPZs2c75yYlJclutys7O9vlQ2dlZaXGjh0rs9msxx9/XFFRUUpNTVVqamqt8X7++ee6+uqr9emnn+qBBx7Q3LlztW/fPo0cOVIff/yxJOmaa67R//3f/0mSHn74Yb3yyit65ZVXdOmll7pd9/3331dcXJyOHTum+fPny2KxaMuWLRo+fLhzH7f/7//7//Twww9L+vknYa+88orLtf7S22+/rTZt2rh86w0AwPkgb/+sIfL2WW3bttX48eP1+uuvO/s+/fRTff7557rtttvczvvoo490991369Zbb9Xjjz+u06dP66abbtK33357ztcEALRM5PWfNWReP3nypE6cOKETJ07oq6++0vz587Vz504lJCSccy7QJDgAeNVLL73kkFStGY1GR3Z2tsvYtWvXOiQ5Fi1a5NJ/8803OwwGg2PPnj3OvpSUFIefn59j8+bNjjVr1jgkOdLT013mJSQkOCQ5/vSnPzn7qqqqHNdff70jICDAcfz4cWe/JEdqaqrzeMKECY6AgADH3r17nX1HjhxxtG/f3nHNNdc4+86+9ocfflin9yMyMtIRHBzs+Pbbb519n376qcPPz88xZcoUZ9+HH37okORYs2bNOdfs1KmTIyIiok6v73BUv9azunfv7khISKjzOgAA30PedtUQeft/x77zzjsOg8HgKC4udjgcDsf999/v6NWrl8PhcDhGjBjhGDBggMtcSY6AgACX9/bTTz91SHI899xzdbomAEDLQV53j/GtLgAAWIJJREFU1ZB5/ZfNz8/PsXjx4jrFBTQF3IkONBEZGRnauHGjNm7cqFdffVWjRo3StGnT9OabbzrHbNiwQf7+/s5vk8+699575XA4XJ4ePn/+fA0YMEAJCQm6++67NWLEiGrzzkpOTnb+/ezPoCsqKvT+++/XOL6yslLvvfeeJkyYoF69ejn7Q0NDddttt+mjjz5SaWlpvd+Do0ePqqioSFOnTlXnzp2d/YMGDdK1116rDRs21HtNSSotLVX79u1/1VwAAGpC3m64vP2/xowZo86dO2vVqlVyOBxatWqVJk+eXOuc2NhYXXzxxS7xdOjQQd988815xwMA8E3k9YbP6/PmzXO+x6tXr9bkyZM1e/ZsPfPMM+e1LtBY2HgIaCKGDh3q8iCTyZMna/DgwUpOTtYNN9yggIAAHThwQGFhYdUKwmd/jnXgwAFnX0BAgLKysnTFFVcoMDBQL730kgwGQ7XX9fPzc0m8ktSnTx9Jcv5c65eOHz+uH374QX379q127tJLL1VVVZUOHjyoAQMG1O3i/+Ns/O7Wfffdd1VWVqZ27drVa90OHTro5MmT9ZoDAEBtyNsNl7f/V+vWrTVx4kTl5ORo6NChOnjwYK1buUhSt27dqvV16tSJh5ACANwirzd8Xr/ssssUGxvrPL7llltkt9v10EMP6bbbblOXLl1+1bpAY+FOdKCJ8vPz06hRo3T06FF9/fXXv2qNd999V5J0+vTpX72GL+jXr5+++uorVVRUnNc6Zx8AAwDAL5G3G85tt92moqIizZ8/XxEREerfv3+t42t64KikOj2kDQAAibzeWEaPHq3Tp09r27Zt3g4FOCeK6EAT9tNPP0mSTp06JUnq3r27jhw5Uu2u6l27djnPn/XZZ59p4cKFSkxM1ODBgzVt2jTZ7fZqr1FVVVXt581fffWVJKlHjx41xtWlSxe1bdtWu3fvrnZu165d8vPzU3h4uCTV+G27O2fjd7duUFDQr/rWe9y4cfrxxx/1t7/9rU7jO3XqpJKSEpe+iooKHT16tN6vDQBoOcjbruv+2rz9S1dddZW6deum/Pz8c96FDgCAp5DXXdf1VF7/X798j4GmjCI60ESdOXNG7733ngICApw/D7vuuutUWVmp559/3mXs008/LYPBoPj4eOfcqVOnKiwsTM8884yys7Nls9l0zz331Pha/7uew+HQ888/r9atW2v06NE1jvf399eYMWO0bt06l5+Y2Ww25eTk6KqrrlKHDh0kyZlkf1mUrkloaKgiIyO1cuVKl/E7d+7Ue++9p+uuu+6ca9Tkj3/8o0JDQ3Xvvfc6/0Pyv44dO6ZFixY5jy+++GJt3rzZZczy5cu5Ex0A4BZ5+7/jzzdv/5LBYNCzzz6r1NRU/f73v/fImgAA1Ia8/t/xns7r/+udd96RJEVERHh8bcDT2BMdaCL+8Y9/OL/BPnbsmHJycvT111/roYcecibAcePGadSoUZo9e7b279+viIgIvffee1q3bp1mzZrlfIjWokWLVFRUpLy8PLVv316DBg3SvHnzNGfOHN18880uyS8wMFC5ublKSEhQdHS0/vGPf2j9+vV6+OGHa92TbNGiRdq4caOuuuoq3X333WrVqpVeeOEFlZeX6/HHH3eOi4yMlL+/v5YsWSK73S6j0ajf/OY3Cg4OrnHdJ554QvHx8YqJidGdd96pH3/8Uc8995xMJpPmz5//q97bTp066a233tJ1112nyMhI3XHHHYqKipIk7dixQ6+//rpiYmKc46dNm6Y//vGPuummm3Tttdfq008/1bvvvqugoKBf9foAAN9D3v5ZQ+TtmowfP17jx4/32HoAAPwv8vrPGjKv//Of/9Tp06clSd99953efvttbdq0Sbfeeqv69et3XmsDjcIBwKteeuklhySXFhgY6IiMjHQsW7bMUVVV5TL+5MmTjnvuuccRFhbmaN26taN3796OJ554wjmusLDQ0apVK8ef/vQnl3k//fST44orrnCEhYU5vv/+e4fD4XAkJCQ42rVr59i7d69jzJgxjrZt2zrMZrMjNTXVUVlZ6TJfkiM1NdWlb8eOHY64uDjHBRdc4Gjbtq1j1KhRji1btlS7xhUrVjh69erl8Pf3d0hyfPjhh7W+J++//75j+PDhjjZt2jg6dOjgGDdunOOLL75wGfPhhx86JDnWrFlT61r/68iRI4577rnH0adPH0dgYKCjbdu2jqioKMfixYsddrvdOa6ystLx4IMPOoKCghxt27Z1xMXFOfbs2ePo3r27IyEhoc6vBwDwPeTt6jydt+s6dsSIEY4BAwa49ElyJCUlVRtLDgcA1IS8Xl1D5fX/bQEBAY5+/fo5Fi9e7KioqDjnGkBTYHA4eMIO0FJNnTpVf/3rX9l/DACAZoC8DQCA7yCvA80Le6IDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBvsiQ4AAAAAAAAAgBvciQ4AAAAAAAAAgBsU0QEAAAAAAAAAcKOVtwNoiqqqqnTkyBG1b99eBoPB2+EAAFooh8OhkydPKiwsTH5+fO9dG3I3AKApIHfXHbkbANAU1DV3U0SvwZEjRxQeHu7tMAAAkCQdPHhQF110kbfDaNLI3QCApoTcfW7kbgBAU3Ku3E0RvQbt27eX9POb16FDBy9HAwBoqUpLSxUeHu7MS3CP3A0AaArI3XVH7gYANAV1zd0U0Wtw9qdkHTp0IJkDALyOnzifG7kbANCUkLvPjdwNAGhKzpW72aQNAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAOosLS1NV1xxhdq3b6/g4GBNmDBBu3fvdhlz+vRpJSUl6cILL9QFF1ygm266STabrdZ1HQ6H5s2bp9DQULVp00axsbH6+uuvG/JSAAAAAACoE4roAACgzjZt2qSkpCRt3bpVGzdu1JkzZzRmzBiVlZU5x9xzzz36+9//rjVr1mjTpk06cuSIfve739W67uOPP65nn31WmZmZ+vjjj9WuXTvFxcXp9OnTDX1JAAAAAADUyuBwOBzeDqKpKS0tlclkkt1u5ynhAACvaQ756Pjx4woODtamTZt0zTXXyG63q0uXLsrJydHNN98sSdq1a5cuvfRSFRQU6Morr6y2hsPhUFhYmO69917dd999kiS73S6z2azs7Gzdeuut54yjObxXAADfRz6qO94rAEBTUNd8xJ3oAADgV7Pb7ZKkzp07S5IKCwt15swZxcbGOsf069dP3bp1U0FBQY1r7Nu3T1ar1WWOyWRSdHS02znl5eUqLS11aQAAAAAANIRW3g4AAAA0T1VVVZo1a5aGDx+ugQMHSpKsVqsCAgLUsWNHl7Fms1lWq7XGdc72m83mOs9JS0vTggULzvMKAJxVUVGhdevW6ciRIwoLC9P48eMVEBDg7bAAAACAJoEiOgAA+FWSkpK0c+dOffTRR43+2ikpKbJYLM7j0tJShYeHN3ocgC/IzMzUmjVrVFlZ6dI3ceJE/fGPf/RiZAAAAEDTQBEdAADUW3Jyst555x1t3rxZF110kbM/JCREFRUVKikpcbkb3WazKSQkpMa1zvbbbDaFhoa6zImMjKxxjtFolNFoPP8LAVq4zMxMrVq1Sh07dtSYMWMUFhamI0eO6L333tOqVaskiUI6AAAAWjz2RAcAAHXmcDiUnJyst956Sx988IF69uzpcj4qKkqtW7dWXl6es2/37t0qLi5WTExMjWv27NlTISEhLnNKS0v18ccfu50D4PxVVFRozZo1ateunQIDA/XGG28oPT1db7zxhgIDA9WuXTutWbNGFRUV3g4VAAAA8CruRAf+4/Tp0youLvZ2GECtunXrpsDAQG+HgRYsKSlJOTk5Wrdundq3b+/cs9xkMqlNmzYymUy68847ZbFY1LlzZ3Xo0EF/+tOfFBMToyuvvNK5Tr9+/ZSWlqYbb7xRBoNBs2bN0qJFi9S7d2/17NlTc+fOVVhYmCZMmOClKwV837p161RZWamysjJFRERo7ty56tmzp/bt26fXXntNW7ZscY6bOHGil6MFAPgCPnejOeBzN2pCER34j+LiYs2YMcPbYQC1Wr58ufr06ePtMNCCLVu2TJI0cuRIl/6XXnpJU6dOlSQ9/fTT8vPz00033aTy8nLFxcXpz3/+s8v43bt3y263O48feOABlZWVacaMGSopKdFVV12l3Nxc/vMKNKDDhw9LkoYMGaLZs2drxYoVOnTokC666CLNnj1bqamp2r59u3McAADni8/daA743I2aGBwOh8PbQTQ1paWlMplMstvt6tChg7fDQSPhG3HPOnDggBYvXqzZs2ere/fu3g7HZ/CNeMtCPqo73iug/tLT07V27Vp17dq1xkL52f4JEyZo1qxZjR8g0AyRj+qO96pl4nO3Z/G5u2HwubtlqWs+4k504D8CAwP5prEBdO/enfcVAIAm6NJLL9XatWvd3ml+tv/SSy9tzLAAAD6Mz90Ng8/dQMPjwaIAAABAC9SxY0ePjgMAAAB8FUV0AAAAoAXavHmzR8cBAAAAvortXAAAAIAW6NNPP3X+PTo6WhdddJHKy8tlNBp16NAhffzxx9XGAQAAAC0RRXQAAACgBSorK5Mk9ejRQwcOHHAWzSUpNDRU3bt314EDB5zjAAAAgJaKIjoAAADQAoWEhOj7779XcXGx1q9fr127dum7775T586d1a9fP11//fXOcQAAAEBLxp7oAAAAQAt0zTXXSJKqqqo0btw4bdu2TX369NG2bds0btw4VVVVuYwDAAAAWiruRAcAAECzdPr0aRUXF3s7jGYrIiLC+feffvpJr7/+ul5//fUax3311VeNGZpP6datmwIDA70dBgAAAM4DRXQAAAA0S8XFxZoxY4a3w/B5d999t7dDaNaWL1+uPn36eDsMAAAAnAevFtHT0tL05ptvateuXWrTpo2GDRumJUuWqG/fvrXOW7NmjebOnav9+/erd+/eWrJkia677jrneYfDodTUVK1YsUIlJSUaPny4li1bpt69ezf0JQEAAKCRdOvWTcuXL/d2GM3eX//6V23cuFEOh8PZZzAYdO211+rmm2/2YmS+oVu3bt4OAQAAAOfJq0X0TZs2KSkpSVdccYV++uknPfzwwxozZoy++OILtWvXrsY5W7Zs0eTJk5WWlqYbbrhBOTk5mjBhgnbs2KGBAwdKkh5//HE9++yzWrlypXr27Km5c+cqLi5OX3zxBT+lBAAA8BGBgYHc4esBDz/8sO677z795S9/0RtvvKFbbrlF06ZNU0BAgLdDAwAAAJoErz5YNDc3V1OnTtWAAQMUERGh7OxsFRcXq7Cw0O2cZ555RmPHjtX999+vSy+9VI888oguv/xyPf/885J+vgs9PT1dc+bM0fjx4zVo0CC9/PLLOnLkiNauXVvjmuXl5SotLXVpAAAAQEsREBCg2NhYSVJsbCwFdAAAAOB/eLWI/kt2u12S1LlzZ7djCgoKnP/BPysuLk4FBQWSpH379slqtbqMMZlMio6Odo75pbS0NJlMJmcLDw8/30sBAAAAAAAAAPiAJlNEr6qq0qxZszR8+HDntiw1sVqtMpvNLn1ms1lWq9V5/myfuzG/lJKSIrvd7mwHDx48n0sBAAAAAAAAAPgIr+6J/r+SkpK0c+dOffTRR43+2kajUUajsdFfFwAAAAAAAADQtDWJO9GTk5P1zjvv6MMPP9RFF11U69iQkBDZbDaXPpvNppCQEOf5s33uxgAAAAAAAAAAUBdeLaI7HA4lJyfrrbfe0gcffKCePXuec05MTIzy8vJc+jZu3KiYmBhJUs+ePRUSEuIyprS0VB9//LFzDAAAAAAAAAAAdeHV7VySkpKUk5OjdevWqX379s49y00mk9q0aSNJmjJlirp27aq0tDRJ0syZMzVixAg99dRTuv7667Vq1Spt375dy5cvlyQZDAbNmjVLixYtUu/evdWzZ0/NnTtXYWFhmjBhgleuEwAAAAAAAADQPHm1iL5s2TJJ0siRI136X3rpJU2dOlWSVFxcLD+//94wP2zYMOXk5GjOnDl6+OGH1bt3b61du9blYaQPPPCAysrKNGPGDJWUlOiqq65Sbm6uAgMDG/yaAAAAAAAAAAC+w6tFdIfDcc4x+fn51fomTpyoiRMnup1jMBi0cOFCLVy48HzCAwAAAAAAAAC0cE3iwaIAAAAAAAAAADRFFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuEERHQAAAAAAAAAANyiiAwAAAAAAAADgBkV0AABQZ5s3b9a4ceMUFhYmg8GgtWvXupw3GAw1tieeeMLtmvPnz682vl+/fg18JQAAAAAA1A1FdAAAUGdlZWWKiIhQRkZGjeePHj3q0rKysmQwGHTTTTfVuu6AAQNc5n300UcNET4AAAAAAPXWytsBAACA5iM+Pl7x8fFuz4eEhLgcr1u3TqNGjVKvXr1qXbdVq1bV5gIAAAAA0BRwJzoAAGgQNptN69ev15133nnOsV9//bXCwsLUq1cv3X777SouLq51fHl5uUpLS10aAAAAAAANgSI6AABoECtXrlT79u31u9/9rtZx0dHRys7OVm5urpYtW6Z9+/bp6quv1smTJ93OSUtLk8lkcrbw8HBPhw8AAAAAgCSK6AAAoIFkZWXp9ttvV2BgYK3j4uPjNXHiRA0aNEhxcXHasGGDSkpK9MYbb7idk5KSIrvd7mwHDx70dPgAAAAAAEhiT3QAANAA/vnPf2r37t1avXp1ved27NhRffr00Z49e9yOMRqNMhqN5xMiAAAAAAB1wp3oAADA41588UVFRUUpIiKi3nNPnTqlvXv3KjQ0tAEiAwAAAACgfiiiAwCAOjt16pSKiopUVFQkSdq3b5+KiopcHgRaWlqqNWvWaNq0aTWuMXr0aD3//PPO4/vuu0+bNm3S/v37tWXLFt14443y9/fX5MmTG/RaAAAAAACoC7ZzAQAAdbZ9+3aNGjXKeWyxWCRJCQkJys7OliStWrVKDofDbRF87969OnHihPP40KFDmjx5sr799lt16dJFV111lbZu3aouXbo03IUAAAAAAFBHFNEBAECdjRw5Ug6Ho9YxM2bM0IwZM9ye379/v8vxqlWrPBEaAAAAAAANgu1cAAAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAALRwGRkZ6tGjhwIDAxUdHa1t27bVOj49PV19+/ZVmzZtFB4ernvuuUenT59upGgBAGhcFNEBAAAAAGjBVq9eLYvFotTUVO3YsUMRERGKi4vTsWPHahyfk5Ojhx56SKmpqfryyy/14osvavXq1Xr44YcbOXIAABoHRXQAAAAAAFqwpUuXavr06UpMTFT//v2VmZmptm3bKisrq8bxW7Zs0fDhw3XbbbepR48eGjNmjCZPnnzOu9cBAGiuKKIDAAAAANBCVVRUqLCwULGxsc4+Pz8/xcbGqqCgoMY5w4YNU2FhobNo/s0332jDhg267rrr3L5OeXm5SktLXRoAAM1FK28HAAAAAAAAvOPEiROqrKyU2Wx26Tebzdq1a1eNc2677TadOHFCV111lRwOh3766Sf98Y9/rHU7l7S0NC1YsMCjsQMA0Fi8eif65s2bNW7cOIWFhclgMGjt2rW1jp86daoMBkO1NmDAAOeY+fPnVzvfr1+/Br4SAAAAAABahvz8fD366KP685//rB07dujNN9/U+vXr9cgjj7idk5KSIrvd7mwHDx5sxIgBADg/Xr0TvaysTBEREfrDH/6g3/3ud+cc/8wzz+ixxx5zHv/000+KiIjQxIkTXcYNGDBA77//vvO4VStuuAcAAAAA4JeCgoLk7+8vm83m0m+z2RQSElLjnLlz5+r3v/+9pk2bJkm67LLLVFZWphkzZmj27Nny86t+v57RaJTRaPT8BQAA0Ai8Wl2Oj49XfHx8ncebTCaZTCbn8dq1a/X9998rMTHRZVyrVq3cJnsAAAAAAPCzgIAARUVFKS8vTxMmTJAkVVVVKS8vT8nJyTXO+eGHH6oVyv39/SVJDoejQeMFAMAbmvUt2i+++KJiY2PVvXt3l/6vv/5aYWFhCgwMVExMjNLS0tStWze365SXl6u8vNx5zANOAAAAAAAthcViUUJCgoYMGaKhQ4cqPT1dZWVlzhvWpkyZoq5duyotLU2SNG7cOC1dulSDBw9WdHS09uzZo7lz52rcuHHOYjoAAL6k2RbRjxw5on/84x/Kyclx6Y+OjlZ2drb69u2ro0ePasGCBbr66qu1c+dOtW/fvsa1eMAJAAAAAKClmjRpko4fP6558+bJarUqMjJSubm5zoeNFhcXu9x5PmfOHBkMBs2ZM0eHDx9Wly5dNG7cOC1evNhblwAAQINqtkX0lStXqmPHjs6fm531v9vDDBo0SNHR0erevbveeOMN3XnnnTWulZKSIovF4jwuLS1VeHh4g8QNAAAAAEBTk5yc7Hb7lvz8fJfjVq1aKTU1VampqY0QGQAA3tcsi+gOh0NZWVn6/e9/r4CAgFrHduzYUX369NGePXvcjuEBJwAAAAAAAACAmlR/ZHYzsGnTJu3Zs8ftneX/69SpU9q7d69CQ0MbITIAAAAAAAAAgC/xahH91KlTKioqUlFRkSRp3759KioqUnFxsaSft1mZMmVKtXkvvviioqOjNXDgwGrn7rvvPm3atEn79+/Xli1bdOONN8rf31+TJ09u0GsBAAAAAAAAAPger27nsn37do0aNcp5fHZf8oSEBGVnZ+vo0aPOgvpZdrtdf/vb3/TMM8/UuOahQ4c0efJkffvtt+rSpYuuuuoqbd26VV26dGm4CwEAAAAAAAAA+CSvFtFHjhwph8Ph9nx2dna1PpPJpB9++MHtnFWrVnkiNAAAAAAAAAAAmuee6AAAAAAAAAAANAaK6AAAAAAAAAAAuEERHQAAAAAAAAAANyiiAwAAAAAAAADgBkV0AAAAAAAAAADcoIgOAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAHW2efNmjRs3TmFhYTIYDFq7dq3L+alTp8pgMLi0sWPHnnPdjIwM9ejRQ4GBgYqOjta2bdsa6AoAAAAAAKgfiugAAKDOysrKFBERoYyMDLdjxo4dq6NHjzrb66+/Xuuaq1evlsViUWpqqnbs2KGIiAjFxcXp2LFjng4fAAAAAIB6a+XtAAAAQPMRHx+v+Pj4WscYjUaFhITUec2lS5dq+vTpSkxMlCRlZmZq/fr1ysrK0kMPPXRe8QIAAAAAcL64Ex0AAHhUfn6+goOD1bdvX91111369ttv3Y6tqKhQYWGhYmNjnX1+fn6KjY1VQUGB23nl5eUqLS11aQAAAAAANASK6AAAwGPGjh2rl19+WXl5eVqyZIk2bdqk+Ph4VVZW1jj+xIkTqqyslNlsduk3m82yWq1uXyctLU0mk8nZwsPDPXodAAAAAACcxXYuAADAY2699Vbn3y+77DINGjRIF198sfLz8zV69GiPvU5KSoosFovzuLS0lEI6AAAAAKBBcCc6AABoML169VJQUJD27NlT4/mgoCD5+/vLZrO59Ntstlr3VTcajerQoYNLAwAAAACgIVBEBwAADebQoUP69ttvFRoaWuP5gIAARUVFKS8vz9lXVVWlvLw8xcTENFaYAAAAAAC4RREdAADU2alTp1RUVKSioiJJ0r59+1RUVKTi4mKdOnVK999/v7Zu3ar9+/crLy9P48eP1yWXXKK4uDjnGqNHj9bzzz/vPLZYLFqxYoVWrlypL7/8UnfddZfKysqUmJjY2JcHAAAAAEA17IkOAADqbPv27Ro1apTz+Oy+5AkJCVq2bJk+++wzrVy5UiUlJQoLC9OYMWP0yCOPyGg0Oufs3btXJ06ccB5PmjRJx48f17x582S1WhUZGanc3NxqDxsFAAAAAMAbKKIDAIA6GzlypBwOh9vz77777jnX2L9/f7W+5ORkJScnn09oAAAAAAA0CLZzAQAAAAAAAADADYroAAAAAAAAAAC4QREdAAAAAAAAAAA3KKIDAAAAAAAAAOAGRXQAAAAAAAAAANygiA4AAAAAAAAAgBsU0QEAAAAAAAAAcMOrRfTNmzdr3LhxCgsLk8Fg0Nq1a2sdn5+fL4PBUK1ZrVaXcRkZGerRo4cCAwMVHR2tbdu2NeBVAAAAAAAAAAB8lVeL6GVlZYqIiFBGRka95u3evVtHjx51tuDgYOe51atXy2KxKDU1VTt27FBERITi4uJ07NgxT4cPAAAAAAAAAPBxrbz54vHx8YqPj6/3vODgYHXs2LHGc0uXLtX06dOVmJgoScrMzNT69euVlZWlhx566HzCBQAAAAAAAAC0MM1yT/TIyEiFhobq2muv1f/7f//P2V9RUaHCwkLFxsY6+/z8/BQbG6uCggK365WXl6u0tNSlAQAAAAAAAADQrIrooaGhyszM1N/+9jf97W9/U3h4uEaOHKkdO3ZIkk6cOKHKykqZzWaXeWazudq+6f8rLS1NJpPJ2cLDwxv0OgAAAAAAAAAAzYNXt3Opr759+6pv377O42HDhmnv3r16+umn9corr/zqdVNSUmSxWJzHpaWlFNIBAAAAAAAAAM2riF6ToUOH6qOPPpIkBQUFyd/fXzabzWWMzWZTSEiI2zWMRqOMRmODxgkAAAAAAAAAaH6a1XYuNSkqKlJoaKgkKSAgQFFRUcrLy3Oer6qqUl5enmJiYrwVIgAAAAAAAACgmfLqneinTp3Snj17nMf79u1TUVGROnfurG7duiklJUWHDx/Wyy+/LElKT09Xz549NWDAAJ0+fVp/+ctf9MEHH+i9995zrmGxWJSQkKAhQ4Zo6NChSk9PV1lZmRITExv9+gAAAAAAAAAAzZtXi+jbt2/XqFGjnMdn9yVPSEhQdna2jh49quLiYuf5iooK3XvvvTp8+LDatm2rQYMG6f3333dZY9KkSTp+/LjmzZsnq9WqyMhI5ebmVnvYKAAAAAAAAAAA5+LVIvrIkSPlcDjcns/OznY5fuCBB/TAAw+cc93k5GQlJyefb3gAAAAAAAAAgBau2e+JDgAAAAAAAABAQ6GIDgAAAAAAAACAGxTRAQAAAAAAAABwgyI6AAAAAAAAAABuUEQHAAAAAAAAAMANiugAAAAAAAAAALhBER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAA6mzz5s0aN26cwsLCZDAYtHbtWue5M2fO6MEHH9Rll12mdu3aKSwsTFOmTNGRI0dqXXP+/PkyGAwurV+/fg18JQAAAAAA1A1FdAAAUGdlZWWKiIhQRkZGtXM//PCDduzYoblz52rHjh168803tXv3bv32t78957oDBgzQ0aNHne2jjz5qiPABAAAAAKi3Vt4OAAAANB/x8fGKj4+v8ZzJZNLGjRtd+p5//nkNHTpUxcXF6tatm9t1W7VqpZCQEI/GCgAAAACAJ3AnOgAAaDB2u10Gg0EdO3asddzXX3+tsLAw9erVS7fffruKi4trHV9eXq7S0lKXBgAAAABAQ6CIDgAAGsTp06f14IMPavLkyerQoYPbcdHR0crOzlZubq6WLVumffv26eqrr9bJkyfdzklLS5PJZHK28PDwhrgEAAAAAAAoogMAAM87c+aMbrnlFjkcDi1btqzWsfHx8Zo4caIGDRqkuLg4bdiwQSUlJXrjjTfczklJSZHdbne2gwcPevoSAAAAAACQRBEdAAB42NkC+oEDB7Rx48Za70KvSceOHdWnTx/t2bPH7Rij0agOHTq4NAAA8OtlZGSoR48eCgwMVHR0tLZt21br+JKSEiUlJSk0NFRGo1F9+vTRhg0bGilaAAAaF0V0AADgMWcL6F9//bXef/99XXjhhfVe49SpU9q7d69CQ0MbIEIAAPBLq1evlsViUWpqqnbs2KGIiAjFxcXp2LFjNY6vqKjQtddeq/379+uvf/2rdu/erRUrVqhr166NHDkAAI2jlbcDAAAAzcepU6dc7hDft2+fioqK1LlzZ4WGhurmm2/Wjh079M4776iyslJWq1WS1LlzZwUEBEiSRo8erRtvvFHJycmSpPvuu0/jxo1T9+7ddeTIEaWmpsrf31+TJ09u/AsEAKAFWrp0qaZPn67ExERJUmZmptavX6+srCw99NBD1cZnZWXpu+++05YtW9S6dWtJUo8ePRozZAAAGhV3ogMAgDrbvn27Bg8erMGDB0uSLBaLBg8erHnz5unw4cN6++23dejQIUVGRio0NNTZtmzZ4lxj7969OnHihPP40KFDmjx5svr27atbbrlFF154obZu3aouXbo0+vUBANDSVFRUqLCwULGxsc4+Pz8/xcbGqqCgoMY5b7/9tmJiYpSUlCSz2ayBAwfq0UcfVWVlpdvXKS8vV2lpqUsDAKC54E50AABQZyNHjpTD4XB7vrZzZ+3fv9/leNWqVecbVrNis9lkt9u9HQZQzYEDB1z+BJoak8kks9ns7TB8zokTJ1RZWVntvTWbzdq1a1eNc7755ht98MEHuv3227Vhwwbt2bNHd999t86cOaPU1NQa56SlpWnBggUejx8AgMZAER0AAKCR2Gw23fH7KTpTUe7tUAC3Fi9e7O0QgBq1DjDq1VdeppDeBFRVVSk4OFjLly+Xv7+/oqKidPjwYT3xxBNui+gpKSmyWCzO49LSUoWHhzdWyAAAnBeK6AAAAI3EbrfrTEW5fuw1QlWBJm+HAwDNht9pu/TNJtntdoroHhYUFCR/f3/ZbDaXfpvNppCQkBrnhIaGqnXr1vL393f2XXrppbJaraqoqHA+B+V/GY1GGY1GzwYPAEAjoYgOAADQyKoCTapqF+TtMAAAUEBAgKKiopSXl6cJEyZI+vlO87y8POdDwH9p+PDhysnJUVVVlfz8fn7U2ldffaXQ0NAaC+gAADR3PFgUAAAAAIAWzGKxaMWKFVq5cqW+/PJL3XXXXSorK1NiYqIkacqUKUpJSXGOv+uuu/Tdd99p5syZ+uqrr7R+/Xo9+uijSkpK8tYlAADQoLgTHQAAAACAFmzSpEk6fvy45s2bJ6vVqsjISOXm5jq3zikuLnbecS5J4eHhevfdd3XPPfdo0KBB6tq1q2bOnKkHH3zQW5cAAECDoogOAAAAAEALl5yc7Hb7lvz8/Gp9MTEx2rp1awNHBQBA0+DV7Vw2b96scePGKSwsTAaDQWvXrq11/Jtvvqlrr71WXbp0UYcOHRQTE6N3333XZcz8+fNlMBhcWr9+/RrwKgAAAAAAAAAAvsqrRfSysjJFREQoIyOjTuM3b96sa6+9Vhs2bFBhYaFGjRqlcePG6ZNPPnEZN2DAAB09etTZPvroo4YIHwAAAAAAAADg47y6nUt8fLzi4+PrPD49Pd3l+NFHH9W6dev097//XYMHD3b2t2rVSiEhIZ4KEwAAAAAAAADQQjXrPdGrqqp08uRJde7c2aX/66+/VlhYmAIDAxUTE6O0tDR169bN7Trl5eUqLy93HpeWljZYzJ5ms9lkt9u9HQZQzYEDB1z+BJoak8nkfFgWAAAAAACAO826iP7kk0/q1KlTuuWWW5x90dHRys7OVt++fXX06FEtWLBAV199tXbu3Kn27dvXuE5aWpoWLFjQWGF7jM1m0x2/n6IzFeXnHgx4yeLFi70dAlCj1gFGvfrKyxTSAQAAAABArZptET0nJ0cLFizQunXrFBwc7Oz/3+1hBg0apOjoaHXv3l1vvPGG7rzzzhrXSklJkcVicR6XlpYqPDy84YL3ELvdrjMV5fqx1whVBZq8HQ4ANBt+p+3SN5tkt9spogMAAAAAgFo1yyL6qlWrNG3aNK1Zs0axsbG1ju3YsaP69OmjPXv2uB1jNBplNBo9HWajqQo0qapdkLfDAAAAAAAAAACf41ffCQcPHtShQ4ecx9u2bdOsWbO0fPlyjwbmzuuvv67ExES9/vrruv766885/tSpU9q7d69CQ0MbIToAAJoeb+duAADgeeR3AAAaT72L6Lfddps+/PBDSZLVatW1116rbdu2afbs2Vq4cGG91jp16pSKiopUVFQkSdq3b5+KiopUXFws6edtVqZMmeIcn5OToylTpuipp55SdHS0rFarrFary4M177vvPm3atEn79+/Xli1bdOONN8rf31+TJ0+u76UCAOATPJm7AQBA00B+BwCg8dS7iL5z504NHTpUkvTGG29o4MCB2rJli1577TVlZ2fXa63t27dr8ODBGjx4sCTJYrFo8ODBmjdvniTp6NGjzoK6JC1fvlw//fSTkpKSFBoa6mwzZ850jjl06JAmT56svn376pZbbtGFF16orVu3qkuXLvW9VAAAfIInczcAAGgayO8AADSeeu+JfubMGef+4e+//75++9vfSpL69euno0eP1mutkSNHyuFwuD3/y8Sfn59/zjVXrVpVrxgAAPB1nszdAACgaSC/AwDQeOp9J/qAAQOUmZmpf/7zn9q4caPGjh0rSTpy5IguvPBCjwcIAADOD7kbAADfQ34HAKDx1LuIvmTJEr3wwgsaOXKkJk+erIiICEnS22+/7fwpGQAAaDrI3QAA+B7yOwAAjafe27mMHDlSJ06cUGlpqTp16uTsnzFjhtq2bevR4AAAwPkjdwMA4HvI7wAANJ5634kuSQ6HQ4WFhXrhhRd08uRJSVJAQACJGgCAJorcDQCA7yG/AwDQOOp9J/qBAwc0duxYFRcXq7y8XNdee63at2+vJUuWqLy8XJmZmQ0RJwAA+JXI3QAA+B7yOwAAjafeRfSZM2dqyJAh+vTTT10eVnLjjTdq+vTpHg0OAACcP3I3AAC+h/zeeGw2m+x2u7fDAKo5cOCAy59AU2MymWQ2m70dhkfUu4j+z3/+U1u2bFFAQIBLf48ePXT48GGPBQYAADyD3A0AgO8hvzcOm82mO34/RWcqyr0dCuDW4sWLvR0CUKPWAUa9+srLPlFIr3cRvaqqSpWVldX6Dx06pPbt23skKAAA4DnkbgAAfA/5vXHY7XadqSjXj71GqCrQ5O1wAKDZ8Dttl77ZJLvd3jKL6GPGjFF6erqWL18uSTIYDDp16pRSU1N13XXXeTxAAABwfsjdAAD4HvJ746oKNKmqXZC3wwAAeEm9i+hPPfWU4uLi1L9/f50+fVq33Xabvv76awUFBen1119viBgBAMB5IHcDAOB7yO8AADQev/pOuOiii/Tpp5/q4Ycf1j333KPBgwfrscce0yeffKLg4OCGiBEAAJwHT+buzZs3a9y4cQoLC5PBYNDatWtdzjscDs2bN0+hoaFq06aNYmNj9fXXX59z3YyMDPXo0UOBgYGKjo7Wtm3b6hUXAAAtDZ/NAQBoPPW+E12SWrVqpTvuuMPTsQAAgAbiqdxdVlamiIgI/eEPf9Dvfve7aucff/xxPfvss1q5cqV69uypuXPnKi4uTl988YUCAwNrXHP16tWyWCzKzMxUdHS00tPTFRcXp927d1MEAACgFnw2BwCgcdS7iP7yyy/Xen7KlCm/OhgAAOB5nszd8fHxio+Pr/Gcw+FQenq65syZo/Hjxztf22w2a+3atbr11ltrnLd06VJNnz5diYmJkqTMzEytX79eWVlZeuihh+ocGwAALQmfzQEAaDz1LqLPnDnT5fjMmTP64YcfFBAQoLZt25KoAQBoYhord+/bt09Wq1WxsbHOPpPJpOjoaBUUFNRYRK+oqFBhYaFSUlKcfX5+foqNjVVBQYHb1yovL1d5ebnzuLS01CPXAABAc8FncwAAGk+990T//vvvXdqpU6e0e/duXXXVVTy8BACAJqixcrfVapUkmc1ml36z2ew890snTpxQZWVlveZIUlpamkwmk7OFh4efZ/QAADQvfDYHAKDx1LuIXpPevXvrscceq/ZNOAAAaJqae+5OSUmR3W53toMHD3o7JAAAvK6553cAAJoqjxTRpZ8faHLkyBFPLQcAABqYp3N3SEiIJMlms7n022w257lfCgoKkr+/f73mSJLRaFSHDh1cGgAA4LM5AAANod57or/99tsuxw6HQ0ePHtXzzz+v4cOHeywwAADgGY2Vu3v27KmQkBDl5eUpMjJS0s97lX/88ce66667apwTEBCgqKgo5eXlacKECZKkqqoq5eXlKTk52WOxAQDga/hsDgBA46l3Ef3sB9yzDAaDunTpot/85jd66qmnPBUXAADwEE/m7lOnTmnPnj3O43379qmoqEidO3dWt27dNGvWLC1atEi9e/dWz549NXfuXIWFhbnEMHr0aN14443OIrnFYlFCQoKGDBmioUOHKj09XWVlZUpMTPzV1wwAgK/jszkAAI2n3kX0qqqqhogDAAA0EE/m7u3bt2vUqFHOY4vFIklKSEhQdna2HnjgAZWVlWnGjBkqKSnRVVddpdzcXAUGBjrn7N27VydOnHAeT5o0ScePH9e8efNktVoVGRmp3Nzcag8bBQAA/8VncwAAGk+9i+gAAKDlGjlypBwOh9vzBoNBCxcu1MKFC92O2b9/f7W+5ORktm8BAAAAADRJdSqin73LrC6WLl36q4MBAACeQe4GAMD3kN8BAPCOOhXRP/nkkzotZjAYzisYAADgGeRuAAB8D/kdAADvqFMR/cMPP2zoOAAAgAeRuwEA8D3kdwAAvMPP2wEAAAAAAAAAANBU/aoHi27fvl1vvPGGiouLVVFR4XLuzTff9EhgAADAc8jdAAD4HvI7AACNo953oq9atUrDhg3Tl19+qbfeektnzpzR559/rg8++EAmk6lea23evFnjxo1TWFiYDAaD1q5de845+fn5uvzyy2U0GnXJJZcoOzu72piMjAz16NFDgYGBio6O1rZt2+oVFwAAvsSTuRsAADQN5HcAABpPvYvojz76qJ5++mn9/e9/V0BAgJ555hnt2rVLt9xyi7p161avtcrKyhQREaGMjIw6jd+3b5+uv/56jRo1SkVFRZo1a5amTZumd9991zlm9erVslgsSk1N1Y4dOxQREaG4uDgdO3asXrEBAOArPJm7AQBA00B+BwCg8dR7O5e9e/fq+uuvlyQFBASorKxMBoNB99xzj37zm99owYIFdV4rPj5e8fHxdR6fmZmpnj176qmnnpIkXXrppfroo4/09NNPKy4uTpK0dOlSTZ8+XYmJic4569evV1ZWlh566KE6vxYAAL7Ck7kbnuH3Y4m3QwCAZoV/N6sjvwMA0HjqXUTv1KmTTp48KUnq2rWrdu7cqcsuu0wlJSX64YcfPB7g/yooKFBsbKxLX1xcnGbNmiVJqqioUGFhoVJSUpzn/fz8FBsbq4KCArfrlpeXq7y83HlcWlrq2cABAPAib+Zu1KzNvs3eDgEA0MyR3wEAaDx1LqLv3LlTAwcO1DXXXKONGzfqsssu08SJEzVz5kx98MEH2rhxo0aPHt2QscpqtcpsNrv0mc1mlZaW6scff9T333+vysrKGsfs2rXL7bppaWl8Sw8A8DlNIXejZj/2vEZVbTp6OwwAaDb8fizhC8j/IL8DAND46lxEHzRokK644gpNmDBBEydOlCTNnj1brVu31pYtW3TTTTdpzpw5DRZoQ0pJSZHFYnEel5aWKjw83IsRAQBw/nw5dzd3VW06qqpdkLfDAAA0Q+R3AAAaX52L6Js2bdJLL72ktLQ0LV68WDfddJOmTZvWqPuMh4SEyGazufTZbDZ16NBBbdq0kb+/v/z9/WscExIS4nZdo9Eoo9HYIDEDAOAtTSF3AwAAzyK/AwDQ+PzqOvDqq69WVlaWjh49queee0779+/XiBEj1KdPHy1ZskRWq7Uh45QkxcTEKC8vz6Vv48aNiomJkfTzw1SioqJcxlRVVSkvL885BgCAlqIp5G4AAOBZ5HcAABpfnYvoZ7Vr106JiYnatGmTvvrqK02cOFEZGRnq1q2bfvvb39ZrrVOnTqmoqEhFRUWSpH379qmoqEjFxcWSft5mZcqUKc7xf/zjH/XNN9/ogQce0K5du/TnP/9Zb7zxhu655x7nGIvFohUrVmjlypX68ssvddddd6msrEyJiYn1vVQAAHyCJ3M3AABoGsjvAAA0njpv51KTSy65RA8//LC6d++ulJQUrV+/vl7zt2/frlGjRjmPz+5LnpCQoOzsbB09etRZUJeknj17av369brnnnv0zDPP6KKLLtJf/vIXxcXFOcdMmjRJx48f17x582S1WhUZGanc3NxqDxsFAKAlOt/cDQAAmh7yOwAADetXF9E3b96srKws/e1vf5Ofn59uueUW3XnnnfVaY+TIkXI4HG7PZ2dn1zjnk08+qXXd5ORkJScn1ysWAAB8nSdyNwAAaFrI7wAANLx6FdGPHDmi7OxsZWdna8+ePRo2bJieffZZ3XLLLWrXrl1DxQgAAH4lcjcAAL6H/A4AQOOqcxE9Pj5e77//voKCgjRlyhT94Q9/UN++fRsyNgAAcB7I3QAA+B7yOwAAja/ORfTWrVvrr3/9q2644Qb5+/s3ZEwAAMADyN0AAPge8jsAAI2vzkX0t99+uyHjAAAAHkbuBgDA95DfAQBofH7eDgAAAAAAAAAAgKaKIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuFHnB4ui6fL7scTbIQBAs8K/mwAAAAAAoK4oovuANvs2ezsEAAAAAEAzlpGRoSeeeEJWq1URERF67rnnNHTo0HPOW7VqlSZPnqzx48dr7dq1DR8oAABeQBHdB/zY8xpVteno7TAAoNnw+7GELyABAAD+Y/Xq1bJYLMrMzFR0dLTS09MVFxen3bt3Kzg42O28/fv367777tPVV1/diNECAND4KKL7gKo2HVXVLsjbYQAAAAAAmqGlS5dq+vTpSkxMlCRlZmZq/fr1ysrK0kMPPVTjnMrKSt1+++1asGCB/vnPf6qkpKQRIwYAoHHxYFEAAOBRPXr0kMFgqNaSkpJqHJ+dnV1tbGBgYCNHDQBAy1RRUaHCwkLFxsY6+/z8/BQbG6uCggK38xYuXKjg4GDdeeeddXqd8vJylZaWujQAAJoL7kQHAAAe9a9//UuVlZXO4507d+raa6/VxIkT3c7p0KGDdu/e7Tw2GAwNGiMAAPjZiRMnVFlZKbPZ7NJvNpu1a9euGud89NFHevHFF1VUVFTn10lLS9OCBQvOJ1QAALyGIjoAAPCoLl26uBw/9thjuvjiizVixAi3cwwGg0JCQur8GuXl5SovL3ceczcbAACN4+TJk/r973+vFStWKCio7tuKpqSkyGKxOI9LS0sVHh7eECECAOBxFNEBAECDqaio0KuvviqLxVLr3eWnTp1S9+7dVVVVpcsvv1yPPvqoBgwY4HY8d7MBAOAZQUFB8vf3l81mc+m32Ww1fsG9d+9e7d+/X+PGjXP2VVVVSZJatWql3bt36+KLL642z2g0ymg0ejh6AAAaB3uiAwCABrN27VqVlJRo6tSpbsf07dtXWVlZWrdunV599VVVVVVp2LBhOnTokNs5KSkpstvtznbw4MEGiB4AAN8XEBCgqKgo5eXlOfuqqqqUl5enmJiYauP79eunf//73yoqKnK23/72txo1apSKioq4uxwA4JO4Ex0AADSYF198UfHx8QoLC3M7JiYmxuVD+rBhw3TppZfqhRde0COPPFLjnOZ+N5vfabu3QwCAZoV/NxuWxWJRQkKChgwZoqFDhyo9PV1lZWVKTEyUJE2ZMkVdu3ZVWlqaAgMDNXDgQJf5HTt2lKRq/QAA+AqK6AAAoEEcOHBA77//vt588816zWvdurUGDx6sPXv2NFBk3mMymdQ6wCh9s8nboQBAs9M6wCiTyeTtMHzSpEmTdPz4cc2bN09Wq1WRkZHKzc11Pmy0uLhYfn78kB0A0HJRRAcAAA3ipZdeUnBwsK6//vp6zausrNS///1vXXfddQ0UmfeYzWa9+srLstu5oxJNz4EDB7R48WLNnj1b3bt393Y4QDUmk8lZ1IXnJScnKzk5ucZz+fn5tc7Nzs72fEAAADQhFNEBAIDHVVVV6aWXXlJCQoJatXL978b//iRckhYuXKgrr7xSl1xyiUpKSvTEE0/owIEDmjZtmjdCb3Bms5kiEJq07t27q0+fPt4OAwAAAGgyKKIDAACPe//991VcXKw//OEP1c798ifh33//vaZPny6r1apOnTopKipKW7ZsUf/+/RszZAAAAAAAakQRHQAAeNyYMWPkcDhqPPfLn4Q//fTTevrppxshKgAAAAAA6o8ngwAAAAAAAAAA4AZFdAAAAAAAAAAA3KCIDgAAAAAAAACAG02iiJ6RkaEePXooMDBQ0dHR2rZtm9uxI0eOlMFgqNauv/5655ipU6dWOz927NjGuBQAAAAAAAAAgA/x+oNFV69eLYvFoszMTEVHRys9PV1xcXHavXu3goODq41/8803VVFR4Tz+9ttvFRERoYkTJ7qMGzt2rF566SXnsdFobLiLAAAAAAAAAAD4JK/fib506VJNnz5diYmJ6t+/vzIzM9W2bVtlZWXVOL5z584KCQlxto0bN6pt27bViuhGo9FlXKdOnRrjcgAAAAAAAAAAPsSrRfSKigoVFhYqNjbW2efn56fY2FgVFBTUaY0XX3xRt956q9q1a+fSn5+fr+DgYPXt21d33XWXvv32W7drlJeXq7S01KUBAAAAAAAAAODVIvqJEydUWVkps9ns0m82m2W1Ws85f9u2bdq5c6emTZvm0j927Fi9/PLLysvL05IlS7Rp0ybFx8ersrKyxnXS0tJkMpmcLTw8/NdfFAAAAAAAAADAZ3h9T/Tz8eKLL+qyyy7T0KFDXfpvvfVW598vu+wyDRo0SBdffLHy8/M1evToauukpKTIYrE4j0tLSymkAwAAAAAAAAC8W0QPCgqSv7+/bDabS7/NZlNISEitc8vKyrRq1SotXLjwnK/Tq1cvBQUFac+ePTUW0Y1GIw8eBQAAAAAANfL7scTbIQBAs+Jr/256tYgeEBCgqKgo5eXlacKECZKkqqoq5eXlKTk5uda5a9asUXl5ue64445zvs6hQ4f07bffKjQ01BNhAwAAAACAFqTNvs3eDgEA4EVe387FYrEoISFBQ4YM0dChQ5Wenq6ysjIlJiZKkqZMmaKuXbsqLS3NZd6LL76oCRMm6MILL3TpP3XqlBYsWKCbbrpJISEh2rt3rx544AFdcskliouLa7TrAgAAAAAAvuHHnteoqk1Hb4cBAM2G348lPvUFpNeL6JMmTdLx48c1b948Wa1WRUZGKjc31/mw0eLiYvn5uT7/dPfu3froo4/03nvvVVvP399fn332mVauXKmSkhKFhYVpzJgxeuSRR9iyBQAAAAAA1FtVm46qahfk7TAAAF7i9SK6JCUnJ7vdviU/P79aX9++feVwOGoc36ZNG7377rueDA8AAAAAAAAA0EL5nXsIAAAAAAAAAAAtE0V0AAAAAAAAAADcoIgOAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuEERHQAAAAAAAAAANyiiAwAAAAAAAADgBkV0AAAAAAAAAADcaOXtAHD+/E7bvR0CADQr/LsJAAAAAADqiiJ6M2YymdQ6wCh9s8nboQBAs9M6wCiTyeTtMAAAAAAAQBNHEb0ZM5vNevWVl2W3c0clmp4DBw5o8eLFmj17trp37+7tcIBqTCaTzGazt8MAAAAAAABNHEX0Zs5sNlMEQpPWvXt39enTx9thAGgk8+fP14IFC1z6+vbtq127drmds2bNGs2dO1f79+9X7969tWTJEl133XUNHSoAAAAAAHXCg0UBAIBHDRgwQEePHnW2jz76yO3YLVu2aPLkybrzzjv1ySefaMKECZowYYJ27tzZiBEDAAAAAOAeRXQAAOBRrVq1UkhIiLMFBQW5HfvMM89o7Nixuv/++3XppZfqkUce0eWXX67nn3++ESMGAAAAAMA9iugAAMCjvv76a4WFhalXr166/fbbVVxc7HZsQUGBYmNjXfri4uJUUFBQ62uUl5ertLTUpQEAAAAA0BAoogMAAI+Jjo5Wdna2cnNztWzZMu3bt09XX321Tp48WeN4q9Va7dkeZrNZVqu11tdJS0uTyWRytvDwcI9dAwAAAAAA/4siOgAA8Jj4+HhNnDhRgwYNUlxcnDZs2KCSkhK98cYbHn2dlJQU2e12Zzt48KBH1wcAAAAA4KxW3g4AAAD4ro4dO6pPnz7as2dPjedDQkJks9lc+mw2m0JCQmpd12g0ymg0eixOAAAAAADc4U50AADQYE6dOqW9e/cqNDS0xvMxMTHKy8tz6du4caNiYmIaIzwAAAAAAM6JIjoAAPCY++67T5s2bdL+/fu1ZcsW3XjjjfL399fkyZMlSVOmTFFKSopz/MyZM5Wbm6unnnpKu3bt0vz587V9+3YlJyd76xIAAAAAAHDBdi4AAMBjDh06pMmTJ+vbb79Vly5ddNVVV2nr1q3q0qWLJKm4uFh+fv/9Dn/YsGHKycnRnDlz9PDDD6t3795au3atBg4c6K1LAAAAAADABUV0AADgMatWrar1fH5+frW+iRMnauLEiQ0UEQAAAAAA54ftXAAAAAAAAAAAcIMiOgAAAAAAAAAAbjSJ7VwyMjL0xBNPyGq1KiIiQs8995yGDh1a49js7GwlJia69BmNRp0+fdp57HA4lJqaqhUrVqikpETDhw/XsmXL1Lt37wa9DgAAAAAA4Hv8Ttu9HQIANCu+9u+m14voq1evlsViUWZmpqKjo5Wenq64uDjt3r1bwcHBNc7p0KGDdu/e7Tw2GAwu5x9//HE9++yzWrlypXr27Km5c+cqLi5OX3zxhQIDAxv0egAAAAAAgG8wmUxqHWCUvtnk7VAAoNlpHWCUyWTydhge4fUi+tKlSzV9+nTn3eWZmZlav369srKy9NBDD9U4x2AwKCQkpMZzDodD6enpmjNnjsaPHy9Jevnll2U2m7V27VrdeuutDXMhAAAAAADAp5jNZr36ysuy233rjkr4hgMHDmjx4sWaPXu2unfv7u1wgGpMJpPMZrO3w/AIrxbRKyoqVFhYqJSUFGefn5+fYmNjVVBQ4HbeqVOn1L17d1VVVenyyy/Xo48+qgEDBkiS9u3bJ6vVqtjYWOd4k8mk6OhoFRQU1FhELy8vV3l5ufO4tLTUE5cHAAAAAACaObPZ7DNFIPim7t27q0+fPt4OA/BpXn2w6IkTJ1RZWVktGZnNZlmt1hrn9O3bV1lZWVq3bp1effVVVVVVadiwYTp06JAkOefVZ820tDSZTCZnCw8PP99LAwAAAAAAAAD4AK8W0X+NmJgYTZkyRZGRkRoxYoTefPNNdenSRS+88MKvXjMlJUV2u93ZDh486MGIAQAAAAAAAADNlVeL6EFBQfL395fNZnPpt9lsbvc8/6XWrVtr8ODB2rNnjyQ559VnTaPRqA4dOrg0AAAAAAAAAAC8WkQPCAhQVFSU8vLynH1VVVXKy8tTTExMndaorKzUv//9b4WGhkqSevbsqZCQEJc1S0tL9fHHH9d5TQAAAAAAAAAAJC8/WFSSLBaLEhISNGTIEA0dOlTp6ekqKytTYmKiJGnKlCnq2rWr0tLSJEkLFy7UlVdeqUsuuUQlJSV64okndODAAU2bNk2SZDAYNGvWLC1atEi9e/dWz549NXfuXIWFhWnChAneukwAAAAAAAAAQDPk9SL6pEmTdPz4cc2bN09Wq1WRkZHKzc11Phi0uLhYfn7/vWH++++/1/Tp02W1WtWpUydFRUVpy5Yt6t+/v3PMAw88oLKyMs2YMUMlJSW66qqrlJubq8DAwEa/PgAAAAAAAABA8+X1IrokJScnKzk5ucZz+fn5LsdPP/20nn766VrXMxgMWrhwoRYuXOipEAEAAAAAAAAALZBX90QHAAAAAAAAAKApo4gOAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAC1cRkaGevToocDAQEVHR2vbtm1ux65YsUJXX321OnXqpE6dOik2NrbW8QAANHcU0QEAAAAAaMFWr14ti8Wi1NRU7dixQxEREYqLi9OxY8dqHJ+fn6/Jkyfrww8/VEFBgcLDwzVmzBgdPny4kSMHAKBxUEQHAAAAAKAFW7p0qaZPn67ExET1799fmZmZatu2rbKysmoc/9prr+nuu+9WZGSk+vXrp7/85S+qqqpSXl5eI0cOAEDjoIgOAAAAAEALVVFRocLCQsXGxjr7/Pz8FBsbq4KCgjqt8cMPP+jMmTPq3Lmz2zHl5eUqLS11aQAANBcU0QEAAAAAaKFOnDihyspKmc1ml36z2Syr1VqnNR588EGFhYW5FOJ/KS0tTSaTydnCw8PPK24AABoTRXQAAAAAAPCrPPbYY1q1apXeeustBQYGuh2XkpIiu93ubAcPHmzEKAEAOD+tvB0AAAAAAADwjqCgIPn7+8tms7n022w2hYSE1Dr3ySef1GOPPab3339fgwYNqnWs0WiU0Wg873gBAPAG7kQHAAAAAKCFCggIUFRUlMtDQc8+JDQmJsbtvMcff1yPPPKIcnNzNWTIkMYIFQAAr+FOdAAAAAAAWjCLxaKEhAQNGTJEQ4cOVXp6usrKypSYmChJmjJlirp27aq0tDRJ0pIlSzRv3jzl5OSoR48ezr3TL7jgAl1wwQVeuw4AABoKRXQAAAAAAFqwSZMm6fjx45o3b56sVqsiIyOVm5vrfNhocXGx/Pz++0P2ZcuWqaKiQjfffLPLOqmpqZo/f35jhg4AQKOgiA4AAAAAQAuXnJys5OTkGs/l5+e7HO/fv7/hAwIAoAlhT3QAAOAxaWlpuuKKK9S+fXsFBwdrwoQJ2r17d61zsrOzZTAYXFpgYGAjRQwAAAAAQO0oogMAAI/ZtGmTkpKStHXrVm3cuFFnzpzRmDFjVFZWVuu8Dh066OjRo8524MCBRooYAAAAAIDasZ0LAADwmNzcXJfj7OxsBQcHq7CwUNdcc43beQaDQSEhIQ0dHgAAAAAA9cad6AAAoMHY7XZJUufOnWsdd+rUKXXv3l3h4eEaP368Pv/881rHl5eXq7S01KUBAAAAANAQKKIDAIAGUVVVpVmzZmn48OEaOHCg23F9+/ZVVlaW1q1bp1dffVVVVVUaNmyYDh065HZOWlqaTCaTs4WHhzfEJQAAAAAAQBEdAAA0jKSkJO3cuVOrVq2qdVxMTIymTJmiyMhIjRgxQm+++aa6dOmiF154we2clJQU2e12Zzt48KCnwwcAAAAAQBJ7ogMAgAaQnJysd955R5s3b9ZFF11Ur7mtW7fW4MGDtWfPHrdjjEajjEbj+YYJAAAAAMA5cSc6AADwGIfDoeTkZL311lv64IMP1LNnz3qvUVlZqX//+98KDQ1tgAgBAAAAAKgf7kQHAAAek5SUpJycHK1bt07t27eX1WqVJJlMJrVp00aSNGXKFHXt2lVpaWmSpIULF+rKK6/UJZdcopKSEj3xxBM6cOCApk2b5rXrAAAAAADgLIroAADAY5YtWyZJGjlypEv/Sy+9pKlTp0qSiouL5ef33x/Dff/995o+fbqsVqs6deqkqKgobdmyRf3792+ssAEAAAAAcIsiOgAA8BiHw3HOMfn5+S7HTz/9tJ5++ukGiggAAAAAgPPDnugAAAAAAAAAALjRJIroGRkZ6tGjhwIDAxUdHa1t27a5HbtixQpdffXV6tSpkzp16qTY2Nhq46dOnSqDweDSxo4d29CXAQAAAAAAAADwMV4voq9evVoWi0WpqanasWOHIiIiFBcXp2PHjtU4Pj8/X5MnT9aHH36ogoIChYeHa8yYMTp8+LDLuLFjx+ro0aPO9vrrrzfG5QAAAAAAAAAAfIjXi+hLly7V9OnTlZiYqP79+yszM1Nt27ZVVlZWjeNfe+013X333YqMjFS/fv30l7/8RVVVVcrLy3MZZzQaFRIS4mydOnVqjMsBAAAAAAAAAPgQrxbRKyoqVFhYqNjYWGefn5+fYmNjVVBQUKc1fvjhB505c0adO3d26c/Pz1dwcLD69u2ru+66S99++63bNcrLy1VaWurSAAAAAAAAAADwahH9xIkTqqyslNlsduk3m82yWq11WuPBBx9UWFiYSyF+7Nixevnll5WXl6clS5Zo06ZNio+PV2VlZY1rpKWlyWQyOVt4ePivvygAAAAAAAAAgM9o5e0Azsdjjz2mVatWKT8/X4GBgc7+W2+91fn3yy67TIMGDdLFF1+s/Px8jR49uto6KSkpslgszuPS0lIK6QAAAAAAAAAA796JHhQUJH9/f9lsNpd+m82mkJCQWuc++eSTeuyxx/Tee+9p0KBBtY7t1auXgoKCtGfPnhrPG41GdejQwaUBAAAAAAAAAODVInpAQICioqJcHgp69iGhMTExbuc9/vjjeuSRR5Sbm6shQ4ac83UOHTqkb7/9VqGhoR6JGwAAAAAAAADQMni1iC5JFotFK1as0MqVK/Xll1/qrrvuUllZmRITEyVJU6ZMUUpKinP8kiVLNHfuXGVlZalHjx6yWq2yWq06deqUJOnUqVO6//77tXXrVu3fv195eXkaP368LrnkEsXFxXnlGgEAAAAAAAAAzZPX90SfNGmSjh8/rnnz5slqtSoyMlK5ubnOh40WFxfLz++/tf5ly5apoqJCN998s8s6qampmj9/vvz9/fXZZ59p5cqVKikpUVhYmMaMGaNHHnlERqOxUa8NAAAAAAAAANC8eb2ILknJyclKTk6u8Vx+fr7L8f79+2tdq02bNnr33Xc9FBkAAAAAAAAAoCXz+nYuAAAAAAAAAAA0VRTRAQAAAAAAAABwo0ls5wIAAADU1+nTp1VcXOztMHzGgQMHXP6EZ3Tr1k2BgYHeDgMAAADngSI6AAAAmqXi4mLNmDHD22H4nMWLF3s7BJ+yfPly9enTx9thAAAA4DxQRAcAAECz1K1bNy1fvtzbYQC16tatm7dDAAAAwHmiiA4AAIBmKTAwkDt8AQAAADQ4HiwKAAAAAAAAAIAbFNEBAAAAAAAAAHCDIjoAAAAAAAAAAG5QRAcAAAAAAAAAwA2K6AAAAAAAAAAAuEERHQAAAAAAAAAAN1p5OwAAAAAA3lVZWanPPvtM3333nTp37qxBgwbJ39/f22EBAAAATQJFdAAAAKAF27x5s/785z/LarU6+0JCQnT33Xfrmmuu8WJkAAAAQNPAdi4AAABAC7V582alpqaqV69eysjI0IYNG5SRkaFevXopNTVVmzdv9naIAAAAgNdRRAcAAB6XkZGhHj16KDAwUNHR0dq2bVut49esWaN+/fopMDBQl112mTZs2NBIkQItV2Vlpf785z8rJiZGixYt0oABA9S2bVsNGDBAixYtUkxMjJYtW6bKykpvhwoAAAB4Fdu5AP9x+vRpFRcXezsMn3HgwAGXP+EZ3bp1U2BgoLfDAGq1evVqWSwWZWZmKjo6Wunp6YqLi9Pu3bsVHBxcbfyWLVs0efJkpaWl6YYbblBOTo4mTJigHTt2aODAgV64AqBl+Oyzz2S1WjV37lz5+bneW+Pn56fbb79dSUlJ+uyzzzR48GAvRQkA8CV87vYsPnc3DD53oyYU0YH/KC4u1owZM7wdhs9ZvHixt0PwKcuXL1efPn28HQZQq6VLl2r69OlKTEyUJGVmZmr9+vXKysrSQw89VG38M888o7Fjx+r++++XJD3yyCPauHGjnn/+eWVmZjZq7EBL8t1330mSevbsWeP5s/1nxwEAcL743N0w+NztWXzuRk0oogP/0a1bNy1fvtzbYQC16tatm7dDAGpVUVGhwsJCpaSkOPv8/PwUGxurgoKCGucUFBTIYrG49MXFxWnt2rVuX6e8vFzl5eXO49LS0vMLHGiBOnfuLEnat2+fBgwYUO38vn37XMYBAHC++NyN5oDP3agJRXTgPwIDA/mmEQDO04kTJ1RZWSmz2ezSbzabtWvXrhrnWK3WGsdbrVa3r5OWlqYFCxacf8BACzZo0CCFhITotdde06JFi1y2dKmqqtJrr72m0NBQDRo0yItRAgB8CZ+7ATRXPFgUAAA0OykpKbLb7c528OBBb4cENDv+/v66++67VVBQoDlz5ujzzz/XDz/8oM8//1xz5sxRQUGB7rrrLvn7+3s7VAAAAMCruBMdAAB4TFBQkPz9/WWz2Vz6bTabQkJCapwTEhJSr/GSZDQaZTQazz9goIW75pprtGDBAv35z39WUlKSsz80NFQLFizQNddc48XoAAAAgKaBIjoAAPCYgIAARUVFKS8vTxMmTJD087YQeXl5Sk5OrnFOTEyM8vLyNGvWLGffxo0bFRMT0wgRA7jmmms0fPhwffbZZ/ruu+/UuXNnDRo0iDvQAQAAgP+giA4AADzKYrEoISFBQ4YM0dChQ5Wenq6ysjIlJiZKkqZMmaKuXbsqLS1NkjRz5kyNGDFCTz31lK6//nqtWrVK27dv56FTQCPy9/fX4MGDvR0GAAAA0CRRRAcAAB41adIkHT9+XPPmzZPValVkZKRyc3OdDw8tLi52eYDhsGHDlJOTozlz5ujhhx9W7969tXbtWg0cONBblwAAAAAAgJPB4XA4vB1EU1NaWiqTySS73a4OHTp4OxwAQAtFPqo73isAQFNAPqo73isAQFNQ13zk5/YMAAAAAAAAAAAtXJMoomdkZKhHjx4KDAxUdHS0tm3bVuv4NWvWqF+/fgoMDNRll12mDRs2uJx3OByaN2+eQkND1aZNG8XGxurrr79uyEsAAAAAAAAAAPggrxfRV69eLYvFotTUVO3YsUMRERGKi4vTsWPHahy/ZcsWTZ48WXfeeac++eQTTZgwQRMmTNDOnTudYx5//HE9++yzyszM1Mcff6x27dopLi5Op0+fbqzLAgAAAAAAAAD4AK/viR4dHa0rrrhCzz//vCSpqqpK4eHh+tOf/qSHHnqo2vhJkyaprKxM77zzjrPvyiuvVGRkpDIzM+VwOBQWFqZ7771X9913nyTJbrfLbDYrOztbt9566zljYm82AEBTQD6qO94rAEBTQD6qO94rAEBT0Cz2RK+oqFBhYaFiY2OdfX5+foqNjVVBQUGNcwoKClzGS1JcXJxz/L59+2S1Wl3GmEwmRUdHu12zvLxcpaWlLg0AAAAAAAAAgFbefPETJ06osrJSZrPZpd9sNmvXrl01zrFarTWOt1qtzvNn+9yN+aW0tDQtWLCgWj/FdACAN53NQ17+0VizcPY9IncDALyJ3F135G4AQFNQ19zt1SJ6U5GSkiKLxeI8Pnz4sPr376/w8HAvRgUAwM9Onjwpk8nk7TCatJMnT0oSuRsA0CSQu8+N3A0AaErOlbu9WkQPCgqSv7+/bDabS7/NZlNISEiNc0JCQmodf/ZPm82m0NBQlzGRkZE1rmk0GmU0Gp3HF1xwgQ4ePKj27dvLYDDU+7oA/PxNXnh4uA4ePMgeh8Cv5HA4dPLkSYWFhXk7lCYvLCyM3A2cJ3I3cP7I3XVH7gbOH7kbOH91zd1eLaIHBAQoKipKeXl5mjBhgqSfHyyal5en5OTkGufExMQoLy9Ps2bNcvZt3LhRMTExkqSePXsqJCREeXl5zqJ5aWmpPv74Y9111111isvPz08XXXTRr74uAP/VoUMHkjlwHriLrW7I3YDnkLuB80PurhtyN+A55G7g/NQld3t9OxeLxaKEhAQNGTJEQ4cOVXp6usrKypSYmChJmjJlirp27aq0tDRJ0syZMzVixAg99dRTuv7667Vq1Spt375dy5cvlyQZDAbNmjVLixYtUu/evdWzZ0/NnTtXYWFhzkI9AAAAAAAAAAB14fUi+qRJk3T8+HHNmzdPVqtVkZGRys3NdT4YtLi4WH5+fs7xw4YNU05OjubMmaOHH35YvXv31tq1azVw4EDnmAceeEBlZWWaMWOGSkpKdNVVVyk3N1eBgYGNfn0AAAAAAAAAgObL4OCx4QAaQHl5udLS0pSSkuLyzAEAANA0kbsBAGheyN1A46GIDgAAAAAAAACAG37nHgIAAAAAAAAAQMtEER0AAAAAAAAAADcoogMAAAAAAAAA4AZFdAAAAAD4/9uxAwEAAAAAQf7WE2xQGAEAwJDoAAAAAAAwJDoAAAAAAAyJDgAAAAAAQ6IDAAAAAMCQ6AAAAAAAMCQ6AAAAAACMAHOn5Cx+KgIPAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "labels = filtered_features[['Output']]\n", "features = filtered_features.drop('Output', axis=1)" ], "metadata": { "id": "UJp53AB6wwj4" }, "execution_count": 21, "outputs": [] }, { "cell_type": "code", "source": [ "print(f\"Features Shape: {features.shape}\")\n", "print(f\"Labels Shape: {labels.shape}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "frJNQREuxPNH", "outputId": "d9a47312-fd3a-446d-ec93-0de15aba98d2" }, "execution_count": 22, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Features Shape: (716, 12)\n", "Labels Shape: (716, 1)\n" ] } ] }, { "cell_type": "code", "source": [ "plt.figure(figsize=(15, 8))\n", "sns.heatmap(features.join(labels).corr(), annot=True, cmap='coolwarm')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 413 }, "id": "PFrWNCd4xXPd", "outputId": "0bd1fd2c-c50c-4ed9-fd20-d76993e6c5d9" }, "execution_count": 23, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 23 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAKZCAYAAABwcrREAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gURd7A8e/kzTkndmFhl5xBchJJogLmACiod2cOp+LpqXevYg6YA6iYUbIkyZJzXHLYnHOe/P4xMMPALCyyyw7c7/M8/ej0VPdWFdXVNdVV1Qqr1WpFCCGEEEIIIYQQQpyXsqkjIIQQQgghhBBCCHElkE4UIYQQQgghhBBCiHqQThQhhBBCCCGEEEKIepBOFCGEEEIIIYQQQoh6kE4UIYQQQgghhBBCiHqQThQhhBBCCCGEEEKIepBOFCGEEEIIIYQQQoh6kE4UIYQQQgghhBBCiHqQThQhhBBCCCGEEEKIepBOFCGEEEIIIYQQQoh6kE4UIYQQQgghhBBCNLk///yT0aNHExUVhUKhYN68eRc8Zs2aNXTp0gWdTkdiYiLffPNNo8ZROlGEEEIIIYQQQgjR5KqqqujYsSMff/xxvcKfPHmSUaNGMWjQIHbv3s3jjz/O5MmTWbZsWaPFUWG1Wq2NdnYhhBBCCCGEEEKIi6RQKJg7dy433XRTnWGeffZZFi1axP79++37br/9dkpLS1m6dGmjxEtGogghhBBCCCGEEKJR6PV6ysvLnTa9Xt8g5960aRPXXnut075hw4axadOmBjm/K+pGO/NFWqRJauoouK3By15o6ii4tRcPj2vqKLithHivpo6CW0vPqGnqKLit7h11TR0Ft/bLz2lNHQW31bx1RFNHwa3pdKqmjoJbCw3RNHUU3JZeL4PHz6dZVFPHwH31/umOpo6CW4v+4JemjsJl0ZS/t7f96w5eeeUVp30vvfQSL7/88iWfOzc3l/DwcKd94eHhlJeXU1NTg6en5yX/jbO5TSeKEEIIIYQQQgghri5TpkzhySefdNqn0125D+ykE0UIIYQQQgghhBCNQqfTNVqnSUREBHl5eU778vLy8PPza5RRKCCdKEIIIYQQQgghxFVNoVE0dRQaRa9evVi8eLHTvuXLl9OrV69G+5uysKwQQgghhBBCCCGaXGVlJbt372b37t2A7RXGu3fvJj09HbBNDRo/frw9/N/+9jdOnDjBM888w6FDh/jkk0+YNWsWTzzxRKPFUUaiCCGEEEIIIYQQVzGl+soYibJ9+3YGDRpk/3x6LZUJEybwzTffkJOTY+9QAUhISGDRokU88cQTfPDBB8TExPDVV18xbNiwRoujdKIIIYQQQgghhBCiyQ0cOBCrte63kX3zzTcuj9m1a1cjxsqZdKIIIYQQQgghhBBXMYVGVvJoKJKTQgghhBBCCCGEEPUgnShCCCGEEEIIIYQQ9SDTeYQQQgghhBBCiKvYlbKw7JVARqIIIYQQQgghhBBC1IOMRBFCCCGEEEIIIa5iCo2MRGkoMhJFCCGEEEIIIYQQoh6kE0UIIYQQQgghhBCiHmQ6jxBCCCGEEEIIcRWThWUbjoxEEUIIIYQQQgghhKgHGYkihBBCCCGEEEJcxWRh2YYjnShnCOrbjeZPTcK/Szs8osLYPu4f5C1Y2dTRanQ/r9nOt8s3UVReSauYcJ69bRjt46Ndhp2/aQ8vzVzotE+rVrH1wylO+07kFPLB3JXsOJqOyWKheWQI7zxwM5FB/o2WjoYyrLuGnq3VeOrgZK6FOX8aKCyznveY3m3VDOykxtdLQU6RhbnrjWTkW1yGnTxKR3Kciq+X6ElJNdv339hHQ0KkioggBXklVt77tbZB09UY9qz7gZ2rplNdUUBIVDIDxr1IRLMOdYY/unsJmxd/QHlxFgGh8fQZ/TTxbQbYvzfoq9i48B2O71tBbXUpfkExdOp/D+373HE5knPJhnZV06O1Gk8tpObaykFR+fnLTq82Kvp3VOPrqSCn2Mr8DQYyC2zHeOpgaFcNrWKUBPgoqKq1kpJq4Y9tRmqNjnO0iFIyrJuaiCAlBhPsOGJi2TYTlvP/6Sa1ecUPrFs8g8qyQiJik7n+nn8R28J12cnLPMrKOR+SlZpCaWE2I+98jj7DJ5wTrqw4j2Wz3uHInj8xGmoJDo9j7OTXiGnerrGT0+BuGx7AkF6+eHsoOZSq58tfC8ktNNUZvnVzD24Y7E/zGC1B/mrenJ7Htv3V54SLDtNw9+hA2rTwRKmEzDwj73ydR2Gp2cVZ3VdDX2sAY/tpSIxW4uelQG+EtDwLS7YYKbhA/X+5De6komtLJR5aSM+3snCzieKK8x/TI0lJn3YqfDwhr9jKoq1msgod6VIrYVh3Fe3jlahUcCzbyu+bTVS5uA156uAfozX4eyt47UeDU110WlyognuHq8kvtfLpwrrLbWPau/4Hdq2eTnVFISFRyfQf8wLh57k/Hdu9lM1LP6CiOAv/kGb0vt75/gRQnHecjb+/TfbxbVgsZoLCWzBi4jR8A6MoL85k5v9d6/Lcw8e/T2Kn4Q2avkuVsukH9v45g5rKQoIikul9w78Ii607f07sW8r25dOoLMnCL7gZPYY/RVzyAJdh1819mUNbf+GaUc/Rvq9zXZ1+aA07V35Kce5hVGodkc27c909HzVo2hrD5hU/sH7JGfesu/9FzPnuWXM/JPuMe1bvYefes8pP37P2Ot+zohOuvHvW2bz7XofP4NGo/AIwZqVROvtrjOnH6w4/YCTefYaiDgzBXFVO7Z4tlC38CUwuKhgh3IBM5zmDytuL8r2H2f/oK00dlctm2fYU3pm9nAdH9eOn5yfTKiacf0z7ieLyqjqP8fHQseL1x+3bklcfcfo+o6CYe9/5lviIEL568h5+feF+HhjRD53a/fvsBnVS07e9mtl/Gpg2uxaD0cr91+tQq+o+pmMLFTf00bB8u5H3f6slu8h2jI/nuWH7dVBjPU97fOtBE7uPXRk/Zo7sXMy6eVPpOfwhbn96LiHRycz/bBLVFUUuw+ec3MnSmU/R5pqbuePpeTRvP4Tfpz9EUc4Re5h1814n7dA6ht39Fvc8t5jOAyawZvZ/ObHf/TszB3RU06edmrnrDHw0T4/BBJNGas9bdjo0V3F9Lw0rd5iYNkdPTpGFSSN1eHvYvvfzUuDnrWDRZiPv/qpn1hojrWKU3DxAaz9HZJCC+0ZoOZxp4YM5en5YaaBNMxUjerjv9bZ382IW//gGg296iIf+M5uIuCS+eet+Kstdlx2joZbA0FiG3fokPv4hLsPUVJXxxf/diUqlZsLTX/DY678z4o5n8fT2a8ykNIobB/szor8fX/xaxJT3s9HrLbzwtwg055nLrNMqSMsyMH226zwECA9W899HI8nKN/LSxzk8/VYWs/8oxWByr06CC2mMaw0gs8DCr2uMvDNLz/TFehQKmDxKi8KNHtz1baekZ2slCzeb+GKxCYMJxg/VoD5Pa65dvJLh3VWs2WPms4VGckusjL9W7ZT24T1UJMUo+WWtiRlLTfh5wh2DXNchN/VWk1dSd5nx0MDYfmpO5jRduTq6azHr579O92EPcduTcwiOSmLBF5PPe39a9v1TtOlxM7c9NZfm7a9l8dcPO92fygrTmf3hnQSGNWfMP2Zyx9Pz6T70H6jUOgB8AiK59+V1TluPYY+g0XkR17rfZUl3fR3fu5jNi96gy5CHGPPwbIIjk1gy435qKl3nT17aLlb9/DRJ3cYx5pE5xLcZwvLvH6E498g5YU+mLCc/Yw9efmHnfrf/D9bMeo5W3cYw9tG53PC3H2jRcVSDp6+h7duymCU/vcGgGx/iH6/MJiI2iW/ePv89Kyg0lutuucA969U7UarUTHjqCx6d+jvDb38WD68r7551Ns/OvfAfM56KZbPJf+s5jNlphPz9eZQ+rtPm2bUP/qPvoGLZb+RNfZLSnz63neP62y9zzIWoP+lEOUPBsj858tL75M1f0dRRuWy+W7mFsX06c1PvTrSIDOWFO0biodUwb9Puug9SQIi/j30L9vNx+vqj+Wvo27YFT4wdQnJsBLGhQQzs2IogP+/GTUwD6NdBw4odRlJSzeQUW/l5lQE/LwXtEupunQ/oqGbLARPbDpvJK7Eye60Bo9FK92TnBmhUsIIBHdXMWq13eZ75G4xsTDFRfIGnqe5i15qvadfrVtr0HEdwRCKDb3kFtdaDA1tmuwy/e+1MmiX3o+vgyQRFtKDXyMcJjWnDnnXf28PknNxF6+43EdOyJ37BMbTrfRshUcnkpe29XMn6y/q2V7Nql4kDaRZyi63MWm0rO23j6y47/Tqo2XrIzPYjZvJLrcxdZ8Rogu5JtrKTV2Ll++UGDqZbKK6wcjzbwrJtRlo3U6I89cOuQwsVOUVWVu40UVRu5WSOhcVbjPRqq0aruRwpv3gbln5Lt4G30LX/WMKiE7lx4stodB7sWDvHZfiY5u0Zccc/6XDNKNQarcswf/7+Ff5BkYy7/zViW3QgKDSGlu37EBwe15hJaRSjBvgx+49Stu+vJj3HyEc/FhDop6J7e686j9l9qIafl5Swdd+5o09Ou2NkILsO1vD9whJSswzkFZnYnlJNeaXrUXPuqjGuNYCth8yczLVQUmklu8jKsm1GAnyUBPq4Ty9Kr9Yq/txr5lCGlbwSK3PWm/D1guS4uptzvdso2XHUwq5jFgrKYOEmM0YzdEm0HaPT2P5/6XYTJ3Ot5BRbmbvBRFyYkpgQ57R3T7KNgNmQUndn/+heKvaesJBR0HT3st1rv6HtNbfQpsc4giISGXTzK6g1Hhzc6vr+tGfdd8Ql96XL4EkEhbfgmhGPERrdhr3rf7CH2bz4feJbD6DP6H8SGtMG/5A4EtoNxss3GAClUoW3X6jTdmL/ChI7jkCrc6/2z75135Lc/RaSuo0lMDyRvje9jFrrweHtruvg/RtmEtOyLx37TyIwrAXdrnuMkKjWpGz60SlcVVkemxa8yqDb3kSpdG4DWcwmNi18jR4jnqZNz9sJCE0gMDyRFh1GNFo6G8qGpd/SbYDjnnXDxJfRaD3Y8Wfd96zht1/gnrXIcc+KucLvWWfzGTiKqo0rqd6yBlNeFqWzvsJqMOB1zSCX4bXxrdCfPEzNjg2YiwvQH95L9c6NaJolXuaYX/2UakWTbVcb6UT5H2Y0mTmYnkPP5AT7PqVSQc/kePaeyKrzuBq9gRH/msaw5z/g8U9ncSy7wP6dxWJl3f5jNAsP5u/TfmTQP9/l7jdmsGr34UZNS0MI8rU99T+a6Wgc1hogPd9Cs3DXl4pKCdGhSo5kOn6EWIGjWc7HaNRw17U65q4zUlHTaEm4bMwmA/mZKcS26m3fp1AqiW3Vm5zUXS6PyUndTWyrXk77miX3JTd1t/1zZEJnTuxfRWVpHlarlYyjmyktOElcct9GSUdDCfJV4Oel4GjWGWXHCBn5FuLCzlN2QpzLmxU4lmUmro7yBuChVVBrwD5VR60Ck9n5x4rRDBq1gpgQ96viTSYD2akpJLZ1lAWlUklim16kH9v9l897cNdqohPa8tOHj/PaQ3346IWxbFs9qwFifHmFBasJ9FOz74hjHkV1rZVjaXqS4nV/+bwKBXRp40V2vpF/PRjOV/+J47XHI+neru6OGXd0ua41jRq6JakpKrdQVuUeHduBPuDrpeB4tiM+eiNkFViJDXXdQFUpITJYwfFs53vU8WwLMaG2tEcFK1CrFJw447yF5VBaaSU2zHHeUH8Y2EHFnPWmOkdUdk5UEuirYM2ephtRWdf9KaZVL6f7zZlyU3cT27K307645D728FaLhdSDawgIjWf+55OY/u/e/Pr+rZzYV/dDt/yM/RRmHaRNz3GXnKaGZDYZKMxOITrRUQcrlEqiW/QiP323y2Py0vc4hQeIadnXKbzVYmH1rGfp0P8+gsJbnnOOwuwDVJXnoVAomTNtLN+/1o8lXz/gcjSLOzl9z2px1j2rRdteZFzCPevQrtVEx7flp48eZ+rDffj4xbFsW3Pl3bPOoVKhiW2O/sg+xz6rFf2RfWjjzy0XAIbUI2hjmqOJa2E7RXAYHq07U3vAdXtSCHdwUS1spVKJSqU676a+AqZsCJuSymrMFivBZ40QCfbzobC80uUx8eHBvHzPaN772628OvEmLFYrE9/6hryScgCKK6qo1huYsWwjvdu24NNH72RwpySe+uJXth9Ja/Q0XQpfL1tjsaLGuXVYWW21f3c2bw8FKqWCyrOOqai24nfGMTf01pCaZ3FaA+VKVlNVgtVitj+BO83LN5jq8kKXx1RXFOLlG3JO+Kozwg8Y9yJBEYnMeLk/Hz/VjvmfTWbguJeIbtG94RPRgE6Xj8rqs8pOjRXfOn6jenlwquw476+oqbu8eelgSBc1Ww851hg4kmHrsOvYQoVCAX5etjBnxsudVFeUYrGY8fFzLjs+/sFUlrkuO/VRUpDB1lU/ExzRjIn//JIeQ27n9+9fY+e6eZcY48srwNc2mqK00rmuKK0027/7K/x9VHh6KLlpiD+7D9Xwf5/lsnVfNU/fG0abFh4XPoGbaOxr7Zo2Kv5zrwf/d58nSbFKvlpkwOwmA3V8PE+lvfastNdaXU4fBVudoVIqzlnbpKoWfD0d5zWZreesbVJZa8XHw/Y3VUq4pb+aZTvMlNUx2zfIF4Z2UTF7XdOux3T6/uR5zv0phOqK892f6g5fXVmEUV/NjlVf0iy5Hzc8ON025eebR8g6ttXlOQ9smU1geAsiE7o0QKoaTm11qS1/fJzT6+kbXGf+1FQW4unjfP/29AmmptIRfs+fX6FUqmjb+x6X56gozgBg58qP6Dz4bwyb8Bk6Tz9+/3ICtdWll5CixmW/Z/k3wj1r9c8Ehzdjwj+/pMfg21n0/WvsXD/vEmPctJTefihUKiwVZU77zRVlqHwDXB5Ts2MD5UtmEfrYf4h69wci/v0h+mMpVC6f1/gR/h+jUCmabLvaXFSPx9y5c+v8btOmTUybNg2L5cKtDb1ej17vPKXBaLWgUbjfU1PhrGPzGDo2j3F8bhHD2Fc+47d1O3nohoFYTj2eGtihFfcM6QlAcmwEe45n8tu6HXRr1axJ4u1K55Yqp7Ulpi9yPc3mUrWJV5EYrboiFoptanv//I7c1N1cP/lT/IKiyDq+nTWzX8HbP4y4pN4XPsFl0ilRxdh+jrkyXy81NPrf1Gng3hE68kusLN/u6EQ5mmVh8RYTY/tpuG2QBrMZVu400TxSdd71d642VouV6IS2XHfLEwBExbchP/MoW1f9TJd+NzVt5M6jbxdvHrzV8eNk6pd5jfJ3Tq/rsX1/NYvW2jq9U7MNJMXrGNrblwPH3bN+utzX2u6jZo5mWvDzUtC/o5q7rtXy6QI9pibo/+6QoGR0L0fH2Q8rm2aBVrB1jhSUWdl7wnUbT6GwdbKs2m2mqPwyR+4ysFpt6U5oO5hOAyYCEBrdmpzUXezf9DPRiT2cwpsMtRzZ+Tvdr/v75Y5qkyjISmH/hu8Y88hsFHUsImQ9dUPqNOhvJLS7DoABN7/Gj68P5OS+ZbTuedtli687sFqsRJ15z2rWhryso2xb9TNd+t7UtJG7zLSJbfAdOobSX6djSDuKOjQC/7ETsZSVUPGH6ylTQjS1i+pEufHGG8/Zd/jwYZ577jkWLlzIXXfdxX/+858Lnmfq1Km88orz4q13KIK4S+V68SXROAJ9vFApFRSdtYhsUXklIWetc1IXjUpFUmwEGQXF9nOqlUpaRDr/WyZEhrDrWEbDRLyBHEg1826e44fD6UUJfT0VVJzxlNPHS0F2oeuGY1WtFbPFan9CeJqvl4LyU+dIjFYS7K/gv5OcHxVOGKblZI6FTxc0TudNY/L0DkShVJ2zSF91RRFefq6vY1dPAasrivA+Fd5kqGXjovcYdd9HJLQdCEBIVDIFWQfZuXq6W3WiHEgzO7196XTZ8fFSOI1k8vFUkF3kuiejupZTZcd5/9nlD0CrgUkjtOgNVmYuN5zzlHfdPhPr9tnWRqjR26Y8jOipobjCTR6hn8HLNwClUnXOgnyVZUV1LsBXH74BIYRGt3DaFxrVnP3b//jL57wctqdUc+xtx/RJ9al5wwE+KkrLHb/cA3xUpGb/9Q6EiiozJrOVjDzn4QaZeUaSm7vvSJTLfa3VGqHWaKWo3Ep6voGXJ3jQNl7FnuOXvxflUIaFzDPuPapTT/J8PJxHP/p42N425Eq13pZ277P+ib09sE8trayxolYp8NDgNBrFx0NBZe2pzoNIBeEBCtrcY3vYdfqO9+ztGv7ca2HTATPRIUoighSM6mn7R1IoQKlQ8NI9GmYut623cjmcvj/VnHN/Onc05Gm2+1Pd4T29A1Eq1QRFOK/REBTWguyTO84537G9yzAZa0nudtMlpKRxeHgF2PLnrEVkayqK6swfT58Qp1EnADWVRfbRKbknt1NTVcRPbwy2f2+1mNmy+E32b5jJHc+uxMs3FIDAMEc9rVJr8Q2MpbI0p0HS1hjs96yyhr1n+QSEEBZ11j0rsjkp29z7nnUhlqpyrGYzSl/nt3GqfP0xV5S6PMZv5K1Ub/uT6s2rADDlZKDQ6gi47QEqls/lf+qJUCNTXoUjQprKXx76kZ2dzf3330/79u0xmUzs3r2bb7/9lmbNLjzSYMqUKZSVlTlttyqD/mpUxF+kUatoHRfJ1sMn7fssFitbD6fSobnrVxyfzWyxcCwrnxB/X/s528RHkZrnfLNJyyt2u9cb641QVG61b3klVsqrrLSMcTz502kgLkxJWp7rH6NmC2QVWGgZ47iUFNg6Tk4fs3qnkXdn1fLer44NYMFGI7+sbvwRDI1BpdYSFtOWjKOb7PusFgsZRzYRGd/Z5TGR8Z3IOLrZaV/64Y1ExHcCwGwxYTEbz3mKpVSo7E+w3IXBVdmptpIY5Vx2YsOUpNfxqmuzBbIKrSRGO45RAIlRKtLPKG86DUweqcNkgW+XGc77RLyiGkxm2xujSistTq8wdRdqtZao+LYcT3GUBYvFwvEDm4lL7PSXzxvXsguFOalO+wpzUwkMjvrL57wcavVWcgtN9i0z10hJuYl2rRy/ej11ChKb6Tic+tc7XE1mOJ6uJzrMebXhqFANhcVNN8LhQi7nteaSgvO+9acxGUxQXOHYCkqtVFRbaR7pqCN1GogOVdS5iKvZAjlFVppHOt+jmkcqySywpT27yIrJ7HzeYD8I8FGQkW87789rTHyy0MSnp7b5m2wV0YylJrYeNqM3wkfzjfbvP11oYvthCwVltlccZ17Guqiu+1Pm0c32+83ZIuI7kXlGeICMI477k0qtJSyuHaX5J53ClBak4ht4bh1zYMtvJLQdhKeP+7VtVWotIVFtyTruqIOtFgvZxzcTFtfJ5THhcR3JPu58/848ttEevmXnGxj36DzGPjLHvnn5hdGh/32MuO8rAEKi26JSayktOKPNaTZSWZqFj4s8dBen71knDjjfs04c2EzsJdyzmrXsQmFuqtO+otxUAkLcNy/qxWzGmHECXav2jn0KBbpW7TCkHnV5iEKrO7ejpB4zG4RoShfdiVJWVsazzz5LYmIiKSkprFy5koULF9KuXf3faa7T6fDz83Pa3GEqj8rbC7+Oyfh1TAbAKyEGv47JeMRGNnHMGs89Q3oyZ/0uFmzaw4mcQl79aTE1eiM39uoIwAvfzGfavFX28J8v+pONB46TWVDCwfQc/vX1PHKKyxjTp5M9zMSh17BsxwFmr99Jen4xP6/Zxp/7jnDbgK6XO3kXbd1eI0O6amgTryIiSMEdQ7SUV1vZf9Lxy/XB0Tr6tHMM4lq7x0TP1mq6JakIC1Awtr8GrUbBtlPrVlTUQG6x1WkDKKmwUlzhuGkE+ymIClbg62Vb1DAq2PZZ1fSXhkudB95LyqZZHNw6l+Lc46z+9WVMhhra9BwLwB/fP8OGhe/Yw3caMJ70g+vYuXoGxXnH2bzkQ/Iz9tOx390A6Dx8iG7Rg/UL3iLz6BbKijI4sGUOB7fPo0X7a5skjRdj/T4Tg7uoad1MSUSggtsG2crOmevg3D9KS6+2jl9k6/aa6JGsoktLW9kZ00+DRgPbj9jKzukOFK0afltrRKcFH0/bdmZfU/8OaiICFYQHKhjSWc3ATmrmbzC67cObPsMnsH3tr+xcN4/8rOMs+PYVDPoauvYfA8Cvnz/Lslnv2sObTAay0w6SnXYQs8lIeUk+2WkHKcpLczpnxvE9rFnwOUV5aezZ+DvbVv9Kz2vvvOzpu1SL1pYzbmgA3dp6ERep4eG7QikpN7PtjDfv/PvvEQzv62v/7KFVEB+lJT7KNkUxLFhNfJSWkABHeVuwuozenbwZco0vESFqhvf1pWtbL5ZtuLLmXzTGtRbkq2BgJzXRIQoCvBU0C1dy91AtRhMcSneftaw2HTQzoIOKpFiF7X7TV01FNRxKd/zgmHidmh7JjhvHxgMWurZS0qmFkhB/uP4aFVo17DxmO0ZvtP3/8O5qEiIURAYpGNNHTXq+xd75UVIB+aVW+1Zy6t5VUGqlqta2WO2Z3+ef2m8y2/7feJn76ToNmMiBzb9ycNtcivOOs+Y32/2pdQ/b/Wn5j8+y8XfH/aljv3tIP7SeXWtmUJJ3gi1LPyQ/I4UOfe+yh+k8cBJHdy8hZdMsSgvS2Lvue04eWE37Ps51TGlBGtknttOm5y2XJ7F/Qft+Ezi87VeO7JhHSf5x1s9/BaOhhlZdbXXw6lnPsnWpow5u12c8GUfWs3fd15Tmn2DHio8ozEqhbS9b2j28AwmKaOW0KZVqPH1CCAi1vbxA6+FD6x63sXPFR2Qe2UBpwUnWz7ONSm/efthlzoGLY79nrZ9HfvYZ96x+tvz67fNn+eOse1ZO2kFyzrhn5Zx1z+o97NQ9a+Gpe9am39m25ld6Drny7llnq1yzCO9eg/Hq3h91eDQBt0xGodVRvWUNAIF3PYTf9XfYw9fu34F336F4du6NKigUXVJ7/EbeRu3+HTIKRbiti5rO8+abb/LGG28QERHBTz/95HJ6z5XMv2s7eq38zv65zdvPA5Axcw57J01pqmg1qmHd2lJSWc2nv6+lsLyKpJhwPnnkDvtri3OKy5xGBpRX1/LfHxZRWF6Fn5cHreMi+fafE2kRGWoPM7hTMi/cOZLpSzfw5qw/aBYezNsP3EznRPd/bdvq3Sa0GgU3D9DiqYWTuRa+/N15PnywnwJvD0ee7DluxsfTyLDuGnxPTf356nf9OYsYXsitA7W0OONJ6ZO32saev/p9jb3B6k5adRlJTVUxm5dMo6q8gNDo1tz44Ff24cAVJTkozugcjUzowrDxb7Np0fts/P1dAkLjuX7SxwRHtrKHGT7hXTb+/i7Lvn+a2uoy/AKj6DXyCdr3ueOcv+9u1u4xoVXDuH5aPLSQmmthxhLnkSNBZ5WdvSfMeHvCdd3UtrJTZGXGYkfZiQ5R2t8e8uwdzuPxX/+xlpJKW7lIilUyuLMatcr21HnmHwYOZ7jvU5wO14ykqqKElXOmUVFWSGRcayb+8wv70OiyIueyU1FSwMcvjrV/Xr9kBuuXzCAhuTuTn58J2F4pedej0/jj1/dYPf8TAkNiGHXXc3TqPfryJq4BzF9VhodWwYO3BuPlqeTQST2vfp6L0eSoB8JD1Ph6O+qL5rE6XnnY0eE/8SbbIohrtlbw8U+2Yfhb91Xzxa+FjLk2gPvGBJFdYOTtb/I5dPLKmlLYGNea0WwlIUJJ33ZqPHW2KS4ncyx8Ml9/zqKsTWn9fgtatYIbeqnx0EJ6npXvVhgxnXG5B/oq8NY50r4/1YKXBwzupMLHU0VusZXvVpic0rV0qxlrd7htoBq1Eo5lW/l9s/uOULqQlp1HUlNZzNalH9rvT6Mf+PKM+1O2U9smMqEL1939NpuXvM+mRe8REBrPyHs/cro/tegwlIE3v8yOlV/w59xXCQxLYMTEaUQ1d35AdHDrbHz8I4hL6nN5EvsXtOgwktrKEnasmEZ1RSHBka0Zce8X9vypKnWug8ObdWbw7W+x/Y8P2LbsPfxDmjH07g8JimhV159wqefIf6JQqVnz67OYjLWExXZg5OSv0Xm610jls7XvOZKqcts9q/LUPWvC0457VmlxDgrlWfesf597z4pP7s7kKY571p2PTmP5r++x5tQ9a+QVes86W82uTSh9/PAdeSsqvwCMmakUfjbVvtisKjDYvs4QYF/3xG/Ubaj8gzBXlVO7fwfli35ukvhfzRRKmc7TUBTWixgnr1Qq8fT05Nprr0Wlqnt865w5F78I0CJN0kUf879i8LIXmjoKbu3Fw+71+kB3khB/Zb2+9HJLz7gK3jfdSLp3/Ouv0/1f8MvP7v22sabUvHVEU0fBrel0TTQ/6AoRGqK5cKD/UXq9+z1QcSfNrvCZMI2p90/u/zCqKUV/8EtTR+Gy2NC56WYF9Nl17vpRV7KLGokyfvz4OlfdFkIIIYQQQgghhPtRuOsaAVegi+pE+eabbxopGkIIIYQQQgghhBDuTbqjhBBCCCGEEEIIIerhokaiCCGEEEIIIYQQ4sqiVMmyHA1FRqIIIYQQQgghhBBC1IOMRBFCCCGEEEIIIa5i8orjhiMjUYQQQgghhBBCCCHqQUaiCCGEEEIIIYQQVzFZE6XhyEgUIYQQQgghhBBCiHqQThQhhBBCCCGEEEKIepDpPEIIIYQQQgghxFVMIdN5GoyMRBFCCCGEEEIIIYSoBxmJIoQQQgghhBBCXMUUShk/0VAkJ4UQQgghhBBCCCHqQTpRhBBCCCGEEEIIIepBpvMIIYQQQgghhBBXMYVSFpZtKDISRQghhBBCCCGEEKIeZCSKEEIIIYQQQghxFVPKK44bjIxEEUIIIYQQQgghhKgHtxmJMnjZC00dBbe1atj/NXUU3NqucUlNHQW3FRraramj4NZCQ3RNHQW3ZbE0dQzcW1lhaVNHwW15e8c2dRTcWodW8iTwfCprmzoG7kvrNq1291RWJc+G6+IR7N/UURBuQNZEaThS2wghhBBCCCGEEELUg3SiCCGEEEIIIYQQQtSDDAwUQgghhBBCCCGuYgqljJ9oKJKTQgghhBBCCCGEEPUgI1GEEEIIIYQQQoirmCws23BkJIoQQgghhBBCCCFEPUgnihBCCCGEEEIIIUQ9yHQeIYQQQgghhBDiKqZUyXSehiIjUYQQQgghhBBCCCHqQUaiCCGEEEIIIYQQVzFZWLbhyEgUIYQQQgghhBBCiHqQkShCCCGEEEIIIcRVTKGU8RMNRXJSCCGEEEIIIYQQoh6kE0UIIYQQQgghhBCiHmQ6jxBCCCGEEEIIcRWThWUbjoxEEUIIIYQQQgghhKgHGYkihBBCCCGEEEJcxWQkSsP5n+hE+XnNdr5dvomi8kpaxYTz7G3DaB8f7TLs/E17eGnmQqd9WrWKrR9Ocdp3IqeQD+auZMfRdEwWC80jQ3jngZuJDPJvtHQ0paC+3Wj+1CT8u7TDIyqM7eP+Qd6ClU0drcti4i3RjBwcio+3mv2HK/hgeipZufo6w99xYyR9ewQSF+WJ3mDhwJFKvvgxg8ycWnuYJybH06W9H8GBWmpqzaQcqeTLHzPIyK6t87xN7cDmH9i/bgY1lYUERiTT6/p/ERrboc7wJ/ctZeeKaVSWZuEX3Ixuw54iNmmA/fudKz/i5N7FVJXlolRpCI5uQ9ehjxMW29EeZtZbQ6gszXY6b9frnqTjgPsbPoGXKGXTD+z905Y/QRHJ9L7hX4SdJ39O7FvK9uXTqCyx5U+P4U8RlzzAZdh1c1/m0NZfuGbUc7TvO8G+f9nMf1CUfYjaqiK0nn5Et+hFjxFP4+0X1uDpa2hbVvzA+iUzqCwrJCIumVF3/4uY5q7zKy/rKKvmfEh2agqlRdmMuOM5eg+b4BRm1dyPWD3/Y6d9IREJPPb64kZLQ2MbPzaCEYNC8PFSkXKkimnfZJCdV3fdc/vocPp08yc20gOD0cKBo1V89XM2mafqK19vFfeMjaRre1/CgrWUlZvYuLOUb37LobrGcrmSdV7dWino3VqJjyfklcCS7Wayi+oO3zpOwaAOSgJ8oKgCVu6ycCzb6hRmYAclnRMVeGggo8DK4m0Wiisc30cEwrWdlUQFK7BY4WC6lT92WjCanP9Wx+YKrklWEuwHeiMcSLeyZJt75NtpG5f/yJ+LZlBRVkhkXBI3jv8XsS1cX1e5mUdZPvsjsk6mUFKYzfV3P0e/4eOdwlgsZpbP/phdGxdSUVqIX2AYXfvdxJCb/oZCceU1xret+oFNy6ZTWVZIeGwyw+94geg66p38rKOsnT+NnLQUyoqyue62KfQc6lzvbF/9EzvW/ERpURYAoVGJ9B/9EInt+zd6Whqa1Mnnt3PtD2xbPp2q8gLCYpIZcuuLRMa7zp/C7KOs/30aeekplBdnMejmKXQbPNEpTMbRbWxbPp3cjP1UlRVw0wMf07LTtZchJQ1P120gnr2vQ+njjykvk+olP2HKTnUZ1m/8U2jik87Zbzi6j4qfPrR/VoVE4DVkHOpmrVAolZgLcqj49TMs5cWNlQwhLspV34mybHsK78xezr/uGEH7hGh+WLWVf0z7ifkv/50gP2+Xx/h46Jj38t/tn89uJ2QUFHPvO99yU+9O/H30ALw9tBzPLkSnvnqzU+XtRfnew2R8M5tuv3184QOuErffEMmY4eG88ckJcgv0TLw1htenJHHf0/swGq0uj+nQ2pcFf+Rz6HgVKiVMuj2WN5+3HVOrtzW4j5ysYsX6IvKL9Ph5qxl/czRvPJ/E3Y/sweL6tE3qxN7FbF38Br1vfJnQ2A6kbJjJsm/uZ9wTi/H0CT4nfF7aLtbMeppu1z1BbNJAju/5nZU/PMKND/1GYHgrAPxD4rlm9Av4BsViNtaSsuFbln09mZufWoand5D9XF2GPEKr7rfYP2t0rq/bpnR872I2L3qDvje9TFhsB/ZvmMmSGfdz61N158+qn5+m+7AniEseyPHdv7P8+0cY8/BvBEW0cgp7MmU5+Rl78HLRMRLVvAedBj6Al28o1eX5bF78Jit+eIwb//5To6W1IezbspglP7/BDRNeJqZ5Bzb9MZNv376fx15fjI/fufll1NcSGBpL2+7DWPLT63WeNyw6kYn/nGH/rFRduXXyraPCuOm6UN76Ip3cAj0TxkUy9ZkWTH7uYJ11T/tkHxasKOTIiWpUKgX33hLJ1GcTuf+5g9TqLQQHaggO1PDlT1mkZdUSHqLl0YmxBAdo+O+HqZc3gS60aabgui5KFm21kFVopWeykrsGqfh4oZlqF31HMSEwro+SlbstHM2y0i5eyW39lXyxxExBmS1M7zYKeiQpmLfJQmmllUEdbOf85HczZgv4eMI9Q1SkpFlZss2MTgPDuqm4sZeS39Y5OkiuSVZwTWslK3bZ4qZRQ4C3e3Ui7Nm8hN9/eIMx975EXGIH1i/9julvPMDTby3Cx9/1dRUUGkP7HsP4/XvX19WahV+xeeXP3PrgVMJjEsk8uZ9fv/gXnl4+9Bl2T2MnqUGlbF3M8lmvM/Lul4lu3pEtK77lx/cn84//W4K3i3rHZLDVO627DWf5L67zxy8wnMHjniIovBlYrezZOI9fPnqI+/89h7Dolo2dpAYjdfL5Hdq+mDWzpzL0jleIjO/IjlXf8uuHk5j08lK8fV3kj6GGgJAYkroMZ/VvU12e02ioJjQmiXa9xzH/i4cbOwmNRtumG97X3ULVoh8wZZ3Eo+cQfO96jNKP/421uuKc8BWzPoUzyoHSyxv/B/+N4cB2x77AUPwmPoN+9waq1y7Aqq9FFRqF1WS8LGkSoj6u+jVRvlu5hbF9OnNT7060iAzlhTtG4qHVMG/T7roPUkCIv499C/bzcfr6o/lr6Nu2BU+MHUJybASxoUEM7Niqzk6Zq0HBsj858tL75M1f0dRRuazGjgjn+7nZbNxRyon0Gt74+AQhgVr6dgus85gprx9h2dpC0jJrOJFew5ufniA8VEfLBEf5WLSygH2HKsgrMHA0tZqvZ2USHqIjPEx3OZJ10fZv+JakbrfQqutYAsMS6XPjy6g1HhzZMcdl+AObZhLTsi/t+00iIKwFXYc+RnBUaw5s+tEepkXH64lO7I1fUCyB4S3pMfI5jPpKSnIPO51Lo/PGyzfUvmm0Xo2a1r9i37pvSe5+C0ndxhIYnkjfm15GrfXg8HbX+bN/gy1/OvafRGBYC7pd9xghUa1JOSN/AKrK8ti04FUG3fYmSuW5jc/2fScSHtcJ38Bowpt1ptOA+8nP2IPF7N4NjY3LvqXbgFvo0m8sYdGJjJ7wMhqtBzv/dJ1fMc3bM/z2f9LhmlGo1do6z6tUqvENCLVv3r51X6fubszwMH5ckMemnWWczKjlzc/TCA7Q0Kdr3aMd//XWcZavKyYtq5YT6TW8/UU64SFaWsZ7ApCaWct/p51k865ycvIN7D5Qyde/5dCzsz9KN2gN9EpWsvOYlT0nrBSWw6KtFoxm6NzCdWdFz2Qlx3KsbDpoC79mr4WcEuiepHQKs26/hSOZVvJLYd4mC75ekBxrO2eraAVmCyzeZqGoArKLYdFWM23ilASeuvV7aGFQRyXzN1rYn2qlpBLyS+FIlnv1eK9b8g09Bt1C9wFjCY9OZMy9L6HRebBtrevrKrZFe0bd+U869RqJWuP6uko7ups2XQfTuvMAgkKj6dBjGK3a9yHj+L7GTEqj2Lz8Gzr3u4VOfccRGpXIqLtfQaP1YPf62S7DRyW059pbnqFdj1Go1BqXYVp1GkzLDgMIDo8nOCKBwWOfQKvzIuvEnsZMSoOTOvn8tq/6mg59bqV9r3GERCZy3R22srN/o+uyExnfgYFjn6V1t1Go6sif5m0H0O+GJ2jVaWhjRr3RefQain7nevR7NmIuzKFq0Q9gNKDr3MdleGttNdaqcvumad4Gq9GA/sAOexivQTdhPLaf6hWzMedmYCkpwHhkj8tOGXFxFEpFk21XGzdoNjUeo8nMwfQceiYn2PcplQp6Jsez90RWncfV6A2M+Nc0hj3/AY9/Ootj2QX27ywWK+v2H6NZeDB/n/Yjg/75Lne/MYNVuw/XeT5xZYoM0xEcqGXnvnL7vqoaMwePVdKmlc95jnTm7aUCoKLS5PJ7D52SYQNDyc6rpaDQcGmRbgRmk4Gi7BSiEnvZ9ymUSqISe1GQvtvlMfnpe4hq0ctpX3RiX/IzXIc3mwwc3jYLrYcvQRHJTt/t/fMrfvi/a5j30Vj2rZuOxew6H5uK2WSgMDuF6LPyJ7pFL/LryJ+89D1O4QFiWvZ1Cm+1WFg961k69L+PoPALP9GsrS7l2O6FhMd1Rqly3eB3ByaTgezUFJq3caRfqVTSom0vMo7vvqRzF+Wl8ebj/Xn3n0P59bN/UlqUfeGD3FBEqJbgAA079zsajNU1Fg6dqKJ1Yv076709bbf4iirzecKoqK4xY2niWSlKJUQGwclc546Jk7lWYkJcN75iQhSczHEOfzzbET7AB3w9FZw445x6I2QVYg+jUoL5rLSfnsYTF2YL0zxCgUIBvl7w9+tVPD5Gxbi+SvzcqD/XZDKQdfIALdteY9+nVCpJbNuL9GO7//J5m7XsxPGUzRTkpAKQnXaI1MM7SerY7xJjfHmZTQZy0lJIaNPbvk+hVJLQuheZJ3Y3yN+wWMzs37oIo6GamBadGuScl4PUyednNhnITU+hWZJz2WmW3Jvsk7uaMGZuQKlCHRmH4eTBM3ZaMZw8iCameb1OoevUF8P+bWA83f5VoG3ZHnNRHr53PUbgU2/jN2kKmqRODR17IS7JRY2rs1gsvPXWWyxYsACDwcCQIUN46aWX8PT0vKg/qtfr0eudx+ZaDEZ02oZt+JdUVmO2WAk+a4RIsJ8PqXmuJ1nHhwfz8j2jaRkdRmWNnpkrNjPxrW+Y/e8HCQ/0o7iiimq9gRnLNvLQDQN5bMxgNh44zlNf/MqXj99Dt1bNGjQNoukEBtjKY0mZ81P9kjKj/bsLUSjgoQnN2HeogtTMGqfvbhgaxgN3xeLpoSI9q4ZnXjuMyexeTzYB9NWlWC3mc6alePoEU1pw0uUxNZWFePiEnBO+pqLQaV/6odWs+eVpTMYavHxCGXbvdDy8HU+q2vS6h+CoNui8/MlP28X2P96juqKAniOfa6DUXbrauvLH9/z54+kqfyod+bPnz69QKlW07X3+IfNblrzNgU0/YjLWEBbbkWETPv2LKbk8qitKsVjM50wv8PELpjDHdX7VR0yLDoyd/BohkQlUlBawev7HfPXa3TzyfwvReV5ZowSDTtUvpefUPSYC/etf9/zt7hj2H64kNdP1Wkt+PiruuimCxavPs+jIZeKlsz3kqKp1rgOraiHEz3Unio8HVJ6VtKpaKz4eCvv3AFXOVS+VtVZ8TjVbUvOsXNcVerVWsOWwFa0ahnS2dT6dDhPoAwqgb1sly3ZYqDVYGdRRyd2DVXy2uOk7oODM68q5XvH1D6Yg58RfPu/A0fejr6ninWdGoVCqsFrMDLvlMTr3GX2pUb6sqitLsFrM50xN8fYLoTD3r9c7AHmZh/l66h2YjHq0Oi9u+cdHhEYlXtI5Lyepk8+v5lTZ8Tqr7Hj5BlOc99evrauBwsvHVi9UlTvtt1ZVoAiJvODx6qh41OHRVC381nFOb18UOg88+wynevV8qlfMRpPYDt9b/0b5zHcxpR1p8HT8L1G4w7DTq8RFdaK8+uqrvPzyy1x77bV4enrywQcfkJ+fz4wZMy588BmmTp3KK6+84rTv+fE38cKEsRd1nsbQsXkMHZvHOD63iGHsK5/x27qdPHTDQCxWWwNvYIdW3DOkJwDJsRHsOZ7Jb+t2SCfKFWxIn2CeuD/e/vn5Ny69on70vmbEx3ry2EsHzvlu5foiduwrIyhAy63XR/DvxxJ59KUDda53cDWKbN6Tmx6eQ21VCYe3/8rqn59g9N9+sXdItOs70R42KCIJpUrDhvkv0+26J+scIns1KMhKYf+G7xjzyOwLLt7Ysf8kkrqNo7I0m50rP2HNr88xbMJnV+Sij5eiVQfHQo4RsUnENO/AO08PYf/WJXQdcHMTxuzCBvcO5LF7Y+2fX3jn0hvmD0+IIT7Ggyf/e9Tl914eSv7v6RakZ9Xy3dycS/57V6qCMpi/ycJ1XZQM6QQWK2w9bKWyxsqp2z0KBahUCpZuN9tHtczZYOHJsSoSwhUcz7l66+y9W5aya+Pv3P6PtwiPSSQn7RALv5+KX0AYXfvf1NTRcwshEQk88O+56GsqOLBjGQtmPMf4Z767ojpSGsOVXCeLy0PXuS+mvEznRWhPtV0Mh3dTu8W2hIA5LxNNTAs8uvanUjpRhJu4qE6UmTNn8sknn/Dggw8CsGLFCkaNGsVXX32F8iJ6tqZMmcKTTz7ptM+y8beLiUq9BPp4oVIqKCqvctpfVF5JiF/9pmNoVCqSYiPIKCi2n1OtVNIi0vlpT0JkCLuOZTRMxEWT2LijhIPHKu2fNRpbmQ7011Bc6ngiHOiv4Xha9QXP98i9zbimSwBPvHyQwuJz16ioqjFTVWMmK1fPwaOVzJvehb7dA1m90b1WHtd5BaBQqqipdH5aXVNZhNdZoylO8/QJobay8Jzwnr7O4TVaLzTBzfALbkZYXCd+e3cYR3bMpuOAB1yeNzS2A1aLicqSLPxDE1yGudw86sqfiiK8fOvOnxpX+XMqP3NPbqemqoif3hhs/95qMbNl8Zvs3zCTO551vBnLwzsQD+9AAkITCAhrwU+vDyI/fTfhzTo3VBIblJdvAEqlisoy5/yqLC865yn6pfD09iMkIp6i/PQGO2dj2bSzjEPHHPep03VPgL+G4jLH9LVAfzXH02rOOf5sD42P4ZpO/jz16lEKS86tezw9lLz6TAuqayy8/MEJzHXP9rlsqvW26bLeHgrA0Snh7QGVNa47KSprHaNNHOEV9tEpp//r7ek8YsXHQ0FuieOc+1Ot7E814+0BBpPtz1+TrKLk1O2g4lSWF5Q5jqnW2zZ3mdLjuK6c65WKsiJ8L+G6WvzT2wwcPZlOvUYCEBnbipLCbFYv/PKK6kTx8glEoVRRWe5c71SVF15yvaNSa20LywKR8e3ISd3P1hUzGTX+P5d03stF6uTz8zxVdqrPKjvVFUV4+zVc/lyJrNWVWC1mFN5+TvsV3r5YK8vOf7BGi7Ztd2rWzD/3nGYz5kLnzn1zYQ7quP/tjsmGoFT9bz1ga0wXNaYnPT2dkSNH2j9fe+21KBQKsrMvbo6jTqfDz8/PaWvoqTwAGrWK1nGRbD3sGI5osVjZejiVDs1dv+L4bGaLhWNZ+YT4+9rP2SY+6pzpQGl5xVft643/V9TUWsjO09u3tMwaikoMdGnnuDl4eSppnejDgSOV5zmTrQOlb/dAnv7vIXILLrzOiUJh27Qa9xtmp1JrCY5qS/bxzfZ9VouF7OObCY3r5PKYsLiOTuEBso9vJCzWdXj7ea1WzKa686s45xAKhRIPn6A6w1xuKrWWkKi2ZLnIn7A68ifcRf5kHttoD9+y8w2Me3QeYx+ZY9+8/MLo0P8+Rtz3Vd2RsdrmFZjdeGFZtVpLVHxbThxwpN9isXDiwGZiG3AdAX1tFcX5GfgGhDbYORtLTa2F7HyDfUvLqqWo1Ejntr72MF4eSpKbe3PwWNV5zmTrQOnT1Z9/Tj3msu7x8lAy9ZlETCYrL7133G1GvlkskFMMCRHODbyECAWZha7jmFloPSd880hH+NJKqKixkhDuCKNVQ3QILs9ZVWtbD6VtMwUmC5w4NcIko8D23zOnFXlobVOQys7/z3HZqNVaohPacCzF+bo6lrKZuMROf/m8RkMNCoXzfUmpVGK1usEcpougUmuJbNaW1IOb7PusFgsnD20mpnmnBv1bVqsF03nuY+5G6uTzU6m1RMS1Je2wc9lJO7yJqAT3fFhx2VjMmHLS0SScuZadAk1Ca4yZ5x9RqWvTFYVajX7flnPPmZ2KKjjCabcqOBxLadNPPRXitIsaiWIymfDwcH7so9FoMBrdt8F+z5CevPjtAtrERdIuPpofVm2hRm/kxl4dAXjhm/mEBfjy6E22J76fL/qT9gnRxIUGUVFTy7fLN5FTXMaYPp3s55w49Bqe+WoOXVrG0b1VPBsPHOfPfUf46okr63V/F0Pl7YV3Ypz9s1dCDH4dkzEUl1GbcfUOBZ+zJI+7xkSRmVtLbr6ee2+NobDEwPrtJfYwb72QxPptJcxflg/YpvAM6RPMi28fpbrGYl/DoKrahMFoJTJMx8BeQWzfW0ZZuYmQYC133BCJwWBly67SpkjmBbXrM4F1s6cQEt2O0Jj2pGyciclQQ6uuYwBY++uzePuF022YbYRZm17jWfzVePat/5rYpAGc2LuYwqwU+txkm8ZnNFSzZ83nxCUPwss3lNrqUg5u/pHq8jwS2g0DID99FwUZe4lo3hONzpuC9N1sWfw6LTqNRufpXh2W7ftNYO2vUwiNbkdobHv2b5iJ8Yz8WT3Llj89htvyp12f8Sz8Yjx7131NXNIAjp/Kn35jbPlzenTJmZRKNZ4+IQScGoGTn76Hgsz9RMR3QevpR3lxBjuWT8MvKI7wOjpv3EXvYROY8+UUohPaEd28PZv+mIlBX0OXfrb8+u2LZ/ELDOe6W2z5ZTIZKMg6Dtg6iMpL8slJO4jWw4vgU0+Al/78JkmdBhIQHE1FaT6r5n2IQqmkQ89RTZPISzR3aT533hhOVm4tuQUGJt4cSVGpkQ07HE/33ngukQ3bS1mwwjb64JEJMQzqFchL75+kptZMoL/tFl9VbcZgtNo6UJ5NRKdV8sZnqXh5qvA6te5HWbmpyV+vvumQhZt6KckuUpBdZHvFsUYFu0/YInZjLyUVNbBqt+0H/JZDFiYMVXFNsoKj2VbaNVMSFQS/b3H8wN9yyEK/dkqKKyyUVlkZ2EFJRTUcynAktnsrBRkFVgwmWyfM0M621ybrTzVtiivgUIaFYd2U/L7FjN4IQzopKSy3raniLvqNmMisz6cQk9COmBbtWb90JkZ9Dd0G2K6rXz57Dr/AMEbc5riu8k9dVyaTkfLiPLLTDqLVeRESYbuuWncexKr5nxMQHEl4TCLZqQdZt+Rbug1o+unXF+uaoROZP+M5Ipu1IyqhA1tXfItRX0PHPra0zJv+LL4BYQwZ9xRgW1C0IPtUvWMyUlGaR266LX9OjzxZOfsdEtv3xz8oEn1tFfu3/E7q4a3c9fh5OrvdkNTJ59dt8L0snvksEc3aEdmsA9tX28pOu162srPom2fwDQin/02OslOYczp/DFSW5pGXYSs7gWG2/DHUVlFS4BiVU1aUSV7GQTy9/fELirrMKfzrajctx+emezFnp2HKPolHz2tRaLTod28AwOfGe7FUlFK9aq7TcbrOfTEc2o215tye6NqNy/C5+QF0aUcwph5Gm9gOTasOlH/7zmVJkxD1cVGdKFarlYkTJ6LTOV7DWltby9/+9je8vR2LRM2Z4/qVaE1hWLe2lFRW8+nvayksryIpJpxPHrnD/trinOIyp7UDyqtr+e8Piygsr8LPy4PWcZF8+8+JtIh09JwP7pTMC3eOZPrSDbw56w+ahQfz9gM30/mMToarjX/XdvRa+Z39c5u3nwcgY+Yc9k6a0lTRanQ/L8jBQ6fkyfvj8fFSs+9wBVNeP+L09DYq3AN/X8dIqhuvCwfgvZdaO53rzU9PsGxtIQajhfbJvowbEYGPj4qSMiN7D1bwyL8PUFruXm+eOa15h5HUVpWwc+U0aioKCYpszXUTv7BPP6kqy3F6WhnerDMDb32LHSs+YMcf7+EX3Iwhd31IYHgrABQKFWUFJ1i1cx611SXovAIIjW7PyPu/J/DUm2iUKi0n9i1m16qPMZsM+AbG0LbPBNr1mXjZ038hLTqMpLayhB0rplFdUUhwZGtG3PuFfTpPVem5+TP49rfY/scHbFv2Hv4hzRh694cERbSq999Uaz05mbKcHSs+xGSswdM3lNhWfel8x9/dfr2Y9j1HUlVRwsq506gsKyQyrjXjn/rCPnS8rCgH5Rn5VVFSwCcvOX60bVg6gw1LZxCf1J1JU2bajinO5dfPnqa6shRv3yDiWnbhwRd/xtvPfUYtXYxZi/Lx0Cl5/L44fLxU7D9SxfNvOY8ciQzT4u/ruI2PvtZ2n3rnX85vc3rrizSWrysmMd7L/nafb99p6xTmnidSyGvit4MdSLPirbMwsKMSHw/IK4EfV5upOjUVx99bgdXqSH9moW1tkkEdlQzuZOvs+OVPCwVnjCLfeMCKVm3l+p5KPLSQnm/lh9VmpzfyRAUrGNBBiVYNheXw+1YL+046d47M22hhWFcldwxUYQXS8qz8uNrc5B1PZ+p4zQiqyov5Y/aHVJQVEtUsmfue+dw+nae00LkeKi8p4IN/jbN//nPx1/y5+GuaJ3fnwRdsCz3eOP5fLPttGvO++Q+V5cX4BYbRc/CtDBnz98ubuAbQtsdIqiuLWTv/QyrLCwiPbc2dj39pr3fKi7Kd2oMVpfl8+Z8x9s+bls1g07IZNGvVnfHP2NpD1RXFzJ/+LJVlBeg8fQmPSeKux7+ieVvXr3d1V1Inn19yN1vZ2fD7NKrKCwiLac3ND39ln85TUZLjtGBnZVk+M6feZP+8bcUMtq2YQWzLHtz+hK3s5Kbv55f3x9vDrJ49FYC214xh5PjXL0OqGobhwHaqvX3xHHgDSh8/THmZVPw4DWuV7e1ySv8gp3obQBkcjiauJeXfv+f6nId3U7XoBzz7DMd7+O2Yi/KomPUZpoxjjZ6eq93V+KrhpqKwnl2yz+Pee++tV7ivv/76oiNSs+q7Cwf6H7Vq2P81dRTc2rvjpOzU5bqbuzV1FNyayv1mT7mNuAsvrP8/7atP9jR1FNxW3+HtmzoKbq1DK2nEnk9lrVTMddGq3ajXzg2VV0vZqcuYDa7XmhM2wf/+oqmjcFmcmHh9k/3t5t/83mR/uzFc1EiUv9I5IoQQQgghhBBCiKYjrzhuOJKTQgghhBBCCCGEEPUgnShCCCGEEEIIIYQQ9XBR03mEEEIIIYQQQghxZZGFZRuOjEQRQgghhBBCCCGEqAcZiSKEEEIIIYQQQlzFZCRKw5GRKEIIIYQQQgghhBD1ICNRhBBCCCGEEEKIq5i84rjhSE4KIYQQQgghhBBC1IN0ogghhBBCCCGEEELUg0znEUIIIYQQQgghrmKysGzDkZEoQgghhBBCCCGEEPUgI1GEEEIIIYQQQoirmCws23AkJ4UQQgghhBBCCCHqQTpRhBBCCCGEEEIIIepBpvMIIYQQQgghhBBXM4UsLNtQZCSKEEIIIYQQQggh3MLHH39MfHw8Hh4e9OzZk61bt543/Pvvv09SUhKenp7ExsbyxBNPUFtb22jxk5EoQgghhBBCCCHEVexKecXxL7/8wpNPPslnn31Gz549ef/99xk2bBiHDx8mLCzsnPA//vgjzz33HDNmzKB3794cOXKEiRMnolAoePfddxsljgqr1WptlDNfpKc/rW7qKLitXWv3N3UU3NqTs+9p6ii4rYq1h5o6Cm5t+crCpo6C26qp0jd1FNza8BExTR0Ft5WWbWrqKLi1HetONHUU3NqgES2bOgpuKzun8Z6qXg2iIj2aOgpua9XiI00dBbc2/9Okpo7CZZH12G1N9rejP/il3mF79uxJ9+7d+eijjwCwWCzExsbyyCOP8Nxzz50T/uGHH+bgwYOsXLnSvu+pp55iy5YtrF+//tIj74JM5xFCCCGEEEIIIUSTMhgM7Nixg2uvvda+T6lUcu2117Jp0yaXx/Tu3ZsdO3bYp/ycOHGCxYsXM3LkyEaLp0znEUIIIYQQQgghrmIKZdONn9Dr9ej1zqOcdTodOp3OaV9hYSFms5nw8HCn/eHh4Rw65HqE/Z133klhYSF9+/bFarViMpn429/+xvPPP9+wiTiDjEQRQgghhBBCCCFEo5g6dSr+/v5O29SpUxvk3GvWrOG1117jk08+YefOncyZM4dFixbx3//+t0HO74qMRBFCCCGEEEIIIa5iTbmw7JQpU3jyySed9p09CgUgJCQElUpFXl6e0/68vDwiIiJcnvvFF1/knnvuYfLkyQC0b9+eqqoqHnjgAf71r3+hbIQRODISRQghhBBCCCGEEI1Cp9Ph5+fntLnqRNFqtXTt2tVpkViLxcLKlSvp1auXy3NXV1ef01GiUqkAaKx36MhIFCGEEEIIIYQQ4irWlGuiXIwnn3ySCRMm0K1bN3r06MH7779PVVUV9957LwDjx48nOjraPh1o9OjRvPvuu3Tu3JmePXty7NgxXnzxRUaPHm3vTGlo0okihBBCCCGEEEKIJnfbbbdRUFDAv//9b3Jzc+nUqRNLly61Lzabnp7uNPLkhRdeQKFQ8MILL5CVlUVoaCijR4/m1VdfbbQ4SieKEEIIIYQQQggh3MLDDz/Mww8/7PK7NWvWOH1Wq9W89NJLvPTSS5chZqf+5mX7S0IIIYQQQgghhLjsmnJh2avNlTExSgghhBBCCCGEEKKJyUgUIYQQQgghhBDiKiYjURqOjEQRQgghhBBCCCGEqAfpRBFCCCGEEEIIIYSoB5nOI4QQQgghhBBCXM2UMn6ioUhOCiGEEEIIIYQQQtSDjEQRQgghhBBCCCGuYgqFLCzbUGQkihBCCCGEEEIIIUQ9XLUjUYZ119CztRpPHZzMtTDnTwOFZdbzHtO7rZqBndT4einIKbIwd72RjHyLy7CTR+lIjlPx9RI9Kalm+/4b+2hIiFQREaQgr8TKe7/WNmi6GsvEW6IZOTgUH281+w9X8MH0VLJy9XWGv+PGSPr2CCQuyhO9wcKBI5V88WMGmTmO9D4xOZ4u7f0IDtRSU2sm5UglX/6YQUb2lZEnFyOobzeaPzUJ/y7t8IgKY/u4f5C3YGVTR6vRbVn5AxuXTKeyrJDwuGRG3vUCMc07uAybn3WUVXOnkZOaQmlRNsPvmEKv6yY4hVk970PWzP/YaV9IRAKPTF3SaGloTDcO8KJ/Zw+8PJQcyzDy3ZJK8ovNdYZvFadhWC9P4iPVBPiq+GhWGbsOG5zCdEnWMrCLJ80i1fh4KXn5i2Iy8uo+pzu7eagfg7p74+2p5EiqnhnzSsktMtUZPjlBy/X9fUmI1hLop+LdmYVsP1B3fXLfTQFce40PMxeWsnRDZWMkoVFsX/0Dm/+YTmVZAeExyVx3x4tEJ7i+rgqyj7J2/jRy01MoK8pi6K1T6HHtRKcwG5Z8zuGdf1CUewK11oOY5p0ZPO5pgiOaX4bUXJpuLRX0Slbi4wl5JbB0h5ns4rrDt45VMLCDkgBvKK6AlbstHMtx3PuTYxR0SVQQGaTAS6fgiyUm8kqdzzGyu5KEcAW+nmAwQWahlZW7LRRVNE4aG8Md1wcztI8/3p5KDp2o4bOf8skpMNYZvk2iJ2OGBtIi1oOgADVTP89iy54qpzAeOgX33BhKz47e+HqryC8y8vuaUpatK2vs5Pwl+zb8wO4106muKCQ4Mpl+Y14gPM71dQRwbM9Sti79gIqSLPxDmtFr1NM0az3AKUxx3nE2L3qb7BPbsJjNBIa3YPiEafgGRgGw5rd/k3l0E1Vl+Wh0XkTEd6bXqKcJDHPPa21oVzU9Wqvx1EJqrq3dW1R+/rZyrzYq+ndU4+upIKfYyvwNBjILbMd46mBoVw2tYpQE+CioqrWSkmrhj21Gas8ofjGhCkb00BAdosQKZOZbWLzFSE7x+f/25STl5+LdeX0wQ/sG2OudT3/Mq0e9E0RinK3eee2zLLbscb5X+/uqmDAmlM6tvfH2UpJytIYvfjn/eUXdFLImSoO5KnNyUCc1fdurmf2ngWmzazEYrdx/vQ61qu5jOrZQcUMfDcu3G3n/t1qyi2zH+HieG7ZfBzXW89TzWw+a2H3syvlRc/sNkYwZHs77X6Xy8Asp1OotvD4lCY2m7iFfHVr7suCPfB5+8QDPvHoIlUrBm88n4aFzFKkjJ6t489OT3PvUXp577TAK4I3nk7gaX1Gu8vaifO9h9j/6SlNH5bLZv2Uxy35+nYE3PsSDL88hIjaJ796ZTGV5kcvwRn0tgaGxXHvLU/j4h9Z53rDoljz9/jr7dt/zPzZWEhrViN6eXNvDk+8WV/LqjBL0RitP3ul/3npIq1GQmWfi+yV1/+DXaRQczTDy28qqOsNcCUYP8GVYbx9mzCvhxY/zqTVaee6+EDTn6drXaZSk5Rj5en7JBc/fra0HiXFaisuunLoY4MC2xaz4dSr9rn+ISS/MJSw2mZ8/mERVXdeVoYbA0BgGjXkKbz/X11X6ka10HXQXE6fM4s7Hv8ZsNvHj+5Mw6KsbMymXrE2cgqGdlfy538KXS83klVq5c5AKL53r8DEhMLa3kt3HbeEPZ1q5tZ+SUH9HGI0aMgpsnSJ1ySm2snCLmU8Xm/lxjRkFcNcgFVfKKOgxQwO5fmAAn/2UxzNvpVOrt/LSI9Fo1HUnwEOr4GSmns9/ya8zzH3jQunSxov3v8nlkf+ksnBVKQ/cGkb39t6NkYxLcnT3YjYseJ1uQx/ilsfnEBKVxO9fTqa6wvV1lJO6k+U/PEXrHjdzyxNzSWh3LUu+eZiinCP2MGWF6cz9+E4Cwppz499ncttT8+k29B+o1I4CGRrTlsG3vsYdzyxi9P1fgdXKwi8mYbG4Xz00oKOaPu3UzF1n4KN5egwmmDRSe957VIfmKq7vpWHlDhPT5ujJKbIwaaQObw/b935eCvy8FSzabOTdX/XMWmOkVYySmwdo7efQquG+ETpKK618NE/PZwv06I0waaTObdqHUn4u3tjrghg1KJBPf8zjn2+mU6u38PKjMeevd3RKUrP0fP5zXp1hnv9bNBEhGl79LIsnXkslv9jIfx6LRad1k8Ii/mc1eCdKZWXTP+3r10HDih1GUlLN5BRb+XmVAT8vBe0S6r4zDOioZssBE9sOm8krsTJ7rQGj0Ur3ZOcWfVSwggEd1cxa7XqUxvwNRjammCi+QE++Oxk7Ipzv52azcUcpJ9JreOPjE4QEaunbLbDOY6a8foRlawtJy6zhRHoNb356gvBQHS0THI2pRSsL2HeogrwCA0dTq/l6VibhITrCw+poAV/BCpb9yZGX3idv/oqmjspls/GPb+ja/xY69xtHWHQi149/BY3Wg13rZrsMH928PcNue4b2PUehVmvqPK9SqcLXP9S+efvWXQ7d2bU9PPl9XTW7jxjIzDczfX4FAb5KuiTXXf73Hzcwd031OaNPzrRpn56F66o5cLLuMFeC4X18mLeqnB0HasnINfLpL8UE+Kno1sZFz/Upe47U8usf5WxPOf9otkA/JRNuCODjn4sxW66cuhhgy/Kv6dT3Vjr2GUdoVCIj73oFtdaDPRtcX1dR8R0YcvOztO0xCrVG6zLMHY9Np2PvsYRGtSQ8NpnR975OeXE2uWkpjZmUS3ZNkpJdx63sOWmlsBwWbbNgNEGn5q4bzz1aKTmWY2XTIVv4Nfss5JRA95aOps6+VCvrUqyczKu7XOw6biW9AMqqILcEVu+z4O+tIMD9+gpcGj04kFlLi9m6t4q0LAMffJtLkL+anh196jxm54FqflxYdM5T4DMlNfdk9ZZy9h+tIb/YxB8bykjN0tMy3qMxknFJ9qz9hjY9b6F1j3EERSQyYNwrqDUeHNrm+jrau+474pL60nnQJILCW9Bz+GOERrdh34Yf7GG2LH2fZskD6H39PwmNboN/SBwJbQfj5RtsD9P2mtuIatEdv6AYQmPa0mP441SW5lBRnNXoab5YfdurWbXLxIE0C7nFVmattrWV28bX3Vbu10HN1kNmth8xk19qZe46I0YTdE+ytZXzSqx8v9zAwXQLxRVWjmdbWLbNSOtmSnsHSWiAAm8PBX9sN1FYZiWvxMqKHUZ8vRQE+rrHD2MpPxdv9OBAfl1SxNa9laRl6Xn/G1u9c02n89Q7KVX8sKCQzXXUO1FhGpKbe/LpT3kcS6slK8/IZz/lodUq6N/dr7GSIkS9XFQnynvvvXfe7ysqKhg2bNglRehSBfnaesGPZjp6bWsNkJ5voVm46+SqlBAdquRIpuPJlBU4muV8jEYNd12rY+46IxU1jZaEyyoyTEdwoJad+8rt+6pqzBw8VkmbVnVXfGfz9rLddCsqXQ/F99ApGTYwlOy8WgoKr+wffwJMJgM5qSk0b9vbvk+pVNK8TS8yju2+pHMX5aXx9hP9eP+Za/nt86cpLcq+xNhefiEBSgJ8VU4dHTV6KyeyjLSIvmpnUdZbWJCKQD8V+485OqNr9FaOZxho2cx1R0B9KRTwj9uCWPRnJVn5dU8Nckdmk4Gc9BQSWjuuK4VSSULr3mSe2NVgf0dfY5uX4uHtf4GQTUephMggOJnr3NlxMs9KTIjrH1oxIYpzOkdO5NQdvj40KuiYoKSk0kqZew/cASA8WEOQv5q9hxyRra61cCS1lqTml9bZcfhEDd07+BDkb6vD2rXyJCpMy+6D7pUxZpOBgqwUYlo5X0cxLXuRm7bb5TF5abuJadnbaV9sUh/yToW3WiykHVxDQGg8C7+YxNcv9ea3D27lxP66H5wY9dUc2jYHv6AYfAIiLjldDSnIV4Gfl4KjWWe0lY2QkW8hLuw8beUQ5/a1FTiWZSaujvY12EY51RrgdH92QZmVqlor3ZNVqJSgVkH3ZDV5JRZKKpq+01vKz8ULD7HVO3vOrndO1pKUUPeDkQs5PYrFaHSUC6sVTEYrrVv89fP+L1MoFU22XW0uqjX//PPPExwczPjx48/5rqqqiuHDh1NU5Hqo2+Xi62X7R6qoca6IK6ut9u/O5u2hQKVUUHnWMRXVVsICHDeGG3prSM2zOK2BcqULDLCNCCgpc55bWFJmtH93IQoFPDShGfsOVZCa6dy7dMPQMB64KxZPDxXpWTU889phTOamv0mKS1NdUYLFYsbHL9hpv49/CIW5J//yeWOad2TM5KkERyRQWZrPmvkfM2Pq3Tz03wXoPOvfqdfU/H1s9UZ5lXNZL6+y4OdzVc6ivCj+PrZO17JK57q0rNJs/+6vGj3AF7OZK2oNlNOqK0uwWsx4n3VdefsGU5RzokH+htViYfkvrxHTogth0a0a5JyNwUsHSqWCylrna6iqFkLqeFrt42H7/kyVtVa8PS++8dY1UcG1nZRoNQoKy638sNqMpe4ZQG4jwN92/ZSWO3cglpWbCfS7tA7cL2YV8I87w5gxtTkmsxWrxcrHP+Zx4Jh7PVWqrbJdR14+zteRp28IJfmu70/VFYVOIwIAvHxCqK4oBKCmsgijvpqdq76k54jH6DXqadIPr2Ppt49w49++JbpFD/tx+zf8yMZFb2MyVBMQmsDoB2agUl9a53BDO90erqw+q61cY8XXy/UxXh6cais776+osRIa4Pq+5qWDIV3UbD3kKI8GI3y+UM/467QM6Wwrk4XlVqYvNuAOAwel/Fy8QD/X9U5phcn+3V+RmWsgv8jIPTeF8MmPeej1Fm4YEkRIkMbemStEU7moEvjdd99xzz33EBAQwA033GDfX1VVxbBhwygoKGDt2rUXPI9er0evd54OYzKaUWsufppH55Yqp7mW0xfVvRjqpWgTryIxWnXFLBRblyF9gnni/nj75+ffOFJ34Hp69L5mxMd68thLB875buX6InbsKyMoQMut10fw78cSefSlA069ykKc1rJDf8eH2CSiW3TkvacHs3/bUrr2v7npInYBPdvpGD/K1/75g5/cc6HFptKnkyeTxjimZb35TWGj/J2EaA3D+/jw/LS651f/r1v60ysUZB9l/DNX5lpDl8v+NCsnc834eEKvZCXj+qj4erkZs5t1pPTv7svf7wi3f/6/Txtv2P+ogQEkJXjy6qdZ5BcbaZvoxYO3hVNcambvYfcajdLQrFbbP3xCu8F07D8RgJDo1uSm7iJl089OP4JbdhlNTKveVJcXsHvtDP747nHGPPzTX2rjNpROiSrG9nM8GPt6aeOPCNZp4N4ROvJLrCzf7vhxrVbBzQO0pOVZ+GmVCaUC+nfQcO9wLR/O1WO6ep5T2l3p5edsA7r78vc7HaNj/vtJZqP8HbMFXv8ii4fvjuDHd1piNlvZc6ia7fsrr5g1qtyOLCzbYC6qE+Xmm2+mtLSUO+64g0WLFjFw4ED7CJS8vDzWrl1LZGTkBc8zdepUXnnFeQHOXiOfp/f1/7q42AMHUs28m+fo2Di9IJavp4KKM3rYfbwUZBe6bv1U1VoxW6z4nPW0ytdLQfmpcyRGKwn2V/DfSc7DxyYM03Iyx8KnCxqn86ahbdxRwsFjjie0Go3tYgr011Bc6hiNEuiv4XjahRtFj9zbjGu6BPDEywcpLD53peyqGjNVNWaycvUcPFrJvOld6Ns9kNUbz/N6BeH2vHwDUSpV5ywiW1lWiI9fSIP9HU8vP4LD4ynOS2uwczaGPUcMvJLlKNPqU0NQ/bwVlJ0xIMLPW0lG7pU1xaQh7DhQy7EMR8eGWmXLH38fFaUVjnrZ30dFWs5fb9wnxevw81by4XOO+5BKpeDuUf6M6OvDY2/k/uVzXw5ePoEolKpzFpGtqijC2//Sr6ulP/6Ho3vXMP6f3+MX6N7Dw6v1YLFY8fFQYJs0YOPtwTmjU06rrMW+wOVpPh4Kqv7CQAm90bYVV0JmkYV/jlORHKsgJc29HgBs3VvJkVRHG+j08PcAPzUl5Y5fo/5+Kk5m/vV2ilaj4O4bQnj9i2x27Lctap2WZSAhRsdN1wa6VSeKh7ftOqqudL6OaioK8arj/uTlG3LOoqHVlYV4+YbYz6lUqgkMT3QKExjWgpzUHU77dJ6+6Dx9CQiNJ7xZR6a/2JOT+5fTsvP1l5q0v+xAmtnpbZOn28o+Xgqnkds+ngqyi1yX8epaTrWVnfef3d4G0Gpg0ggteoOVmcudR5h0TlQR6KPgk3lG+5X90yoDL0/woG28ij3Hm7YXRcrPhW3dW8nh1FT757rqnQBf9SXVOwDH0/U88VoaXh5K1GoF5ZVm3nomjmPpV/ZDbXHlu+juqMmTJ/PSSy9x4403smbNGkaMGEF2djarV68mKiqqXueYMmUKZWVlTluPYU9fdOTB1sgpKrfat7wSK+VVVlrGOIaP6TQQF6YkLc91J4rZAlkFFlrGOLJDga3j5PQxq3caeXdWLe/96tgAFmw08svqK2eNj5paC9l5evuWlllDUYmBLu0cCzR5eSppnejDgSPnHw7/yL3N6Ns9kKf/e4jcggvngUJh27Qa6QW90qnVWiLj23LiwCb7PovFwsmDm4lN7NRgf0dfW0VJQQa+AXW/zccd1Bqs5JdY7Ft2gZnSCjOtExyj5Dy0CppHazie9b/XiVJrsJJXZLZvWfkmSsrNtE10PFnz1CloEavlaNpfr0/X76rmuQ/ymDLNsRWXmfn9zwpen944o18akkqtJTKuLamHHNeV1WIh9eAmYpp3/svntVqtLP3xPxzevZy7n/yWgJDYhohuo7JYIKcY4iOcH24khCvILHT9Iy+z0EpC+FnhI+oOX1+KU5vKDW9dtXoruQVG+5aRY6C4zESHJMecDE8PJa3iPTh84q//6FCpFGjUCqxnzbewWKxu92BTpdYSGt2WrKPO11Hmsc1ENOvk8pjwZp3IPCM8QMaRjYSfCq9SawmNbUfpWdM5SgtT7a+nrZsVs6lp24kGV23laiuJUc5t5dgwJen552krF1pJjHYcowASo1Skn9G+1mlg8kgdJgt8u8xwzsgSjdrWLXpmSbJabZ/dYXCBlJ8Lq6lvvZPgweGTDTPdr7rWQnmlmchQDS2aeZx3EWwhLoe/NKHsmWeeobi4mCFDhhAfH8+aNWuIiYmp9/E6nQ6dznlYmlrTcE8x1u01MqSrhoIyK8XlFob30FBebWX/SUdN/uBoHftPmtmw3/aDZu0eE7cP1pJZYCE9z0K/Dmq0GgXbTs3jrKg5d50VgJIKK8VnLIQV7KdApwFfL9uNIirYdkvIK7G63TDg0+YsyeOuMVFk5taSm6/n3ltjKCwxsH674zWib72QxPptJcxfZnv94aP3NWNIn2BefPso1TUWAv1tw0Srqk0YjFYiw3QM7BXE9r1llJWbCAnWcscNkRgMVrbsKm2KZDYqlbcX3olx9s9eCTH4dUzGUFxGbUZOE8as8fS+biJzv3qO6Ph2RDfvwKY/vsWgr6Fz37EAzPnyWXwDwhh6y1OAbTHaguzjAJjNRspL8shJP4hW50VweDMAlv38BkmdBuEfEkVFST6r532EQqGkfU/3eQJTXyu21nB9Xy/yis0UlpoZM9Cb0goLOw85nso8fbc/Ow/pWbXd9uNGp7EtunpaSICK2HAVVTW2ugxsazgF+dsWrgWICLZV42WVlnPWYHFnSzdUMmawH7mFJgqKTdxynT+l5Wa2H3A0uJ6fHML2lBr+2GR78q3TKuzpBQgNUtMsUkNltYWiMjOV1RYqq50rWrPFSmmFhZzCK6PzqufQe1nw9bNENmtHVEIHtq74FqOhhg59bNfVghnP4BsQzqCxtuvKbDJQkHPc/v8VpXnkZtiuq6Aw23W19MdXSNn6O7f84xO0Ht5UlhUAtieeGq37vVnltM2HLdx4jZKcYtvT8R5JSjRq2HPSVs5vvEZJRQ2s2mP7N996xML4ISquSVZwNMtK22ZKooJsb/U5zUML/l62p+dgu2eDlcpa23oqAd7QtpmC4zlWqvXg5wV9WisxmuFY9pVxfS1cVcItI4LIzretJ3Dn6BCKy0xOPzr+82gMm/dUsnhtKQAeOgWRoY5O37BgDQkxOiqqzBSWmKiptbD/SDUTxoZiMOaTX2ykXUsvBvb04+vZBZc7iRfUccBEVv38HKEx7QiL68Dedd9iMtSQ3N12Ha346Vm8/cPoNdJ2HXXodw/zPxnP7jUzaNZmIEd3LaIgM4WBN//Hfs7OAyfxx/dPEtW8G9GJPUk/tI7UA6u56e8zASgryuDY7sXEJvXB0zuIyrJcdq36EpVGR1zygMufCRewfp+JwV3UFJZbKCm3cl13W1v5zHX/7h+lZX+qmU0ptn3r9pq4daCGzAILmQUW+rZXo9HA9iO2+vV0B4pGDT+vMqLTwunWflWtrbPkaKaFkT3hpj4aNqaYUChgYCc1Fgscz3aPuTxSfi7ewlUl3DoymJwCA3mFjnpn8+4z6p3HYti8u+56J/ysegegdxcfyivMFJSYaBalY/KtYWzZU+l2C1pfKa7GBV6bykV1oowdO9bps0ajISQkhMcee8xp/5w5cy49Zpdg9W4TWo2Cmwdo8dTCyVwLX/7uPM8y2M/2irXT9hw34+NpZFh3Db6npv589bv+nAW0LuTWgVpanNFL/+SttnGPr35f4xarjrvy84IcPHRKnrw/Hh8vNfsOVzDl9SNO65ZEhXvg7+uYT3vjdbY52O+91NrpXG9+eoJlawsxGC20T/Zl3IgIfHxUlJQZ2Xuwgkf+feCchaeuBv5d29Fr5Xf2z23efh6AjJlz2DtpSlNFq1G16zmSqopiVs37kMqyAiLiWnPPk1/ic2raQVlRNoozJq1WlObz2Utj7J83Lp3BxqUziE/qzr3P2fKuvCSP3z5/iurKUrx9g4hr2ZX7X/wFb7+gy5u4BrBkYw1ajYIJo3zx8lBwNN3Iez+WOdVDoYEqfLwcj3HjozQ8Mz7A/vn262yL6W7YU8uMBbY3qnRqpeW+Gx0jx/42zvb/89dWseDPK6dRsXBtBTqtgsljA/HyUHIkVc/rXxdiPKN6CA9W4+vtqE+bx2h58QHHqKR7rg8AYO2OKj7/1dHpeyVr0912Xa1dMI2q8gLCY1pz+6Nf2afJlRXnoFA4ykxFaT7T/3uT/fPmP2aw+Y8ZxLXqwT1P266rnWt/AuD7d+5x+lvXT5xKx97O93V3ciDdipfOwoD2Snw8IK8Eflxjti8e6+elwGp13KcyC2HuRguDOigZ1AGKK2DWOgsFZyxR1CpawY3XOMrUuD62/1+7z8Kf+y2YLBAbqqBHkhJPjW2KUHqBlW+Wm6m+MmbtMnd5CR46Jf+4MxxvLyUHj9fwn4+yMJoceRURqsHvjEWcE+M8+L8nHCOUJt0cBsCqTWVM+842Fe/tGTncc2MIT9wbiY+XkoJiEz8sKGTpOvdbA6plp5HUVhazddmHVFcUEBLVmusnf2mfXlFZ4nx/iozvwrV3vc3Wpe+zecl7BITEM2LiRwRHOhZfbt5+KAPGvczOVV+wbt6rBIQlMHz8NCITugK2EZo5J3ewd91M9DXlePoEE9W8G2Mf/umcRUfdwdo9JrRqGNdPi4cWUnMtzFjiPHIk6Ky28t4TZrw94bpualtbucjKjMWOtnJ0iNL+pp5n73DuoH39x1pKKq0UlFn5dpmBIV3V/ONGHVYrZBdZmLFE7zZvvpTyc/Hm/FGMh1bBP+6MsNc7r3yYeVa9oz2n3nn1SccDyEm32OqdlZvKmDbTNv02yF/NpHFh+PupKSkzsXpLGbMWN+1LTIQAUFjPbIFcwL333luvcF9//fVFR+TpT6+cxv/ltmvt/qaOglt7cvY9Fw70P6pi7aGmjoJbW77S/ad4NJWaqivkF2MTGT6i/qMv/9ekZV99HeUNace6hnnT0tVq0IiWTR0Ft5WdI+tAnE9UpPuOrGtqqxZf+oskrmbzP01q6ihcFiWv/r3J/nbgvz5tsr/dGC5qJMpf6RwRQgghhBBCCCGEuBrIS7aFEEIIIYQQQoirmayJ0mDcbE11IYQQQgghhBBCCPcknShCCCGEEEIIIYQQ9SDTeYQQQgghhBBCiKuYQinjJxqK5KQQQgghhBBCCCFEPchIFCGEEEIIIYQQ4iqmkIVlG4yMRBFCCCGEEEIIIYSoB+lEEUIIIYQQQgghhKgHmc4jhBBCCCGEEEJczRQyfqKhSE4KIYQQQgghhBBC1IOMRBFCCCGEEEIIIa5isrBsw5GRKEIIIYQQQgghhBD1ICNRhBBCCCGEEEKIq5lSxk80FMlJIYQQQgghhBBCiHqQThQhhBBCCCGEEEKIepDpPEIIIYQQQgghxFVMoZCFZRuKjEQRQgghhBBCCCGEqAe3GYmSEO/V1FFwW6Gh3Zo6Cm6t4tFDTR0Ft+U7ILmpo+DWQj/Z09RRcFvrFxxo6ii4tZTmwU0dBbdltTR1DNxbYvuYpo6CW6vVW5s6Cm6rvEzf1FFwa0mJnk0dBbc1aESrpo6CcAeysGyDkZwUQgghhBBCCCGEqAfpRBFCCCGEEEIIIYSoB7eZziOEEEIIIYQQQoiGp1DKwrINRUaiCCGEEEIIIYQQQtSDjEQRQgghhBBCCCGuZgoZP9FQJCeFEEIIIYQQQggh6kFGogghhBBCCCGEEFczWROlwchIFCGEEEIIIYQQQoh6kE4UIYQQQgghhBBCiHqQ6TxCCCGEEEIIIcRVTCELyzYYyUkhhBBCCCGEEEKIepCRKEIIIYQQQgghxNVMFpZtMDISRQghhBBCCCGEEKIepBNFCCGEEEIIIYQQoh5kOo8QQgghhBBCCHEVUyhl/ERDkZwUQgghhBBCCCGEqAcZiSKEEEIIIYQQQlzNFLKwbEP5n+hE2bPuB3aumk51RQEhUckMGPciEc061Bn+6O4lbF78AeXFWQSExtNn9NPEtxlg/96gr2Ljwnc4vm8FtdWl+AXF0Kn/PbTvc8flSM4lObD5B/avm0FNZSGBEcn0uv5fhMbWnRcn9y1l54ppVJZm4RfcjG7DniI2yZEXO1d+xMm9i6kqy0Wp0hAc3YauQx8nLLajPcyst4ZQWZrtdN6u1z1JxwH3N3wCG9iWlT+wccl0KssKCY9LZuRdLxDT3HV+5WcdZdXcaeSkplBalM3wO6bQ67oJTmFWz/uQNfM/dtoXEpHAI1OXNFoamlpQ3240f2oS/l3a4REVxvZx/yBvwcqmjlajGNpVTfdkFZ5aSM2zMG+9iaJy63mPuaaNigEd1Ph4Qk6xlQUbjWQW2I7x1NnO2TJaSYCPgqpaSEk188d2E3qj7XgvHdw2SENkkBIvD6isgQNpZpZtc4RxV5Puimf0dRH4eqvZd7Cctz85SmZOTZ3h7745lgG9Q2gW7YXeYGHfoXI+/eYEGVnOx7RN8uOBe+Jpk+SHxWLl6IlKnnxpHwaDpbGT9JcN7aqmR2u1rezkWpi73njBstOrjYr+HdX4eirIKbYyf4PhrLKjoVXM6bJjJSXVwh/bjNSeUS5iQhWM6KEhOkSJFcjMt7B4i5Gc4vP/7cvtum6n8kd3Kn/WGSksu0D+tFUxoNOp/Cmy5U9GvuOYsf01tIxW4uetQG+EtFxb2gtKzz2vlw4ev8WDAB8F/55RQ62hwZP4lw3rrqHnqbw5mWthzp+GC+ZN77ZqBnZS4+ulIKfIVt4y8l1fH5NH6UiOU/H1Ej0pqWb7/hv7aEiIVBERpCCvxMp7v9Y2aLoaQlO0eU4zmwws/PQ2inMPceNDcwiOat0oabwU1/fxoG8HLZ46BSeyTfz4Rw0FpeevJwd01jK0uwd+3goy8838srKGtFxbuQjyU/Lqg34uj/tyfhU7j9gqn6Q4NaP7ehAdqkJvtLJ5v4EF62qxuFe142Tnmh/Ysnw6VeUFhMUkc+1tLxIV77osFWQfZf3CaeSmp1BenMXgm6fQfchEpzAZR7exZfl08tL3U1lWwJgHP6ZVp2svQ0ou3f4NP7B77XSqKwoJjkym700vEB5X93V1fM9Sti77gIqSLPxDmnHNyKdp1tpxXa36+TkO75jndExsq75cf/9X9s8FmSlsXvwO+Rn7UCiVNG9/HX1GP4dG593g6ROiPi5qOk9gYCBBQUEX3NzJkZ2LWTdvKj2HP8TtT88lJDqZ+Z9NorqiyGX4nJM7WTrzKdpcczN3PD2P5u2H8Pv0hyjKOWIPs27e66QdWsewu9/inucW03nABNbM/i8n9rv3D8MTexezdfEbdBr8EDc8NJugiCSWfXM/NZWu8yIvbRdrZj1Nq27juPGhOcS1HsLKHx6hJM+RF/4h8Vwz+gVuenQ+ox74Ht+AaJZ9PZmaqmKnc3UZ8gi3P/enfWvT665GTWtD2L9lMct+fp2BNz7Egy/PISI2ie/emUxluev8MuprCQyN5dpbnsLHP7TO84ZFt+Tp99fZt/ue/7GxkuAWVN5elO89zP5HX2nqqDSqAR1V9G6rYt56Ix/PN2A0wn0jNKhVdR/TobmS669Rs2KniQ/nGsgpsjBphBZvD9v3fl4K/LwULN5i4r3fDPy61kirWCU399fYz2G1woE0C9/+YeDtWXp+XWskMVrJmL6aOv6qe7hrXCw3Xx/N258c5YGnd1FTa+bd/7RHq6n7KUnndgHMWZTNg//cxRMv7kWtUvDefzrgoXPcytom+fHOK+3ZtruEB57ayeQndzJnUTZWN26dD+iopk87NXPXGfhonh6DCSaN1F6g7Ki4vpeGlTtMTJujt5WdkTrnsuOtYNFmI+/+qmfWGiOtYpTcPEBrP4dWDfeN0FFaaeWjeXo+W6BHb4RJI3Vu9RbEgZ3U9GmvZs46Ax/O0WMwwqRR58+fji1UjO6tYcV2Ex/MPpU/oxz5A5BVYGHWGiNv/6Jn+iI9CgVMHqV1+aDu5oFacovdrxNuUCc1fdurmf2ngWmzazEYrdx/ve6CeXNDHw3Ltxt5/7dasotsx/h4nhu2Xwc11vNcOlsPmth9zFx3gCbUlG0egG1L38bLr+62QFO7roeOQV10/Li8mjd/qEBvgEdv8T5v2emapGHcQE8WbazltZkVZBaYefQWb3y9bBdNSYWFZz8pc9oWrq+h1mAl5aStAyU6VMlD47w5cNLIa99WMH1BFR0SNdw0wKPuP9zEDm5fzKrZU+kz6iEmPj+XsJhkZk2bRFUd7UGToYaAkBgG3PQU3nWUAYO+mrDoJIbe/lJjRr3BHdu9mA0LX6fb0Ie4+fE5BEcl8ftXk6mu47rKTd3J8h+fIrnHzdzy+FwS2l7L0m8fpij3iFO42KR+THhxnX0betc79u+qyvJY+MV9+AXHMfaRX7h+8leU5B5j1S9TGjWtVyWlsum2q8xFpej999/nvffe47333uPdd9+lpqaGKVOm2Ped3tzJrjVf067XrbTpOY7giEQG3/IKaq0HB7bMdhl+99qZNEvuR9fBkwmKaEGvkY8TGtOGPeu+t4fJObmL1t1vIqZlT/yCY2jX+zZCopLJS9t7uZL1l+zf8C1J3W6hVdexBIYl0ufGl1FrPDiyY47L8Ac2zSSmZV/a95tEQFgLug59jOCo1hzY5PjR36Lj9UQn9sYvKJbA8Jb0GPkcRn0lJbmHnc6l0Xnj5Rtq3zRar0ZNa0PY+Mc3dO1/C537jSMsOpHrx7+CRuvBrnWuy0508/YMu+0Z2vcchVpd9w9YpVKFr3+offP2DWysJLiFgmV/cuSl98mbv6Kpo9Ko+rRTs2qXiQNpFnKLrfyyxoifl4I2zequZvu2V7P1kJkdR8zkl1qZt96EwQTdkmyt2LwSK9+vMHIw3UJxhZXj2Rb+2GaidTOl/UdujQG2HDSTVWiltBKOZ1vYfMBMfIR737BuuSGambPSWL+liOOpVfzfe4cIDtLR75qQOo956uV9LFmZx8n0ao6lVvHa+4eJCPMgKdHXHubRyS34bWEW3/+Wwcn0ajKyali1vgCjyX07Ufq2dy47s1Yb8PNS0Da+7l8z/TrYys72U2Vn7jojRhN0T7INMM0rsfL9coNT2Vm2zehUdkIDFHh7KPhju4nCMit5JVZW7DDi66Ug0Nd9elH6tlezcqeJA6mnrq165s+Wg2a2HzaTX2Jlzp+n8ifZMQB3y0EzJ3MslFRYySq0snSrkUBf5Tlpv6aNCk8drN1tarQ0/lX9OmhYscNISqqZnGIrP6+y5U27hLrzZkBHNVsOmNh22ExeiZXZaw0YjVanvAGIClYwoKOaWav1Ls8zf4ORjSkmii8wYqqpNGWbJ+Pwn2Qd20D3Ec80ahovxeCuOpZsrmXvMRNZBRa+WVyFv4+STi3rbr8M6aZjw14Dm/YbyC2y8NMfNRiM0KudrXPWaoXyKqvT1qmlhh2HDPaRkd2StWQVmFm8SU9BqYWjmWbmrq1hQCcdOjft+9+28ms69rmVDr3HERKZyLA7bO3BfZtctwcj4zswaNyztOk+CpVa6zJMi3YD6H/jE7TqNLQxo97g9vz5DW163kJy93EEhScyYOwraDQeHNrqOi/2rv+OuKS+dB44icDwFvQY/hgh0W3Yv+EHp3AqtRYvv1D7pvPyt3+XdnANSpWa/mP+TWBYc8Ji29N/3Muc2PcHZYVpjZpeIepyUa3sCRMm2LeJEyeiVqsZN26c0/4JEyZc+ESXidlkID8zhdhWve37FEolsa16k5O6y+UxOam7iW3Vy2lfs+S+5Kbutn+OTOjMif2rqCzNw2q1knF0M6UFJ4lL7tso6WgIZpOBouwUohIdaVMolUQl9qIgfbfLY/LT9xDVwjkvohP7kp/hOrzZZODwtlloPXwJikh2+m7vn1/xw/9dw7yPxrJv3XQsZvdrjJ7JZDKQk5pC87aOsqNUKmnephcZx3Zf0rmL8tJ4+4l+vP/Mtfz2+dOUFmVf+CDh1oJ8bSNGjmU5nlTrjZBRYKVZuOtqVqWE6BDnY6zAsSwLzcLqrpo9tApqDdQ57NnXC9rFqziZ435PzU+LCvcgJEjHtt0l9n1V1WYOHCmnXbLroeCueHvbfiiWV9ha5wH+Gtom+1FSZuDTNzuxYGYvPpzakQ5t6n/Oy+102Tma5XiaX2uEjHwLcXWUg9Nl52im4xhb2TETV0d5g3PLTkGZlapaK92TVaiUoFbZOhnySmwdC+4gyNc2oubMtNYabPnTrI6OQpUSokMVHDsrf45mmuu8HjVqW9qLyi2UVTrSHhao4NquGn5ZZcQ9csShrrxJz7ecv94JVXIk07neOZrlfIxGDXddq2PuOiMVdc+wc1tN2eapqSxkw7x/M+DmN1BrXAzvcQMh/kr8fZQcSnO0xWoNcDLHTEKU65n+KiXERaicjrECh9JMNK/jmLhwFbHhajbuc8x/U6vAdNbgJaMJtBoFcRHut8qA2WQgNz2FZsnOvyXik3uTdcL1b4mrldlkoCArhZiWznkR3bIXeWm7XR6Tl7ab6DPCA8S26nNO+OzjW/n65d78+OZw1s5+mdoqR/vAbDKgVGmc3iyj1thGLuWc3HGJqRLir3G/2qoB1VSVYLWY8fINdtrv5RtMSd4Jl8dUVxTi5RtyTviq8kL75wHjXmTVLy8y4+X+KJVqUCgYctv/Ed2ie8MnooHoq0uxWsx4+jjnhadPMKUFJ10eU1NZiIdPyDnhayoKnfalH1rNml+exmSswcsnlGH3TsfD2zG6ok2vewiOaoPOy5/8tF1s/+M9qisK6DnyuQZKXcOrrijBYjHj4+ecXz7+IRTmus6v+ohp3pExk6cSHJFAZWk+a+Z/zIypd/PQfxeg8/S51GiLJnJ6GHxljfPPrMoaKz6erp/oe3mASqlweUxogOsfQF46GNzZNgLhbLcP0tAmXolWreBAmpnZ69x3QZSgQNuTuZJS5ziWlBrs312IQgGP3p/I3gNlnEyvBiA6wtaouu+OeD6ecZyjJ6sYPjic9/+vI+Mf2n7e9Vaayulh8JXV55YD3zoG7DnKjvP+iguUnSFd1Gw95PgBZDDC5wv1jL9Oy5DOtuZAYbmV6YsNbrM2gT1/zrpOKmqs+Nbx+9T7VP6c/eO/ssZK2Fn506utipHXaNBpFOSXWPjydwPmU/0LKiXcOUTLos1GSiutBPm5z+gccORNxdl1SLXV/t3ZvD0ULuudimrnvLmht4bUPIvTGihXkqZq81itVv787XmSe9xGSEw7KkqyGjBVDcfP21Y+yqucO9srqiz2787m42krO+XVzseUV1sID3L9c6J3ey05hWZOZDvK0YFUE4O76uiWrGHHYSN+3gpG9rLV3f51/O2mVF1p+y3hfVZ70MsvmKI6fktcrWpP/a46+7ry8gmhNN/1dVVdUYjX2eF9Q6g+47qKTe5HQvvr8AuKprwogy1L3mPR9AcY8/DPKJUqohOvYePCN9i1Zjod+t6DyVDD5sXvnDp/QQOn8ionC8s2mCbpRNHr9ej1zsNDjUYdGo2uKaJz0fb++R25qbu5fvKn+AVFkXV8O2tmv4K3fxhxSb0vfIKrTGTzntz08Bxqq0o4vP1XVv/8BKP/9ou9km3Xd6I9bFBEEkqVhg3zX6bbdU/WOczxatWyQ3/Hh9gkolt05L2nB7N/21K69r+56SImLkqnFkrG9HOMO/5maeOvMqnTwMThWvJLLazYce5Irt83G1m5U0GIv4LhPdSMukbN/A3uMeJr6IAw/vlQK/vnZ/6z75LP+eTfWtI8zpt/POt4Eqg41TiYvzSHxSvzADh6opKuHQIYNTSCz2f+9Q7QhtIpUcXYM8rO15ep7Nw7Qkd+iZXl2x1lQq2CmwdoScuz8NMqE0oF9O+g4d7hWj6cqz/nafHl0LmlirFnrPnz9eLGzZ9dR80czbTg62WbunL3UC2fzLOlfURPDfmlFnYddY+OhM4tVU5r2kxf5HqazaVqE68iMVrllgvFuoPztXkObPoeo6GKDgMeaOpoOuneWsOd1zl6ZT+ZXdnof1Ojhu6ttSze5FyODqaamLO2ljuv82LiKDCZYPGmWlrGnn/9HXH1atlplP3/gyOTCI5M4ofXh5J9fCsxLXsRFNGSQbdPZeOCN9iy5F0UCiXt+96Dp08ICoV7T10WV68m6USZOnUqr7zivMjkiDtfYtTdLzfo3/H0DkShVJ2ziGx1RRFefq7n3Z/dO3o6vPep8CZDLRsXvceo+z4ioe1AAEKikinIOsjO1dPdthNF5xWAQqk6Z0G1msoivHxc54WnTwi1lYXnhPc8a6SORuuFJrgZfsHNCIvrxG/vDuPIjtl0rKMRERrbAavFRGVJFv6hCZeQqsbj5RuIUqk6ZxHZyrJCfOooO3+Fp5cfweHxFOfJnM4ryYF0CxlzHD/uVKeWH/DxVDg9FfbxtL35wpXqWjBbTo9UcT7m7FEJWg3cN0KL3mjlu+VGl6MEKmtsT9oLyqxU6438/QYdq3aa3GIo/vqtRRw4st3+WauxNXoCAzQUlTjyMTBAy7ETF27cP/FgIr27B/HwlD0UFDmOP32u1Iwqp/BpmdWEh7pHJ/2BNLPTW1BOL+Lo43Vu2ckucv2LwlF2nPf7eiqocFF2Jo3QojdYmbnceYRJ50QVgT4KPpnnmKry0yoDL0/woG28ij3HL3/nwYFUM+l5LvLnrLT5nid/qk7lz9kjVc4+B9imMNQarBSWWUnPM/DKvR60S1Cx+5iZxGglEUEK2j9gi8Tp53cvTfRg1U6TU4fU5XAg1cy7eY4fpKfz5ux/dx8vBdmFruudqlrrGfWOg6+XgvJT50iMVhLsr+C/k5wzcMIwLSdzLHy6oHE6bxpSU7V5ck5soSB9N9++5Py2ngWf3kKLjtfT/+bXGyB1F2/vMSOpORX2z6fLjp+3kvIqx3Xu660kM9/1dV9ZYys7fl5KwBHGz0tJedW512LnVhq0GtiScm5H6MrtelZu1+PvraBabyXYT8mYAZ4UlrnfNFQvH9tvibMXka0ud/w2+F/hcep31dnXVXXluaP4T/PyDTln0VlXo/7P5Bcci4d3IGWFacS0tE2xa9V5NK06j6a6ohCN1hMUCvb++Q1+QbGXmKr/LYqrcIHXpnJRnShPPvmk02eDwcCrr76Kv7+/0/533333vOeZMmXKOeeasabhG7gqtZawmLZkHN1Eiw6214ZZLRYyjmyiY7+7XR4TGd+JjKOb6Txwon1f+uGNRMR3AsBsMWExG+1PPE9TKlRY3bgLXaXWEhzVluzjm2nWxpEX2cc30/oa12/KCYvrSPbxzbTt41jnJvv4RsJiO533b1mtVsymup8eFuccQqFQ4uHjXm9yOpNarSUyvi0nDmyidRdbflksFk4e3EyPIQ33ZiF9bRUlBRn4BtzQYOcUjc9ghCKj8/VeXm0lMVpJTrGtcanTQGyogs0HXDcKzRbIKrQdcyDNFkYBJEYp2XjA8eNMd6oDxWyGmcuM9RodcHrhULXKuYOmqdTUmMmqcY54YbGebh0DOXbS1uHh5amiTSs/5i0+/xpBTzyYSP9eITwyZQ85ec5POHPyaiko0hMX7TwPJjbKk807SnAHdZadKBU5RbZ/d50GYsOUbD7oekqWo+yozio7KjamOJedSSN1mMxWvl1mOKfsaNS20nFmbKxW2+emGvCrN4L+7PypstIy+tz82ZRynvwpsOVPSuoZ+ROtYuP+C3d8nO4UnfmHAc0Z67PGhim5dZCWT+cbKGqCH3t15k2Miuwz8iYuTMmmFNfptOWNhZYxSvtUHVveKNlwKm9W7zSy9aDz8U/f5smCjUYOXCHTe5qqzXPN9c/Tdeij9u+qywtY9s1kBt327nlfrdzY9EbOeXVxWaWFpDi1vdPEQwsJkSrW7XbdSWa2QHqumaRmavYcs117CiCpmZo1O889pk97HXuPGc+ZOuYUh1OdL91aaykut5Ce537lS6XWEhHXlrTDm+yvILZaLKQe3kTXga5/S1ytVGotodFtyTy2iYR2jrzIOraZdr1dX1fhzTqRdXQTHfs5rqvMoxsJb9apzr9TWZpLbXUpXn5h53x3uvPl4NbZqNQ6Ylq558NrcfW7qE6UXbucF1Dq3bs3J044zwc8u3PBFZ1Oh07n3GmiaaQVuTsPvJflPz5LeGw7wuM6sHvtt5gMNbTpORaAP75/Bm//cPqMfgqATgPGM/vDe9i5egbxbQZwZOdi8jP2M+S2/9ji7uFDdIserF/wFmqNB75BUWQd28bB7fPod6P7rvEB0K7PBNbNnkJIdDtCY9qTsnEmJkMNrbqOAWDtr8/i7RdOt2G2Dq42vcaz+Kvx7Fv/NbFJAzixdzGFWSn0uck2ishoqGbPms+JSx6El28otdWlHNz8I9XleSS0GwZAfvouCjL2EtG8JxqdNwXpu9my+HVadBqNztPfdUTdRO/rJjL3q+eIjm9HdPMObPrjWwz6Gjr3tZWdOV8+i29AGENvsZUdk8lAQfZxAMxmI+UleeSkH0Sr8yI4vBkAy35+g6ROg/APiaKiJJ/V8z6yDUvseX3TJPIyUHl74Z0YZ//slRCDX8dkDMVl1GbkNGHMGtaG/SYGd1ZTWGaluMLKdd3UlFdb7T9yASaP1JCSamHTAVtDcf0+E7cM0JBZYCGjwErfdiq0GthxxNERM2mEFo0avlttRKeF0zVnVa3tB29SrBIfTwWZBRYMxv9n767Dozr2Bo5/V+PuHkKABAnu7t5SqLdIS3vvrbdUeXurty11d6GFGm2x4k5xd4JLiLvrZnfP+8dCliUJDZCQhf4+z7PPQ87OOTsznJkzZ87MHMtCmCO6aklIN5NX3PgdKLX5Y0EKE28LJym1jLSMcu67O5Kc3Ao2bLU+Cf7wtTjWb8lm7mJLx8qTD0QzqE8AU18/SGmZEW9Py4WjuNSEwWDJ51/mJjH5zkhOnC7m+Olihg8IJCLUmf++eejqJ7KONh4wMqCDluxCM3mFCkM66ygsVWzWo7h/pJ6DCSa2xFu2bdhv5NZ+lnMnOctMrzZadDrYecx6M33fCAd0Wpi1puZz53iymRFdYUxPHZvjjahUltcJm81wMtV+bmY2HjAyoKOW7ALLm4ZqzJ9ReuJPm9h8fv70P1u2Ms30itOi18HOo5b88XZT0TZaw7EkEyXllrUY+rfXUmmCI2csx7jwrTMuTpa/M/PMlDf8LKw62bC/koEddWQVKOQWmhnWxZI3B09b8+bfox04eNpU1Umybp+R2wfoSc4yk5hhpnecFr1OxY6z6+UUlVVfZwUgr8hSt53j467CQWdZzFqntbzNByxvhjLZwYCCxmjzuHoG28RBq3cBwM07DBePwKuV9DpZs6uCEd0dyMozkV1gZnQvJwqKzew9bu2cfOxWF/Yer2TdHssJv3pnBRNHOJOYbiQhzcSATpY36mw5aFsg/DzVRIdp+Gx2zVPCBnd2IP50JYoC7ZrrGNrVgW8XlNrtdJ7OA+9h8YxnCQxvTVBkHDvXzKCyoow23S3twUU/PIObZwB9x1jagyajgew0S3vQbDJQnJ9BRpKlPejlb2kPGspLyMtKrPqNgpxkMpIO4+Tigbt3MPaqbZ9JrPntOfxCWxMQFsf+DTOoNJQR09mSF6t/fRYXD3+6jbDkRVyv8fz5xQT2rptORGw/TuxdTFZyPH1vttxXVVaUsGPlZ0S1GYKzmy+FOUlsWfwOHj7hhLewvrDjwKafCIxoj87BmeRjm9my+B26jpiCg5P9Lhwvrm+X1Imydu3aatvOjb6oS+dJY2jeYQRlJblsXfoxJYVZ+IXEcuO/v63qySzKS7OZTxfUpANDJ7zLlsUfsnnR+3j6RTJq8mf4BFnn8w+b+D6bF73P8p+eory0AHevYLqPeII2Pe+46um7FFFxIygvyWP36o8pK8rGOyiWIZO+xuns0NaSAtu8CIhoT79b32HXqo/YteID3H0iGHjXJ3gFWPJCpdJQkHWKNbvnU16ah4OzJ34hbRhx/094BTQDQK3Rc+rAEvas+QyT0YCbVyitek6kdc9JVz39l6p11xGUFOWyZv4nFBdkERgey/gp3+DqYcmvgpxUm/O+KD+TL1+6qervzcums3nZdCJbdOae534EoDAvg9lfPUlpcT4ubt6EN+vI/S/8hou7/Y7KuVIeHVvTffWPVX+3fPf/AEiaOZf9k6c2VrTq3bp9JvRaFWN763DUQ0KGme+X2Y4c8XFX4+JobSXuP2XGxdHI4I463JwhNUdh+lJD1YKhIb7qqretPHO7bcfzW79WkFesUGmELjEaRnXTotVAfolC/Gkzf+2zj/VQavPznCQcHTU883BzXF20HDhUwJMvHcBw3pP2kEAnPN2tPew3jQgB4NNp7WyO9fqHR1h6dg2UPxak4KBX88h9TXF303HidDFPvLif1HT7Xd9h3T4jei2M6623nDvpZqYvtR054u1ueR3xOftPmXBxgiGdtLg5W6a2TF9SUeO58+wdjja/9+Yv5eQVW6Z+zVhuYGBHLQ/e6ICiQGqOmelLK+xiGtg5f+09mz99rfnz3WLb/PHxUOFy3hSVfSdNuDjCkM5n8ydb4bvF1vwxmhSaBKnp1UaLk4NlqsLpNDOfz6ugxH5PlWrW7jWi16m4ua8eJz2cTjfzzaKKC+od23Nn30kTrk6VDO2sO5s3Zr5dVFFtoeK/c2s/PU1DrEN1ptxqmf7z+k9ldvF2p8Zo81xLVmyvQK9TcedQZ5wdVJxMMfLJ7BKbc8fPU4Ork3XDrqOVuDqXMaqnE+4uKpIzTXwyu6TaNLkebfTkFykcTqj5OtSqiZZh3RzRaiAly8SX80qIP22/16zYTiMoLc5l4yLLvYR/aCy3PvJt1XSewlzbc6m4IJMf3hhT9ff2VdPZvmo6Yc26cOcUS3soPfEgv34woSrMmtnTAGjd7SZGTmycaV91Ed3Ocl+1Y/knlBZl4Rscy6j7vqm6ryrOt20bB0Z2YNCd77Jt+YdsW/oBHr6RDJv4KT6BZ8uVWkNu2lGO7pyPobwIF3c/Qpv3pMvQx2zWTcxMPMCOFZ9QWVGKl38Ufca9QouON17dxF8PZA2ZeqNSLnMOynfffccHH3zA8ePHAWjWrBmPP/44991332VF5LOll7XbP0JxiR080rFjEcH22YFnD9z6xvx9oH+wDZ/va+wo2K2NC7Y1dhTsWs/RXRo7CnZLkUvWRZnt9XG7nfDzc/z7QP9QCacLGzsKdq1zR8/GjoLdKrTjkan24PEb/hn3EmU/vdFov+109/812m83hMtaWPbFF1/k/fff55FHHqF7d8uCP1u2bOGJJ54gMTGRV199tV4jKYQQQgghhBBCiMuk/md0Fl0Nl9WJ8sUXX/DNN99wxx3W6Ss33HADcXFxPPLII9KJIoQQQgghhBBCiOvOZU2MqqyspFOnTtW2d+zYEaPRfuc0CiGEEEIIIYQQQlyuy+pEGT9+PF988UW17V9//TV33VV/r38VQgghhBBCCCHElVGp1I32ud5c1nQesCwsu2LFCrp16wbAtm3bSExMZMKECUyZMqUq3Pvvv3/lsRRCCCGEEEIIIYRoZJfViXLw4EE6dOgAwMmTlveg+/r64uvry8GDB6vC2etrj4UQQgghhBBCiH8MWVi23lxWJ8ratWvrOx5CCCGEEEIIIYQQdu2yp/MIIYQQQgghhBDiGnAdrk3SWCQnhRBCCCGEEEIIIepAOlGEEEIIIYQQQggh6kCm8wghhBBCCCGEENczeelLvZGRKEIIIYQQQgghhBB1ICNRhBBCCCGEEEKI65laxk/UF8lJIYQQQgghhBBCiDqQThQhhBBCCCGEEEKIOpDpPEIIIYQQQgghxPVMJeMn6ovkpBBCCCGEEEIIIUQdyEgUIYQQQgghhBDieqaWVxzXFxmJIoQQQgghhBBCCFEHdjMSJTGprLGjYLf8fB0aOwp2beXq7MaOgt3y+3xfY0fBrvV+sG1jR8Fudd10qLGjYNfSczWNHQW75etpbuwo2LUVa/IaOwp2zcdH2jy1uWmIc2NHwa6dyWrsGNiv5BS5z7q4f0jZkjVR6o3kpBBCCCGEEEIIIezCZ599RmRkJI6OjnTt2pXt27dfNHx+fj4PPfQQQUFBODg40Lx5c5YsWdJg8bObkShCCCGEEEIIIYT45/rtt9+YMmUKX375JV27duXDDz9k6NChHD16FH9//2rhDQYDgwcPxt/fn9mzZxMSEsKZM2fw9PRssDhKJ4oQQgghhBBCCHE9U10bC8u+//773H///dxzzz0AfPnllyxevJjp06fz3HPPVQs/ffp0cnNz2bx5MzqdDoDIyMgGjaNM5xFCCCGEEEIIIUSDqKiooLCw0OZTUVFRLZzBYGDXrl0MGjSoaptarWbQoEFs2bKlxmMvWLCA7t2789BDDxEQEEDr1q154403MJlMDZYe6UQRQgghhBBCCCGuZ2p1o32mTZuGh4eHzWfatGnVopidnY3JZCIgIMBme0BAAOnp6TUm69SpU8yePRuTycSSJUt44YUXeO+993jttdcaJBtBpvMIIYQQQgghhBCigUydOpUpU6bYbHNwqJ+3sZnNZvz9/fn666/RaDR07NiRlJQU3nnnHV566aV6+Y0LSSeKEEIIIYQQQgghGoSDg0OdOk18fX3RaDRkZGTYbM/IyCAwMLDGfYKCgtDpdGg0mqptsbGxpKenYzAY0Ov1Vxb5Gsh0HiGEEEIIIYQQ4nqmUjXep470ej0dO3Zk9erVVdvMZjOrV6+me/fuNe7Ts2dPTpw4gdlsrtp27NgxgoKCGqQDBaQTRQghhBBCCCGEEHZgypQpfPPNN8yYMYPDhw/zwAMPUFJSUvW2ngkTJjB16tSq8A888AC5ubk89thjHDt2jMWLF/PGG2/w0EMPNVgcZTqPEEIIIYQQQghxPVNdG+MnbrvtNrKysnjxxRdJT0+nXbt2LFu2rGqx2cTERNRqa1rCwsJYvnw5TzzxBHFxcYSEhPDYY4/x7LPPNlgcpRNFCCGEEEIIIYQQduHhhx/m4YcfrvG7v/76q9q27t27s3Xr1gaOlZV0ogghhBBCCCGEENcz9bUxEuVaIDkphBBCCCGEEEIIUQfSiSKEEEIIIYQQQghRBzKdRwghhBBCCCGEuJ5dwquGxcXJSBQhhBBCCCGEEEKIOpCRKEIIIYQQQgghxPXsGnnF8bXgkjpRjh8/zosvvshXX32Fu7u7zXcFBQU88MADvPbaa0RFRdVrJC/H4I5ausRqcdJDQrqZeRsrySlULrpP95Ya+rTV4uakIi1X4c9NBpKzLPs4OcDgjjqah6rxdFVRUq4Qn2BmxY5Kyiutx2garGZoJy2B3moMRth1zMjyHUbMF//pqyZ+y8/sXz+dsuJsvANj6HHD8/iHxdUa/tSBZexc+THFeSm4+0TQZdiThMf0rTHshnkvc2T7b3Qb+Rxtek2s2r585oPkpB6hvCQHvZM7IU2702X4U7i4+9d7+hrCjX2d6dPeEWdHNSeSKvlxaTGZuaZawzcP1zG0uxORQVo83TR8+nsBe44abMJ0iNHTr4MTEUFaXJ3VvPx1LkkZtR/TngzuqKVzjMZStjLMzN9o/Nuy1a2lhr5xWlydIC1XYcHmygvKlpZmIefKFsQnmFix00jF2bLl7AC39dcR5K3G2RGKy+DQGRPLd1jDXKu8e3Ui6snJeHRojWOwPzvHPUjGgtWNHa0Gt2XlL6xbMp3igmyCwlpww4TnCWtac12UkXycFXM+JSUhnvzsVEbd9Ry9hk2wCfPmE4PIz06ttm+3gXcwZtILDZKG+rJvw8/sXPMdpYVZ+IbE0H/cCwRG1F4vH9uzlC1LPqIwNwVPv0h6jX6KJq2s9bKhooRNC9/j5P5VlJXm4+EdSrs+44nrdQcA5SX5bFn6CYlHN1KYl4azizdN4wbRfcRjODi5NXh6r9TWVT+zcanl3AkMi2HU3c8TepFzZ/W8T0g9e+6MuPM5egydWC1cYW4Gy39/j2P711NpKMcnIJyx971BSJPWDZ2cK3ZDHyd6t3PE2UHFieRKfl5WQmae+aL79OvowNCuTni4qknKMPLrilIS0oxV3/t5qrlloAvRYVq0Gog/VckvK0ooKrHW9dMe9MTXU2Nz3DlrS1i2pbx+E1iPOkSr6NpChasjZObDij1m0nJrDx8TCn1aq/Fwgdwi+Gu/mZPp1u97tVLRMkyFmzOYzJCeB+sPmEm9yDHt1fplv7J64Q8U5mcTEtGCm++dSmR0mxrDblo1m+3rF5KWdByAsKiWjL7jMZvwe7etYtPK30k8dYjS4gKeffsPQiNjrkpa6sOedT+zY9V3lBRm4RcSw8BbXyAosvZ6+ejupWxa9BEFOSl4+UfS58aniGptrZdLCrNZP/9dEo5spKK0iNDoTgy89QW8/CMBKMhJ5psXB9Z47NGTP6RFh+H1mr4rNbSzjq6xWpwc4HS6mbnrDWQXXLwt2KOVln7ttLg5q0jLsdybJWXWXFfdN9KBmHAN3y+tID7B2j6+saeOJkEaAr1VZOQpfPCH/dY34vp2Sd1R77zzDmFhYdU6UAA8PDwICwvjnXfeqbfIXa6+bbX0bK1l3gYDn86vwGCEySP0aDW17xMXpWFUdx2rdxn5eG4FaTlmJo9wwMXR8r27swp3FxWLt1by/h8V/P5XJc1D1dzcV191jCBvFfcO13M02cxHcyv4ebWBlhEahnexjwE/J/cvYevit+gw8CFuengOPkEtWDr9fsqKc2oMn3FmD2tmPUWLTuO46ZG5RLYcyMqfHiE3/Vi1sKfjV5KZtA/nGjpGgqO6MPDO97llyhIG3/UxhblJrPr5sXpPX0MY3sOJQV2c+HFJMa9Pz6OiUmHKnR4XPZf0OhXJGUZ+WlpcaxgHnYrjSZXMXl3SALFuOH3baujRSsP8jZV89qeBykq4d7jub8qWmlHdtKzabeSTeQZL2Rquty1bziqWbDPywWwDf6yrpHmYmpv76KqOoShw6IyZGSsMvPt7BX+sqyQ6RM1NvXS1/Oq1Q+PiTOH+oxx89JXGjspVs2/rUhb98haDbnqQR/43m6DwGL57+18UF9RcFxkM5fj4hzL81im4efjWGObhV37n+U/WVX0mP/stAG26Dm2wdNSHo7uXsH7eNLoNfYg7n56HX3AM876YTGlRzXmReno3S2c+SatuN3PX0/Np2mYgC797iOxUa728ft6bJBzewNDx7zBh6hLa95vI2jn/4+QBS+dccUEmJQWZ9L7xWcY/t4ghd00j4fAGVv76/FVJ85U4sG0JS399i/43PsSDr8whMKwFP7x7P8WFNedXpaEcb78whtwyBddazp2ykgK+fv1O1BotE5/8mkenLWLY7c/i6Fy9rWNvhnVzZGAnR35aWswbPxRgqITHb3e/aJ3cKVbPrQNdWLixjP9NLyA508Tjt7vh5myZK6/XweN3uKOg8N7Phbw1sxCNWsUjt7hz4Wz6+etKefKj3KrPmp32e0MTG6ZiYFsVG+MVpq80k5GvcFsfNc4ONYcP8YEbu6nZd1ph+gozx1MVxvVU43veaZFbBCt2m/luuZmf1pgpKLEc06mWY9qrXZuXMW/mOwy/+T8889bvhEQ05/PX/01RLXXyiUM76NhzOI++NJ0pr/2El08gn7/2b/JzM6rCGCrKiIppz413PXG1klFvjuxawl9zp9F9xEOMf24e/qExzP50MiW11Mspp3az6Psnad39ZiZMnU903EDmf/0QWWfrZUVRmP/1QxRkJzHm358zYeo83L1D+P3jezBUlALg5hXEA29stPn0GPkIOgdnmrTsc9XSXhf922np1UbLnPUGPp5TjqFS4f5RDhetd9o21XBDTx0rd1by4exyUnMs+7g6VQ/bO06LcpH+mO2Hjew9cW08eBTXr0vqRFm3bh233HJLrd/feuutrFmz5oojdaV6tdGyZo+RQ2fMpOcq/L7WgLuzilaRtZfu3nFath8xsfOYicx8hXkbKqk0QucWlg6QjDyFn1YaOJxoJrdI4WSqmeU7KomNUKM+26qIa6ohLUdh9W7Lk/nTaWaWbKukeysteju41zuwYQYxnW+hRaexeAVE02vMy2j1jhzdObfG8Ac3zSS0WS/a9pmMl39TOg15DN/gWOK3/GITrqQggy0LXqf/bW+jVlfvMGrTaxIB4e1w8wohIKI97freT2bSPswm+x9CMKiLE4s2lLL3mIHkTBPf/VmEp5uaDjG1t5AOnjQw76/SaqNPzrflQAULN5Ry6HTtYexRz9a2Zeu3vypxd1bRMqL2qqRXG0vZ2nW2bM3faMRghE4tLOUxI0/hp1WVNmVrxQ6jTdkqM8C2wyZSshXyi+Fkqpmth0xEBl77wxKzlq/n2EsfkvHnqsaOylWzcekPdOl3C536jCUgJJox97yE3sGRnetrrovCotow4o6nadt9BBqdvsYwru7euHn6VX2O7F2Hj38YUTGdGzIpV2z3X9/TusettOo2Dp/AaAbe+gpavSPxW+fUGH7PuplExvSm08D78A5sSo+Rj+Mf2pJ9G36qCpN2eg8tu4whrFlXPHxCadPjNvyCY8hI3A+Ab3BzRk3+hKjWA/D0DSeseXd6jHyc0wfXYDYZa/xde7Fp2Qw69b2Fjn3G4h8SzQ2TXkand2RXLedOaFQbht3+NHHdRqKt5dxZv/hbPLyDGHf/G4Q2jcPbL5RmbXriExDekEmpFwO7OLF4Uxn7jleSkmVi+sJiPN3UtG9Rc1oBBndxZMPeCjbvryAt28RPS0swGKFnW8t1LTpUh6+Hmu8XlpCSZSIly8T3i4qJCNIQE2nbmCk3KBSWWD8GO76sd2muYt8phQMJCjmFsGyXgtEIcU1qXmixUzMVp9Jh21GFnCJYf1AhPR86NrOGP5SokJAJ+SWQXQir9yo46lX4e1ylRNWTtYtm0n3gOLr1v4mg0Kbcdv+L6PVObFk7r8bwEx99iz5Dbyc0MobAkCju/M8rKIqZowe2VYXp0mc0w29+gBZtul2tZNSbnau/p02PW2nTfRy+QdEMvv0VdHpHDm6puV7evXYmTVr2psvg+/AJbEqv0Y8TENaSvess9XJeZgJpp/cy6PaXCYqIwzsgisG3v4yxspwjOxcDoFZrcPHws/mc2LeKFh2Go3d0uWppr4vecTpW7aokPsFEWq7CrDWW+6zWTWq/z+rbVsu2Q0Z2HDWRkacwZ52BykqFzjG29w3BPir6ttXy+9qKGo/z56ZKNscbyf2bEdCiFipV432uM5d0B5KYmIi/f+1TMHx9fUlKSrriSF0JbzfLU+3jKdYeyvJKSMo0E+5fc3I1agjxVXE82bqPApxIMREeUHsWOepVlBuomqqj1YDRZFuoK02g06oI9W3cmz2T0UB2ajwh0d2rtqnUakKadiczcW+N+2Qk7rMJDxDarJdNeMVsZu3vzxLX5168A5r9bTzKS/M5sXchAeHtUWvsoGfpInw91Xi6aWw6OsoqFE6lVNI0xD5GF11N58rWiRTr0MuKSkjKUoiopZycK1vn72MpW2YiaimPUL1sXcjNGVpHajiddvEh68L+GI0GUhIOEd3K2rBWq9VEt+rOmRN76+039mxaSKe+Y1HZ8YXbZDSQmRRPWPMeVdtUajXhzXuQlrCnxn3ST+8lrIVtvRwR04u0hL1Vfwc1ac+pA2sozs9AURSSjm8lL+s04S161RoXQ3kxekdX1Br7rduMRgOpCfE0bWVNv1qtpmmr7iRdwblzZM9aQiJb8eunjzPt4Z589sJYdvz1ez3EuGH5eqrxdFVz+LS156KsQuFUqpGoWq5RGjVEBGk5nGC9rinA4dMGmoZYrslajWXb+e2ZSqOCokB0mO1xh3d34oPHvXjhXg+GdHWs6vi2N2o1BHrB6Qzbi0pCpkKIT82RDvFRkXBB+NPptYdXq6FdUxXlBoXM/HqJ9lVhNFaSdOqQTWeHWq2mRZtuJBzbV6djGCrKMRmNuLheY71HNTAZDWQkxRMRc0G9HNOD1FM118upp/cScUG9HBnbi9TTe6uOCaDVWR/AqdRqtFo9KSd31XjM9MSDZCYfpk2Pm68kOfXO280yMv/8e6ZyAyRmmi/eFvRTcyzZti14PMV2H50W7hrkwLwNlRSVNVgShKgXl9Ra8vDw4OTJk0RERNT4/YkTJ2qc6nM1nRuOWlxqe+ErLlNwc655H2dH0KhVFF9QYIvKFPw8a64QnB1gYAct249Yn9odSzLTq7WWtk017D9lws3JEub8eDWW8tJ8FLMJJ1cfm+1Obj7kZ52ucZ+y4mycXG2HPzu5+lBWnF31977136JWa2jVY/xFf3/b0nc5tOUXjJVl+Ie1ZejELy4zJVePh6vl/76wxPZcKiwx4+567Y+AuFTnhlwWl1UvW65ONZ/f1rJVfZ+Lla0B7S2jVy50e38dLSPV6LUqDp0xMWeDHT/2FDUqLcrHbDZVm1rh6u5DVuqpevmNQ7tWU15aRMfeN9XL8RpKWUkeitmEs5ttvezs5kNuZs15UVKUjbObb7XwpYXWernfzS+wetYLfPtSH9RqLSqVioG3v0ZodM2jcsqKc9m2/HNa97jtClPUsKznjm1+uXr4kJ1W83WsLvKykti+dhY9hk6i7+h/kXLqIIt/egONVk+HXmOuMNYNx8Pl3DXKtjO5qMRc9d2FXJ1VaNSqGq5rCoFnOwdOpRqpMCiM6+/MvL9KQQXj+jujUauqrosAa3aWcybdSEmZQnSolpv6OePpqub31aX1mcx64awHtVpF6QUPt0vKwaeWZYBcHS3fXxje1dF2W3SQZdqPTmtZr2vWOjNl19Ag05LCPMxmE+6etuXKzdOHjNS6las/f/4AD2+/a3LUyYXKii31sssF9bKLmw+56bXUy4XZOLtfUC+7+1Bytl72DozCzSuY9X++x5A7X0Wnd2Lnmh8oyk+npDCrxmMe2Dwb78CmhER1qIdU1Z9z9zNFF7brSpVa73VcHFU1tgWLShX8z2sL3tBDR0KG2WYNFFHP1P+8+5eGckmdKH369OGTTz5hwIABNX7/8ccf07t37789TkVFBRUVtlcyY6XZpoe2rtpFaxjb2zqi4ftlDX/lctDBPcMdyMxTWLnT2olyPMXMkm1GxvbWcVt/HSYTrN5tJCpIc9G5fdeqrJR4Dm76kZsemfO3T3vb9plMi07jKM5PZffqz/nrj+cYOvFLu3pK3LW1AxNGWltTH/1a0IixaXztmqq56byy9cNVKluThunJzDezalf1aQWLtlayercKXw8Vw7poGdlNy5+b7Hv6gbj6dqybS/O43rh7XRuLV9e3fet/JP3MXm64/wvcvIJJObmTtbNfwdXDn/AWPWzCVpQXM//rf+Md2JRuwx9upBg3LsWsENykFUNusazdEBzRkoyU4+xYM8uuOlG6ttJz93DXqr8/+b2wQX6nuFThq3nF3DXMhQGdHVEU2B5v4Eya0aYts3K7tYchJcuE0QR3D3dh7l+lGP9B90BnMmH6SjNOemgXpWJMdzUzVpurddhcr1bM/5bdm5by6MvT0emvscVgrhKNRseN//qE5T89z6dPd0Gl1hDRojtNWvZBofoNQqWhnCM7F9Ft2IONEFtb7ZtpbNZ//G5xw5zYLSM1RIdoZKFYcc24pE6UqVOn0r17d26++WaeeeYZWrRoAcCRI0d4++23Wb58OZs3b/7b40ybNo1XXrFdRLHHqP+j1+j/Xkp0AMsbOs5f2fncokauziqbXlJXJxWpOTX3ZJSWg8msVFvcyM1JRdEFI1r0Opg8XE+FQWHmSkO16QYbDhjZcMCImzOUVViGvQ3vqiO3qHGnHTg6e6JSa6otIltWlFPtqeY5Tq6+NqNOAMqKc6pGp6Sf3klZSQ6/vmXtVFPMJrYteZuDm2Zyx7PWN4w4unjh6OKFp18TPP2b8uub/clM3EtARPv6SuIV23fMwCsp1iX1tVpLB4+7i4qC89aIdXdRk5R+/d+4H0o0kzTX2nGiOVe2nKqXrbScms9va9lSAbb7XDhaTK+De4frqahU+HFlZY1TeYrLLKNYsgoUSisqeeAGB9bsNsqwz2uIs5snarWG4gLbuqW4MAdXz5rrokuRl53CiYNbuPuxj674WA3NycULlVpTbRHZ0qIcXGqpl13cfCktyq4W/txTUKOhnE2LPmD05E9p0qofAH4hMWSlHGbXmu9sOlEM5cXM/+I+9A4ujJ78GRo7n2JpPXds86u4IKfWRWPrwtXTF//gpjbb/IKiiN+x4rKP2RD2HjdwKjW/6m+d5tw1Sk1BibXXws3F8sadmhSXKpjMCu4utg8w3F1sR6ccOl3J81/k4+qkwmS2TBN691Evsg7V3jtyOtWIVqPCx0NNRq59TbUsNYDZrFRbRNbFEYpruWcrLqdqAfSLha80QV4x5AGpuQr/Hq6ibRMVW45cG0/PXNy9UKs1FObblqui/Jxqo1MutHrBD6yaP52HX/iGkIgWDRnNq8bJ1VIvX7iIbElRDi7utdTL7r42owEBSgttwweGt2bi//1JRVkRJmMlzm7e/PT2LQRGVH8D2LE9y6g0lNOq65grT9AVOpRg4v0M60l/7j7rwnskV2cVqdk1l/uScuW8tqCVm7OKwrPHiA5R4+Oh4n+TbW/GJg7VczrNzBcL/iG9kg1MsaOH19e6SxrT0759e2bPns369evp3r073t7eeHt706NHDzZs2MDvv/9Ohw5/P+xs6tSpFBQU2Hy6DXv6shJgqIScQqXqk5GnUFiqEB1sXdzIQQdh/moSa3mNlskMKdkK0SHWfVRAdLCGxAzrPg46uG+EA0YzzFhuuOiTlqJSMJosq1HnF5tJyW7ci6lGq8c3uBUpJ7dWbVPMZlJPbsU/vF2N+wSEtyX1vPAAySc2V4Vv1v4Gxj06n7GPzK36OLv7E9fnXobf+23tkVEseWqys4Vlyw0KmXnmqk9qlon8IhOxTaw98I56FVEhOk6mXP+dKBeWrcxzZSvEWm046CDMT8WZjL8rW9Z9LGVLzZlM27I1ebgekwlmLq+s01PMc3PvtRq5IFxLtFo9IZEtOXHIWreYzWZOxG8lIrrdFR9/5/p5uLp7E9Ou5lex2xONVo9/WCuSjm2p2qaYzSQd20JQZM0dzIFN2pF0zLZeTjy6maDIdgCYzEbLot0XNJRUag3KecMIKsqLmfvFZNRaHTfc/8VljQS92rRaPcGRrTh1wblz6tBWwq7g3Ilo1oHs9ASbbTnpCXj6Bl/2MRtChQGy8sxVn9RsE/nFZpvFXh31KqKCtZyq5RplMsOZNCOx5+2jAmIjdZxMqX5NLi5TKKtQiInQ4uaiYt/x2kckhgVoMJuVag+f7IH57OuHIwNsy0WEv4qUWh6wpeQoRFwQPjKg9vDnqFTWhw7XAq1WR1hUS44dtC4KazabOXZwK5HN29a636o/p7Nszlc88H9fEN601dWI6lWh0eoJCGtF4lHbejnx6BaCo2qul4ObtOPMUdt6+cyRzQQ3aVctrIOTG85u3uRlJpCReJDouOqvNT6wZQ5N2wzA2c37yhJTDypqus8qUWgWanufFe6vvnhbMMtMs9AL2oIh1n3W7q7k/d/L+eAP6wdgweZKflt7Dc2PE/8Yl7yC3KhRozhz5gzLli3jxIkTKIpC8+bNGTJkCM7OtSw6cgEHBwccHGwbbFpd/T1K3njAyIAOWrILzeQVKgzprKOwVLGZY3f/SD0HE0xsibds27DfyK39dCRnmUnOMtOrjRadDnYeszREznWg6LQwa00lDno4l4KScqqGuPaJ03IsyYSCZeHLfu20/LzKYBfTedr0nsi6P6biF9Iav7A2HNw0k0pDGc07WtYNWPv7s7i4B9Bl2BQAWvecwMKvJ7B/w/eEt+jLyf1LyE6Jp/dNllFE50aXnE+t1uLk6ounXxMAMhP3kZV8kMDIDuid3CnMTWLXyo9x9w4noJbOG3uyansZo3o5k5FrIjvfxE39XMgvMrP7iLVH/Km7Pdh9pKLq1Y4OOvD3tl5cfD01hAVoKClTyC20XCxcHFV4e1gWrgUI9LEUxYJic7W56vZk00EjA9pryS5QyC1SGNJJS2GpwqEz1gvnfSN0xCeY2XL2ieXGA0Zu6WspW0lZCr1aa9DrYNcxy/fnOlB0Wvhxbc1lq0WYGlcnFclZZgyV4O+lYkRXLQnpZvKK7Te/6kLj4oxLtPUtIM5NQnFvG4Mht4DypLRGjFnD6TV8En98PZXQJq0Ji2rDxuUzMVSU0bGPpS767cvn8PDyZ9htlrrIaDSQmXISAJOxksK8DFLPHEbv6IxvgHWNLrPZzK718+jQewwaO14g9Xwd+t3Dip+fJSC8NYHhcexeN4NKQxktu44FYPlPz+DiEUCv0U8C0L7vBGZ/PJ5da6bTpFVfju5eQkbSQQbe9ioADo6uhER3YeOf76DVOeLuHUzyiR0c3jGfPmOeAywdKPM+vxejoYxh49/BUF6Modwy3M7J1Ru12n7vAHsOm8icb6YS3KQ1oVFt2Hzu3Dm7/s3sr57F3SuAIbdaz50sm3Mnk7Sz547P2XOnx9CJfP3anfy18CvadBlG8qkD7PjrD268x/5fO756exkjezqRmWciO9/MjX2cyS8y27wdbsqd7uw5amDtLss1auX2cu4d7UpCmonTqUYGdXFEr1Oxab/1utYjzoH0bBNFpWaiQrTcPtiFVdvLq0aYRIVoaRKs5eiZSsoNCk1DtNw6yIWtBysoLbfPOnn7MYVRXVSk51pGjHRurkKnhf2nLfEd1UVFURmsO2D5e+dxhbv6q+jSXMWJNIWW4SqCvGDpTsv3Og30aKnieIpCcbllPa8O0SrcnOBIkn3mQW36j5rAT589T3hUKyKi2/DXkh+pqCijW78xAMz89P/w9PbnhjsfB2Dl/O9Y8vtnTHz0LXz8QyjMt4zCcHB0xsHRci9QUlxAXnYaBbmZAGSkJgDg7umLez2MOmxInQbew9KZlno5KDKOXWtmUFlRRutulnp5yYxncPUMoM+Nlnq5Q/8J/PbBeHasmk5U674c2bWE9MSDDL7z1apjHt29FCdXb9y9g8lOOcqa2W8Q3XYQkbG2C37nZZ4h+cQOxj3w9dVL8CXasL+SgR11ZBVY2rXDuljusw6ett5n/Xu0AwdPm9h00HIftW6fkdsH6EnOMpOYYaZ3nBa9TsWOs2tLFpVVX2cFIK/I0t48x8ddhYPO8oIBndbyNh+wvOnRZF8D4MR17pJamSNGjODXX3/Fw8ODm266iTfffJP//Oc/eHp6ApCTk0Pv3r05dOhQQ8S1ztbtM6LXwrjeehz1kJBuZvpS25Ej3u4qXBytTxj2nzLh4gRDOmlxc7ZM/Zm+pKJqsdkQX3XVm3qevcN2fOebv5RX3ci1CFMzoL0WrQbSchRmrjBwNMk+SnXTuBGUF+exa9XHlBZl4xMUy/B7vq6azlOSn4ZKZe0lDohoz4Db32Hnio/YsfwDPHwjGHz3J3gHNq/zb2r1TpyOX8muVZ9grCzDyc2PsOa9aH/HA2i0tb+C0V4s3VyGXqdi4kg3nB1VHE+s5INfCmzOJT8vDa7O1nyLDNbxzATPqr9vH2KZw75pXznTFxQB0K65nntvtC7C/J9xln//ua6EBevtb1G+c9btM6HXqhjbW2cpWxlmvl9mO3LEx12Ni6P1grf/lBkXRyODO+pwc8ZStpYaaixbz9xu27n61q8V5BUrVBqhS4yGUd0sZSu/RCH+tJm/9l37I4I8Oram++ofq/5u+e7/AZA0cy77J09trGg1qLbdhlNSlMvKOZ9QVJBNcHgM9z79FW5np2Tk59jWRYV5WXz833FVf69f8j3rl3xPk5jO/Pv5GVXbT8RvIT8njU59xl69xFyhFh1GUFacy5YlH1NamIVvaCxj/vNt1TDwwrw0OC8vgpt0YNiEd9my5EM2L3ofT79IRk/+DN9ga708YuL7bFr4Pst+fIry0gLcvYLpOfIJ4nreAUBmUjzpZyxv3fjhf4Nt4nPPi6vx8Alt6GRftjZdR1BSmMfquR9TXJBNUHgsE5/6umo6T35uGqrzFs4rysvisxet58PGpdPZuHQ6kTGduW/qTMDyGuQ7H/2YlX98wF9/fo6Xbygj7nqOdj1GX93EXYZlW8vR61WMH+5quUYlVfLRb4W21yhPNa7nLfi487ABN+dSbuzjZJmemmHko9+KKDqvAz/QW8PYfs64OKnIyTezZHOZzRooRqNCl5Z6bujthFajIrvAxKrttmHszeEky3Se3q0t7b/MfPh9vXXtEndnlc1orZQcWLDVTJ/Wavq2UZFXDHM2mck+uxSNWQEfNxVteqhwcoAyA6Tlwk9rrGGuFR17DKO4MJfFv39GUX42IZExPPh/X1Z1duRlp9msYbdx5e8YjZV89/4Um+MMv/kBRtxqWcfjwM61/Pz5C1Xf/fDh09XC2KuYjiMoLcpl06KPKS3Kwi8klpsfsq2Xz79GhUR1YOQ977Jx4YdsXGipl8f86zP8zquXSwqy+GvOm2enBfnRquuNdB9ePR8ObpmDm2dgtc4Ve7J2rxG9TsXNffU46eF0uplvFlVc0Ba0vc/ad9KEq1MlQzvrLPdZ2Wa+XVRR7aUef+fWfnqanjdzYMqtluk/r/9URl7RtdV52ShUsrBsfVEpSt3HSGg0GtLS0qpec+zu7s7evXuJiooCICMjg+DgYEymS19R7NmvZVGD2vj52v8w68Z0OD7n7wP9Q/kF1vLaAQFA7wdrH6r8T2fY1Lid4fYuPdd+R2s0Nl9P+3hwYK9WrMlr7CjYtahoz8aOgt3q2OIftGLvZTiTZf8P5xrL0eP2+4DOHrz7QN1mU1zrytb+3Gi/7dT/rkb77YZwSSNRLuxvuYT+FyGEEEIIIYQQQjQGGYlSbyQnhRBCCCGEEEIIIergkjpRVCqVzZzIc9uEEEIIIYQQQgghrneXPJ1n0qRJVW/WKS8v5z//+Q8uLi4AVFTIO7yFEEIIIYQQQgh7osjgh3pzSZ0oEydOtPn77rvvrhZmwoQJVxYjIYQQQgghhBBCCDt0SZ0o33//fUPFQwghhBBCCCGEEA1BFpatN5KTQgghhBBCCCGEEHVwSSNRhBBCCCGEEEIIcY2RNVHqjYxEEUIIIYQQQgghhKgD6UQRQgghhBBCCCGEqAOZziOEEEIIIYQQQlzP1DJ+or5ITgohhBBCCCGEEELUgYxEEUIIIYQQQgghrmOKLCxbb2QkihBCCCGEEEIIIUQdSCeKEEIIIYQQQgghRB3IdB4hhBBCCCGEEOJ6ppLxE/VFclIIIYQQQgghhBCiDmQkihBCCCGEEEIIcR1TZCRKvbGbTpTObR0aOwp2y2xu7BjYt93bKxo7CnZr44JDjR0Fu9Z1k+RPbfQ9WzZ2FOyaYe6Rxo6C3VKUxo6BfUs9ldbYUbBrMS29GzsKdstgksJ1ManplY0dBbs1spe8lUWI+mQ3nShCCCGEEEIIIYRoAPKK43ojY3qEEEIIIYQQQggh6kA6UYQQQgghhBBCCCHqQKbzCCGEEEIIIYQQ1zFZWLb+SE4KIYQQQgghhBBC1IGMRBFCCCGEEEIIIa5nsrBsvZGRKEIIIYQQQgghhBB1IJ0oQgghhBBCCCGEEHUg03mEEEIIIYQQQojrmSwsW28kJ4UQQgghhBBCCCHqQEaiCCGEEEIIIYQQ1zFFFpatNzISRQghhBBCCCGEEKIOpBNFCCGEEEIIIYQQog5kOo8QQgghhBBCCHE9k4Vl643kpBBCCCGEEEIIIUQdXFInyq5du+jfvz+FhYXVvisoKKB///7s27ev3iInhBBCCCGEEEKIK6OgarTP9eaSOlHee+89BgwYgLu7e7XvPDw8GDx4MO+88069RU4IIYQQQgghhBDCXlzSmijbtm3jueeeq/X70aNH8+23315xpOrb1lU/s2HJdIoLsgkMi2HU+OcJaxpXY9iM5OOsnvsJKQnx5GenMuLO5+g5bGK1cAW5GSz//T2O7VtPpaEcn4Bwxt73BqFRrRs6OfVu26qf2bj0bP6ExzDy7ucJjaolf1KOs2buJ6QmxJOfk8rwO56jx1Db/Fkz71PW/vmZzTbfwCY89uaSBktDQ7p5sDv9O7vg4qTmWEIF0+fnk55jrDV8TBM9o/q40SREj5e7hvdnZrPzUHmt4e8d48mgbq7MXJjPsk3FDZGEBjX5rkhGDwnEzUXLgcOFvPv5cZLTymoNf/fNYfTt4UtEiDMVBjMHjhTyxQ+nSEqx3adVC3f+NT6Sli3cMZsVjp8qZspLBzAYzA2dpHqxZeUvrDtb7wSFteCGCRevd1bM+bSq3hl113P0GjbBJsybTwwiPzu12r7dBt7BmEkvNEgaGpt3r05EPTkZjw6tcQz2Z+e4B8lYsLqxo1XvDmz6mb1/fUdpUTY+QTH0vum/BITXfK4AnNi3jO3LPqIoLwUP3wi6j3yKiNi+NmFyM06ydfG7pJ7agdlkwiugKcMmfoybVzAA8z8fT+qpHTb7tOx2G/1ufqX+E1jP5Jp16e6+0Z+hvb1wcdZw+EQpn/2USmqmodbwtwz3pUcHd0KDHDAYFA6fLOX72emkZNS+jz2K3/wz+9Z/R1lRNt5BMfS88b/4h9Vetk7tX8aOFR9RnJeCu28EXYc/RXhM3xrDbpj7Eoe3/Ub3UVNp09tyTqWe3Mair6u3GQHGPPwH/mFtrjxRDWTjil/4a+H3FBVkExzegpsm/R/h0TXnVXrSCZbN/oTkU4fIy07lxvHP0meE7TWrvKyEZb9/zMGdqykqyCUkMpYxE58jvKn95UHn5mp6tFTj6gTpeQpLd5hJzVFqDd8yXEX/tho8XSGnEFbtMXEi1TZ8vzg1HZqpcdRBUpbC4u0mcous3z82Rounq+3T+VV7TGyKt7RxIgJUdItRE+KrwkEHuYWw+ZCJAwm1x6sx/bV0FisWzKAwP4fQiObcNvlZmjSr+f96w8o5bFu3iNSkEwCER7Xkxjsftgm/8Lcv2LlpOXk56Wi1OkuYOx6mSXP7O3+uJYqsiVJvLqkTJSUlBTc3t1q/d3V1JS0t7YojVZ/2b13Ckl/e4sZJLxPWNI5Ny2fywzv388TbS3B196kWvtJQjpdfGK27DGXxz2/WeMyykgK+fu1OomK7MvGpr3Fx9yYn/QxOLtVH6Ni7A9uWsHTWW9ww8WVCo+LYsmImM969n8ferCV/Kiz506rzUJb+WnP+APiHRDPp6elVf6s11+YaxqP7ujG0hytf/pFLZq6JW4a489y9vjz9QTqVtfSjOOjUnEmr5K+dJUwZ73vR43dq5Uh0uJ7cAlMDxL7h3TUujJtHhfD6h0dIyyjnvrsief/VNtz94A4MlTVf6Nu39mTu4lSOHC9Co1bxrwlN+ODVOO5+cAflFZbGQ6sW7rz3Sht+mp3Ih1+fwGhSaNbEFcVsn42HC+3bupRFv7zFTfe8ZKl3lv3Id2//i6feXoyrR/VyZTCU4+MfSlyXoSyqpd55+JXfUczW8yQ9+TjfvXUfbboObbB0NDaNizOF+4+S9MMcOs3+7O93uAYd37uETQvepO+4lwkIb8v+DTNY9M193PHMUpzdqp8raQm7Wfnzk3QbPoWIlv04vmcRS394mFsen4NPUHMACrITmffZncR2uZnOQx9B7+BKbsYJNFoHm2O17HoLXYY+WvW3Vu/UsImtB3LNunQ3D/Nl9EAfPpieTHq2gfE3BvC/JyL5zwvHqTTWXKe2aeHC4rW5HEsoQ6NWMXFsAK9NsexTYbg26uGT+5awZdGb9L7pZfzD23Jg4wyWfHcftz21FCfX6udKesJuVv/6JF2GTSE8ph8n9i5ixcyHGfvoHLwDm9uEPX1wJZmJ+3B297fZHhDRnrv/u8Fm287lH5Nycgt+ofb7kG3PlqUs+PFtbp78EuHRbdiw9Ee+fvPfPPveItxqvGaV4eMfRtuuQ/nzx7dqPObvX79IetJx7njwTTy8/Ni1cRFfvX4fz7y7AA/vgIZOUp21ilAxpKOaxdtMJOcodIvRcPcADZ8uMFJaUT18qK+Kcb00rN5r5liymTZN1NzeV8NXS4xkFVjC9GyppmuMmvmbTeQVK/Rvq+HuAVo+W2jEdN5zoLX7TOw6bt1gqLR+F+arIjNfYVO8mZJyheYhasb00FBeaeJ4in2VwZ2bljN7xnvc+a/niWzWhjWLf+aT1x7k5Y//xN3Du1r4Y/E76dRrGE1btEWnd2D5/O/5+H8P8OIHc/DysZwbAcER3H7fc/gGhFJpKGf1op/56LUH+N8nC3Cr4ZhCXG2X1B3l5+fH0aNHa/3+yJEj+Ppe/Kbxatu0bAad+t1Cxz5j8Q+J5sZJL6NzcGTXurk1hg+NasPwO54mrttItDp9jWHWL/oWD+8gxt3/BmFN4/D2C6VZm574BIQ3ZFIaxOblM+jU9xY69Lbkz+iJL6PTO7J7fe35M+z2s/mjrTl/ANRqLW6eflUfFzevhkpCgxrW05X5awrZdaicpPRKvvgtF093DZ1a1n6zse9YOX+sKGRnfO2jTwC83NVMvMGTz2blYrpGOgcudMsNIcz8/Qwbt+VwMqGE1z44go+3A7271V4PPPnyAZauzuB0YiknEkp448OjBPo70iLa2kH76H1Nmb0whZ9mJ3E6sZSklDLWbMyqtcFvbzYu/YEu/W6hU5+xBIREM+ael9A7OLKzlnIVFtWGEXc8TdvuI9DUUu+4unvblKkje9fh4x9GVEznhkxKo8pavp5jL31Ixp+rGjsqDWbfuh9o2fUWYruMwzswmr7jXkGrc+TIjjk1ht+/4UfCW/Siff/JeAc0peuwx/ALacmBTT9Xhdm27EMiYvrSY9TT+IW0xMM3nCatBlTrlNHqnXB296v66B1dGzSt9UGuWZfuxkE+/LYok617i0hIruC96cl4e2rp3r72Bz8vfniGVZvzSUyt4HRyOe9PT8bfR090hP13tJ2zf8MPxHS5hRadx+EVEE3vmyxl62gtZevgph8Ja96Ltn0n4xXQlM5DH8M3uCXxm3+2CVdSkMHmP1+j/+3vVOts02j1OLv5VX0cnT1JOLSaFh3HolLZ75oA6xfPoNuAm+nS7yYCQ6MZN/kldHpHtv9Vc7kKb9qG0Xc9RfseI2osV5WGcg5sX8moO5+kaWwnfAMjGHrzQ/gGhrN55ayGTs4l6RarZvcJM3tPKWQXwKJtJipN0D665lukrjFqTqQqbD5kJrsQ1u4zk5ar0KWFNXzXWDXrD5g5mqyQmQ/zN5twc4aYMNtzoKISSsqtn8rznqdtjDezdp+Z5GyFvGLYdtTMiTSF2DD7G0mwauGP9Bw0lh4DxhAc1pQ7//VfdA6ObF4zv8bwkx+fRr9htxHWJIbAkCaM/89LKIrC0QPbq8J06T2C2Lhu+AWEEhwWzc0Tn6S8tJiUM8evUqqEuLhLKomDBg3i9ddfr/E7RVF4/fXXGTRoUL1ErD4YjQZSE+KJbtW9aptarSa6ZXcST+y97OMe3rOWkCat+PWTx3njoZ58+t+x7Fj7ez3E+Oo6lz9RLW3zp2mr7iSd3HtFx87JOMPbj/fh/acH88eXT5OfU30agr3z99bg5a7h4Anro4iyCoWTSQaaRdTeGK8LlQoevM2bxeuLScmsfWqQPQsOcMTX24Ede/OqtpWUmjh0rJDWMXUfleXiogGgsMjyCMbTQ0erGHfyCgx88XY7FszszifT2hLX8toY6WU0GkhJOER0q25V29RqNdGtunPmCuqdC39jz6aFdOpr3w1zcXEmo4GslHhCm/eo2qZSqwlt1p30M3tr3CfjzF5Cm/Ww2RbWoicZZ8MrZjNnDv+Fp18kC7+ezPcv9WD2R7dy6mD1jqhjuxcy/cVuzHpnNFuWvEelofZpePZArlmXLtBXh7enjr2HS6q2lZaZOXqqjJimde8QcXG21NPFJdfGqEmT0UB2SrxNWVGp1YREdycjcW+N+2Sc2UtItG3ZCm3e0ya8Yjaz9rdniOs7Ge/AZn8bj4RDa6gozad5p7GXlY6rwWg0kHz6EM1a25ar5q27ceb45b0swmQyYTab0OptR79p9Q6cPrrniuJbn9RqCPZWcSrN9gHNqTSFUN+ar61hfipOpduGP5mmEOpnuaXydAU3JxWn0q0jTCoqITlbIczP9pi9Wql5+hYt/xqhpUdLNX93OXfUQZmdjQQzVlaSeOowsXFdq7ap1Wpi23Tl1NH9dTqGwVCOyWTE2dWj1t/YsHIOTs6uhEY2rzGMqCOVuvE+15lLGq/63//+l44dO9K1a1eefPJJWrRoAVhGoLz33nscO3aMH374oSHieVlKi/Ixm03Vhvi6eviQlXb6so+bl5XE9jWz6DlsEn1H/4vk0wdZ9NMbaLR6OvQec4Wxvnqq8ueCoZqu7j5kX0H+hDaNY+x9b+Ab1ISi/CzW/vkZ375xN4+8thAHJ5crjfZV4+FqaTQWFNs2GguKTVXfXa7Rfd0wmbgm10A5x9vL0pGUl19psz0v31D13d9RqeDR+6PZf6iA04mlAIQEOgJw7x2RfDb9JMdPlzBsQAAfvtaWCQ/tvOh6K/bAWq5sR+O4uvuQlXqqXn7j0K7VlJcW0bH3TfVyPNE4ykvyUMwmnC+YWuDk5kteZs11cGlRdrURJc6uvpQWZQNQVpxDZUUpu9d8Q9fhj9F95FMkHt3AshmPcON/ZhDStAsAzTqMws0rGBd3f3LSjrFl8bvkZyYwfNInDZDS+iHXrEvn5WFp5uUV2nbW5xca8fLQ1ekYKhX867ZA4o+XcCa1hvkNdqi81FK2Lpy24+TmS35WzedKWXE2Tm7Vw5edLVsAe9d9g0qtoXXP8XWKx9Edcwht3gtXz8BLTMHVU1JoKVcXTttx9fAhM/XyypWjkwsRzdqxau6XBARH4ebpw55NSzhzbB++gfYzatvZAdRqFSUXDBwuKVfw9ai5R8PV0fL9+YrLLdst36vOHuPCY4KLo/WY245aRrCUVSiE+akZ2M6yJsuKXTWv+9YyXEWwj4pF2+yrI7O4KA+z2YT7BeePm6cP6SkJdTrG3J8+xMPLz6YjBmD/zvV89+GzGCrKcffy5bEXv8TV/foZJSiubZfUidK0aVNWrVrFpEmTuP3221GpVCiKpSJp2bIlK1euJDo6+m+PU1FRQUWF7YW40qBDd0GPtb1SzAohTVox5JYnAAiObElm8nG2r5l1TXWiNJTmcX2q/h0Y1oLQqDjee2ogB7cvpWPfmxsxZhfXs50Tk2+yVs5v/5B9kdCXr0mIjmE9Xfm/jzMa5PgNZXBff55+yPoE4JlXD1zxMaf8pxlR4S48+Kz1ydS5kRV/LktjyWpLHh0/VUzHOE9GDg7kq5mXf7N0vdixbi7N43rj7uX/94HFP4qiWBrgTVoPoG2fSQD4hsSSnrCH+C2zqjpRWnW7rWofn6AWOLv5seCrSRRkJ+Lhaz83OVfDtXrNqkm/rh48PD646u+XPz5zxcd84K4gIkIcefqt+ukEvlZlJR/k4MYfGfvYnDqNACzOTyf52EYG3vXBVYid/bnzoWn89uULvPpQf9RqDSFNYmnfYwTJpw81dtTswtbD1s6SzHwzJrPCqK4aVu8x26ybAhAZoOLGHhoWbjVVrbtyvVg2bzo7Ny1nysvfVrsPbNG6M8+/8xvFRflsXDWXb95/hmen/VTjOiuibhQZvVxvLnnltE6dOnHw4EH27t3L8ePHURSFFi1a0LZt2zofY9q0abzyiu0bAG6Z/CK33v/SpUbnopzdPFGrNRQX5thsLy7IqfaU+FK4efriF9LUZptfcBQHd6647GM2hqr8KbggfwqvLH8u5OTijm9gJDmZifV2zIaw61A5J5KsHRtajaWi8XDVkF9kvaJ5uGo4k3b5byhoEemAu4uaT54Lqtqm0ai4e6QHw3u58thb6Zd97Ia0cXsOh47trPpbr7MMzfPy1JGTZ80PL089J079/QibJ/4dTY/O3jw8dR9ZOdb9zx0rIanEJvyZ5FIC/Oy/o9Varmw74YoLc3D1vPJylZedwomDW7j7sY+u+FiicTm6eKFSaygttq2Dy4qycXav+VxxdvOltMg2fGlxNs5uvlXHVKu1eAXYPtDw8m9KWsKuWuNy7m1ABTln7LYTRa5Zf2/b3iKOnj5Z9bdOa7mOeblrySuwjkbxdNdyKunvR/X9584gusS58+zbp8jJu3amnjo6W8pWWU1ly63mc8XJ1Zeyourhnc6GTz+9i7KSHH6ZNqDqe8VsYuvitziwaQZ3PrfGZt9jO+fi4OxJZMsB2DMXd0u5KrqwXBXk4HYF1yzfgHAeemkGFeWlVJSV4O7lx8yPnsTHP/RKo1xvSivAbFZwcbTd7uKooriW4lFcNaLEOhrF1dGy3fK9cvYY2BzDxREy8mqfipOSraBRq6re+HNOhL+KO/ppWL7TxP7T9jWVB8DVzQu1WkPhBedPUX4O7n9z/qz4cwbL503n8Re/qnGajoOjE/5B4fgHhRPVPI4XHh7N5tXzGDZ2cr2mQYjLcckTlPLz83nooYcYNGgQt99+O3fccQcDBw7k4YcfJj8/v07HmDp1KgUFBTafmybW/urky6XV6gmObMXJ+K1V28xmMycPbSU8ut1lHze8WQey0xJstmWnJ+DlE1zzDnbqXP6cOmSbP6cObSWsabt6+52K8hJyM5Nw8/Srt2M2hHKDQkaOqeqTkmkkr9BEq2jrjbuTg4qmYXqOn7n8TpSNe0p57qMMpn5s/eQWmFi0vog3v2uY0S/1oazMREpaedXndGIp2bkVdGprHb3j7KShZXN3Dh4pvMiRLB0ofbr78tjz+0nLsB3zmpZRTlZOBeEhzjbbw4KdSM+0/6HkWq2ekMiWnLigXJ2I30rEFdQ75+xcPw9Xd29i2tX82k1x7dBo9fiFtCLl+JaqbYrZTPKJrQRGtKtxn4CIdiSfFx4g6dhmAs6G12j1+IW1Jv+C6UD52QlVrzeuSXbqEQCc3ex3dJNcs/5eWYWZtExD1ScxtYLc/EraxlqnJTk5qmkR5cSRkxfvRPnPnUF0b+/O/717mozsyouGtTcarR7fkFaknLAtW6knthIQ3q7GfQIi2pFy0rZspRzfXBW+WYcbuPnxPxn32Lyqj7O7P3F9JzNi8rc2+ymKwtFdc2ne4UbUmrpNm2osWq2e0CYtOX7Qtlwdj99GRLO6PyCtjYOjM+5efpQWF3B0/yZadep/xcesL2YzpOYqRAXaPp2PClSRnF1zh0VSlkKTC8MHqUjOsjxsyy+GojKFqEDrLZZeZ3mrT1JW7Z0ggV4qzGbFZhpQRICKO/trWLXHzO4T9teBAqDV6QiPiuXIeYvCms1mjhzYTlSL2l8nvnz+9yyZ8w2P/PdzIqJb1em3FEWhsvLaes26uH5d0kiU3NxcunfvTkpKCnfddRexsbEAHDp0iB9++IHVq1ezefNmvLwuPl/NwcEBBwfbJ8o6fc1zAK9Uz2ETmfPNVEKatCY0qg2bV8zEUFFGxz6WtQT++OpZ3L0CGHrrFMCywFZmiuUpjslYSWFeJqlnDuPg6IxPQETVMb/63538teAr2nQdRvLJA+xY+wdj7n2l5kjYsR5DJzL3bP6ERLVhy9n86XB2rYXZX1vyZ8gt1vzJOpc/Jkv+pJ05jP68/Fk2621atOuHp08IRfmZrJn/CSq1mriuIxsnkVdg2aZibhrgTnq2kaxcI7cM8SC/0MTOQ9bG5//d58vO+DJWbLGMnHDQqwj0sRYtP28tEUE6ikvN5BSYKC41U1xqe76bzAr5RWbSsq+dJ30AfyxIYeJt4SSllllecXx3JDm5FWzYau0M+vC1ONZvyWbuYstCjU8+EM2gPgFMff0gpWVGvD0tDcziUhMGgyVffpmbxOQ7Izlxupjjp4sZPiCQiFBn/vvmtTEMuNfwSfzx9VRCm7QmLKoNG5fb1ju/ffkcHl7+DLuttnong9Sz5cr3bLkCS8Nk1/p5dOg9Bs119ArW2mhcnHGJto6KcG4SinvbGAy5BZQnpTVizOpP276TWDPrOfxCW+MfHsf+DTMwGsqI6WxZiHLVr8/i4uFP9xFPAhDXezx/fj6BvX9NP/uK48VkJcfT7+ZXq47Zvt9kVvw0heCoToREdyXxyAYSDq1lzAMzAcsrkI/vWUR4bB8cnT3JSTvGpgXTCI7qhG9wi6ufCZdArlmX7s9VOdw+0p/UDIPlFcdjAsjNN7Jlj7Wz+/UnI9myu5BFa3MBePCuIPp29eR/n56hrNyMl7ulvikpM9X6+np7E9d7En/9bilbfqFxHNg4g8rKsqpFXtf+9iwu7v50GW4pW617jmfhVxPYv3665RXH+xaTlRJP73GWsuXo4oWji237Vq3R4uzqi6dflM321JNbKcpNJqbLLVchpVeuz8iJzPri/wiLakV4dBvWL/0RQ0UZXfpaytUvn0/Fw8ufkXdYprEbjQYykq3XrIK8TFISLG1l30BLuTqybyMoCn7BTchOT2TRL+/iH9yk6pj2YuthM2N6aEjNVUjJVugWq0anhb0nLe2RMT00FJUqrN5r+XvbETOThmjoHqvmWIqZ1pFqgr1VLNxqXatk22EzvVurySlSyD/7iuOiUjiSZCk7ob4qQnxVJKSbqTBaXmc8tJOG/acVys/2EUQGqLijv4ZtR8wcSjRXjZYxmakKYy8GjR7PD5++QETTlkRGt2bN4p8xVJTRo/+NAHz/8X/x9PHnprseBWD5vO9Z+Nvn3Pv4NHz8ginIs7QZHRydcXRypqK8jKVzviGucz88vHwpLsxn3bLfyM/NpGOPwY2WzuuBch0u8NpYLqkV/uqrr6LX6zl58iQBAQHVvhsyZAivvvoqH3xgP/M/47qNoKQoj9VzP6aoIJug8FgmPf111dDfgpw0VOedUEV5WXz2gnUV9Y1Lp7Nx6XSaxHTmvv+zNEBDo9pw16Mfs+KPD1j75+d4+YYy8q7naNdj9NVNXD1o0/Vs/sz7mOKz+TPhSdv8UV+QP5+/ZM2fTcums2nZdCJbdGby1LMN9Nx0/vjyKUqL83Fx8ya8WQf+/cIsXNyvvTmMC9cV4aBXcd9YL5wd1RxLqODN77OpPK+vI8BHi5uLdaHZqFA9L/zL+gRz/ChPANbtKuGrP6xvsrke/DwnCUdHDc883BxXFy0HDhXw5EsHbBrZIYFOeLpbn8TdNCIEgE+ntbM51usfHmHp2TVQ/liQgoNezSP3NcXdTceJ08U88eJ+UtMv/tpoe9G223BKinJZOecTigqyCQ6P4d6nv8LtbLnKv6DeKczL4uP/jqv6e/2S71m/5HuaxHTm38/PqNp+In4L+TlpdOpjv296qE8eHVvTffWPVX+3fPf/AEiaOZf9k6c2VrTqVbN2IygvzmX78k8oLcrCNziWUfd9UzXloDgv1Wb9haDIDgy66122L/uQrUs/wNM3kuGTPsUnyDoUOqrNYPqOe5nda75mw/zX8fRvwrAJHxPUpCMAaq2O5OOb2Xe2w8bVM4ioNkPoNOiBq5v4yyDXrEs3e1k2jg5qHpkQjIuzhkPHS3nhwwSbV8YH+elxd7M2CUf2tywS+dYztp0DH0xPZtXm/KsS7yvVtO0Iykpy2bnCUrZ8gmMZce95ZSvftmwFRnZg4B3vsmP5h2xf9gEevpEMmfAp3oGX/jaQIztmExDRHk//qL8PbAfadx9OSWEuy2d/SmF+NiERMdz/3FdV03nys9Ns8qowL4v3p1rXC/pr0ff8teh7msZ25sEXfwCgvLSYJbM+JD83HWdXD+K6DGb4bY+h0drXyJz4MwrODmb6xWlwdYL0PIWf15iqRoR4uICiWNOenK0wd6OJ/u00DGinJrcIZq2zXatk0yEzOi2M7qrBUQ+JmQo/rTFWrXViNCu0jlDTL06LRm0ZvbL1sJkt562T0jZKjV6rondrDb1bW9uYCRlmZqy0r8VlO/UcSlFhHgtnfUFhfjahkS145PnPcfe01CO52Wmo1NY8XLfid4zGSr5+9ymb44y85d+Mvu0B1Go16SkJbFn3JCWF+bi4eRLRtBVP/W86wWF/v/amEFeDSjm3MmwdREZG8tVXXzF06NAav1+2bBn/+c9/SEhIuOSIzN7WMCNRrgdmyZqLmv/n9fEqyoaQGH/y7wP9gz35Qq/GjoLd0vds2dhRsGsn5h5p7CjYrSDfa2OkQmOZ8d21MaKusQwYVbeh/f9ELcLt6+bZ3uw6JHVPbfq0vbZGOl9t/dvU/ZXv17LcAxsb7be921xfbe5LGtOTlpZGq1a1X9xat25Nerp9LoophBBCCCGEEEIIcSUuaTqPr68vCQkJhIbWvLL26dOn8fa+Poa/CiGEEEIIIYQQ1wNZE6X+XFJODh06lOeffx6DofqKRhUVFbzwwgsMGzas3iInhBBCCCGEEEIIYS8ueWHZTp060axZMx566CFiYmJQFIXDhw/z+eefU1FRwY8//vj3BxJCCCGEEEIIIYS4xlxSJ0poaChbtmzhwQcfZOrUqZxbk1alUjF48GA+/fRTwsLCGiSiQgghhBBCCCGEuHQKqr8PJOrkkjpRAJo0acLSpUvJy8vj+PHjAERHR8taKEIIIYQQQgghhLiuXXInyjleXl506dKlPuMihBBCCCGEEEKIeiYLy9YfyUkhhBBCCCGEEEKIOpBOFCGEEEIIIYQQQog6uOzpPEIIIYQQQgghhLgGqGRh2foiI1GEEEIIIYQQQggh6kBGogghhBBCCCGEENcxRcZP1BvJSSGEEEIIIYQQQog6kJEoQgghhBBCCCHEdUyRNVHqjYxEEUIIIYQQQgghhKgD6UQRQgghhBBCCCGEqAOZziOEEEIIIYQQQlzHFJWMn6gvkpNCCCGEEEIIIYQQdSAjUYQQQgghhBBCiOuYgiwsW1/sphPlt1lnGjsKdqsgO7+xo2DX7r6vfWNHwW7FR/k0dhTsWnquprGjYLcMc480dhTsWvTYmMaOgt06/Nvhxo6CXQtvEdrYUbBrDvrGjoH9yiu2m2a7naps7AjYrfc/TWjsKNi1/l/FNnYUxDVGpvMIIYQQQgghhBBC1IF0aQshhBBCCCGEENcxWVi2/khOCiGEEEIIIYQQwi589tlnREZG4ujoSNeuXdm+fXud9ps1axYqlYoxY8Y0aPykE0UIIYQQQgghhLiOKSpVo30uxW+//caUKVN46aWX2L17N23btmXo0KFkZmZedL+EhASeeuopevfufSXZVCfSiSKEEEIIIYQQQohG9/7773P//fdzzz330LJlS7788kucnZ2ZPn16rfuYTCbuuusuXnnlFaKioho8jtKJIoQQQgghhBBCXMcUVI32qSuDwcCuXbsYNGhQ1Ta1Ws2gQYPYsmVLrfu9+uqr+Pv7M3ny5CvKo7qShWWFEEIIIYQQQgjRICoqKqioqLDZ5uDggIODg8227OxsTCYTAQEBNtsDAgI4cuRIjcfeuHEj3333HXv37q3XOF+MjEQRQgghhBBCCCFEg5g2bRoeHh42n2nTpl3xcYuKihg/fjzffPMNvr6+9RDTupGRKEIIIYQQQgghxHWsMV9xPHXqVKZMmWKz7cJRKAC+vr5oNBoyMjJstmdkZBAYGFgt/MmTJ0lISGD06NFV28xmMwBarZajR4/StGnT+kiCDelEEUIIIYQQQgghRIOoaepOTfR6PR07dmT16tVVryk2m82sXr2ahx9+uFr4mJgYDhw4YLPtv//9L0VFRXz00UeEhYXVS/wvJJ0oQgghhBBCCCHEdexSFnhtTFOmTGHixIl06tSJLl268OGHH1JSUsI999wDwIQJEwgJCWHatGk4OjrSunVrm/09PT0Bqm2vT9KJIoQQQgghhBBCiEZ32223kZWVxYsvvkh6ejrt2rVj2bJlVYvNJiYmolY37tKu0okihBBCCCGEEEIIu/Dwww/XOH0H4K+//rrovj/88EP9R+gC0okihBBCCCGEEEJcxxpzYdnrjeSkEEIIIYQQQgghRB3ISBQhhBBCCCGEEOI6dq0sLHstkJEoQgghhBBCCCGEEHXwjxmJctswTwZ2d8PFUc2RhAq++SOb9GxjreFjoxy5YYAHUaF6vD20vP1dBjsOllYLF+Kv4+7RXrRs6oRaDckZlbz3fQbZ+aaGTE69mzA2kOH9fXF11hB/rISPf0giNaOi1vC3jw6gZycPwoIcMVSaOXS8hG9npZKcbtnHzUXD+LFBdGzjhr+PnoJCI5t35/PD7DRKy8xXK1lXbOfan9m64juKC7IICI1hyB0vENIkrsawWanHWffnx6QnxlOQk8LgW6fSZdAkmzCbln7F0d0ryEk/hVbvSGhUewaMewqfwKirkJr6Mbijli6xWpz0kJBuZt7GSnIKlYvu072lhj5ttbg5qUjLVfhzk4HkLMs+Tg4wuKOO5qFqPF1VlJQrxCeYWbGjkvJK6zFC/VQM76IjxFeNAiRnmlmyrZK03Iv/9tWyb8PP7FzzHaWFWfiGxNB/3AsERtR8rgAc27OULUs+ojA3BU+/SHqNfoomrfpWfW+oKGHTwvc4uX8VZaX5eHiH0q7PeOJ63QFAeUk+W5Z+QuLRjRTmpeHs4k3TuEF0H/EYDk5uDZ7eS3Fg08/s/es7Souy8QmKofdN/yUgvPa8ObFvGduXfURRXgoevhF0H/kUEbF9bcLkZpxk6+J3ST21A7PJhFdAU4ZN/Bg3r2AA5n8+ntRTO2z2adntNvrd/Er9J7CRePfqRNSTk/Ho0BrHYH92jnuQjAWrGzta9Sp+y8/sXz+dsuJsvANj6HHD8/iH1X7unDqwjJ0rP6Y4LwV3nwi6DHuS8Ji+NYbdMO9ljmz/jW4jn6NNr4nVvjcZDcz//DZy044w9pG5+ATH1lu66tOono70itPj5KDiVKqRX1aUkZV/8ets3/Z6Bnd2xN1FRXKmid9Wl3Em3dJu8XZX8/q/3Wvc75s/S9h9zFIxtwjXMrqXIyF+GioqFbYeNLBgQzlm+6iSAdi/8Wd2r7HUPb7BMfQZ+9+L1svH9y5j69KPKMpNwdMvgh6jniKypfX8+eSJmBr36zn6aToMmAzAD68OoCgv1eb77iOn0GnQv+ohRQ1n59qf2bL8bHsnLIahF2vvpBxn3YKPSTtztr1z21S6XtDe2fXXL+z661fyc1IA8AtuRu9RDxLdpuby2Jg6N1fTo6UaVydIz1NYusNMak7tJ3LLcBX922rwdIWcQli1x8SJVNvw/eLUdGimxlEHSVkKi7ebyC2yfn97Pw2BXipcHKHMAKfSFFbtMVFcZvnexx1GdtHg56HCUQ9FpXAgwcy6/Wa7KmPnu2u0L0N6e+HipObwyTI+/yWNtMzKWsO3aubE2CE+NA13xMdTx+ufJ7F1X7FNGE83DZPG+tOupQuuzhoOHi/lq1npFz2uqJ2siVJ//hE5eeMAD4b3cefrP3KY+mEqFRVm/vufQHTa2oc0OehVnEkx8N2cnFrDBPho+d+jQaRkVvLSZ2k89U4Kc1bkYzDaae1Wi1tH+jNmiB8ff5/Eoy8fpbzCxLRnmqLT1Z4/bWJcWbAqm8deOcZzb51Eo1Ex7dloHB0sp5SPlw4fLx3f/JrCv6Ye5t1vztCpjTtP3hd+tZJ1xQ7tWMKqP6bRe9RDTP7vPPzDYpj10WRKCms+JyoNZXj5hdL/pidxcferMUzise107H8Xk6b+zp2Pf4/JZOSXDydjqKjeQWeP+rbV0rO1lnkbDHw6vwKDESaP0KPV1L5PXJSGUd11rN5l5OO5FaTlmJk8wgEXR8v37s4q3F1ULN5ayft/VPD7X5U0D1Vzc1991TH0Wrh3uAP5xQqfzq/gywUVVFTC5BEOqO1gZOLR3UtYP28a3YY+xJ1Pz8MvOIZ5X0ymtKjmcyX19G6WznySVt1u5q6n59O0zUAWfvcQ2anHqsKsn/cmCYc3MHT8O0yYuoT2/Sayds7/OHnAcpNcXJBJSUEmvW98lvHPLWLIXdNIOLyBlb8+f1XSXFfH9y5h04I36TT4IW55fC6+wS1Y9M19teZNWsJuVv78JLFdbuaWJ+bRpPUglv7wMDlp1rwpyE5k3md34ukfxY0PzOS2J/+k0+AH0WgdbI7VsustTHpxQ9Wnx6inGzStV5vGxZnC/Uc5+Oj10zF0vpP7l7B18Vt0GPgQNz08B5+gFiydfj9lxTWfOxln9rBm1lO06DSOmx6ZS2TLgaz86RFy049VC3s6fiWZSftwdvev9fe3LX0XF7ea63J7MaSLA/07OPDLylLe/rmICgM8eovLRevkji10jOvnxOLN5bwxs4jkLBOP3uKCm7OlMs0rMvPs5wU2n4Ubyyg3KMSftty4hPipeWicC4dOV/LGjCK+W1BCXLSOMX0dr0ay6+TYniVsmP8mXYY+xO1PWuqeBV9dpO45vZvlPz5Jq643c/tT84hqPYjF023rnntf2WDzGXj766BS0TRuiM2xug5/1CZc2953N2har1T8jiWs/H0avUc/xH0vzCMgNIZfP7x4e8fTN5QBY5/E1aPmMuLmFciAcU9x33/nMvn5OUTGdOP3zx4iK+V4QyblkrWKUDGko5p1+018tcRIRh7cPUCDs0PN4UN9VYzrpWHPSTNfLTZyNNnM7X01+HlYw/RsqaZrjJrF20x8u8yIwQh3D9CiOe+uKyFd4Y8NJj5dYOT3dSa83eDWPtaCazLD/lNmflpt5NMFRpbtMtEhWk2/tvZ56zZuqA+jBnjz+c9pPPVmAuUVZl59NPyi91qOejWnkyv48teMWsM8/2AoAX56Xv88mcdeO01WTiWvPR6Bg94OGn/iH80+S2I9G9nXnTkr8tl5sJTEtEo+/SULL3cNnds417rP3iNlzFqax/YDtd/c3jHCiz2Hy/hpYR4JKQYycozsjC+lsPjaGWkBcNMwf35ZkMGW3QWcTirn7a/O4OOpo2dHj1r3ef6dk6zckMuZlHJOJZbx7teJBPjqaRbpBEBCcjn/+/g0W/cUkpZpYO+hYr6fnUbX9h408mu962zbyu9p1+tW2vYch19wNCPuegWt3pF9m+bUGD44Mo6BNz9Lqy4j0er0NYa547HvaNtjLH7BzQgIi2H0PW9SmJtK+pn4hkxKvenVRsuaPUYOnTGTnqvw+1oD7s4qWkXW3mLvHadl+xETO4+ZyMxXmLehkkojdG5hGQiXkafw00oDhxPN5BYpnEw1s3xHJbER6qoOEj9PFS6OKlbsNJJdoJCRp7BqVyVuziq83Br/Qrr7r+9p3eNWWnUbh09gNANvtZwr8VtrPlf2rJtJZExvOg28D+/ApvQY+Tj+oS3Zt+GnqjBpp/fQsssYwpp1xcMnlDY9bsMvOIaMxP0A+AY3Z9TkT4hqPQBP33DCmnenx8jHOX1wDWZT7aPsrrZ9636gZddbiO0yDu/AaPqOewWtzpEjO2rOm/0bfiS8RS/a95+Md0BTug57DL+QlhzY9HNVmG3LPiQipi89Rj2NX0hLPHzDadJqAM5uPjbH0uqdcHb3q/roHV0bNK1XW9by9Rx76UMy/lzV2FFpEAc2zCCm8y206DQWr4Boeo15Ga3ekaM759YY/uCmmYQ260XbPpPx8m9KpyGP4RscS/yWX2zClRRksGXB6/S/7W3U6poH5CYdXU/K8U10HfFMvaerPg3o6MDSreXsP2EkJcvMD0tK8HBV066ZrtZ9BnZyYNN+A1sOGkjPMfPrijIMldC9teW6pShQWKLYfNo107HriIGKsw9/O8XoSckysWRLBVn5Zo4nm5i3roy+7RxwqP2nr6q9f/1Aq+630LKrpe7pf4ulXj60rea6Z+/6H4mI6UWHAZa6p9uIx/ALbcn+Dda6x8Xdz+Zz6uAaQqO74uEbZnMsvYOLTTidQ+3tTXuwbeX3tO99K+3OtXfufgWd3pG9tbV3msQx6BZLe0ejrbm907ztAKLb9MU7IBKfwCb0v+kJ9A7OJJ/a24ApuXTdYtXsPmFm7ymF7AJYtM1EpQnaR9fcWO0ao+ZEqsLmQ2ayC2HtPjNpuQpdWljDd41Vs/6AmaPJCpn5MH+zCTdniAmztle2HjGTkq1QUALJ2Qob482E+qqq2j35xbD3lEJGPhSUwLFkhQMJZsL9G7/NU5MbBnrz+5Jstu0rJiGlgg++T8XbU0u3drWPjN0VX8JPf2axdW9Rjd8H++uJiXLmi5/TOH6mnJQMA5//ko5ep6Jv59rvUYS4Gi7pdnbLli0sWrTIZtvMmTNp0qQJ/v7+/Otf/6KiovYpII3B30eLl7uWA8fKq7aVliucOFNBi8haupnrQKWCDi2dSc2s5Pl/B/Dtq+G88XgQnVvb94XyQoF+enw8dew+aK3ASsvMHDlVQmy0S52P4+JkOZWKSmqfxuTipKG0zIT5GuhjMhkNpCXG0yS2R9U2lVpNk9geJJ/aU2+/U1FmyXdHF/u/GHi7qXB3VnE8xfp/XF4JSZlmwv1rrko0agjxVXE82bqPApxIMREeUHv146hXUW6gashqVoFCSblC5xgNGjVoNdA5RktGnpm8osYd+WUyGshMiiesue25Et68B2kJNZ8r6af3Etaiu822iJhepCXsrfo7qEl7Th1YQ3F+BoqikHR8K3lZpwlv0avWuBjKi9E7uqLW2MdMTZPRQFZKPKEX5E1os+6kn9lb4z4ZZ/YS2qyHzbawFj3JOBteMZs5c/gvPP0iWfj1ZL5/qQezP7qVUwerdyQc272Q6S92Y9Y7o9my5D0qDWX1ljbRsExGA9mp8YREW8uJSq0mpGl3MhP31rhPRuI+m/AAoc162YRXzGbW/v4scX3uxTugWY3HKS3KZsPcF+l361to9U5XnJaG4uuhxsNVzZEz1k7TcgOcTjPRJLjmOkCjhvBAjc0+CnDkjJGoWvYJD9AQFqBl8wFD1TatBowXXO4rjaDXqQgPbPz6x2Q0kJlcvV4Ou0jdk56w1yY8QHiLnqTVEr60KJszh9bRsuu4at/tWv0N3zzflV/fvYnda76zq47tC5mMBtLOVG/vRMb2IOVk/bR3zGYT8dsXU2koJbRp+3o5Zn1QqyHYW8WpNNt2xKk0hVDfmjsrwvxUnEq3DX8yTSHUz9Km8XQFNycVp9Ktjd2KSktHSZhfzcd01EObSDVJWUqtU3W8XCE6SM2ZDPsb7R7gq8PbQ8vewyVV20rLzRw7XUZM1OXXoedGsRgqrWlWFKg0KrSMtt+62Z4pqBrtc725pCvdq6++Sr9+/Rg1ahQABw4cYPLkyUyaNInY2FjeeecdgoODefnlly96nIqKimqdLSZjRbWh2PXB083yhDy/2PZqn19sqvrucni4anByVDNmoAezlubx88I82sU68dQ9/rzyeTqHTpb//UHsgLen5ZFRfoHt3MK8AiNeHnV7nKRSwX/uDuXg0WISkmtOt7urhrvGBLJkbe3To+xJaXEeitmEi7vtk20XNx9y0k7Vy28oZjMrf3uD0KYd8A9pXi/HbEjnhnoXl9pewIvLFNxq6Tt0dgSNWlU1x/ecojIFP8+aO1GcHWBgBy3bj1gbnYZK+GphBROG6BnY3lJtZRcqfLfE0Ohzg8tKLOfKhaMgnN18yM2s+VwpKcrG2c23WvjSwuyqv/vd/AKrZ73Aty/1Qa3WolKpGHj7a4RGd645HsW5bFv+Oa173HaFKao/5efyxtU2b5zcfMnLPF3jPqVF2dXz0tWX0iJL3pQV51BZUcruNd/QdfhjdB/5FIlHN7BsxiPc+J8ZhDTtAkCzDqNw8wrGxd2fnLRjbFn8LvmZCQyf9EkDpFTUt/LSfBSzCadq544P+Vk1nztlxdk4udqWKydXH8qKreVq3/pvUas1tOoxvsZjKIrCutn/R0zX2/ALbU1RXsoVpqThuLtY6uTCEtsnE0Ul5qrvLuTqpEKjVlFYartPYamZAO+am4Q92uhJyzZxKtXajjqUYGRARwc6xejYdbQSdxcVI7pbpvJ41PLbV1Pt9fIl1j1uvjb18vkOb5+PztGl2lSetn3G4xfaEkdnT9JO72HL4vcpKcyk95ipV5CihlNbe8fV3Yec9Ctr72QmH+X7N2/HWFmB3sGZWx78DL/g6Cs6Zn1ydgC1WkXJBU3XknIFX49aypCj5fvzFZdbtlu+V509xoXHBBdH22MOaq+mcws1eq2KpCwzv66t/iDy3qEagrxVaDUqdh03sXaf/T2J9HK31B35hRfcaxWa8PK4/E7V5PQKMnMqmXiTP5/+nEZFhZkbB/ng5627ouMKUR8u6Qzcu3cv//vf/6r+njVrFl27duWbb74BICwsjJdeeulvO1GmTZvGK6/YzuGO7foorbo/finRqVGvDi78+1ZrI2raN7XPs7sSqrP14M6DpSxeVwhAQqqBFpEODO7hZredKAN6ePHYPdZhp/9978o7BB6eGEpkqCNT/lfzPFdnRzWvPdWUxJRyfpyXdsW/d71Y9usrZKUeZ8Izv/x94EbQLlrD2N7WjrTvlxkuErp+OOjgnuEOZOYprNxp7UTRauDmvnrOZJj5dY0RtQr6xOm4Z5ieT+ZVVHsiej3Yt/5H0s/s5Yb7v8DNK5iUkztZO/sVXD38CW9h+7S0oryY+V//G+/ApnQb/nAjxfjqUBRLA7JJ6wG07TMJAN+QWNIT9hC/ZVZVJ0qrbtbOJJ+gFji7+bHgq0kUZCfi4XvtrM0k6k9WSjwHN/3ITY/MQaWq+QYpfvNPVFaU0K6f/S0C2jlWx51DrD3Wn88pvkjo+qHTQudYPUu22LZpDicYmbuunDuHODNpJBiNsGRLOc3CtCj296C8QRzaPocWHUah1dk+AGzf756qf/sGt0Cj1bH295foMerJWqe+XK98Aptw/4vzqSgr4vCu5SyY/izjn/7JrjpSGtOmQ2Z2nzDj6aKib5yaMT011TpSZm8woddBoJeKwe019GgJmw81bkdK3y7uPHRXUNXfr36a1CC/YzLDG18m8+iEIGZ90AKTSWHvkRJ2Hiimlipc/A1FMq7eXFInSl5eHgEBAVV/r1u3juHDh1f93blzZ5KS/r4gTZ06lSlTpthsm/R8ai2hL83O+FJOvGt9cqQ9OxTM01Vj00Pq6aohIfXybwqLSkwYTQpJGbYjOJIzKomJsp+F1S60ZXcBR05Yh9vpdGeHH3royC2w3rR6eWg5eebvh74/NCGUbu08ePL142TnVV8p28lRzevPNKW0zMzLH53CdI3c7Dq7eqFSa6otqlZSlIOLh28te9Xdsl9e5fj+v5jw9E+4ewVe8fEawqEzJpIyrRfqcwsVujqrKCqztpJdnVS1rmJfWg4ms4LrBaMu3ZxUFF0wokWvg8nD9VQYFGautB1h0j5ag5eris/nV3Ju869rDLw80ZFWkRr2nWy8E8vJxXKuXLhYYWlRDi5uNZ8rLm7WkRXnh3d2t4Q3GsrZtOgDRk/+lCat+gHgFxJDVsphdq35zqYTxVBezPwv7kPv4MLoyZ+h0djJggSA47m8uWAh0LKi7Kq0XsjZzbd6XhZbR+44unihVmvxCrBthHv5NyUtYVetcTn3NqCCnDPSiXINcHT2RKXWVFtEtqwop9oornOcXH1tRp2AZeTSudEp6ad3UlaSw69vDaj6XjGb2LbkbQ5umskdz64m9dQ2MhP3Mv2FtjbHmffZLUS3HUW/W9+sj+Rdlv0nKklIs069PVcnu7uoKTxvKq2bi5rkzJrrxOIyBZNZwd1ZDVjDuDurKSypXo+3b65Dr4Nt8dXbS6t3VrB6ZwUeLipKKxR83NXc1NeJ7ILGf1Jee718iXVPLeFTTu4kP/M0wyZ88LdxCQiPw2w2UpibjJe//b2Jr7b2TnFhDq615FVdabR6vP0jAAiKaE1qwgG2r57JyPGvXtFx60tpBZjNStVC9+e4OFYfQXtOcdWIkvPaQY6W7ZbvlbPHwOYYLo6WNeDOV1Zh+eQWKWQVmpgyVkeor5nkbGu4wrNLM2YXKKhUJkZ31bDlsLlROyu37yvm2GnrQ9hz02483TXkFVrvJTzdNZxKurJlHk4mlvPYa6dxdlSj1aooLDbx7nORnKjDPYoQDemS1kQJCAjg9GnLMEiDwcDu3bvp1q1b1fdFRUXodH/fgHdwcMDd3d3mU19TecorFNKzjVWf5PRK8gqNtG5urSGdHFRERzhwNOHyC7bRBCcTKwjxt01vsJ+O7Fz7nftaVm4mNdNQ9TmTUk5OfiXtW1kXfnJ2VBMT5cLh8zpbavLQhFB6dvTg6WknSM+q3sBydlQz7ZlojEaFlz44SWXltfN4SqPVExTeioQjW6q2KWYzCYe3EBp1+fN5FUVh2S+vcnTvSu6eMgPPCxajsyeGSsgpVKo+GXkKhaUK0cHWaXAOOgjzV5OYWXOj2WSGlGyF6BDrPiogOlhDYoZ1Hwcd3DfCAaMZZiw3VBtZotNamivnn0GKYvm7sfvUNVo9/mGtSDpme64kHdtCUGTN50pgk3YkHdtqsy3x6GaCItsBYDIbMZsqufBRi0qtQTmv5VRRXszcLyaj1uq44f4vqj0RbWwarR6/kFakHLfNm+QTWwmMaFfjPgER7Ug+LzxA0rHNBJwNr9Hq8QtrTf4FQ/LzsxOqXm9ck+zUIwA4u9X+NhZhPzRaPb7BrUg5aS0nitlM6smt+Ie3q3GfgPC2pJ60LVfJJzZXhW/W/gbGPTqfsY/Mrfo4u/sT1+deht/7LQA9Rv8fYx+dV/X9sIlfATDwjvfpNPTxek/npaiohKx8c9UnLcdMQbGZFuHW52GOemgSpOF0as3tEJMZEtNNtIiw7qMCWkRoOVXDPj3bOLD/RCXFZbVfvwtKFCqN0ClWT26hmcSMxn9aotHq8Q9tRfKF9fLx2uuewMh2NvU4WOqeoBrCH9o2G//QVviF1PzK4/Nlpx5BpVJXm5pmLzRaPUERrTh9uHp7J6Se1y9RzGZMlQ0/qrWuzGZIzVWICrS91kYFqmw6Ms6XlKXQ5MLwQSqSsyxtmvxiy5TlqEDrLZZeZ3mrT1JW7eXo3BE1F1lpQIVlHZfGbveUVZhJy6qs+iSmGcgtMNI2xrqWopOjmuZNnDhyqn46O0rLzRQWmwjy1xEd4ci2vQ0/Ek+Ii7mkkSgjRozgueee46233mL+/Pk4OzvTu3fvqu/3799P06ZN6z2SV2rxukLGDfYkPctIZm4ltw33Iq/QxI7z3rzz4gOBbD9QwrKNZxf61KsI9LV2kPj7aIkM1lNcaiI739JAWLC2gCcm+HPoZDnxJ8poF+NEx1bOvPzZtTVlZd6yTO68MYCU9HLSswxMujmInPxKNu0qqArz1nPRbNqZz4JVlqd8j0wMpX93L1768DRl5dY5jyWlJgyViqUD5dloHPRq3voyAWcnDc5nRyMUFBobfR2Luug6+B4WfP8sQRGtCW4Sx/ZVM6g0lBHXcywAC6Y/g5tnAP3HPgmcXUQz7WTVv4vyM0hPOozewbnqScyyX14hfvsibnnwc/SOLhQXZAHg4OSGTm+/I5jO2XjAyIAOWrILzeQVKgzprKOwVCE+wdpovn+knoMJJrbEW7Zt2G/k1n46krPMJGeZ6dVGi04HO49ZGuznOlB0Wpi1phIHPZzrCigpt3SWHE82M6IrjOmpY3O8EZUK+rXTYjbDydTGb7B36HcPK35+loDw1gSGx7F7neVcadnVcq4s/+kZXDwC6DXacq607zuB2R+PZ9ea6TRp1Zeju5eQkXSQgbdZns45OLoSEt2FjX++g1bniLt3MMkndnB4x3z6jHkOsHSgzPv8XoyGMoaNfwdDeTGGckujwsnVG7X68td8qk9t+05izazn8AttjX94HPs3zMBoKCOmsyVvVv36LC4e/nQfYcmbuN7j+fPzCez9azoRLftxfM9ispLj6Xez9cll+36TWfHTFIKjOhES3ZXEIxtIOLSWMQ/MBCyvQD6+ZxHhsX1wdPYkJ+0YmxZMIziqE77BLa5+JjQQjYszLtHWUTXOTUJxbxuDIbeA8qRr6zpUkza9J7Luj6n4hbTGL6wNBzfNpNJQRvOONwGw9vdncXEPoMswy8jW1j0nsPDrCezf8D3hLfpycv8SslPi6X2TZfqwo4sXji5eNr+hVmtxcvXF068JAK6eth1xOgfLTYG7dxiuHvY3anDNrgpGdHcgK89EdoGZ0b2cKCg2s/e4dWToY7e6sPd4Jev2WG5eV++sYOIIZxLTjSSkmRjQyfJGnS0HbW9u/TzVRIdp+Gx2zdOTB3d2IP50JYoC7ZrrGNrVgW8XlNrNdJ52/Sax6pfn8A9rTUBEHHvXWeqec/Xyip+fxdXDnx6jLHVPuz7jmfvpBHavnU7k2bonMymeAbfajpowlBdzYt9yet3wbLXfTEvYQ8aZ/YREd0Xv4EL6mb1smD+NFh1H4+hsvwvIdx18DwumP0tQZGtCmsSx7Wx7p+3Z9s6f3z2Dm1cAA85v76Se197JyyA98TB6R2t7Z83c92jaug8e3kEYyks4uH0RZ45t587Hv2ucRNZi62EzY3poSM1VSMlW6BarRqeFvSctnSJjemgoKlVYvdfy97YjZiYN0dA9Vs2xFDOtI9UEe6tYuNXaFtl22Ezv1mpyihTyixX6t9VQVApHkiyFI8RHRbCPisQsM+UG8HJV0b+tmtwiheSzHS1tIlWYzJCZr2A0WxbAHdheQ/yZ2hefbUwLVudy2whfUjMNZGRXcveNfuTmG23evPPaE+Fs2VPE4r/yAHB0UBHkZ53iFuCrp0moA8UlJrLyLG3Enh3cKCg2kZVbSWSIA/ffGsC2vUXsOXzxB72iZorS2F1w149L6kT53//+x9ixY+nbty+urq7MmDEDvd568k+fPp0hQ4Zc5AiN4881BTjqVfz7Vh+cndQcOV3B61+lU2m01kIBvlrcXKw3HVFhDrzysHW+36QxlicIf20v4rNfLR0J2w+U8vUf2dw0yJN7b/ImNauSd3/I5Mhp+3pD0d/5fXEmjg5qHr83HFdnDQePlfB/79iOHAny1+PhZj1dRg/yA+C9523fbvDO12dYuSGX6Ejnqrf7zHivlU2Y8U/Ek5FtP08iatOy8whKinJZt+BjSgqzCAiN5fZHv60a3lqQm4ZKZX3SUJSfyXf/G1P199YV09m6Yjrhzbsw/qkfAdi97lcAfnrPdlHDUZOm0bbH2AZO0ZVbt8+IXgvjeutx1ENCupnpS21Hjni7q2wWT9t/yoSLEwzppMXN2TL1Z/qSiqphriG+6qo39Tx7h21H0pu/lJNXrJBVoDBjuYGBHbU8eKMDigKpOWamL62gyA5GdLboMIKy4ly2LPmY0sIsfENjGfOfb3E5e64U5qXBeedKcJMODJvwLluWfMjmRe/j6RfJ6Mmf4RtsXWB4xMT32bTwfZb9+BTlpQW4ewXTc+QTxPW8A4DMpHjSz+wD4If/DbaJzz0vrsbDJ7Shk10nzdqNoLw4l+3LP6G0KAvf4FhG3fdN1ZSM4rxUm/UpgiI7MOiud9m+7EO2Lv0AT99Ihk/6FJ8ga95EtRlM33Evs3vN12yY/zqe/k0YNuFjgpp0BECt1ZF8fDP7znbYuHoGEdVmCJ0GPXB1E9/APDq2pvvqH6v+bvnu/wGQNHMu+yfb5yKWl6Jp3AjKi/PYtepjSouy8QmKZfg9X1edOyX5tnVwQER7Btz+DjtXfMSO5R/g4RvB4Ls/wTvQ/hfuvlwrtleg16m4c6gzzg4qTqYY+WR2iU2d7OepwdXJumHX0UpcncsY1dMJdxcVyZkmPpldUm2KZY82evKLFA4n1DyqpVUTLcO6OaLVQEqWiS/nlRB/2n5G4jZvb6mXty37hJLCLPxCYrnh3xepe5p0YMj4d9m65EO2LP4AT79IRt5rW/cAHNu9GBSF5h1GVvtNjUbPsT1L2LbsU0wmA+7eobTrO9FmnRR71KrzCEqLcln359n2Tlgsdzx28fbOt7W0dyY8bamTSgpzWDD9WYoLMnFwcsM/tAV3Pv4dUS17XtW0/Z34MwrODmb6xWlwdYL0PIWf15iqFob1cLG98UzOVpi70UT/dhoGtFOTWwSz1pnIsj53ZNMhMzotjO6qwVEPiZkKP60xYjo7ALfSpBAbrqZfWy16LRSVwclUM7M3mKrCmBXo2UqDj7tl5El+Cew4ambL4cafLleTOctzcNSrePjuIFyc1Rw6UcZLHyfZ3GsF+upwd7Xea0VHODHtyYiqv++71bJkxOrN+Xw4w/IgwNtDy+RbAvB015JXYGTN1gJ+W5x1lVIlRO1UinLpzwwKCgpwdXVFc8GYs9zcXFxdXW06VurqlidqXi1dQEF2fmNHwa7dfZ/9vC7P3sQftYMeBjsWGS6vyKuN4RqaftcYosf+/TD+f6rDvx1u7CjYtZMnCxs7CnatVSv7HbHR2Dxc5SnyxZxKrL42n7DYueFEY0fBri38Kraxo3BVHD95ptF+u1nTiL8PdA25rPdDeXjUfIHz9va+osgIIYQQQgghhBBC2Ct5ybYQQgghhBBCCHEdUxp9WeLrxyW9nUcIIYQQQgghhBDin0o6UYQQQgghhBBCCCHqQKbzCCGEEEIIIYQQ1zGZzlN/ZCSKEEIIIYQQQgghRB3ISBQhhBBCCCGEEOI6JiNR6o+MRBFCCCGEEEIIIYSoA+lEEUIIIYQQQgghhKgDmc4jhBBCCCGEEEJcx2Q6T/2RkShCCCGEEEIIIYQQdSAjUYQQQgghhBBCiOuYoshIlPoiI1GEEEIIIYQQQggh6kA6UYQQQgghhBBCCCHqQKbzCCGEEEIIIYQQ1zFZWLb+yEgUIYQQQgghhBBCiDqQkShCCCGEEEIIIcR1TEai1B8ZiSKEEEIIIYQQQghRB3YzEiUqNrCxo2C3XFzCGjsKdu1MqrGxo2C3FHNjx8C++XpKBtVGURo7Bvbt8G+HGzsKdiv2ttjGjoJdi9gg587FaNVSL9cmyL24saNg11r4N3YM7JfZHN3YURB2QEai1B8ZiSKEEEIIIYQQsLjjTQAA7x5JREFUQghRB9KJIoQQQgghhBBCCFEHdjOdRwghhBBCCCGEEPVPUWQ6T32RkShCCCGEEEIIIYQQdSAjUYQQQgghhBBCiOuYWRaWrTcyEkUIIYQQQgghhBCiDqQTRQghhBBCCCGEEKIOZDqPEEIIIYQQQghxHVNkOk+9kZEoQgghhBBCCCGEEHUgI1GEEEIIIYQQQojrmLziuP7ISBQhhBBCCCGEEEKIOpCRKEIIIYQQQgghxHVM1kSpPzISRQghhBBCCCGEEKIOpBNFCCGEEEIIIYQQog5kOo8QQgghhBBCCHEdk4Vl64+MRBFCCCGEEEIIIYSogysaiWIwGMjMzMRsNttsDw8Pv6JICSGEEEIIIYQQon7IwrL157I6UY4fP869997L5s2bbbYrioJKpcJkMtVL5OrT4I5ausRqcdJDQrqZeRsrySlULrpP95Ya+rTV4uakIi1X4c9NBpKzrPuM7a0jOkSNu7OKiko4k2Fm6bZKsgouftyrqVNzFT1i1bg6QUYeLN1pIjWn9vCx4Sr6x6nxdIWcIli9x8yJVNv09ItT0z5ahaMOkrIUluwwk1tk/T7QCwa1VxPso8KswOFEhRW7zVQabX+rbZSKbjFqfNyhohIOJSos3WHbIXe1dWqmonuMNb+W7TKRmlt7+NgwFf3i1Hi6QG4RrN5r5kSaNb9iQlV0iFYR5K3C2UHF10uNZOTbHmNEZzVNAlS4OYHBCMnZCqv3mskpwi4N6XS2LDmcLUsbKsn+m3O+eysNfdudLUs5lrKUlHleWeqjo1mIGneXs2Up3cySbZVk5Vc/rrMDPH6LI56uKl6cXka5od6TWC+2rvqZjUunU1yQTWBYDKPufp7QpnE1hs1IPs7qeZ+QmhBPfnYqI+58jh5DJ1YLV5ibwfLf3+PY/vVUGsrxCQhn7H1vENKkdUMnp95tOz9/wmMYeffzhEbVkj8px1kz92z+5KQy/I7q+bNm3qes/fMzm22+gU147M0lDZaG+hK/5Wf2r59OWXE23oEx9LjhefzDas4LgFMHlrFz5ccU56Xg7hNBl2FPEh7Tt8awG+a9zJHtv9Ft5HO06VX9nDIZDcz//DZy044w9pG5+ATH1lu6GpN3r05EPTkZjw6tcQz2Z+e4B8lYsLqxo9XgpN65uC0rf2HdEkv+BIW14IYJzxN2kfxZMedTUs7mz6i7nqPXsAk2Yd58YhD52anV9u028A7GTHqhQdLQUFYt/oOl83+iIC+HsMhm3P2vp2javFWNYf9aMZ9NaxeTfOYUAJFNY7h5/IM24Sfe2KXGfW+b+Agjxo6v/wQ0sJWL/2DJefkz4SL5s3bFfDaelz9NmsZwywX5M76W/Ll94iOMtLP86dJCTY9WZ9vGuQpLtptJyam93dcyQsWAdho8XSG3EFbuNnE8xTZ8/7ZqOjZT46iHxCyFRVtNNvcSfdqoaRaiItBbhckMb8664CbirHZNVXRvqbHcSxjg0Bkzi7c37r2E+Ge4rE6USZMmodVqWbRoEUFBQahU9t2r1betlp6ttfz+l4HcIoUhnXRMHqHn/T8qMNbS3xMXpWFUdx3zNlSSmGmmVxstk0c48O5v5ZSUW8IkZ5nZc9xEfrGCkwMM7qTjvpF63vy1AsUO+lFaRqgY0kHN4u1mUrIVusaouau/hs8WmiitqB4+1BfG9VSzeq+Z4ykKrSPV3NZHzddLTWQVWML0aKmiSwsV87eYyS9W6B9nOebni0yYzODqBOMHaog/o7B0hwkHHQztpOHG7mpmb7BWat1iVHSLVbNqjyVuOi14ujTuedQyXMXg9mqW7LBcHLq2UHPn2bTVll9je6hZs8/M8VSF1hFqbu2t5pvl1vzSaS0dTYcSFUZ31dT4u2m5CgcTzBSUgpMe+ra25OknC012cR6dr187LT3baPltrYHcQoWhnXVMHqnnvd9qL0ttm2oY3UPH3PWWstS7jZbJIx1451drWUo5ryw5n1+Wfqlelm7upyc914yna835aQ8ObFvC0l/f4oaJLxPWNI7Ny2fyw7v38/hbS3B196kWvtJQjrdfGK07D2XJL2/WeMyykgK+fv1OmsR0ZeKTX+Ps7k1O+hkcnd0bOjn17sC2JSydZcmf0Kg4tqyYyYx37+exN2vJn4pyvPzCaNV5KEt/rTl/APxDopn09PSqv9Ua+1/26+T+JWxd/Ba9xryMf1gcBzfNZOn0+7n1ySU4uVbPi4wze1gz6yk6D32C8Jh+nNy7iJU/PcJND8/GO7C5TdjT8SvJTNqHs7t/rb+/bem7uLj5kZt2pN7T1pg0Ls4U7j9K0g9z6DT7s7/f4Tog9c7F7du6lEW/vMVN97xEWNM4Ni37ke/e/hdPvb0YV4/q+WMwlOPjH0pcl6Es+rnm/Hn4ld9RzNaLX3rycb576z7adB3aYOloCNs2rOTX6R8y8YHnaNq8FcsXzuLdlx/lrc//wN3Tu1r4Iwd20a33UKLvj0On17N4zkzeffkRXv9kFt4+lvrmox9sO7D379rC9E9fo1OPAVclTfVp64aV/DL9Q+45mz/LFs7i7Zcf5e3P/8Cjhvw5fGAX3XsPpdnZ/Fk0ZyZvv/wI087Ln09qyJ9vP32NznaWP60iVQztpGbhVhMp2QrdYjWMH6Thkz+NVW2484X5qbi5t4bVe8wcTTYT10TN7f00fLXYSGa+JUyvVmq6xqqZt8lEfpHCgPYaxg/S8tmfRoxnbxU0ajh0RiE5S6F9s5pXn+gea+ncWbHLRHKWgl4Lnq72fU8qrh+XtSbK3r17+eqrrxg+fDjt2rWjbdu2Nh9706uNljV7jBw6YyY9V+H3tQbcnVW0iqz9Jqx3nJbtR0z8P3v3HSZFkTdw/DthZ3POObDABmCXnHNGUIKYBRU9z3DqmRBPxXCK+npmz4yCCgaC5JxzjksOC2zOOc5Mv3/MssOws8RdduR+n+eZR7anuqaqrO6urq6q3nnMQFaBwtwN1VTroWNLc6N8+xEDpzOM5JcopOUqLNtRjYeLGk8bOYC7xqjZfUJh3ymFnCJYtN1ItQHaNrOevs4xak6kK2w5bAq/dr+R9Hzo2FJtEWbDQSPHUhSyCuDPLUZcnSAm1BRni2BTj/HiHaaRFGl5sGi7gbgwNZ4upjgcdKYe6HmbjRxMVsgvgawCOJbatD0GXVqq2XNSYd/pmvLaYRo9kxhlvbw6tagpryM15XWgprwuONkfSFbYkKRwOrP+vO05qXA2GwpLISMf1hww4u6swsO5wbN43Xq01rJqt55DyaZj6bcrPJa2HTaw86iBrHyFOetrjqUY87G07bCB0+lG8osVUnMUlm6vxtNVjaerZdl3idPgaA/r9lp/ImErNi2dRofeY2nfazR+wdHc+sDr2Okc2LV+jtXwIVGtGXLXC7TpcgtaO53VMOsXfYe7VyBjHnmHkGZt8PINoXnr7nj7//WmT25eZiqfdj1N5TNivKl8dl9J+Witlw+AWq3F1cO39uPs6tlYWWgwBzZMI6bjWFp2GI2nfzQ9Rr6OVufA0Z3Wy+LgpumENO9BQq8JePo1o8Ogp/EJiiVpywyLcKWFmWyZ/zZ973wftdp6Z9K5o+tJPb6JzsNebPB8NbXsZes5NvljMuetbOqk3DBy3rm0jUt+pFOfsXToNRr/4GhGPjgZnb0DO+spn9Co1gy7+wUSug5DU0/5uLh5WZxzjuxdh7dfKFExHRszKw1u6bwZ9B40kl4DRhAcFsUDj72Ezt6B9SsXWA3/9+feov+w2wmPakFQSAQTnvwXRqPCoX07asN4ePpYfPZsX0ds6/b4BQTfqGw1mCXzZtDngvJ58LGXsL9E+Tz+3FsMuKB8Hr6C8tllo+XTLVbNruNG9p5UyC6EhVsNpnuJaOu3kF1i1ZxIU9iUZCSnEFbvNZKep9DpgnuJLrFq1u83cvScQmYBzNloMN1LhJnbfGv2Gdly2EimlRHJYLqX6NdWzZyNBg6cNt1LZBbA0RQbe/poYxRF1WSfm801daLExcWRk5PT0GlpFF6uKtycVBxPNT8pqKiGc1lGwvysZ1+jhmAfFcdTzPsowIlUA2H+1vex00KHllpyi4wUljb9AaxWQ6AXnM6wTMvpDIUQH+sVOcRHxel0y/An08zhPVzA1VHFqQvirKyG1Bxqw2jUYLhoFN35aTxhfqYwUQEqVCpwdYLHhmt4ZpSGMT3UuDldc3avW73llXmZ8rqoc+RUev3hr4SdBhIi1eSXKBSWXXM0jcLLVYWbs+VxUVFlOpbCAy5xLPmqOHHRsXQ8xUD4JY6ljjE1x1KJuXz9PFUMaG/Hb6urafojrH56fRVpyUk0i+9au02tVtMsvivnTuy95niP7FlDcEQ8Mz9/hilPdueLV0ezY+3vDZDiG+t8+UTFWSmfk3uvK+7czDO8/0wvPnxhIH989QIFuXWH2dsSg76KnLQkgqPNZaFSqwlu1pWss3ut7pN5dp9FeICQ5j0switGI2t+n0ibXg/h5d/cajxlxTlsmPMafe54D63O8brzIpqWnHcuTa+vIjX5ENHxXWq3qdVqouO7cuY6yufi39izaQEdeo+2+RHaF9JXV5N88gjxCeaOH7VaTXxCR04cPXBFcVRWVmAw6HFxtT5CqbAgl307N9FrwK0NkuYbqSHLx/ky5dPbxspHo4ZAbxWnLrg3UDC1dUN962kb+1qGB9O9RKivqc3n6QKuTipOpZtvFiqrITW7/jitaRZoupdwc4Inb9Xy7BgtY3tpmvReQvxvuaaxzu+99x4vvvgi77zzDq1bt8bOzs7iezc32xnm6epkOiBLyiwP6JJyBdd6DjQnB9CoVZSUW24vLlfw9bC88esSp2FYZzvs7VRkFRj5blFVnU6EpuBkD2q1itIKy3yXVoCPm/WTlIsDlFw0NK+0QsHFQVX7PUDpReVSUqHgUtMGT85UGNQeusaq2HbUNLSuf1tTmZ0P4+kCKkzD+ZbtMlJRpdA3Qc19/TR8tdiAsQnK73x5lVgrL9f6y+vioYwlFQrOjlffeGofrWJAohqdnYqcIoVf1jRNOVxK7bFUbllGxeUKrvXcgznXHEvFF9eZcgW/i46lrvEahnWpOZbyjXy70HwsadRwT38di7ZWU1Ci4FVPHbYFZcUFGI2GOsPDXdy9yUk/fc3x5mefY/uaX+k2+AF6j/gbqacOsujnd9BodbTrMfI6U33j1Fs+btdXPiHN2jD64XfwCYykuCCbNfO+4Lt37uMf/16AvaMNDusCKsoKUIyGOtN2HF29Kci2XhblJTk4uvhYhnfxprzE/GBj3/rvUKs1xHezPq9eURTWzXqZmM534hvSiuL81OvMiWhqct65NHP5WB47Lm7eZKedapDfOLRrFRVlxbTvOapB4rtRiotMZXPxtBR3Dy/SU85cURy/T/8cDy8f4hKsr/OxcfUiHBydad+173Wn90arr3zcPLxIu8Ly+W3653h6+RBfT/lsqCmfDjZWPk721u+HSsqVS99LXNROLKkw3wO41LSRL77fMIW58radp6sKFdCztYYlOwxUVplGpowbqOXLBXqbuBezRVIsDeeaOlEGDBgAQP/+/S22X+nCspWVlVRWWi4yoa82orWzv5bkWEiM1jC6p7lT54eljbvq5N7jBo6nGHFzUtErQcu9A3R8Ob/+9SFudtmFMG+LkUHt1PRPBKMC248qlJQrtWtbqFSg0ahYutNQO6plziYjz47WEOmv4mS6LY8zaBwHzyiczjDg4miahjWmu4YfVhia9CLQtrmG0b0uOJYWN+6xtKfmWHJ1UtE7Qct9A3X890/TsTS0sx1ZBaZ1U/5XKUaFoMh4Bo39JwBB4XFkph5nx+pf/1I3M42lRZtetf8OCG1JSFQb/vN8fw5uX0L73rc3YcpurOzUJA5u+olR/5hd79PwpM0/U11ZSmKfv93g1Im/GjnvXLkd6+bQok1P3DzrX4PoZrRw1jS2bVjBS29/iU5nvR2/YeUCuvYeXO/3N7MFs6axdcMKXr5E+axfuYBu/6Plc61UgFajYsl2fe19w6z1Bl4YqyUiQMXJtP+9ewlxY11TJ8qaNWuu60enTJnCG2+8YbGt2/CX6THileuKF+DQGQPnssx3ntqapRpcnFQUX9Az6uKoIq2elaXLKsBgNI+uOM/VUUXxRSNaKqqholoht0jhbFYVr493ID5Cw76TTXuzV1YJRqOCs4MKLpj84Gylh/i8kgrzaBNzeFVtb/H5/zo7WvYguzioyMg3x3kwWeFgsgFnB9PbZlCgS4yG/BLT9+dHJVz4FqOyStOnqYbhnS8vF2vlVVF/eTlfVF4uDqo6I3WuRGW16ZNXAim5Rl4YoyEmVEXSmaa7CBxKNnA208qxdNFx4HqJY6m05li6eKTKxXGAaWpQRZVCTqHC2cwq3njQgVaRGvaeMBAdrCbAS0Xrv5kScf7WcPIDDqzerWfFTttZI8XJ1QO1WkNJoeVrsEoKc+s8Bb0aLh4++AU1s9jmGxhF0o7l1xxnU6i3fIqur3wu5ujshk9ABLlZZxsszobm4OSBSq2hvMSyLMqLc3FytV4Wji4+FqNOAMpLcmtHp2Sc3kl5aS4z3zMvTqgYDWxb/D4HN03n7omrSDu1jayze5n6quUaZnO/GEt0wnD63FH/4r3CNsl559LM5WN57JQU5eLicf3nnfycVE4c3MJ9T39y3XHdaK5uprIpLLB8FWFhQR7unnUX3L3Q4rk/s2jONF5843PCIqxPHTyatIf01DM8/sLbDZbmG6m+8ikqyMPjMuWzaO7PLJwzjYlXUD5P2GD5lFVavx9ycVTVGUlynnlEyQX3XA7UjmY5fw9y4bbzf194L3E55+/prN1L2OKagrbiZlybpKlc1Zoo/fv3Z86cOfTu3dvqJz4+ngcffPCy8UyaNInCwkKLT5chL1xzJi5UVQ25RUrtJzNfoahMITrIvPClvR2E+qk5m2X9Mb/BCKk5CtHB5n1UQHSQxuKm0iqV+WazKRmNkJ4HkQGWB0tkgIqUHOsnqZQcpU74qEBz+IIS00kr0t8cRqeFYB+sxllaYVoPJT5chd5I7RzJczWvib5wKKCDzjRssLD0GjLbAM6XV8TF5eV/mfLyv/LyvVKqmo/mmlYsajiV1o6lUoXmwXWPpTMZlziWsq0cS8EazlzuWAI0NbtNX17FR39U8nHNZ9a6agC+nFfF5oO204ECoNXqCIqI59ShrbXbjEYjpw5tJTQ68ZrjDW/ejpyMZIttuRnJePgEXXOcTeGS5dMsscF+p7KilLysc7h6+DZYnA1No9XhExRP6klzWShGI2knt+IXlmh1H/+wBNIuCA+QcmJzbfjmbW9lzFN/Mvofc2o/Tm5+tOn1EEMf+g6AbiNeZvRTc2u/HzL+awD63/0hHQY/0+D5FI1PzjuXptXqCI6I48RF5XMiaSvh11E+5+1cPxcXNy9iEq2/atyWae3siGgWw6H95kVPjUYjh/bvJLpl63r3WzRnOvN//57nJn9CZPO4esOtXzmfiGYxhEW2qDeMLauvfJIuUz4L50xn3u/f88LkT4i6RPmsXTmfyGYxhNtg+RiMkJ6rEBVobuuqMLV1z7flL5aSrRBl5V7iXLapzZdfAsVlClGB5kauvZ1p/bz64rTmXJYprPcF9xKONfcSBSVXHI0Q1+yqbtPWrFnDHXfcweTJk61+bzAYOHPm8vMD7e3tcXNzs/g0xFSe+mw8oKdfOy2x4WoCPFXc2VdHUZlCUrJ5tMgjt+joGm++0duwX0+nGA3tmmvw81Axqqcddnaw85jphs3LVUWfRC3BPio8nFWE+6u5b6COaj0cOWsbUw62HDHSLlpFm0gVPm5wSyc1dhrYe8p04rmtq5p+ieYqsO2IkWZBKrrEqPB2g96t1QR5wY6jRoswPVupaRGsws8DRnZTU1wGR86ZT3wdW6gI8AQvV+jQQsXQjmpW7zVSabrvJa8YjpwzMriDmhAf8HWHkV3V5BSZ1lRpKluPGmnXzFxewzqqsdPCvtM15dVFTb8Ec3ltP2akWWBNeblCr1Y15XXcXF4OOvD3AN+ak7y3mwp/D/MIFg9n6B5nKi83J9Nrk2/vrqbaACdscCjixgN6+rXXEhduGhlyZz8rx9JwHd0uPpZiNbRvUXMs9bJDZwc7j5qPpb5ta44lF9OxdP8gHdUGOHLGFG9eTSfO+U9esalssvKNVl+x19S6DxnPznV/sHvjn2SlnWT+tDeoqiyvnSs/6+uJLP/9w9rwen0V6WcOk37mMAZ9NUX5WaSfOUxupvl82m3weM6d3MfaBV+Tm3mGfVsWsmPtH3Tuf88Nz9/16jZ4PLvW/cGemvJZMN1UPu3Ol883E1n+Rz3lY7BePkt/fZ/TR7aTn53K2eN7mPnZP1Cp1bTpfMsNz9/VaN1zPEd3/MGxXX+Sn3WSjfPeoLqqnBbtTWWx5veJbF9qLotW3cdx7thG9m/4gYKsU+xa+Tk5qUnEdzXVAwdnT7wCWlh81Gotji4+ePhGAuDiEWTxvbtvBABuXqG4uAfc2AJoJBpnJ9wSYnBLiAHAKTIEt4QYHEIDmzhljUfOO5fWY+gD7Fg7i10b/iQr9SR//lhTPr1M5fPbVy+x9DfL8kk7c5i02vLJJO3MYXIyLdu5RqORXevn0q7nSDR/gdeqWzPktntYt3weG1cvJO3caaZ99R6VFeX0HDAcgK8/mszv082vCl80expzfvmaCf94FR+/QArycyjIz6Gi3HJF/PKyErZvWkXvgbfd0Pw0tKG33cPa5fPYsHohqedO82NN+fSqKZ+vPprMbxeUz8LZ05j9y9c8chOUz+bDRto1V5MQpcLHHYZ3UaPTwp4TprbuqO4aBrQ1t423HjYSHayiW5waHzfok6AmyFvF9gvuJbYeNtKrtZqWIaZ7iVHdNaZ7ibPmdq+7MwR4gruzCrXK9O8AT9PDW4DcYjh81sjQjhpCfc3x5BTVfUmEEI3hqs/2X375Jc8//zz79+/n559/xtnZ9sdMrdunR6eFMT11OOggOcPI1CVVFuuWeLmpaqa+mOw/ZcDZEQZ10OLqZJquMHVxZe3Qs2qDQmSAmh6ttDjam4annU438t95lTZzU3fojIKzvZE+CWpcHCAzH2asMdSmz91ZhaKYTzQpOaa1SfomqOmXaOrs+G29kexCc5ybDynotArDO6tx0MHZLNMiqBeu3RHkraJ3G9NJNqcIFm43cuC05Qntz81GBrdXc3cfDQpwJlNhxhoDxiY87x06q+Bkb6R36wvKa625vNyc6pbX3M1G+rZR07eNqbx+32BZXi2CVdzWxdyhMKa76d/rDhhZf9CI3gihvio6tVTjaGcaBnk2W+HHFQbKLJcNsglr99YcS73Nx9L3iyyPJW93lcXiuvtOmqZ2DepYcyzlKHy/yHws6Q0KkYFqerS+6FiaazvH0tVq3XkYpUX5rJrzKSWFOQSGxTL++W9qh9UX5KWjUpsbHcX52Xzx2ujavzcumcrGJVOJiOnIw5OmA6bXkd7z1Kes+OMj1s77L54+IQy79yUSu424sZlrAK07D6O0OJ9Vc83lM+45c/kU5qajVlmWz38nm8tn09KpbFo6lYiWHZlQUz6FeRn88dXzlJUU4OzqRVjzdjz66q84u1kuBmhrmrUZRkVJPrtWfkpZcQ7egbEMffCb2uk8pQXpqC4oC//wtvS76//YufwTdiz7CHefcAbe9xleAbb3FLMpubdvRddVP9X+HffBywCcmz6H/RMmNVWyGpWcdy4toctQSovzWDH7M4oLcwgKi+GhF77G9Xz55Foea0X52Xz6ypjav9cv/oH1i38gMqYjj/5rWu32E0lbKMhNp0Mvc1n+1XTuOZCionzmzPiGwvxcwiJb8PzkT3D3ME1XycvJRH1B3Vm9dA56fTWfv/eSRTwj73qYUXeb11raumEFKApdeg2+MRlpJF16DqS4KJ/ZF5TPCxeUT25OpsWxtaqmfD69qHxG3fUwoy8ony015dPVhssnKdl0L9EvUYOLI2TkKfy06sJ7CcspIueyFWZtMNA/UUP/tmpyi+DXtQayCsxxbkwyYqeFEV01tfcSP6/Uo7/gXqJvgsbiNcqPjTCt0ffDMn3tA9e5mwwM6aDh3n6me4nkDIWfVuqb9F7C1imoLh9IXBGVcuFd4WWo1WoyMjLIzc3ltttuw97ennnz5hEVFQVAZmYmQUFBl11Y1pqJ31zDQhL/I5yd7S4f6H+Yqomnvdiy4sLqpk6CTeuYKIu41efKrwz/m86mN3UKbFfsnbFNnQSbVrbhcFMnwaZp1XLyqU+gm8xTuBRpDtZv0XZ59++lvDHuf+Nea/Ph4ib77W6xrk32243hms43sbGx7Nixg9DQUDp27MjKlSsbOl1CCCGEEEIIIYRoAIqiarLPzeaaO23d3d1ZtGgRjzzyCMOGDeOjjz5qyHQJIYQQQgghhBBC2JSrWhNFpVLV+fvdd98lMTGRhx9+mNWrVzdo4oQQQgghhBBCCCFsxVV1otS3fMpdd91FTEwMI0eObIg0CSGEEEIIIYQQooHIwrIN56o6UdasWYOXl/U3HSQmJrJr1y4WLVrUIAkTQgghhBBCCCGEsCVX1YnSu3fvS37v7e3NuHHjritBQgghhBBCCCGEaDjy+ueGI28DE0IIIYQQQgghhLgCVzUSRQghhBBCCCGEEH8tsiZKw5GRKEIIIYQQQgghhBBXQDpRhBBCCCGEEEIIIa6ATOcRQgghhBBCCCFuYooi03kaioxEEUIIIYQQQgghhLgCMhJFCCGEEEIIIYS4iSnyiuMGIyNRhBBCCCGEEEIIIa6AdKIIIYQQQgghhBBCXAGZziOEEEIIIYQQQtzEjMjCsg1FRqIIIYQQQgghhBBCXAEZiSKEEEIIIYQQQtzE5BXHDcdmOlHs7TVNnQSb1aaFVPhL+fGHk02dBJsV3TqkqZNg05avzm/qJNistFPpTZ0EmxbWUo6t+oRvONzUSbBpTj1jmzoJNs24Nampk2CzjmW6N3USbFpRqbx6pD6VlZVNnQQbZ9fUCRB/MTbTiSKEEEIIIYQQQoiGJ684bjiyJooQQgghhBBCCCHEFZBOFCGEEEIIIYQQQogrINN5hBBCCCGEEEKIm5girzhuMDISRQghhBBCCCGEEOIKyEgUIYQQQgghhBDiJmaUhWUbjIxEEUIIIYQQQgghhE344osviIiIwMHBgc6dO7N9+/Z6w3777bf07NkTT09PPD09GTBgwCXDNwTpRBFCCCGEEEIIIUST++2333j22WeZPHkyu3fvJiEhgcGDB5OVlWU1/Nq1a7n77rtZs2YNW7ZsITQ0lEGDBpGamtpoaZROFCGEEEIIIYQQ4iamKKom+1yNDz/8kEceeYQHH3yQuLg4vvrqK5ycnJg6darV8L/88guPP/44iYmJxMTE8N1332E0Glm1alVDFJtV0okihBBCCCGEEEKIRlFZWUlRUZHFp7Kysk64qqoqdu3axYABA2q3qdVqBgwYwJYtW67ot8rKyqiursbLy6vB0n8x6UQRQgghhBBCCCFuYorSdJ8pU6bg7u5u8ZkyZUqdNObk5GAwGPD397fY7u/vT0ZGxhXlc+LEiQQFBVl0xDQ0eTuPEEIIIYQQQgghGsWkSZN49tlnLbbZ29s3+O+8++67/Prrr6xduxYHB4cGj/886UQRQgghhBBCCCFuYkaubm2ShmRvb39FnSY+Pj5oNBoyMzMttmdmZhIQEHDJfT/44APeffddVq5cSZs2ba4rvZcj03mEEEIIIYQQQgjRpHQ6He3bt7dYFPb8IrFdu3atd7/333+ft956i6VLl9KhQ4dGT6eMRBFCCCGEEEIIIUSTe/bZZxk/fjwdOnSgU6dOfPzxx5SWlvLggw8CMG7cOIKDg2vXVHnvvfd47bXXmDFjBhEREbVrp7i4uODi4tIoaZROFCGEEEIIIYQQ4iamKE2dgitz5513kp2dzWuvvUZGRgaJiYksXbq0drHZs2fPolabJ9R8+eWXVFVVcfvtt1vEM3nyZF5//fVGSaN0ogghhBBCCCGEEMImPPnkkzz55JNWv1u7dq3F38nJyY2foIvcNJ0o/RI1tG+uxkEHZ7MUFmzVk1d86X06tVTTvZUGF0fIzFNYtN1Aao65i06rhsEdNbSOUKPRwIk0hYVb9ZRW1I3L0R4eH2GHu7OKd2ZUUVFdN0yYr4oHh2jJKlD4coH+OnPcMDavmMH6RVMpLswhMKwlt437F6HNrC/Ek5FynBWzPyf1dBL5OWkMv+8leg4ZZxHGaDSwYvYX7Nm8gOKCHNw8/WjfcyT9R/4dlarpFjO6HncP92Zgd3ecHdUcOVXOVzOzSM+28j+4Rly0I6MGetIs1AEvDy1Tvk5l275SizAO9iruv82XzgnOuDpryMqtZuHaApZtKGzs7Fy3wR3t6ByrxdEeTmcYmbO+ipzCS3dtd4vX0idRi6uTivRcI3M3VnMuy2g17MO32BMTpuGHJZUkJRtqt9/W3Y7IQA0BXioy8xU++sPKgdjEbu3lSM9EB5zsVZxIqeaXpaVk5VvP53l92tszuLMj7i5qzmXqmbm8jOR08/nB10PN2P7ORIdq0Wog6VQ1M5aXUlxqLvMpj3vg46GxiHf2mlKWbrG9MrqU+27zY3BPT5ydNBw+UcYXP6eRllVVb/ixQ33o1s6NkEB7qqoUDp8s44dZGaRm1r+PrRre3YEebXQ42qs4laZnxvJysgsuXXd6t9UxsKMDbs4qUrIM/LaqnDMZpmPGy03N24+6Wd3v23ml7D5mOoe1DNMyoocDwb4aKqsVth6sYv6GCow2/LRq68pf2LhkKiWFOQSExjD8vn8RUs91KzPlOKvmfkZachIFOWkMu+clug0eXydcUV4my37/D8f2r6e6qgJv/zBGP/wOwZGtGjs7TcKrRweinpuAe7tWOAT5sXPM42TOX3X5Hf/iNi2fwdqFP9S2eUaNf5mw6PraPCdY9sdnpJw+RH5OGrfeP5FeQy3bPBXlpSz741MO7FxFSWEewRGx3DbuJcKatb4R2WlQO9f8wtbl31NSmI1/SAyD7n6V4EjrZZOddpx18z4l42wShbmpDLxjEp0GPGARZtOSrzm6ezm5GafQ6hwIiWpLvzHP4x0QdQNyc/32b/yF3au/p6w4B5+gGHqNfoWA8PoXqjy+dylbl3xCcV4qHr7hdBv+PBFxvWu//+yfMVb36z7iBdr1m1D79+mktexY/l9y0o+i1doT1Kwjwyd80XAZayAD22vpGKPBUQfJmUb+3Kgnt+jSF44ucRp6t9Hi4gjpeQrzN1eTkm3ax9HeFGfzYDUeLipKKyAp2cDynXoqL2hyv/tI3betzFhVxf5Tl75eChNF+Wvei9mi615YtqKi6RvpPVqp6RyrZsFWPd8s1lOlh3ED7dBeInetItQM6ahh7T4DXy2oJiNfYdwALc4XHJtDOmloGaLmt3V6pi7V4+YId/e13u80spuWzPz6Tx4OdjC6p5bT6bbTMt23dQkLf3mP/qMe56l/zyIwLIbv3/sbJYW5VsNXV1bg5RvCkDufxdXdx2qYtQu+Y+uqX7lt3Cs89/5Cht71LOsWfc/m5T83ZlYazaiBngzv48FXMzN58f/OUlGpMPkfwdhp6z8JOehUnE6p5OvfsuoN89AYX9rFOfHxjxn8481kFqwu4G93+NGxtXNjZKPB9E3U0qO1ltnrq/h0dgVV1QqPDLdHq6l/n4RmGm7tbseKndV8PKuCtFzTPi6OdcP2bKO95FDD7Yf17D1hqD9AExrSxYH+HRz4eUkJ7/xYSFU1PHOX2yXLpkOsjjv6O7NgYzlvTS0kJcvAM3e54upkql86O3jmbjcUFP7zSxHvTS9Co1bxj7FuddZX/3NdGc99klf7Wb2z6c/NV+P2IT6M6O/NFz+n8ew7J6moNPLWPyMueay1bunMojV5PPfOKV75MBmtRsW/n43AXvfXaiQM6mRP33b2zFhRxvu/FFNZBU+Ndb5k3Wnf0o4xfRxZtLmCd6YXk5Jt4KmxzrV1J7/YyMT/Flp8Fmwsp6JKIem0qUUa7KvmiTHOHDpdzTvTivl+filtou0Y2bvxXgl4vQ5sW8ySme/R97YnePyN2QSEtuTHDx6hpKie61ZVBV6+oQwa+ywu9Vy3yksL+ebte1BrtIx/7huemrKQIXdNxMHJeifUzUDj7ETR/qMcfOqNpk7KDbN3yxLm//w+A0c/zjNv/0FQWEu+ffdRiutp81RVluPlF8qwu/6Jq4f1uvPHt69x7MAW7n7sXZ5/by4tWnfjm3cepjAv02p4W3Vox2JW/jGFnsOfYMIrc/ELjeHXTyZQWu9xVY6nbwh9Rz2Hs5uv1TBnj22nfd97eWDS79zzzA8YDHpmfDyBqsqyxsxKgzi2ZzEb/nyXToOf4K7n5uAT1JL5Xz9MWbH18kg/vZtlPz1HfOfbuev5uUS1GsCiqU+Sm36sNsxDb2yw+PS/621QqWjWZlBtmBP7lrFixkRiO43m7uf/5PanZtCy3fBGz+/V6p2goVu8hj83VvPFvCqqq+GhoXaXvGa1iVIzvIuWlbv1fDa3ivRcIxOG6mrvu9ycVLg5qVi8Tc9Hs6r4Y101LULV3N7Lrk5cf6yt5t8/V9R+Dp2RDhRx411TJ4rRaOStt94iODgYFxcXTp06BcCrr77K999/36AJvBJdYzWs32/gyDmFzHyFORv1uDpBTFj92esWp2bXcSN7ThjJLoQFWwxUG6BdtGkfezvTv5fu1HM6QyE9T2HuJj1hfmpCfCwb6B1bmkbAbEqq/+ZuRFcN+08ZOZdtO50oG5b8SKe+Y+nYezT+wdGMenAydvYO7Fg3x2r40GatueWeF0jsOgytnc5qmDPH9xLXvh+xbXvj5RtMm06DadG6O+dOHmjMrDSaEf08+X1pHtv3l3ImtYpPpmXg5a6lc0L9ixTtPlTGjAW5bNtXUm+YllGOrNlWxMHj5WTl6Vm+qZDk1EqaR9juzQtAzzZ2rNxVTVKygfQ8hV9XV+HmpKJVZP1Xzt4JWrYd0rPjqIHMfIXZ66qorlboGGPZIRnkraJ3gpbf11RajWfepmo2J+nJu8yTjqbSv5MjizaVs+94NanZBqYuKMHDVU3bltaPFYCBnRzYsLeSzfsrSc8x8POSUqr00D3B9Aq46BA7fNzV/LCglNRsA6nZBn5YWEJ4oIaYCMuGRUWVQlGp+VNV/2Apm3TbAG9+W5jF1r3FJKdU8p+pKXh5aOnatv4b2dc+PsPKzQWcTavkdEoFH05Nwc9bR3S4lR46G9avvT1Ltlaw/4Se1GwjPy4uxd1FTWLzuo3H8/p3sGfT/iq2HKwiI9fIzOXlVFVD11am+qYoWNSHolKFxOZ27DpSVftUr0OMjtRsA4u3VJJdYOR4ioG568rpnWiPff0/3aQ2LZ1Gh95jad9rNH7B0dz6wOvY6RzYtd76dSskqjVD7nqBNl1uqfe6tX7Rd7h7BTLmkXcIadYGL98Qmrfujrd/WGNmpUllL1vPsckfkzlvZVMn5YZZt3ganfveTqc+owgIiWbMhEu3ecKatWbEvc/TttswtNq6dae6qoID21dwyz3P0Sy2Az4B4Qy+/Qm8/cPYvPLXxs5Og9q24gcSe9xBQvcx+AZFM+zeN9DqHNi3abbV8EERbeh/+0TiO9V/XN399PckdBuNb1Bz/ENjGPHguxTlpZFxJqkxs9Ig9q79kfiuY4nrPAavgGj6jjWVx6Ft1stj7/qfCI/pQbt+E/Dyb0aXYU/jGxLH/g2/1IZxdvO1+Jw6uJqQ6M64+4QCYDToWT/3HbqPeIHW3e/C0y8Sr4BomrcdekPyfDW6t9Kyeo+eQ2eMZOQp/La2GjcnFXHh9d939WitZfsRA7uOGcgqUPhzo+mhd4eWpvZjZr7CzyurOXzWSF6xwsk0I8t36IkNV6O+6LlIeZVCSTm1H71tPlsTN7lr6kT597//zY8//sj777+PTmc+ebZq1YrvvvuuwRJ3JTxdwNVJxck0841VZTWkZiuE+lp/GqlRQ6C3ipNp5p5LBTiZZiTE11QkQd4qtBoVpy6IN6cICkoUQv3M8fq6Q582GuZs1Nf7BL1ttBpPVxVr99nOUa7XV5F6+hDN47vUblOr1UTHd+Xsib3XHG9480ROJm0lOz0ZgLQzR0g+upuWCT2vM8U3nr+3HV7uWvYfMT81Kaswciy5gpZR19fZcfRUOR3buODlbupIaNXCkSA/HXsP2+4TGi9XFW7OKo6nmOtxRRWczTIS7m/9VKJRm552H0uxPNaOp1ruY6eFewfYM3dDNcXljZaFRuPjocbDRc3h0+aei/JKhVNpeqKCrY9e06ghPFDL4WTz1BMFOHy6imbBpjtYrca0TW8wn1yq9QqKAtGhlvEO7erIR8948upD7gzq7FCn0WHLAnzs8PKwY+9h87S3snIjR0+VE9PsyjtEnJ1MjbGSUts5116Oj7sadxc1R86Yp3BVVMHpdAORQfXXnbAAjcU+CnDkjJ6oevYJ89cQ6q9l8wFzfdNq6jY+q/Wgs1MRFmB7s331+irSkpNoFm9+xaFaraZZfFfOXcd168ieNQRHxDPz82eY8mR3vnh1NDvW/t4AKRa24nybp0Ury7rTvFUXzhzfd01xGgwGjEYDdnb2FtvtdPacPrrnutJ7Ixn0VaSfTSIytlvtNpVaTWRsN1JONVw+KstNc+wdnN0bLM7GYNBXkZWSRGgLy/IIbd6VjDN7re6TkbzXIjxAWMvupNcTvqw4hzOH1hHXeUzttqyUQ5QWZqJSqZj5wSi+f60n875+xGI0iy3wcjWNGDmRam7XVVbDuWzl0m1BH8t9FOBEqpFwv/pvRR10KiqqqDO99Lbudrx6vz1P3KajQ4tLDH8RdRiVpvvcbK6plTR9+nS++eYb+vfvz9///vfa7QkJCRw5cqTBEnclXBxNdwolFZb/d0oqFKvTBQCc7EGjVtVZ26S0wtQpcj5evUGps7ZJSYWCi4PpNzVqGNtLy7JdBgpLTR06F/NyhYHtNHy/tNqmKlBZcQFGo6HO8GZXd2+y009dc7x9RjxCZXkp/3nxFlRqDYrRwOCxT9O2+4jrTfIN5+FuOjEXFFmuX1NYZMDT7fpuML75PZvH7/Fj6pQo9AYFxajwxYxMDp2w3R6E89MEissvOtbKlNrvLubsoEKjVlFy0T7FZQp+HuYL563d7EjONFqsgfJX4u5syktRqeWQ0uJSY+13F3NxMpVNUall2RSVKgR4m8rzVJqeyiqFMX2dmLu2DFQwpq8TGrUKdxdzvKt3VnAmQ09puUJ0iJZRfZzwcFHz+yrb7ZS7kGdNZ2L+RcdaQZEeT/crGxKhUsHf7gwg6XgpZ9Ksj2ayRW7Opv/X1urO+e8u5uJYU3fKLPcpKjPi72X93NSttY70HAOn0szH2KFkPf3a29Mhxo5dR6txc1YxrKupg9i9nt9uSubrlrfFdhd3b3LST19zvPnZ59i+5le6DX6A3iP+Ruqpgyz6+R00Wh3teoy8zlQLW1BaT91xdfcmK+3a6o6DozPhzRNZMfcr/IKjcHX3Zs/mxZw5vg+fgL/OKKayknwUowFnN8uycXb1Jvc62oMXUoxGVvz2DiHN2uEX3KJB4mws5aWm8nBytSwPJ1cf8rOs15Wy4hyr4cuKcqyGP7z9T+wcnC2m8hTlngNg+7Iv6HHbRNy8gtmz9gfmfDGO+yctxcHZ4zpy1XDO31td3K4rKVdq78ku5uSA1bZgSbmCr4f1NpKTPfRraxq9cqHlO6s5mWakWg/NQ9Tc1l2Lzg42X2I2gBCN4ZruBFNTU4mOjq6z3Wg0Ul19+THklZWVVFZaNnL11Sq0F/XmW9MmUs2IruZex19WNd0CrQPbacguVOpdzEilMnWyrN5rILfoBieuiezftpQ9mxdy1+P/h39INOlnjrDg5ym4efjRvtfIpk7eJfXq6Mpjd/vX/v3vL1Mb7bdu6eNBy0hH3v4ylay8auKjnXj0Tn/yCgzsP2obN75tm2u4vbd5pNn3ixrnxjQuQkN0sMYmF4qtT+d4HfcNNfeafvZ74xzgJWUKX88t4d4hzvTr6ICiwPakKs6kW458W7HdXHap2Qb0BrhvqDNz1pbZ5DDXPp3defL+oNq/X//0zHXH+di9gYQHO/DCew3T6G8sHWPtuGeQU+3f/51d/7S/hmKnhY6xOhZftNDw4WQ9c9ZVcM8gJx64BfR6WLylguahl16b6GajGBWCIuMZNPafAASFx5GZepwdq3+VThRxSXc/PoXfv36Vt57oi1qtITgilrbdhpFy+lBTJ82mLJ35Btlpxxn34oymTopNOLR9Ni3bDbe471EU071EhwGPEp0wGIABd09h6uu9ObFvKa263dUkaU1spmZUT/PDjB+XNv7C7fZ28MAQHVkFRlbusrzPW73H3KhJyzWg06ro1UYrnShX6H/p2t7YrqkTJS4ujg0bNhAeHm6xfdasWbRt2/ay+0+ZMoU33rBczKzXba/Qe9Srl933yDkjKTnmTguNxtTr6eJg2cPp4qAiPc96TSmrBINRsVhEFsDZgdqpBCXlClqNCgc7LEajuDioKKkw/X5koAp/DxVx95t6Uc/3v068y471+41sOWQg2EdNgJeKWzqbOn5UKlCrVEy+347pK0zrrTQFJ1cP1GoNJYWWveTFhbn1Lhp7JRbP/IA+Ix4mseswAAJDW5Cfk8aaBd/afCfK9v0lHEs232ScX9DSw01LfpH55OzupuF0yrV3KOjsVNx3qw/vfpPGroOm6QtnUquIDLFn5ABPm+lEOZRs4MNMc3mcXzDM1VFFcdkFx5qTirQc6x2JpRUKBmPdpxOuTiqKauKIDlbj7a7irQmWQ8fGD9ZxOt3Il/Ntb1TB3uNVnEorqP3bruY85OaspvCCqSSuzqY37lhTUmYqm4tHG7g5W45OOXS6mn99WYCLowqD0TRN6IOnPMk+VH+D4XSaHq1Ghbe7msw821twbdveYo6ePln79/ljzdNNS36hubw83LScOnf50Vl/vyeQTm3cmPj+KXLzbePNZ/XZf6Ka5HTzq+POH1duzmqKLqo7KVnW/x+XlNfUHSc1YA7j5qSuM7IJoG0LO3R2sC2pbuN31c5KVu2sxN1ZRVmlgrebmlG9HckptL16Y75uWS7uWFKYW++isVfCxcMHv6BmFtt8A6NI2rH8muMUtsW5nrpTXJiLWz2Lxl4JH/8wHn9tGpUVZVSWl+Lm6ctPnz6Hl1/I9Sb5hnFy8USl1tRZRLa0OBfn6ziuzls6402O71/LuBd+xs0z4Lrja2yOzqbyuHgR2bLiHJzcrJeHk6vPFYdPPbmTgqzTDBn3kcX28wv0egWYH1JrtDrcvUMpzk+/prw0hENnjZybY752aGquWS6OKouRyS6OprcvWlNWwQVtQct9Ssosr1k6O3hoqI7KaoWfVlx+FP/ZLCP922nRqMFge5ctcRO7pk6U1157jfHjx5OamorRaGTOnDkcPXqU6dOns3DhwsvuP2nSJJ599lmLbe/+fmVDh6v0XPTqYoXiMoWoQBUZNW/HsbeDYF8V249aP5oMRkjPVYgKVHPknKkBqgKiAtW1w8bSchX0BlO8h86a4vV2Aw8XFeeyTH//ulZfe/MEpvl+o7prmbpUT16xQmU1fD7PcmROp5ZqIgPV/LZWT35J03UHarU6giPjOJG0lfgOAwDTSKITSVvpNvCea463uqoclcpyaJ5ara7tYbdlFZUKGRe9ujivUE+blk61nSaODmpaRDiwdP21v4pYo1Fhp1WhXHRlMBoV1Nf9vqyGU1kNldV1p5o0D9GQlmu6UbW3gzA/NVuSrN+4GoyQmm2keYi6dqqOClPHyaaDpn3W7K5m+2HL/Z+/05H5m6s5ZKPTeyqrILvKsk4XlBiJibDjXM2Nr4NORVSQlnW7rY+wMRjhTLqe2Ag79ta8blYFxEbYsXpX3X3OdxLHhGtxdVax73j9T4NC/TUYjYpFZ5ctKa80Un7Rq4vzCqpJiHXm1DlT3h0d1LSMcmTx2rxLxvX3ewLp2taNSf93mswc219Nt7KaOq8uLiwx0jJMW9tp4qCDyEANG/Za70A0GOFshoGW4Vr2nTDXnZbhWtburrtP99b27D9RXWcotUUaajpfOsTqyCsycjbT9o49rVZHUEQ8pw5tJa69+bp16tBWOg+495rjDW/ejpyMZIttuRnJePgEWd9B/OWcb/McT9pKq479gfNtnm10H3T3dcdv7+CEvYMTZSWFHN2/ieF3P3v5nWyERqsjMCye5CNbaNnWdFwpRiPJh7fQoe991xyvoigsm/kWR/eu4P7nfsKjZgFVW6fR6vALiSfl2BaatTaXx7njW2nTw/p5JiAikXPHtpDY2/z69HPHNhMYnlgn7KFts/ALicc32PKVx36hrdBodeRnnSYoqj0ABkM1RXmpuHo23bmoqhpyL24LlilEB6tJzzNdJ+ztINRXxdZD9d93peaY9jn/Jh0VEB2kZvMhc/vPvqYDxWCA6cuqr2gkbZC3irIKRTpQxA13VZ0op06dIjIykttuu40FCxbw5ptv4uzszGuvvUa7du1YsGABAwcOvGw89vb22NtbTt3R2l378LAthw30bqMht1ghvxj6t9VQXAZHzpqPqAcGaTl01sj2I6Ztmw8ZGdVDQ1quQkqOka6xGnRa2H3C9H1ltenfQzpqKa/SU1EFt3TWcDbLSEqO6WSSXwwX9qg61WQpu8C8lkpWgeWJp7TCtEjkxdubQs+hD/D715MIiWxFSLPWbFw6nerKcjr0HgXAb1+9hJunH0PvNDUG9PoqslJP1vy7mqK8TNLOHEZn74RPgGlUUmzbvqye9zUe3oH4h0STlnyYDUum0aH36KbJ5HVasDqfsUO9SMuqIiu3mntG+JBXqLd4886bT4WwdV8Ji9cVAOBgryLQ1zwNxs/bjsgQe4pLDeTk6ymvMHLwWBnjR/tSVZ1FVl41rZo70aezGz/Mzr7RWbwqG/ZX07+9HdmFCnlFRoZ0sqOoTOHgafOV7tER9hw8bajtJFm3T89d/XSkZBs5m2mkZxstOjsVO46Yvi8ur7vOCkB+sUJesXm7t5sKeztwdTJNTwiqWTckM982Lp6rtpdzS3dHsvIN5BQYua2XEwXFRvYcNZ/bnr3HjT1Hq1hT00myYnsFD41wITndwOk0PQM6OaCzU7Fpv/lGuFsbezJyDBSXGYkK1nLXQGdWbq+oHWESFawlMkjL0TPVVFQpNAvWcscAZ7YerKSsounPM1dq3spc7rrFj7TMKjJyqrh/pD95BXq27DFPlXr7uQi27C5i4RpTx8rj9wbSu7MHb31+hvIKY+1aRaXlBqqq/zp5X72rkmFd7cnON5BTaGRED0cKS4zsPW7uFHr6Dmf2Hq9m3R5TfVq1s5Lxw5w4m6EnOd1Avw6mN+psOWh5LfX1UBMdquGLWdY78wZ2tCfpdDWKAokt7Bjc2Z7v5pfZ7JDf7kPGM/vbSQRFtiIkqjWbl02nqrKc9j1N161ZX0/EzdOfQXeYr1vZNdctg76aovws0s8cRufghLe/6brVbfB4vvn3Paxd8DWtOw0h5dQBdqz9g9sevHlf/6txdsI52rxuh1NkCG4JMVTlFVJxrumeejem3sPG8+tXLxMSFU9Ys9ZsWPITVRXldKxp88z87yTcvfwYdpdpWpdeX0VmirnuFOZlkZp8GHsHc5vn6L6NKCj4BkaSm3mWhTM+wC8osjbOv4rOAx9k/g8TCQxvRVBkG7avnEZ1VTltupvabvOnvoirhz99Rz8HmBZfzU4/Wfvv4oJMMs6Z2oNefqayWTrjDZK2L2Ts4/9F5+BMSaGpfWPv6IqdzrbfRJjY5wFWzngJv9BW+Ie3Ye+6aeiryonrbCqP5b9MxMXdj27DTeWR2Ot+5nw+jt1rphIR14fjexaRdS6Jfne8aRFvVUUJJ/Yto8etE+v8ps7BhVbd7mLb0s9w9QjA1SuI3aunAhCdOKSRc3x1Nh3U06+tlpxCUzttUActRWWKxauGHx5mR1KyaVQ+wMYDesb2tiMl2/Sm0h6tNOjsYNcxc0fMhKE67LTw05pq7HVw/k6xtMI0DSU2TI2Lo4qzWUb0BtMDub6JWtbvt71Of1ulYHvrnf1VXVUnSvPmzUlPT8fPz4+ePXvi5eXFgQMH8Pf3v/zOjWjjQSM6rYpbu2px0MHZTIWfVlajv+DGytNVhbO9ueIcTDbi5AD9EjW4OGrIyFP4aaXeYrHZpdsNKB3hzj5atGo4kaawcKttDxW/GgldhlJalMfy2Z9RXJhDUHgMD734de10noKcdItRJUX52XzyL/NK4usX/8D6xT8QFdORR1+ZBsBt4/7Fslmf8uePb1JSlIebpx+d+91B/1GP3djMNZC5K/JxsFfz+D3+ODupOXyynDc/T6Vab77DCPC1w83FvE5PdJgD//6n+YnLhNv9AFi9pZBPf8oE4IOp6dx/mw//fDAQFyc12Xl6fpmfw9IN1z7C5UZYs1ePzk7F7b11OOrgdIaRbxdWWjwt8HZT4exgPtb2nTTg4ljN4I52uNZM/fluYSUlV7mG7h19dDQLNpfzs3eYpv+8/XM5+cVNf8e3dGsFOp2K+4e64OSg4vi5aj75rciibHw91LhcsAjvzsNVuDqVcVsvR9xqpv588lsxxRdMyQjw0jC6jxPOjipyC4ws3lxusQaKXq/QKU7HrT0d0WpU5BQaWLndMsxfwaylOTjYq/nHuCCcnTQcOl7Gqx8nWxxrgb463FzNl61b+poW8nvvxSiLuD6amsLKzQU3JN0NYfn2SnR2Ku4Z7ISTvYqTqXo+m1V6Ud3R4OJo3rDraDUuTuUM7+6Im7OKlCwDn80qrTP6qFtrHQXFCoeTrV+74iO1DOnigFZjWk/nq7mlJJ223etc687DKC3KZ9WcTykpzCEwLJbxz39TO52nIC8d1QVD+orzs/niNXMn/sYlU9m4ZCoRMR15eNJ0wPQa5Hue+pQVf3zE2nn/xdMnhGH3vkRit7/eguhXyr19K7qu+qn277gPXgbg3PQ57J8wqamS1agSuw6lpCiPZbM+p7jA1OZ5+CVzmyc/Nx3VBa81K8rP5qOXb6/9e92iH1i36AeiYjvy+Ks/AlBeXsKSXz+mIC8DJxd3WnccyNA7n0ajtdF3hNcjruMwSovzWDf/U0qLsvEPieWup77DpWY6SmGeZXuwuCCL798aWfv31uVT2bp8KmEtOnH/86Z6tXvdTAB+/s/9Fr81/IEpJHSz7QdrLdoOo7wkj21LP6O0KBvf4FhuffRbnFxN5VGSn4ZKZa4rgZHtGHT/B2xd/DFbFn2Eh28Etzz0Od6BlovoHtu9CBSFFu1usfq73W99AbVaw/JfJqKvriAgPIFRj/+Ig5NtvdFo3T7TWiSje9rhoIPkTCM/LK2+qC2oxtnBfD3af8qIs4Oege3tcHUyjfifuqSqti0Y7KMmrObtPi/eZfmg/b2ZleSXmB6YdY3TMLyLFlSQW2S6L9txRDpRxI2nUpQrf96kVqvJyMjAz890U+jm5sbevXuJioq6zJ6X99q0xl+o6K+qXZy8vutSfvzh5OUD/Y+Kbv3XmZfdFArzbfdtSE0t7dTN+TS6oYS1lGOrPv16ujV1EmyaU8/Ypk6CTTNuTWrqJNis/BLbe/W4LbG2JpQwSUm1vfXlbMm7j9j26KiGMmtb0w3dvr2zDa1Z0ACuKzdX0f8ihBBCCCGEEEII8Zd2VV3aKpXKYvja+W1CCCGEEEIIIYSwTTL+oeFcVSeKoig88MADtYvCVlRU8Pe//x1nZ2eLcHPmzGm4FAohhBBCCCGEEELYgKvqRBk/frzF3/fdd+2vPhNCCCGEEEIIIYT4K7mqTpQffvihsdIhhBBCCCGEEEKIRiDTeRrOzbVMrhBCCCGEEEIIIUQjkXelCSGEEEIIIYQQNzGjIi+EaSgyEkUIIYQQQgghhBDiCkgnihBCCCGEEEIIIcQVkOk8QgghhBBCCCHETUwWlm04MhJFCCGEEEIIIYQQ4grISBQhhBBCCCGEEOImJiNRGo6MRBFCCCGEEEIIIYS4AjISRQghhBBCCCGEuIkZZSRKg5GRKEIIIYQQQgghhBBXQDpRhBBCCCGEEEIIIa6ATOcRQgghhBBCCCFuYoqiauok3DRkJIoQQgghhBBCCCHEFZCRKEIIIYQQQgghxE1MXnHccGymE8XXx66pk2CzSiqaOgW2re/Q5k2dBJtVUSlny0vx9rZv6iTYrJg4r6ZOgk2z1zV1CmyXVm1s6iTYNOPWpKZOgk1Td4lv6iTYrLiDW5s6CTbt3f/mN3USbFbHnhFNnQQhbioynUcIIYQQQgghhBDiCtjMSBQhhBBCCCGEEEI0PKMMUG8wMhJFCCGEEEIIIYQQ4grISBQhhBBCCCGEEOImJgvLNhwZiSKEEEIIIYQQQghxBWQkihBCCCGEEEIIcROTkSgNR0aiCCGEEEIIIYQQQlwB6UQRQgghhBBCCCGEuAIynUcIIYQQQgghhLiJySuOG46MRBFCCCGEEEIIIYS4AjISRQghhBBCCCGEuInJwrINR0aiCCGEEEIIIYQQQlwB6UQRQgghhBBCCCGEuAIynUcIIYQQQgghhLiJGY1NnYKbh4xEEUIIIYQQQgghhLgCMhJFCCGEEEIIIYS4icnCsg3nmjpR1q9ff8nve/XqdU2JEUIIIYQQQgghhLBV19SJ0qdPnzrbVCpV7b8NBsM1J6gh7N/4C3vWfE9ZcQ4+QTH0GvUK/uFt6g1/Yu9Sti79hOK8VNx9wuk2/Hki4npbhMnLPMnmhR+QdnIHRqMBL/9mDH3gU1w9gyjKS2H6vwdYjXvIuI+JThzSoPlraDtW/8KWZd9TUpiDf2gMQ+5+heAo6+WVlXqcdfM+Jf1MEoW5aQy6cxKdB463CLNzzUx2rZ1JQW4qAL5B0fQa8QTRrW2/c+3Apl/Yu9ZUd7wDY+g56hX8wy5Rd/YtZfvSTyjON9Wdrrc8T3hs3bqzddEHpJ3agdFgwNO/GUPGm+oOwNpZr5FyfAulhVnY2TsRENGWrrc8j6dfVKPm9Wod2voLBzdMpbwkB8+AGLoO/xe+ofWXzekDS9m98lNKClJx8w6nw+DnCG1pLpvdqz7n9P7FlBZmoNbY4R0cR/uBz+AXmlAnLoO+igVf3klexhFue2IO3kGxjZLHhtQuWkXnlipcHCCrAJbvMZKeV3/4mBDo1UqNuzPkFcPa/UZOZpi/7xGvIi5UhasTGIyQkQ/rDxhJu0SctiJp8y/sW/895cU5eAXG0P22V/C7RN05tX8pO5Z/Qkl+Km4+4XQe+jxhMb2tht0wZzKHt/1G1+GTaN3TdC5KO7mNhd+Mtxp+5JN/4Bfa+voz1YD2b/yF3asvuGaNfoWAS1yzju9dytYlpmuWh2/da9Zn/4yxul/3ES/Qrt8EAH58sx/F+WkW33e95Vk6DPhbA+SocW1ZMYN1i6dSUphDYGhLbh33L0KbWS+vzJTjLJ/9OanJSRTkpDH83pfoMWScRZh3/zmAgpy0Ovt26X83Ix94tVHy0Fg2LZ/B2oU/UFyYQ2BYS0aNf5mwaOtlk5FygmV/fEbK6UPk56Rx6/0T6TXUsmwqyktZ9senHNi5ipLCPIIjYrlt3EuENbOtY6ghefXoQNRzE3Bv1wqHID92jnmczPmrmjpZjW75olksmvszhfl5hEVGM/5vz9GsRbzVsKuX/cnGNUs4d+YUAJHRLbnz/scswhfm5zJz2hcc2LudspJiYuLbMv7RZwkICrsh+WkMdw71ZEBXV5wc1Rw9XcE3f+SQka2vN3xsMwdu6+dOVKg9Xu5a3vsugx0HyuqEC/a3474RXsRFO6JRQ0pmFR9MzSQnv2nvp+pzo9uD6ae2s+R769f0EY/9jm/IzXs+amgyEqXhXFMnSn5+vsXf1dXV7Nmzh1dffZW33367QRJ2rY7vWczGee/SZ+zrBIQlsHf9NOZ/8zD3vrQEJ1fvOuHTT+9m2c/P0XXYs0TE9+HY7oUs/uFJ7nx2Nt6BLQAozDnL7M/uIa7z7XQe/A90Di7kZZxAo7UHwMUjkAdf32ARb9KW39mz9nvCYns2fqavQ9L2xaz4/V2G3fc6wVEJbFs5jRkfP8zj/16Cs1vd8tJXVeDpG0pshyGs+O1dq3G6efrTb8xzePmHg6Kwb/Of/Pb5Ezzy2hz8gps3dpau2fG9i9k0/116j3kd/7AE9m+YxsJvH+buF+upO8m7WfHLc3QZ+izhcX04vmchS358krHPWNaduV/cQ2yn2+k4+B/o7F3IyzTXHQDfkHhatB2Bi2cglWWF7Fj+OQu+mcB9L69ErdbcsPxfyqn9i9m++D263fY6vqFtSNo0nWU/PsKYfy7G0aVu2WSe2cPa35+nw6B/EtqyDyf3LWTVL//gtidm4elvKht3nwi6jHgFV69QDNUVJG2axrIfHub255bh6OxlEd+OpR/g5OZLXsaRG5Lf6xUbqqJ/goqluxTS8hQ6NldxZy813ywxUlZZN3ywN9zWRc3aAwon0hTiw1WM6a5m6gojOUWmMHnFsHy3kYJS0GqgYwtTnF8tMVJuJU5bcXLfYrYsfJeeo17HLyyBAxunsfj7h7nz+SVW605G8m5WzXyOTkOeJSymDyf2LmT59CcZ/dRsvAJaWIQ9fXAFWWf34eTmZ7HdP7wt971ieU7euexTUk9uwTekVcNn8joc27OYDX++S9+xrxMQnsDeddOY//XD3DfpEtesn56j2y0116xdC1k09Unues583nnoDcu8nzm8nlW/vUKzNoMstnce+hTxXcbW/q2zd26EHDasfVuXsHDGe4x6cDKhzdqwaelPfP/+33j+/UW4uNctr6qqCrz9QmjTaTALf7F+zXryjd9RjOablYyU43z/3sO07jy40fLRGPZuWcL8n99nzEOTCYtuzYYlP/Htu4/y4n8W4mqtbCrL8fILpU3nwcz/+T2rcf7x7WtknDvO3Y+9i7unL7s2LuSbdx7mhf+bj7uXf2NnqUlonJ0o2n+Ucz/OpsOsL5o6OTfElg0r+OX7T3jo8Yk0axHP0vm/8u7kZ/jgy99w9/CqE/7wwd107TWQcTFt0Ol0LJj9E+9Ofpr3Pp+Bl7cfiqLw4TsT0Wi0PPuv93F0dGbJvJm88+pTvP/FTBwcHJsgl9dnZH93hvVy4/NfssnK03PXME9e/Xsgz0xJoVpv/c7UQaciObWK1duKeXFCgNUw/t5a/v10EKu2FvP7knzKKoyEBuqoqrbNu92maA/6hSVy10uWsyB2r/yUtJNb8Qm2rWu6+N9xTQvLuru7W3x8fHwYOHAg7733Hi+++GJDp/Gq7F33I/FdxhLXaQxeAdH0vf0NtHYOHN4+22r4fRt+IiymB+36TcDLvxldhj6Nb3Ac+zf+Uhtm6+KPiYjtTfcRL+AbEoe7TxiRrfrVNnDVag3Obr4Wn1MHVxKdMNTmG6VbV/xI255jSewxBt+gaG657w3sdA7s3Wi9vIIiWzNg7Iu06nQLGq2d1TAtEvvRvE1vvP0j8A6IpN/of6KzdyL11L7GzMp127fuR+I6jyW2pu70HmOqO0d2WC+L/Rt+IqxlD9r2NdWdzkNMdefAJnPd2bb0Y8JjetNt+Av4BtfUnfh+FjdH8V3uJKhZR9y8QvANiafTkGcoKUinOC+10fN8pQ5umkbLDmNp0X40nn7RdL/tdbR2DhzbNcdq+ENbphPSvAete07Aw68Z7Qc+jXdQLIe2zKgN0yxhOMHR3XDzCsXTvzmdhr1EdWUJ+RlHLeI6d3Q9qSc20XFo055brkanFir2nVI4kKyQWwRLdyno9dAmUmU1fIfmKk5lwLajCrnFsP6gQkYBtG9uDn/orEJyFhSUQk4RrNqr4KBT4ed+gzJ1jfZv+JGYTmNp2XEMnv7R9BxlOq6O1nNcHdz0E6EtepDQewKe/s3oOPhpfILiSNr8i0W40sJMNs/7N33v+j/UGsvnARqtDidX39qPg5MHyYdW0bL9aItRk7Zg79ofie86lrjONdessW+g1TlwaJv18tm7/ifCL7xmDXsa35A49m8wl0/d69FqQqI74+4TahGXzt7ZIpydvVOj5rUhbFzyI536jKVDr9H4B0cz8sHJ6Owd2Lne+rkoNKo1w+5+gYSuw9DY6ayGcXHzwtXDt/ZzZO86vP1CiYrp2JhZaXDrFk+jc9/b6dRnFAEh0YyZMBk7ewd2rLNeNmHNWjPi3udp220YWm3dsqmuquDA9hXccs9zNIvtgE9AOINvfwJv/zA2r/y1sbPTZLKXrefY5I/JnLeyqZNywyyZN5O+g26j94DhhIRF8tDjE7G3d2DdyoVWwz/x3JsMHHY7EVEtCAqJ4JEnX8ZoNJK0bycAGWnnOHH0IA89/iLNmscRFBLOg4+9SHVVJVvWL7+RWWswt/R2Z/byAnYcLONMWhWf/ZyFp7uGTq3rP2/uOVzOr4vz2b6/7uiT8+4Z7sXuQ2X8PD+P06lVZObq2XmwjKIS23yNSlO0B61d088eXk2LdqNs7pou/nc06Nt5/P39OXr06OUDNhKDvoqslCRCW3Sr3aZSqwlp0ZWM5L1W98lI3kto824W28JiuteGV4xGkg+vxcM3gnlfT+D717rxx8d3cOpA/RfXrHMHyUk9TFznMdedp8Zk0FeRfiaJyDjL8oqM7UrKqb0N8htGo4GD2xdRXVVGSLPEBomzMRj0VWSnJhFycd1p3pWMM3ut7pN5Zi8hF9Wd0JbdyawJrxiNnKmpOwu+mcAPk7sx65M7OHWw/rpTXVnGkR1zcPMKwcXD+lOLG82gryI3LYmg6K6121RqNUHRXck+u9fqPlln9xHUrKvFtuDoHmSdsx7eoK/i6I7f0Tm44hVgnopQXpLDpj9fo/ft76G1+2s8uVKrIcATTmdaPkVKzlII9rZ+sQ/2VpF8UfjTGfWHV6shsZmKiiqFrIIGSXajMOiryElNsjhOVGo1wdFdyayn7mSe2UtwtOVxFdKiu0V4xWhkzW8v0qb3BLwCLj+6LfnQairLCmjRYfQ15aOx1HfNCr3EeScjea9FeICwlt1Jryd8WXEOZw6ts3o92rXqW779V2dmfjCK3au/x2iof1i6LdDrq0hNPkR0fJfabWq1muj4rpw5sbfBfmPPpgV06G17HW6XotdXkXr6EC1amc+7arWa5q26cOb4tT3AMBgMGI0G7OzsLbbb6ew5fXTPdaVX2A59dTWnTxylVaK501CtVtMqoSPHjxy4ojgqKyswGAw4u7oBUF1dBYDdBR2XarUarZ0dRw/Z9gM1a/y8tXi6a9l/rLx2W1mFwvEzlbSIdLjmeFUqaBfnRHpWNa/8PYDv/x3OlH8G0fESHTNNqSnbgxc6e3gNlWUFNG9vW9f0vwKj0nSfm801TefZv3+/xd+KopCens67775LYmLiZfevrKykstJy/Hl1ta7OhfpqlZfmoxgNOF40BNrJ1YeCrNNW9ykrzqkzZNrJ1Yey4hzT9yW5VFeWsWv1t3QZ+jTdhj/P2SMbWPzjPxj12DSCozvVifPQttl4+jcjMLLddeWnsZWVmMrL5aJpO85uPuRkWC+vK5WZcpQfptyNvroSnb0TYx//HN+g6OuKszFV1NQdp4uGIjq6+pB/NXXHxVx3ymvqzu7V39J56NN0veV5zh7dwNJp/+C2v08juJm57hzcNIPNiz5AX1WGh28kI/42FY2VJ4NNobKswHRcXVw2Lt4UZFsvm/KSHBxcfOqEL68pm/POHlnD2t+eR19djpOLL4Mf/B4HZ0/AdF5ZP+tlYjrdiU9IK4rzbWdkzqU46UCtVtWZtlNaAd6u1vdxcTB9f3F4l4vaZtGBpmk/dlooKYdf1xkpr2q4tDe0irJ863XH1eeSdefic7ijq49F3dm77ltUag2tut9/Rek4umM2IS162EzH5Hnnr1nWrkFXdd5x9aGsKMdq+MPb/8TOwbnOVJ6EXvfjGxKHg5MH6af3sGXRh5QWZdFz5KTryFHjKisuwGg04OJueW5xcfMmO+1Ug/zGoV2rqCgrpn3PUQ0S341SWls2lnXD1d2brLRru547ODoT3jyRFXO/wi84Cld3b/ZsXsyZ4/vwCfjrrmshLBUXmerOxdN23Dw8SUtNvqI4fp32BZ5ePrRKMHXEBIVE4O0bwG/Tv2TCExOxt3dkyfyZ5OVkUZCf29BZaHSerqap1QXFlmuUFBYb8HC99mnX7i4aHB3UjBzgwa+L8/l5QR6JsY688JA/r3+ezqGTFZeP5AZqqvbgxY7tmkVw8+44u9vWNV38b7mmTpTExERUKhXKRavTdOnShalTp152/ylTpvDGG29YbBty92sMu/f1a0lOo1IU03C6yPh+JPZ+AADf4FjSk/dwcMuvdTpR9FUVHNu9kI6DHrvRSbUpPgGR/O21uVSWF3No1zLmT32JcS/+ZNMdKQ2ttu606kdCrwcA8AmOJSN5D0lbfrXoRGnebgQhLbpRVpTN3nVTWf7TM4x6ciba6+xYtHWBUZ0Z+eQcKkrzObrzD9b8+k9G/P03HF28ObTlZ6qrSmnT2/YXurxRzmTB1BVGHHWQGKViZFc101ZZX2flZpWdcpCDG39i9NOzr2ikQElBBinHNtL/3o9uQOpsz6Hts2nZbnidc0nbPg/W/tsnqCUarR1rfp9Mt+HP2UwHblPYsW4OLdr0xM3T7/KB/wfc/fgUfv/6Vd56oi9qtYbgiFjadhtGyulDTZ00YSPmz5rOlg0reeXtL9DpTOcZrVbLPye9yzefvc3f7hmEWq2hVUJHEtp3rXPvYIt6tnfhb3eab/ynfJ1xidDX7vwlbMfBMhauLQQgObWKlhEODOruZnOdKI3pUu3BC5UWZpB6fBN97/rfvKZfr6Y9/v46ozuvxDV1opw+bdnbqFar8fX1xcHhyoa0TZo0iWeffdZi23err7/R5ujsiUqtobzYspfb9OTOx+o+plEn9Yd3dPZErdbiFWB58+/l14y007vqxHdi/zL01RXEdBh5HTm5MZxcTOVVUmSZ/9KinDpP+q6WRqszLSwLBEa0Ij35INtXTueWcW9eV7yNxaGm7pSVWJZFeXEOTm5XUXdKzHXHoabuePpb1h1Pv2akJ1vWHXtHV+wdXfHwjcA/PIHvX+3M6YMraN52+PVm7brZO3mYjquLy6YkFycX62Xj6OJDRUlOnfCOFx2Hdjon7LzDcfMOxy8skVkfDubYrtkk9P4b6ae2kX12L9MmW76tZ/6XY2mWMJxet1tfJLKplVWB0ajgdFH/l7MDlNTTHiqpMH1/ufDVBsgvgXwgLU/h0aEqEiJVbDlim41SBydP63XnEudkRxefOufw8uKc2rqTcXoX5aW5zJjSr/Z7xWhg66L3OLBpGve8tNpi32M752Dv5EFEXD9szflrltVr0NWcd+oJn3pyJwVZpxky7vKNTf+wNhiNeoryUmzuzWDnObl6oFZrKCm0PLeUFOXi4nF91yyA/JxUThzcwn1Pf3Ldcd1ozrVlY1k3igtzcbuOsvHxD+Px16ZRWVFGZXkpbp6+/PTpc3j5hVxvkoWNcHUz1Z3CAstXvRUV5OPuUXeh0AstmvsLC2ZPZ9KbnxEWaTm1MjI6himf/ERZaQl6fTVu7p689vxDREbb/tv1dhws5fgZ8wVYqzXd/Hm4aigoMo9GcXfVkJx67cNBi0sN6A0KKRmWcaRmVhMTde3ThBpLU7UHL3R8l+maHhbbtwFyJMS1u6o1UVavXk1cXByenp6Eh4fXfkJDQ6msrCQ+Pp4NGzZcNh57e3vc3NwsPtc7lQdMN+5+IfGcO76ldptiNJJyfCsBEYlW9wmISCTlgvAA545trg2v0erwC2tVZzpQQXZy7StqL3Ro2ywi4/vi6FJ3NXNbo9HqCAyPJ/mwZXmdPrKVkKjEBv0tRTGi19vuvAONVodvcDypF9edE1sJCE+0uo9/uPW6418TXqPV4Rtqpe7kWK87lhQMNlJeGq0O76B40k5urd2mGI2kndyKb1ii1X38whIswgOkndyMX6j18LXxKuZ8dxn+MiP/MZeRT85h5JNzGDTuawD63vkh7Qc+c835aWzGmtcPR/hb9riH+6lIzbXe2ZGaqxB+UfgI//rDn6dSgcY2XuBklUarwyc4ntQTlsdV2omt+NdTd/zDE0k9aXlcpR7fXBu+ebtbuf2ZeYx5em7tx8nNjza9JzBswncW+ymKwtFdc2jR7jbUGusLYTel89eslGOW5XPueP3nnYCIRM4dq3veCbQS/tC2WfiFxOMbbH1e+YVy0o6gUqmtvl3BVmi1OoIj4jhxyHxuMRqNnEjaSnh04nXHv3P9XFzcvIhJtP46bVum1eoIjozjeNLFZbON8OZ1Xxt/tewdnHDz9KWspJCj+zfRqr3cwNwstHZ2REa3JGnfjtptRqORg/t30Dym/lfHLpj9E3N/m8qLkz8mqnn9HSNOzi64uXuSkXaWUyeO0L5zrwZNf2OoqFTIyNHXflIyqskv1NO6hXltNkd7Fc3D7Tl2+tpHi+gNcPJsJUF+ltenQD87svNtb42qpmoPXrjt2O65RLe1zWu6+N9yVZ0oH3/8MY888ghubm51vnN3d+fRRx/lww8/bLDEXYvE3g9waOsfHN4xl7zMk6yd9Tr6qnJiO5kWH1oxYyKbF/6nNnxCz/s5e2Qje9ZOJT/zFNuWfkbWuSTa9Li3NkzbPhM4vncJSVt+pyD7DPs3/MzpQ2to3f0ei98uyD5D2qmdxHUey19Fl4EPsHv9H+zbNJfstJMs/vl1qivLSehuKq8/v5/Iqtnm8jLoq8g4e5iMs4cx6KspLsgk4+xh8jLP1IZZNfs/nDm2g4KcFDJTjrJq9n9IPrqd1p1H3PD8XY2E3g9waNsfHKmpO+vmmOpOTEdTWaycOZEti81l0abn/Zw7upG9a6eSn3WK7cs+IzslidbdLevOiX1LOLT1dwpzznBg488kH1pDq26mulOYe45dq74mK+UgxflppCfvZtn0p9HY2RMWYzsN+Vbdx3Ns5x8c3/0nBVkn2Tz/DfRV5bRob1o3YN0fE9m5zHzsx3UdR8rxjRzY+AMF2afYvepzclKTiOtqynd1VRk7l39E1tm9lOSnkpOaxIbZ/6KsKJPIVqbXirp4BOHp36L24+YTAYCrV6jNz4PdfkwhMUpF63AV3q4wpL0KOy3sP23qFBneSUXv1uZOk53HFaICTG/18XKFHvEqAj1h13FTeDsN9G6tIsgL3JxMC9cO66jC1RGOnLPNUSjnten5AEe2/8GxXXPJzzzJhrmvU11dXrvI65rfJrJ9ifm4atXddFztXz+VgqxT7FzxGdmpScR3Mx1XDs6eeAW0sPioNVqcXHzw8LUcQZF2civFeSnEdLLdc3JinwdI2voHh7ebzjtraq5ZcZ1N5bP8F8trVmIv0zVr95qp5F14zep5r0W8VRUlnNi3jLgudfOenryHveumkZ16hMKccxzdtYANf06hZfsRODjZ9uueegx9gB1rZ7Frw59kpZ7kzx/foKqynPa9TOei3756iaW/mc9Fen0VaWcOk3bGdM0qys8k7cxhci64ZoHppnHX+rm06zkSjeaaBuk2ud7DxrNtzSx2rP+TzNSTzJn6JlUV5XTsbSqbmf+dxOJfzaOSTAv1HiY12VQ2hXlZpCYfJifDXDZH923kyL4N5GalcOzAZr56+0H8giJr47wZaZydcEuIwS3B1PnoFBmCW0IMDqGBTZyyxjP0trtZs3w+61ctIvXcaX748n0qKyro3f8WAL786A1+nfbf2vALZk9n1i/f8Len/oWvfyAF+bkU5OdSUW5+C822jas4dGAXWRmp7Ny6nimvPUWHzr1o07bzDc9fQ1i0rpAxgzzo0MqJsEA7/nGfH/mFBrYfMOd58hOBDOlpvkdy0KmICNYREWwabe/vbUdEsA4fT/PTj3mrC+jW1oUBXV0J8NEypKcbHeKdWLax8MZl7io0RXvwvPRTWynJT6FFh9tvXIZvMorSdJ+bzVW1FPbt28d7771X7/eDBg3igw8+uO5EXY/mbYdRXpLH9qWfUVqUjW9wLCP+9m3t0PHi/DSLefSBke0YdN8HbF3yMVsWfYSHbwTDHvwc78AWtWGatRlIn9tfZ9eqb1g/9208/SIZ+sCnBEW1t/jtw9tn4+IeQFjL7jcmsw0gvtMwykryWDfvM0qKsvEPjeWeZ76tnc5TlGtZXsUFWXz7prnxtGXZVLYsm0p4i46Me/EnAMqK85j3/URKCrOxd3TFP6Ql9z7zHVHxtl0uzROHUVGSx/Zln1FWnI1PUCzDHzbXnZKL605EOwbc+wHbl37M1iUf4eETwdAHLOtOVOuB9B7zOrtXf8OGP9/Gwy+SIeM+JTDSVHe0Wh3pp3exf8N0KsuLcHTxJiiqA6OfnFln8cimFNVmGBWl+exe9SnlxTl4BcYy6IFvcKwZvllamI5KZe6T9Q9vS587/o9dKz9h1/KPcPMOp/+9n+HpbyoblUpDYfYpVu/+k4qyfOydPPANbs2wR37G0//yb1uxdYfPmabz9GylwtlBRVYB/L7evHaJm5PlmlKpuTB/q5FerdT0bq0ivwRmbzKSU2T63qiAt6uK1t1UONpDeRWk58HPq81hbFWzhGGUl+axc7npuPIOimXYQxccVwWWx1VARDv63/0BO5Z9zPalH+HuE8GgcZ/jFdCivp+o15Eds/APb4uHjU5PAWhRc83adsE169ZHL3HeiWzHoPs/YOti8zXrlocszzsAx3YvAkWhRbtb6vymRqPj2J7FbFv6OQZDFW5eIST2Hm+xToqtSugylNLiPFbM/oziwhyCwmJ46IWvca25ZhXkWp6LivKz+fQV85uJ1i/+gfWLfyAypiOP/mta7fYTSVsoyE2nQ6+/7tseErsOpaQoj2WzPqe4IIeg8BgefslcNvm56ajU5rpUlJ/NRy+bb0bWLfqBdYt+ICq2I4+/+iMA5eUlLPn1YwryMnBycad1x4EMvfNpNNqb9ymwe/tWdF31U+3fcR+8DMC56XPYP8F2F16+Hl17DqS4sIBZM76lMD+X8KjmTHz9I9w9Te2Q3OwMi/PQyiVz0Our+eTdly3iGX3XBMbc8wgA+fk5/Dz1EwoL8vDw9KFn36GMuvOhG5epBvbnqkLsdWoevdMHZ0c1R05V8O+vMqjWm6/l/t5a3JzNHSTNwux54x/mkccPjDKV55ptxXwxIxuA7fvL+Pb3HEYN9ODB0d6kZVXzwdRMjpyyzcXOmrI9eGznbPzC2tZ5YCJEU1ApV7HCjIODAwcPHiQ62vrioCdOnKB169aUl5db/f5SPlt0E3ZRNRDPugN/xAVyC5o6BbarolKOq0sx3ozvXGsgOt1VDVT8n2P/v7v26mUF+xibOgk2TauR886lqLvEN3USbJb/wa2XD/Q/7N3/5jd1EmxWx54RTZ0Emzbx9v+NNs8nC5ru+vP0iJtrYdmrqjHBwcEcPHiw3u/3799PYODNO9xRCCGEEEIIIYQQ/7uuqhNl2LBhvPrqq1RU1F1Eqby8nMmTJzN8eNO/TUQIIYQQQgghhBAmsiZKw7mqNVFeeeUV5syZQ4sWLXjyySdp2bIlAEeOHOGLL77AYDDwr3/9q1ESKoQQQgghhBBCCNGUrqoTxd/fn82bN/PYY48xadKk2oURVSoVgwcP5osvvsDf379REiqEEEIIIYQQQgjRlK76PX7h4eEsXryY/Px8Tpw4gaIoNG/eHE9Pz8ZInxBCCCGEEEIIIa6DvE+h4Vx1J8p5np6edOzYsSHTIoQQQgghhBBCCGGzrrkTRQghhBBCCCGEELbvZlzgtan8b7wUWwghhBBCCCGEEOI6SSeKEEIIIYQQQgghxBWQ6TxCCCGEEEIIIcRNTGnSlWVVTfjbDU9GogghhBBCCCGEEEJcARmJIoQQQgghhBBC3MTkFccNR0aiCCGEEEIIIYQQQlwBGYkihBBCCCGEEELcxOQVxw1HRqIIIYQQQgghhBBCXAHpRBFCCCGEEEIIIYS4AjKdRwghhBBCCCGEuIkZZWXZBiMjUYQQQgghhBBCCCGugM2MRKmslJ6x+uhs5v+SbUpLr2zqJNisokIpm0sZNcipqZNgs6oMck6+lPwSOTHXJ9CtpKmTYNOOZbo3dRJsWtzBrU2dBJuV2apLUyfBpsV/f7Cpk2CzZASCAFlYtiHJSBQhhBBCCCGEEEKIKyCdKEIIIYQQQgghhBBXQMYjCyGEEEIIIYQQNzGZztNwZCSKEEIIIYQQQgghxBWQkShCCCGEEEIIIcRNzChDURqMjEQRQgghhBBCCCGEuALSiSKEEEIIIYQQQghxBWQ6jxBCCCGEEEIIcRNTjE2dgpuHjEQRQgghhBBCCCGETfjiiy+IiIjAwcGBzp07s3379kuG/+OPP4iJicHBwYHWrVuzePHiRk2fdKIIIYQQQgghhBA3MUVRmuxzNX777TeeffZZJk+ezO7du0lISGDw4MFkZWVZDb9582buvvtuJkyYwJ49exg5ciQjR47k4MGDDVFsVkknihBCCCGEEEIIIZrchx9+yCOPPMKDDz5IXFwcX331FU5OTkydOtVq+E8++YQhQ4bwwgsvEBsby1tvvUW7du34/PPPGy2N0okihBBCCCGEEELcxIzGpvtUVlZSVFRk8amsrKyTxqqqKnbt2sWAAQNqt6nVagYMGMCWLVus5mvLli0W4QEGDx5cb/iGIJ0oQgghhBBCCCGEaBRTpkzB3d3d4jNlypQ64XJycjAYDPj7+1ts9/f3JyMjw2rcGRkZVxW+IcjbeYQQQgghhBBCCNEoJk2axLPPPmuxzd7evolSc/2kE0UIIYQQQgghhLiJXe0Crw3J3t7+ijpNfHx80Gg0ZGZmWmzPzMwkICDA6j4BAQFXFb4hyHQeIYQQQgghhBBCNCmdTkf79u1ZtWpV7Taj0ciqVavo2rWr1X26du1qER5gxYoV9YZvCNc8EmXVqlWsWrWKrKwsjEajxXf1rZwrhBBCCCGEEEKIG8vYdANRrsqzzz7L+PHj6dChA506deLjjz+mtLSUBx98EIBx48YRHBxcu6bK008/Te/evfnPf/7DLbfcwq+//srOnTv55ptvGi2N19SJ8sYbb/Dmm2/SoUMHAgMDUalUDZ2u65K05Rf2r59KeUkOXgExdLv1X/iFtqk3/KkDS9m54lNK8lNx8w6n05DnCIvpbTXshrmvc2T7b3S55SVa9xhv8d3ZI2vZvepL8jKOotHaExjVkUH3N96rlRrKtpW/sHHJVEoKcwgIi+GW+/5FSJT18spMPc7qOZ+RlpxEQW4aQ+9+iW6DLcth9dzPWTPvC4ttPgGRPP3u4kbLQ0Ma2F5Lp1gtjjpIzjAyd2M1uUWXPut0jdPQK0GLq6OK9DyFeZuqSMk27eNoDwPb29EiRI2Hi4rSCoWkZCPLd1RTUW2OI8RXxdBOdgT7qFGAlCwji7dVk55nW2e84d0d6NFGh6O9ilNpemYsLye7wHjJfXq31TGwowNuzipSsgz8tqqcMxkGALzc1Lz9qJvV/b6dV8ruY6ZCahmmZUQPB4J9NVRWK2w9WMX8DRU2e0FYv3Qmqxb8SFFBDsHhLbn9oUlERLe2GnbTyllsX7+A9HPHAQiNimPE3U9bhN+7bSWbVvzO2VOHKCspZOL7fxASEXND8tIYNi6fwdoFP1BcmENQWEtGPfAyYdHWzzsZ506wdNZnpJw6RH5OGrfdP5Few8ZZhKkoL2Xp759ycOcqigvzCI6IZeT4lwhrZr3MbdnONb+wZdn3lBRm4x8aw+C7XyU40nrZZKceZ938T0k/k0RhbioD75xE5wEPWITZtXYGu9bOpCA3FQDfoOb0HP440a2tX+ds3cpFf7Dkz58pzM8lNKI59/3teZq1iLcadu3yP9m0ZhEpZ04BENEshtvvf9wi/PjbOlnd987x/2DY6PsbPgONaOeaX9i6vKbuhMQw6FJ1J+046+Z9SsbZmrpzxyQ6XVR3Ni35mqO7l5ObcQqtzoGQqLb0G/M83gFRNyA3DW/5olksmvszhfl5hEVGM/5vz9Vbd1Yv+5ONa5ZwrqbuREa35M77H7MIX5ify8xpX3Bg73bKSoqJiW/L+EefJSAo7Ibkpyl49ehA1HMTcG/XCocgP3aOeZzM+asuv6MN6dRSTbd4NS6OkJmnsHi7kdTc+hsTceEq+iVq8HCBvCJYsdvA8VTL8H0T1LRvrsZBB2ezFRZuNZBXbP7eUQfDOmloEaJCAQ6fUViyw0CV3vK3usWpad9CjYczlFXCjqNG1h8wt7E6tVTTqaUaDxcoLIX1BwzsO9X0DaF20So6t1Th4gBZBbB8j5H0vPrDx4RAr1Zq3J0hrxjW7jdy8oI1QHvEq4gLVeHqBAYjZOTD+gNG0i4Rp7h53HnnnWRnZ/Paa6+RkZFBYmIiS5curV089uzZs6jV5gk13bp1Y8aMGbzyyiu8/PLLNG/enD///JNWrVo1WhqvqRPlq6++4scff+T++22vcXFy/2K2LnqPHiNfxy+0DQc3TWfJ1Ee447nFOLp41wmfeWYPq399no6D/0lYTB9O7l3Iip//wagnZ+EV0MIi7OmkFWSd24eTm1+deE4fXM6GOa/RYfAzBEV1RjEayMs83mj5bCgHti1mya/vcev41wmJasOW5dOZ9sEjPP3uYlzc6pZXdWUFnr6hxHcczJKZ79Ybr19wNA+8YB6RpNb8NZbf6Z2gpXsrLb+vrSKvWGFQBzsmDNPx4R+V6A3W92kTpWF4VzvmbqjmbJaRHq21TBhmzwe/VVBaAW5OKtycVSzaWk1mvoKnq4pRPexwc9Lx88oqAHRaeGioPYfPGJi7sRKN2tTxMmGYPe/8YjsdBYM62dO3nT3TlpSSW2hkRHdHnhrrzBtTi+stn/Yt7RjTx5GZK8o5na6nX3t7nhrrzOvfF1NcppBfbGTifwst9unRRsfATg4knTZ1oAT7qnlijDNLt1YwbXEZHi4q7h7khFoNc9ZWNHa2r9quzUuZO/3/uPORVwlv3oa1i37iv28/yqsfL8DVve5xdeLQDtp3H0pUy0lo7XSsnDeV//77UV7+cC4eXqYLRlVlOVExbWnbdTAzv379BueoYe3ZsoT5P73P7RMmExbdmg1LfuKbdx9l4n8WWi2fqqpyvP1CSeg8mHk/vWc1zt+/eY2Mc8e5+/F3cff0ZdfGhXz99sO8+MF83L38re5ji5J2LGbF71MYet8bBEcmsH3lNGZ+PIHH3lqKs7VzclU5Hj4hxLYfworf665yD+DqGUC/Mc/j5ReOoijs3/Inv3/xBI+8Ohff4OaNnaUGtW3DCmZO/Zjxj71EsxbxLFvwKx+8/hTv/fcP3Dy86oQ/cmAXXXoOJvqRNtjpdCyaPZ0PXv8Hb3/2K17epmv5Jz9advDv37WFqZ//mw7d+t2QPDWUQzsWs/KPKQy99w2CIhPYvmoav34ygb+/WX/d8fS9dN05e2w77fveS1BEa4wGA2vmfsiMjyfw6BuL0Nk7NXaWGtSWDSv45ftPeOjxiTRrEc/S+b/y7uRn+ODL33C3UncOH9xN114DGRfTBp1Ox4LZP/Hu5Kd57/MZeHn7oSgKH74zEY1Gy7P/eh9HR2eWzJvJO68+xftfzMTBwbEJctn4NM5OFO0/yrkfZ9Nh1heX38HGxEeoGNxBzYKtBlJzFLrEarh/gIbP5ukptdKcCPVVcXtPDav2GDmaYqRNpJq7+mj4epGerAJTmB7xajrHqpm7yUBBsUK/thruH6Dli3l69DX9H2N6anBxVDF9pQGNGkZ20zCiq4bZG8yNp6Ed1TQLUrN8p4HMAgVHHTjamx9Ud2yhpn9bNfO3GkjLUQj2UXFrVw3lVQaOpTRdQzE2VEX/BBVLdymk5Sl0bK7izl5qvllipKzuG2wJ9obbuqhZe0DhRJpCfLiKMd3VTF1hJKfIFCavGJbvNlJQCloNdGxhivOrJUbKrcQpbj5PPvkkTz75pNXv1q5dW2fb2LFjGTt2bCOnyuya1kSpqqqiW7duDZ2WBnFgwzRiOo6lZYfRePpH02Pk62h1DhzdOcdq+IObphPSvAcJvSbg6deMDoOexicolqQtMyzClRZmsmX+2/S9833UassOAaNBz5YF79Bp6PPEdb4LD99IPP2jadZmaKPls6FsXjaNDr3H0q7naPyCoxkx/nXsdA7sXm+9vEKiWjPkrhdo0+UWtFpdvfGq1VpcPXxrP86uno2VhQbVo7WW1Xv0HDpjJCNP4fc1Vbg5qYiP0NS7T882WrYfMbDzmIGsAoW5G6qp1kPHlqZ6kpmv8POKKg6fNZJXrHAyzciyHdXEhqtR11wbfT1UODuoWL5TT06hQma+wspd1bg6qfB0tZ2RXv3a27NkawX7T+hJzTby4+JS3F3UJDa3q3ef/h3s2bS/ii0Hq8jINTJzeTlV1dC1lan+KAoUlSoWn8Tmduw6UkVlzUidDjE6UrMNLN5SSXaBkeMpBuauK6d3oj329f90k1mzcDpd+4+hS99RBIY0485HXkOnc2TLmrlWw49/6j16Db6LkIgYAoKjuOfvb6AoRo4e2FYbplOvEQy9/TFatu5yo7LRaNYvmkaXfrfTqc8oAkKiGTNhMnY6B7avtX7eCWvWmhH3Pk/bbsOsnneqqyo4sH0Fw+95jmaxHfAJCGfw7U/gExDG5hW/NnZ2GtS2FT/QtucdJHYfg29QNMPuewM7nQN7N822Gj4osg0Dxk4kvtMtaOo5J7dI6Ed06954+UfgHRBJ31H/RGfvRMqpvY2Yk8axdN4Meg8aSa8BIwgOi+KBx15CZ+/A+pULrIb/+3Nv0X/Y7YRHtSAoJIIJT/4Lo1Hh0L4dtWE8PH0sPnu2ryO2dXv8AoJvVLYaxLYVP5DY4w4Sztede99Aq3NgX311J6IN/W831R2tnfW6c/fT35PQbTS+Qc3xD41hxIPvUpSXRsaZpMbMSqNYMm8mfQfdRu8BwwkJi+Shxydib+/AupULrYZ/4rk3GTjsdiJq6s4jT76M0Wgkad9OADLSznHi6EEeevxFmjWPIygknAcfe5Hqqkq2rF9+I7N2Q2UvW8+xyR+TOW9lUyflmnSLVbPruJG9JxWyC2HhVgPVBmgbbf2WqEusmhNpCpuSjOQUwuq9RtLzFDq1VFuEWb/fyNFzCpkFMGejAVcniAkztd983KF5sJr5W0wdN2ezFBZvN9AqQoVrTV+bjzt0bKlm5ho9R1MUCkogPQ9OpZs7R9pEqdh13EhSskJ+CRxMVth1zEiPVk27xGWnFir2nVI4kKyQWwRLdyno9dAm0nr7tUNzFacyYNtRhdxiWH9QIaMA2jc3hz90ViE5CwpKIacIVu1VcNCp8HO/QZm6SSlGpck+N5trOuoefvhhZsyYcfmAN5hBX0VOWhLB0eZFZFRqNcHNupJ1dq/VfTLP7rMIDxDSvIdFeMVoZM3vE2nT6yG8/Os+tctJO0RpUSYqlZo5n47m53d6suSHv5GXcaxB8tVY9Poq0pKTiIoz51+tVtMsvivnTu69rrhzM8/w/jO9+PCFgfzx1QsU5KZdZ2obn5erCjcnFcdTzU8FKqrhXJaRMD/rh4pGDcE+Ko6nmPdRgBOpBsL86z+8HHQqKqrMcxOzCxVKKxQ6xmjQqGt63WO0ZOYbyS+2jROPj7sadxc1R86Yx55WVMHpdAORQdZHGmnUEBagsdhHAY6c0RNVzz5h/hpC/bVsPlBVu02roc5Il2o96OxUhAXY1ignvb6ac6cOWXR2qNVqWrbuQvKxfVcUR1VlBQa9HmeXm6+1oNdXkXL6EM1bWZ53WrTqwpnjV1Y+FzMYDBiNBrQ6y1XftTp7Th/dc13pvZEM+irSzyQRGWt+SKFSq4mI7UbqyYbJh9FoIGn7Iqqryghp1rZB4rxR9NXVJJ88QnxCx9ptarWa+ISOnDh64IriqKyswGDQ4+JqfQphYUEu+3ZuoteAWxskzTeKQV9F+tm6dScythsppxruGKgsN81PcHD+a52b9NXVnD5xlFaJlnWnVUJHjh+5mrpjwLmm7lRXm65Rdhd0QKnVarR2dhw9dG3nMtG4NGoI9FZZdEwomDoqQn2t3/CH+FqGBziZphDqa2rjebqAq5OKU+nmKTeV1ZCabY4z1FdFeaVC2gVThk6lKyiKqQ0J0DJETX6x6b/PjNLyzGgtt3bV4HhB/6ZWo6rbFjJAsLeq9qHcjaZWQ4AnnM60LKPkLIVgb+uJCvZWkXxR+NMZ9YdXqyGxmYqKKqV29I8QTe2a7j4qKir45ptvWLlyJW3atMHOzvJR8IcfftggibvqdJUVoBgNdabtOLp6U5B92uo+5SU5OLr4WIZ38aa8JKf2733rv0Ot1hDfzfr0peK8cwDsXvU5XW55CRfPYA5s+IGF347njueW4ODkcR25ajxlxQUYjQZcLho+7+LmTU669fK6EiHN2jD64XfwCYykuCCbNfO+4Lt37uMf/16AvaPz9Sa70bg6mU7eJWWWJ/aScgXXekYtOzmARq2ipNxye3G5gq+H9U4UJ3vo307L9iPmjoWqavh6QSXjBuno39Z0WOYUKXy/uMpmpvK4OZvKp6jUcv2T4lJj7XcXc3FUoVGrKCqz3KeozIi/l/XTT7fWOtJzDJxKM7cUDiWbpgF1iLFj19Fq3JxVDOvqAIB7Pb/dVEqL8jEaDbh5WB5Xrh7eZKZd2XE175ePcPfyvSlGnVystMh03rl42o6LuzdZV1g+F3NwdCa8eSIr53yFf1AUrh7e7Nm0mDPH9uET8NdZm6CsJB/FaKgz9cLFzZvcjFPXFXdWylF+ePcu9NWV6OydGPv4F/gGRV9XnDdacU3duXjqhbuHF+kpZ64ojt+nf46Hlw9xCdbXQdm4ehEOjs6079r3utN7I9VXd5xdvclNv766c55iNLLit3cIadYOv+AWl9/BhtRXd9w8PElLTb6iOH6d9gWeXj60qunECwqJwNs3gN+mf8mEJyZib+/IkvkzycvJoiA/t6GzIBqAk731NltJuYKPWz3tGAfT9xbhK8ClZgSJi6OqdlvdMKqaOFR1pgoZFSivBFdHFaDg6QLuLqb1V+ZsMqBWwZCOGu7orWHaClN76ESakXbRag6fNa03EuStol1zNVqNCicH6uTrRnDSgVqtqjNtp7QCvF2t7+PiQJ3yKK0wbb9QdKBp2o+d1pS3X9cZKa9CXIcmfMPxTeeaOlH2799PYmIiAAcPHrzq/SsrK6mstDza9NV2aO0u/+7oGy07NYmDm35i1D9m17uA7vl3bif2/TuRrQYB0Pv2d5jxbh9OH1hGbOc7b1h6bUGLNr1q/x0Q2pKQqDb85/n+HNy+hPa9b2/ClFlKjNYwuqe5A/CHpY1/Zra3gweH2pOVr7Bip7kTRauB23vrOJNpZOZqPWoV9Gpjx4NDdHw2t/71WBpTx1g77hlk7j367+ySRv9NOy10jNWxeIvl1fVwsp456yq4Z5ATD9wCej0s3lJB81DtTXdBWP7nd+zetISnXp+Knc72zom26p4npvDbV6/y5hN9Uas1BEfG0rbbMFJOH2rqpNkE74BIHnntTyrLizm8axnzp07k/hd+/st1pFyPhbOmsW3DCl56+0t09RxbG1YuoGvvwfV+/79s6cw3yE47zrgXbW8kcmObP2s6Wzas5JW3v6itG1qtln9OepdvPnubv90zCLVaQ6uEjiS071rbLhTiSqlUKuw0KuZu1JNbsyDtvM16/j7cDm83A7lFsG6/ERdHFY8MM92+lVbAvpNGerTS3HRtIYAzWTB1hRFHHSRGqRjZVc20VdbXWRHiRrumTpQ1a9Zc149OmTKFN954w2LbwDteY9Cdk68rXgcnD1RqDeUllk8AyotzcXL1sbqPo4uPxagTgPKS3NrRKRmnd1JemsvM98wLzClGA9sWv8/BTdO5e+IqnFx9AfD0a1YbRqPV4eoZSklB+nXlqTE5uXqgVmsoKbQsr5KiXFzcrZfXtXB0dsMnIILcrLMNFmdDOHTGwLks8wgJbc2yJy5OKooveOrg4qiyGIJ5obIKMBiV2icS57k6qii+aESLzg4mDNVRWaUwfYXlCJO20Ro8XVT8989qzm+eubqK18c7EB+hYd/JG9+Lsv9ENcnp5qXlz5ePm7OaolJzelyd1aRkWU9fSbmCwajg5qQGzGHcnNQUldYt07Yt7NDZwbakuh1aq3ZWsmpnJe7OKsoqFbzd1Izq7UhO4aXfDHSjObt5olZrKCqwPK6KC3LrjE652Kr5P7Lyz6k8+eq3BIe3bMxkNhlnN9N5p/ji805hLq4e137e8fEP44nJ06isKKOyvBQ3T1+mf/Ic3n4h15vkG8bJxROVWkNpkZVzstv1nZM1Wh1efuEABIa3Ii35ANtXTeeW+9+8rnhvJNeaulNYYPl6hsKCPNw9L31sLZ77M4vmTOPFNz4nLML6YrpHk/aQnnqGx194u8HSfKPUV3dKi3NxboDr+dIZb3J8/1rGvfAzbp4B1x3fjVZf3SkqyMf9MuflRXN/YcHs6Ux68zPCIi3rTmR0DFM++Ymy0hL0+mrc3D157fmHiIyObfA8iOtXVmm9zebiqKozkuQ884iSC9qFF4z6OD9KxeWikSAuDpCRr9TEoeB80SgLtcr09sbz7c3z7aVcc7OL7Jo1992dVeQWKegNMG+zgQVbTCNhisuhQ3M1FVUKZU20xn5ZFRiNCk4X9Ts7O9QdnXNeSQV1ysNa+GoD5JdAPpCWp/DoUBUJkSq2HLkJe4xuEKOtDG+/CVzVmigPPfTQZT8TJky4bDyTJk2isLDQ4tNv9EvXnInzNFodPkHxpJ7cWrtNMRpJO7kVv7BEq/v4hyWQdkF4gJQTm2vDN297K2Oe+pPR/5hT+3Fy86NNr4cY+tB3APgEx6PR6iymDBkN1ZQUpOLiGXTd+WosWq2OoIh4Th0y599oNHLq0FZCmyU22O9UVpSSl3UOVw/fBouzIVRVQ26RUvvJzFcoKlOIDjIvImtvB6F+as5mWb9RNxghNUchOti8jwqIDtJwNtO8j70dPDzMHr0Rpi2rqjOyxE5rujxfeGpTFNPfTTVZpbIasguMtZ/0XCOFJUZahpn7Xh10EBmo4XSa3mocBiOczTDQMty8jwpoGa7llJV9ure2Z/+J6jpDZy9UWKpQrYcOsTryioyczWyCYTqXoNXaERoVx7GD5kVhjUYjxw5uJaJFQr37rZw3laWzv+axl78krJn1V27eDLRaHSGRcRw/aHneOZ60jfDm9ZfPlbJ3cMLN05eykkKO7t9EfIe/zrQMjVZHYHg8pw9vqd2mGI0kH95CcAOvX6IYjRiq/1rjorV2dkQ0i+HQfvOisEajkUP7dxLdsv5XWS+aM535v3/Pc5M/IbJ5XL3h1q+cT0SzGMIi/1pTVaCm7oTFk3ykbt0Jibr2uqMoCktnvMnRvSu479lpePiENkRybzitnR2R0S1J2mdZdw7u30HzmPrrzoLZPzH3t6m8OPljoprX3zHi5OyCm7snGWlnOXXiCO0796o3rGg6BiOk5ypEBZpbViogMkDFuWzr7Y6UbIWoAMuWWFSginPZpjZefgkUlylEBZpvqeztINjXHOe5bAVHexWBF8wmiwxQoVKZ2pAAZ7MUNGoVni7mMN41SzcVllimzahAUZmpndgqQsWxVIWmujU21rx+OMLfsozC/VT1vjY6NVch/KLwEf71hz9PpQJN/e95EOKGuqqRKD/++CPh4eG0bdv2uoYq2tvbY29/0QKAdg3zNLl1z/Gs+2MSvsGt8A1tzcFN06muKqdF+1EArPl9Is5u/nQa8iwArbqPY8E349i/4QfCWvbm5P7F5KQm0XOUaaSMg7MnDs6Wb5ZRq7U4uvjg4RsJgM7BhdhOd7J75ee4uAfi4hnE/vXfAxDVenCD5KuxdBs8njnfTiI4shXBUa3Zsnw6VZXltOtpKq9Z30zEzdOfQWNN5aXXV5GdehIAg6Gaovws0s8cRufghLe/6Snn0l/fp2ViHzy8gykuyGL1n5+hUqtp0/mWpsnkVdh4QE+/dlpyiozkFykM6mhHUZlCUrL5Rv2RW3QcTDawJcm0bcN+PXf0sSMl20hKtukVx3Z2sPOYqZPgfAeKnRZ+XV2NvQ7O1/7SCtNF8HiKkWGdYWR3OzYn6VGpoE+iFqMRTqbZTifB6l2VDOtqT3a+gZxCIyN6OFJYYmTv8eraME/f4cze49Ws22O6QVu1s5Lxw5w4m6EnOd1Avw6mN+psOWh5A+froSY6VMMXs6w/uhjY0Z6k09UoCiS2sGNwZ3u+m19mk0NY+w4fx89f/IuwqHjCo1uzdvFPVFaW06XPSACmf/4yHl5+3HrPMwCs+PN7Fv/+BeOfeg9vv2CKCkyj4+wdnLB3ME2pKi0pJD8nncK8LAAy05IBcPPwwe06RnA0hV63jOfXL18mNCqesOjWrF/yE1WV5XTqbTrvzPjvJNw9/bjl7n8CpvNOZkrNeUdfTWF+FqnJh7F3cMInwHTeObJvIygKvkGR5GScZeGMD/ALiqyN86+i88AHmT91IoERrQiObMO2ldOorionoftoAOZ9/yKunv70G/0cYFpQNDvtZO2/i/MzyThrOiefH3myes5/aNaqF+5egVRVlHJw+0LOHNvOPc983zSZvA5DbruHbz95g8joWKKam15xXFlRTs8BwwH4+qPJeHr7cce4JwBYNHsac2Z8w9+fewsfv0AK8k3HloODEw6O5umK5WUlbN+0irsffPrGZ6qBdB74IPN/mEhgeCuCItuwvabutKmpO/Onvoirhz99L6w76RfUnYJMMs4dRmdvrjtLZ7xB0vaFjH38v+gcnCkpzAbA3tEVO52DlVTYrqG33c3XH79FZHQszVrEsXT+b1RWVNC7v6lt8uVHb+Dp5ctd4x8HYMHs6cz65VueeP4NfP0Da9c5cXBwrK072zauwtXdAx/fAM4mn+Sn7z6kQ+detGnbuWkyeQNonJ1wjjavNeUUGYJbQgxVeYVUnLPd0dfnbT5sZFR3Dak5Cqm5Cl1j1ei0sOeE6T5kVHcNxWUKK/eY/t562MiDgzV0i1NzLMVIq0g1Qd4qFmw1t822HjbSq7Wa3CKF/BKFfokaisvgyFlTAyWnEI6nGrm1q5aFWw2o1TCss4aDyQrFNaNXTqWbFp4d2U3Dkp0GVMAtnTWcSDPWjk7xdjUtRJuSo+CoU9E1To2fp4q5m6w/yLpRth9TGN5JRUaeacRIxxYq7LSw/7Qp/8M7qSguh3UHTH/vPK5wb18VnVqoOJGuEBemItATluw0fW+ngW5xKo6nKpRUmNayaRdtepPRkXM22OgT/5OuqhPlscceY+bMmZw+fZoHH3yQ++67Dy8vr8vveAM1azOMipJ8dq38lLLiHLwDYxn64De103lKC9JRqcy9xf7hbel31/+xc/kn7Fj2Ee4+4Qy87zO8Aq7uSVTnYS+g0mhZ+8dE9NUV+IW2YdjDP2DvaNsr2LfuPIzS4nxWzf2UksIcAsNiGffcN7XTeQpz01FfUF7F+dn8d/Lo2r83LZ3KpqVTiWjZkQmTppv2ycvgj6+ep6ykAGdXL8Kat+PRV3/F2c226oo16/bp0WlhTE8dDjpIzjAydYnlyBEvN9PriM/bf8qAsyMM6qDF1ck09Wfq4sraYZ3BPuraN/VMvNuy0fnujArySxSyCxWmLauif3stj99mj6JAWq6RqUsqay+wtmD59kp0diruGeyEk72Kk6l6PptValE+vh4aXBzNG3YdrcbFqZzh3R1xc1aRkmXgs1mldaY7dWuto6BY4XCy9cZAfKSWIV0c0GogNdvAV3NLSTrdtA2H+rTvNoSSojwW/f4FxQU5BEfE8PjLX9V2duTnpFussbRxxe/o9dV8/+GzFvEMvf0xht1hatAf2LmGX/77au13P378Qp0wfxVtuw6ltCiPZbM+p6ggh+DwGB556eva6TwFF5VPUX42H04yr6e0duEPrF34A81iO/L4az8CUFFWwuJfP6YgLwMnF3fadBrI0DufRqO1wXdgX0J8x2GUFeexbt6nlBZl4x8ay91Pf1c7nacwz/IaVlyQxXdvjaz9e+vyqWxdPpWwFp0Y98JPAJQW5TJ/6kRKCrOwd3TFL6Ql9zzzPVFx3W9o3hpC554DKSrKZ86MbyjMzyUssgXPT/6kdkpGXk4marW5fFYvnYNeX83n71mOdh1518OMuvtvtX9v3bACFIUuvWz7wcelxHUcRmlxHuvm19SdkFjueurSdef7eurO/c+b6s7udTMB+Pk/lgvrD39gCgndRvNX0rXnQIoLC5g141sK83MJj2rOxNc/qp0KlpudYXHeWbnEVHc+efdli3hG3zWBMfc88v/t3Xd4FNX6wPHv7G56rwRSCQmQ0Hvv0kHAriigqFdFr96LvYF4rT+9eMHeAKWpNJEqRXrvLUCABNJJ72135/fHQsKSBENIsgu8n+fZR3bmzMk7x5kzM2fPOQNAZmYac3/8H9lZGbh7eNOr31DG3P9Y/e2UBbh1aEm3DT+XfY/8xFQ+cT8t4cjE1ywVVrUdj1VxsjPSv60WZwdIzlD5eYOhbKJTNydQ1fLjIC5VZdFWAwPaahnQTkN6DizcZDB7S8y240ZsdDCymxZ7W1Ovkrnr9eiv+H148VYDw7poGT/INH/JiQsqq/eYv9lx/kY9wzpreWywjhI9nElQWbuvPI2ige4ttHi5mnqAxCSrfL9aT1Z+HRVWNUXFmYbz9Gppuj++mAW/bimfu8TVUTH78T0hHZbvMtK7pYY+rRQy82DxdiNpOab1RhW8XBRadVdwsIPCEtPrnuduLE8jakbma6o9inqdpVlcXMySJUv48ccf2bFjB8OHD2fixIkMGjSoyolXq+OTJdY1r4E1CWpo6Qis2/6jMsNUVXKypWyuZcygKl67JCgxXNdoz9tOZp51vVrbmoT7Zls6BKt2OsW6f1yxtEi/TEuHYLVSWt56b2yrTXt+uP6XXdwu7O3lmn4tr913e4wTeuVby/0y+9GTDn+f6CZy3WeUnZ0dDz74IOvWrePEiRO0aNGCZ555hpCQEPLy6v7tHUIIIYQQQgghhKg+1Wi5z63mhpolNRoNimLqomUwWM+8DUIIIYQQQgghhBC17bobUYqLi1mwYAEDBw6kadOmHD16lM8//5wLFy7g7Oz89xkIIYQQQgghhBBC3ISua1D3M888w8KFCwkMDOSxxx5jwYIFeHvfXG+FEEIIIYQQQgghbidGmVi21lxXI8rXX39NUFAQoaGhbN68mc2bN1eabsmSJbUSnBBCCCGEEEIIIYS1uK5GlHHjxt3QG3iEEEIIIYQQQghRv+QVx7XnuhpRZs+eXUdhCCGEEEIIIYQQQli362pEEUIIIYQQQgghxM3FaJSeKLXlhl5xLIQQQgghhBBCCHG7kEYUIYQQQgghhBBCiGqQ4TxCCCGEEEIIIcQtTOaVrT3SE0UIIYQQQgghhBCiGqQnihBCCCGEEEIIcQtTZWLZWiM9UYQQQgghhBBCCCGqQRpRhBBCCCGEEEIIIapBhvMIIYQQQgghhBC3MKPMLFtrpCeKEEIIIYQQQgghRDVITxQhhBBCCCGEEOIWJhPL1h7piSKEEEIIIYQQQghRDVbTEyW4kaUjsF7Z+dLWdS2NGtpbOgSr1SzMwdIhWLXzqZaOwHolJpdaOgQrJ+VTlWa+lo7AuuXkyy+B1/Lhl5mWDsFqtfjhmKVDsGqdJ7a0dAhWS9193NIhCCsgPVFqjzydCyGEEEIIIYQQQlSDNKIIIYQQQgghhBBCVIPVDOcRQgghhBBCCCFE7ZPRPLVHeqIIIYQQQgghhBBCVIP0RBFCCCGEEEIIIW5hMrFs7ZGeKEIIIYQQQgghhBDVII0oQgghhBBCCCGEENUgw3mEEEIIIYQQQohbmKrKcJ7aIj1RhBBCCCGEEEIIIapBeqIIIYQQQgghhBC3MKNMLFtrpCeKEEIIIYQQQgghRDVITxQhhBBCCCGEEOIWJnOi1B7piSKEEEIIIYQQQghRDdKIIoQQQgghhBBCCFENMpxHCCGEEEIIIYS4hakysWytkZ4oQgghhBBCCCGEENVwW/RE2bV+HttW/0hedhp+gc0Z8fAbBDRpXWnalPhoNiydSWLscbLSEhn20Kt0Hzy+QrqcjBTW/vopp49sobSkCK8GQdz1+Pv4N25Z17tTqw5snsfedT+Qn5OKb0BzBtz3Fg1DKi+btMRotq2YQcqF4+RkJNDvntfo2H+CWZq46L3sXfcDyXHHyM9OZfSTXxDe9o562JPacXT7PA5t+oGC3DS8Gjan15g3aRBUeXkAnDm8hj1r/kduZgJu3sF0G/4iwRF9zNJkpJxl18pPSDy3F6PBgEeDJgwZPwMXj0YAbFr0NvHRO8nPvoiNnSN+Ie3oNvxFPHxD63Rfa8OBTfPYfcXxc8f9b9GoiuMnNTGabX/MIPnS8dP/ntfoNGCCWZq46L3sXvcDKReOkZedyph/fEHTm+T4Obh5HnvXm8rCx//a5xLAqQOr2b7if2SnJ+DhG0LvUS8S2rL82MnPSWPLsk+IPbmN4oJcAsI6MuC+t/DwDQEgOz2e794eUGneIyd+RrP2Q2t1/65Hp6YaukdqcHaA5EyV1XuNJKZX/etHZJBCvzZa3J0hPQfWHzRwJtE8fd/WGtqHa7C3gbhUlZV7DGTklq9/frQOd2fFbJv1Bw1sP24EILiBQtfmGvy9FexsICMHdpwwcDS2/n+VsUT5PNBXi5+HgpM9FJbAuSSV9QcN5BWa1nu5wvDOWnzcFOxtIbcAjsYa2XzEiLX9cLVu5W+sWjaX7Mx0AkPCGffkizRp2qLStH/9uYxtf60k/vw5ABo3ac69jzxjlv6RUZ0r3faB8c8x/K5Han8HatGRbfM4sNF0zfJu1Jzed72JX3DV9U70oTXsWv0/cjMScPcJpvuIFwmJLK93Zv6reaXb9Rj5Eu37Tyz7HnN8E3v//JK0pFPodHY0atKJERO/qL0dq0P3D/Xgjm4uODpoOBVTxLe/pZGcqq8yfUQTe0b1dyM00A5PNx0ffZ/M3qMFFdL5N7Dh4ZGeRIY5oNVAfEoJn/yYQlqmoS53p1Kdm2no3sJUx6RkqKzaYyThWnVMsEL/tqY6JiMH1h0wEJ1gnr5fGw0dwjXY28KFVJUVu8zrGAdbGNZZS9MABRWIOq+yeq+BkquKtnukhg5NNbg7QUEx7D1lZMtRo1nsnZtpcHeG7HzYctTA4XNWVgldg2fPjoROnohb+5bYN/Jl393PkLJ8g6XDqlPb/pzPpj9mkZudRqOgZoyZ8DpBYZXXQ8lxZ1izaCbx506QmZbIqEdeofewcWZpigrzWfPrDI7t20Budgb+IRGMHv8qQU1a1cfu3NKkJ0rtueV7ohzdvYrVCz6i36hJPPPOYvwCmzH7kyfIy0mvNH1pSRGePoEMuvffOLt5V5qmMD+bb997CI1Wx/jJ3/LPD1Yw5IFXsHd0rctdqXUn961i0+IP6D58EuNeW4qPf3N+mzmR/NyqyqYQd+8Aeo+ejJOrTxVpCvAJaMYd90+py9DrRPShVWxf/iEdB07i3heW4N2oGSu+e5yCKsojKfYA6+ZNJqLzPdz7r6U0bnkHq2c/S3rS6bI02WkXWPrFQ7j7hjLq6Z+4f/LvdBz4DFqdXVkan4AW9L/vfR58eSUjn/geVJU/vp2I0Vj/N17XI2rfKjYu/oAewycx4fWl+AY059cZE8mv4tzSXzp++lzj+CkpLsDXvxkDH7i5jp+T+1exackHdBs2iUdeNZXFos+rPpcSzh1gxazJtOx2D+NeW0ZY6wEs+3YSqYmmY0dVVZZ9O4nstDhG/+NLxr22FFdPf36d8SglxaabdxePhjz9/jazT/fhz2Fj50jjyN71tu9XaxGsMKiDhs1HDHyzSk9KJjzcX4ujXeXpA7wV7u6p5eBZI9+s1HMq3sgDfbT4uJWn6RGpoUtzDSt3G/h+jZ4SPTzcX4f2qivYX4cNfLKotOyz52T5jXmgt8LFLJVfNxv4eoWeQ2eNjO6uJdzfvOGlrlmqfGKTVX7bauDz5Xp+3WzA0wXu660tW28wwpFzRuZu0PP5cj1r9htoH6ahbxvruk3YtXUd83/8jDH3P867//2JoMbhfDz1n2RnZVSaPurofrr1Gszr//mKKR//gKd3Az6e+hwZ6RfL0sycvcrs88Rzb6EoCp2696+v3aqR0wdXsXXZh3QePIkHJpuuWcu/ucY1K+YAa3+eTIsu9/DAi0sJbXkHK380v2Y99s5Ws8+AB94DRaFJ60Flac4cXsu6+a8Q0fkuHnxxGff8cz7N2o+o8/2tDaMHuDGstyvf/prG69MTKS5Reeuphtjoqq4H7G0VYhNK+H5RWpVpGnjp+M/zjUi4WMrUmYlM/iieRWuzKCmt/weWFiEKgztq2HTYwDcr9CRnwiN3aHGyrzx9oI/CPb20HDxj5OsVek7GGXmgrxZf9/I0PVto6BKh4Y/dBr5bpadUD4/coUN3RfVwdy8tPu4KP603MH+jgeAGCiO7ac3+1tBOpsbeP/cZmPm7nvkb9cSnlZdRp6YaBrTT8NcRA18s1/PXYQPDu5gaZm4WWidHco6c4tg/37F0KPXi4M7VLP/5Ywbd/Qz/ev83GgU349sP/0FuduX1UElJIV6+gQx/8F+4uFf+nPXrt29z+uhOHnzmQ176eCnNWnfnm/ceJzsjpS53RYjrYl13R3Vg+5o5dOxzLx1634Wvfxh3TpiKja09+7csqTR9QGgrhjzwEq27DkdnY1tpmi0rv8fNsyF3P/E+AU1a4+kTQHirHng1CKrLXal1+zbOonWP+2jV7W68G4Yx6MF3sLG159iOxZWmbxjSmr53vUJEx+FodZWXTWiLPvS68180bTuwLkOvE4c3zyayy71EdL4bT78w+tz9Djobe07urbw8jmz9maBmPWnXbyKeDZrQZcjz+PhHcnT7vLI0u9d8RnDzPnQf8RI+/pG4eQfRuEV/HF28ytK06Ho/jZp0wtUzAJ+AFnQe8gJ5WUnkZiTU+T7fiL0bZtGmx3207m46fgZfOn6O7qz6+Ol39ytEdqr6+GnSsg+9R918x8++DbNo1b38XBr4wKVzqYqyOPDXTzSO7EXngY/j5deEniNfoEFgJIc2zwUg82IsSTGHuOOBqTQMbo1ng1AGPjAVfWkRJ/etBECj0eLk5mP2OXN4Pc3aD8XW3qne9v1qXSM0HDhj5NA5lbRsWLHbQKkB2oVVfrnp0lzDmUSVHSeMpOXAX4eNJGWodG5Wnr5LhIYtR42cile5mAXLdhhwcYTmgeY31sWlkF9U/im9oh1y23Ejfx02Ep+mkpkHu08ZOZOkEhFYv5dBS5XPrpNGEtJUsvMhPk1l23EjAd4KmktJsvLg0DmVlCzTr7+n41WOxhoJ8rWuh5fVv8+n76DR9L5jJP5BoTz69KvY2dmzZf0flaZ/ZvK73DHsHoJDm9IoIITHn30Do1HlxOG9ZWncPbzNPvv3bCaiVQd8/fzra7dq5NCm2bTodi+RXUzXrH73voPO1p4Tuyuvdw5t+Zng5j1p3990zeo67Hl8AiI5srX8muXk6mP2OXdsIwFhXXDzDgTAaNCzZen79Bj5Eq16PICHb2M8/cIIb2e5nm/XY3gfNxb/mcXeYwWcTyxh5tyLeLhp6dzKscptDkYVsnBVJnuOVOx9ctlDIzw5cKKAucsziEkoISVdz75jBeTkGavcpq50j9CwP9rIobMqqdmwYte165iuEaY6ZvtxI2nZsPFQxTqma4SGLUeMnIoz1RFLtl2qY4JM9YO3G4T7a1i+00BCmsqFiyqr9hhoGaLg4kBZmk7NNCz4S8+peJWsPEjKMPWKu6x1qML+aCPHY0319LFYlf2njfRsefM8rqSu3cLpKZ+R8vt6S4dSL7asnEPX/vfQue8Y/ALCuHviFGxs7dmzqfLnrKAmrRg59kXadR+GrpJ7wdKSIo7uWceIhybTJKIj3n7BDL5nEt5+QexYt7Cud0eIart5aqUa0OtLSIw9TpMW3cqWaTQamrToRtyZQzXO9+TBv/APacGCz1/gg2d78MVbd7F306+1EHH9MehLSL5wnOBm3cuWKRoNwc27kxhz0IKRWYZBX0JqwnECmpqXR0B4N5LPH6p0m5TzhwgI7262LLBZD1IupVeNRs5HbcLdJ4Q/vp3IrCndWfS/+zh3rOoLa2lxASf3LsHVMwBnd78b3q+6Unb8NDcvr5Dm3Uk4d3sdPwZ9CSlxFcsiqHl3Eqsoi8SYQwQ362a2LCSiJ4kxh8ryBNDZlHdPUDQadDpbEs7urzTP5AvHuBgfRavu99zI7twQjQYaeSpmN8VgukkO8K78YTzQR+Fcsnn6s0kqAT6my5O7M7g4KJxLLn8YKS41NQQE+pjn2bOFhpfu1fHkMB3dIzUof/P8b28DhSX190uxpcvnMntbaBWiIS5VrXKojoczhDXUcD7Ferr+6ktLiT17khZtOpUt02g0tGjTiTOnjlYrj+LiIgwGPU4ulfcczc5K5/C+7fS5485aibmuGPQlXIw/TuBV16zAa1yzkmMPmaUHCGrWg6Qq0hfkpnH+xGYiu9xdtuxi/Anys1NQFIUFn4zhh7d78fs3T5j1ZrFWvl46PNx0HDldWLasoEgl+nwxTRtX0U2jGhQF2kc6knSxlDef8uOH/wTzwb8a0ekaDTN1RauBhl7mdYyKqY6pqj4I8KlYJ51NVAm8VMd4OIOLo8K5JPM6JiG1PM9AH4XCYtVsWOK5JBVVBf9LdVuzAA2Zuab/vjBGxwt36bizmxaHK56jdVoF/VWdcEsN4O9V3uArrIdeX0J8zAnCW5o/ZzVt2ZXz0YdrlKfBYMBoNKCzNe+eqbO1I+bU7XV/WReMqmqxz62mRo0o6enlXbTi4uJ4++23eemll9i6dWutBVYbCnKzMBoNOLt5mS13dvMiL7vqbpl/JzM1jj1/LcSrQTDjX/qOzv0fYOXc9zmwbdkNRlx/CvMyUY0GHF3Ny8bRxYv8nJqXzc2qKP9SeTibl4eDizcFVZRHQW6aWY8SAEdnbwpyTekL89IpLS7gwMbvCGrei5FP/kBoqztYM+c5Es7uMdvu2Pb5fPt6e757oz0XTm5h5JM/VtlbwxoUXDp+nK4+flxvv+Pn8rnkdNWx4HSNcyk/Jw1HV/NurFeWnadfKC4ejdjy+6cUFWRj0Jew+89vyc1KJj8ntdI8j+5YhKdfE/xD29fCXtWMox1oNAr5RebL84tUnB0q38bZ3rT+SnlFpuWm9cqlPK7OE5zsy++qd58ysmibgTnr9OyPNtKzhYaB7au+xEUGKTTyUjh0tv5+KbZk+QDc0U7Daw/oeOU+G9ycYOGmikMGHxus5Y0HdfxztA0XUk29d6xFbo7pmu7m7mm23NXdk6zMyruOX+2Xnz7Hw9ObFm0qnwdl68aV2Ds40bFbvxuOty4VXr5mXX0Nut5r1jXSR+1Zho29k9lQnpz0OAD2rP2CTgOfYuQTX2Hv6MqSL8ZRlJ91A3tU9zxcTENLsnLNj/vsXAPuLtrKNqkWN2ctDvYaRt/hzqGThbz7VRK7j+bz0mMNiGxS88aZmnC0A61GKZvr6LK8QrWszrias71pvVn6IsrqJGcHpWxZxTTKpTwq1mtGFQqLTY28YGqMcXM2zb+yZLuBZdsNNPJSuK9PedmfSTTSPkxDw0uneCMvhfbhGnRaBcf6LUpRDfmX6mSXSp6zcrNqdi9o7+BEcHhb1i/5muyMixiNBvZv/YPzpw+Tk1X5/Y8QlnBdE8sePXqUkSNHEhcXR3h4OAsXLmTIkCHk5+ej0WiYPn06ixYtYvTo0dfMp7i4mOLiYrNlpSU22NhWMSjcyqhGlUaNWzDo3n8B0Cg4kpSEaPZuXEj7nqMtG5ywGqpqevho3LI/bXpPAMDbP4Lk2IMc37kQ/yblN/Hh7UcS0LQ7BTmpHNr8I3/+/AJjnl1g1hNB3D60WhtGPTmTtXPf4POXOqNotAQ360bjyN6oVGzNLy0p4uS+FXQd8owForUOu6LKH/YvZhkxGFVGdNGy4aARw1XtACENFEZ11/LHLgOp2fUcqAVtP2HkwBkj7k4KfVprGN1Dy4K/zB8oF201YGsDfh4KA9tp6R4JO05YT0PKjfhj0Rx2bV3H6+99hW0V9xtb1v9B9z6Dq1x/OzmxZzHN2o8wuw5dvq51vOMfhLUZDMAdD37Aj1P7cObwGlp2f8AisVamVwdnnry/vLH6g2+S6+TvXO7xtvdYASs2mSqU2IQSmoXYM6iHKyfOFl1j69uHoijYaBWWbtOTfmlC2t936HlqhA1ergbSc2DzESPODgpPDDM9nuQXweGzRnq21HIL/pAtqvDQpA/45eu3mDapHxqNFv/GEbTrPoz4mBOWDu2mJxPL1p7rakR5+eWXadWqFfPmzePnn39mxIgRDB8+nO+++w6A5557jg8//PBvG1E++OAD3nnHfMKleya+zX2P1+5kko4u7mg0WvKumtwoLzu9ykljq8PZ3RvfRk3Mlvk0DOX43j9rnGd9c3D2QNFoKbhqEtCC3HScXGteNjcre6dL5ZFnXh6FuRV7DFzm6OJdYQK/grw0HF28y/LUaHR4NAgzS+Ph24SkWPMhGXYOLtg5uODuE0KD4Db88FYXYo6tI7yddU7W53jp+Ll6EtmCnNvv+Ll8Ll09iWz+Nc4lJ9eKv/5eXXZ+QS0Z//rvFBfmYtCX4ujiydyP78UvuOIbwE4fXENpSREtuoy+8R26AQXFYDSqFSYwdLKv+MvoZXllPSbKL+zO9uW/euZd6oXhZI9ZHk72kJJZ9c1AQpqKVqOUvdHmsmBfhQf7alm7z8CRmPq9mbB0+RQWmz4ZuSqpOQb+fZcNAd5Gs4kdcy5N+5CWraIoBkZ20bIzymgVDzAurqZr+tWTyOZkZeDu4VXFViYrl85lxZI5vPLO5wSFhFea5tTxgyQlnGfSS+/VWsx1xeHyNevqa9D1XrOqSJ9wdh9ZF2MYMm662fLLk4J7+pVf17Q6W9y8AsnNTKrRvtSVvcfyiT5f3oChuzR5rLuLlqyc8sZDNxctsQklNf47ufkG9AaV+GTzPBJSSmkeWr/dJwqKwWCs2LPN2UGp0JPksvIeJVfVMZfqk8u9VJyvqmOc7U1vFzPlUbFe0yjgYAe5l7bPK1QxGNWyBhSgrBHbzUkhPUdFb4Dfdxj4Y6epJ0xuIXQM11BUolIgbVFWx+lSnXz1JLJ52elVThpbHd4Ngpg0ZQ7FRQUUF+bj6uHDT/+bjJdvwI2GLEStua7hPHv37uW9996jR48efPLJJyQmJvLMM8+g0WjQaDQ899xznDx58m/zee2118jOzjb7jBn3ao13oio6nS2NQlpw7sSusmVGo5FzJ3YRGNa2xvkGh7cnLTnWbFl6cizu3o1qnGd90+ps8QtqwflTO8uWqUYj50/tpFHjdhaMzDK0Olt8/FuQEG1eHvFnduEX3LbSbRoEtyX+ivQAcad30OBSeq3OFp/AlmRdjDFLk5UWW/Z646qpZfNiWKOqjp/YUzvxD729jh+tzpYGgS24cFVZXDi1k0ZVlEWjxm05f2qX2bLzJ3fQqHHbCmntHFxwdPEk82IsKReOEda64muNj+5cTJNW/XF08aywrj4ZjZCYoRLqZz6MJNRPMXtQv1Jcqkrjq9M3VIhPNf3inZVnugkP9Su/XNnamN5aE5da9ZO9n4eC0aiadTEPbqDwUD8t6w8aOXCm/lsFrKl8LueovcYoBgXTPC7WMhWBzsaGkCbNOXGkfFJYo9HI8SP7CGtW9asvVyz5id9//YGXpvyP0PDIKtNtWr+cxk2aE9y4aa3GXRe0Olt8A1oQf9q83omLrvqa5RfSlrjTFa9ZDStJf2L3InwDWuDjb/7KY9/Almh1tmRecV0zGErJyUioxnWtfhUVqySn6cs+8cmlZGbradW0vIXBwU4hPNiO0zE1f0LXG+DshWIa+dqYLW/oa0NqZtWvTq4LBiMkpauENiw/axWgsV/V9UF8aiV1UkOFuEt1TGYe5BaohDYsr2PsbMDfpzzPuFQVBzulbBgOl/6mopgatAEuXDQ1bHs4l6fxujQ1UXaeeWxG1dSgq6rQMkThdEJlfTCFpel0tgQ0jiT6mPlzVvTx3QSHt7nh/O3sHXH18KEgL5tTR7bToqN1D7O8GaiqarHPrea6GlEyMjLw8zNNduns7IyTkxMeHh5l6z08PMjNza1q8zJ2dna4urqafepqKE+PIePZt/k3DmxbxsXEsyyf8w4lxYV06DUGgEXfvMKfv/63LL1eX0LS+SiSzkdh0JeSk3mRpPNRpKecL0vTffB44s4eZtMf35Cecp7DO1ewd9NvdBnwUJ3sQ13p2P9Rjmz/lWO7lpKedJY/F06ltLiQlt3uAmDl7JfZsuzTsvSmCTSjSImLwmAoIS8rhZS4KDIvlpdNSVF+WRqA7PR4UuKiyMlIrN+dq4E2fSZwYvdvnNy7lIyUs2xeMhV9SSHNO5nKY/2CV9i5qrw8Wvd6hLhT2zi06UcyL55jz9qZpMYfp1WPsWVp2vWdyJnDqzmx61ey085zdNtcYk/8RcvupmMlOz2O/Ru+4WL8MXIzE0mKPcDan55Ha2NHUPM+9VsA16nTgEc5vO1Xju5cSlrSWdYuMB0/rS4dPytmv8zmKo4f4y12/HQccMW5lHyWdZfPpa6mslg152W2/F5eFu37jSP2xFb2rv+R9OSzbF85k+QLx2jb5+GyNKcOrObC6d1kpcVx5vB6fpv5GGFt7iAkoqfZ3868eJ74M3tpbcEJZa+0K8pI+3ANbUIVvF1hRBcNNjrK5h4Z3V3LgLbll57dJ42ENVLoFqHByxX6tNbQyFNhz6nyISS7o4z0aqmhaYCCrzuM6a4ltwBOxpkuygHeCl2aa2jgbppotVWIwuCOWo7EqBRdaosMudSAsvuUkRMXjDjZm3pr2Nfz1EOWKB9/L4VOTTU08AA3J1NZ3N1TS0auSvylh6BWIQqRQaaY3J1Nc8YMaKfl+PmqJ5+1hKGjHmLTn7+zdeMKEuJimP31RxQXFdL7DlOvva+nT+GXn74oS79i8RwWz/uGJ557C2/fhmRlppGVmUZRofmbVgoL8tizfQN9Bo6q1/25EW37TuD4rt+I2mO6Zv21yHTNiuxiqnf+nPcKO1aU1zttez/ChZPbOPDXj2SknGP3mplcjDtO615jzfItKcrjzOG1RHa9t8LftLV3pmX3B9i9ZiYXTm4j8+I5Nv1m6lkc1nZIHe5t7Vi5OZu7B7nTsaUjQQ1teO5hXzKzDew5Wn48TJnUkCG9yicetrdVCPG3JcTfVFk08LIhxN8Wb4/yFsjfN2bRvZ0zd3Rzwc9bx5BernRs4cjabfU/XnDHlXWMG4zoqsFWBwfPmOqMMT203NGuvI7ZFWUkzF+he6QGb1fo20ZDIy/zOmZXlJHerTQ0u1zH9LhUx1wwVQ5p2RCdYOTObjr8vRQCfRSGddFyLFYl91LvlXNJpolnR3fX4ucJDT1hZFctZxKNZb1TvFygdWMFTxdTvXVPLy2+HgobDlScv8laaZ0ccW3THNc2pgZIx8YBuLZpjn1gQwtHVjd6Dx/P7r8WsXfzMlISzrL4x2mUFBfSuY/pOWv+l6+xckF5jza9voSE2CgSYk3PWdmZF0mIjSItufxe8OThbZw8tJX0i/GcOrKDr/7zKL6NGpflKYQ1uK7hPGAa03it79amVZdh5OdksmHJDPKy02gYFMH4F78tG86TlZGEoim/mORmpvLF23eVfd+2+ke2rf6RkOadePy1nwDTa5Af+ucM1v02nU2/f4mHdwDDxr5K2+4j63fnblDzjsMoyMtg+4oZ5Oek4hsQwT3Pfl82pCA307xs8rIv8tMHo8u+713/I3vX/0hgeGce+NfPgOkNIb98Nq4szV+LPwCgRdcxDBv3YT3sVc2Ftx1GUV4Ge9bOpCA3Fe9GEYx4/Luy4Tl5mYlmx3vDkPbcMfYT9qz5jF2rp+PuHcLQCZ/j1bD8V8zQVgPpc/dUDmz8lq3L3sPdtzFDxs2gYeMOgKkVPylmP0e2/kRxYQ4Ozl40Cu3IXc8uqDABoLWJuHT8bLvi+LnvufLjJycjCUUxP35mvz+67Pue9T+y59Lx89C/y4+fBdPLj5+Ni0zHT8uuYxg+3nqPn+YdhlGQazqXCnJT8fGP4J5JV5RFpnlZ+Ie2Z/ijn7Dtj8/Y9sd/cfcJYfSTX+DTqPzYyc9OZdPiDy8NC/KhRZdRdBtacc6TYzsX4+LuV6FxxVKOn1dxtDPSt7UWZwdTd+95Gw1lPULcnEBVy8+j+DSVJdsM9GurpX9bDRm5sHCz+Vwl208YsdHByC5a7G1Nv2jO3agvm+tEb1RpGayhb2sdWo2pd8auKCM7r5gnpU2oBludQq+WWnq1LH/4iU0xMmdd/d2gW6J8Sg0qEUEa+rbRYaszdZE/m2hk0VZDWRqjCj1aaPFyNf1ynZUPe0+Zl6E16NprILk5mSye/y3ZmekENW7KS1P+h5u7qb5MT0sxu25tWLMEvb6UGR+Z93Yd88Dj3PXgk2Xfd25dB6pKt96D62dHakHTdsMozMtg95qZ5OeY6p07/3GNa1bj9gx65BN2rfqMnSun4+4TwvDHzK9ZAKcPrARVpWn74ZX+3R53voRGo+XPea+gLy3CL7gNY56Zjb2jW93tbC1ZtiEbO1sN/7jfGycHDSfPFfGfr5Mp1Ze3FDbw0uHqVF5HNAmy453nynvZTBhjOtb+2p3LF/NNE13uOVLAd7+mMWagO4/e5UXixVI++TGFk+fM5/+rD8djVZzsjPRve6mOyVD5eUPVdUxcqsqirQYGtNUyoJ2G9BzTpNMXs8rz3Hb8Uh3T7Yo6Zr0e/RXVw+KtBoZ10TJ+kGn+khMXVFbvKa9bVWD+Rj3DOmt5bLCOEj2cSVBZu688jaKB7pfqIaMRYpJVvl+tJyu/jgqrDrh1aEm3DT+XfY/85HUA4n5awpGJr1kqrDrTrttQ8nMyWLvoc3Ky0vAPbs4Tr35TNpwnKy3JrB7KyUzlv6+V/+izacUsNq2YRZOITjzz9mwAigryWLXwM7IyknF0dqN154EMvf95tDrz3l5CWJKiXkf/Go1Gw9ChQ7GzM/Ua+eOPP+jfvz9OTk6AacLYNWvWYDBc/w3pb7us60bNmmTn39Jvor5h+QVW9DOplXFxsu5GTku7esJRUS4xudTSIYib1NCOBX+f6Da251zlr1cWJpvWxvx9ottUiw6Blg7BqnWeWHHOMGGi7j5u6RCs2oj2192v4Kb08BuW69k99z3rGvJ5o67riBk/frzZ94cffrhCmnHjxlVYJoQQQgghhBBCCHGzu65GlFmzZtVVHEIIIYQQQgghhKgD8orj2iPjRIQQQgghhBBCCCGqQRpRhBBCCCGEEEIIIarh9phFRwghhBBCCCGEuE1dx/tkxN+QnihCCCGEEEIIIYQQ1SA9UYQQQgghhBBCiFuYajRaOoRbhvREEUIIIYQQQgghhKgGaUQRQgghhBBCCCGEqAYZziOEEEIIIYQQQtzCjEaZWLa2SE8UIYQQQgghhBBCiGqQnihCCCGEEEIIIcQtTF5xXHukJ4oQQgghhBBCCCFENUhPFCGEEEIIIYQQ4hamypwotUZ6ogghhBBCCCGEEEJUgzSiCCGEEEIIIYQQQlSDDOcRQgghhBBCCCFuYTKcp/ZITxQhhBBCCCGEEEKIapCeKEIIIYQQQgghxC3MqBotHcItw2oaUboveNDSIVgtey83S4dg1R5LmmzpEKxWv6FNLR2CVYtPKLR0CFZreE/F0iFYtf9+HmvpEKyW0Rhm6RCsWnFxsaVDsGqdeoVYOgSrZZSu+Nek7j5u6RCsltKlhaVDsG6lpywdgbjJyHAeIYQQQgghhBBCiGqoUSNKaGgo6enpFZZnZWURGhp6w0EJIYQQQgghhBCidqhG1WKfW02NGlFiY2MxGAwVlhcXF5OQkHDDQQkhhBBCCCGEEEJYm+uaE2X58uVl/167di1ubuVzdRgMBjZs2EBISEitBSeEEEIIIYQQQogbcyv2CLGU62pEGT16NACKojB+/HizdTY2NoSEhPDpp5/WWnBCCCGEEEIIIYQQ1uK6GlGMRtNrkRo3bszevXvx9vauk6CEEEIIIYQQQghRO1RVeqLUlhq94jgmJqa24xBCCCGEEEIIIYSwajVqRJk2bdo117/99ts1CkYIIYQQQgghhBDCWtWoEWXp0qVm30tLS4mJiUGn09GkSRNpRBFCCCGEEEIIIazE5ak5xI2rUSPKwYMHKyzLyclhwoQJjBkz5oaDEkIIIYQQQgghhLA2mtrKyNXVlXfeeYe33nqrtrIUQgghhBBCCCHEDVKNqsU+t5paa0QByM7OJjs7uzazFEIIIYQQQgghhDCTkZHB2LFjcXV1xd3dnYkTJ5KXl3fN9M899xzNmjXDwcGBoKAg/vnPf153G0aNhvPMmDHD7LuqqiQlJfHzzz8zdOjQmmQphBBCCCGEEEIIUS1jx44lKSmJdevWUVpayqOPPsqTTz7J/PnzK02fmJhIYmIin3zyCZGRkZw/f56nnnqKxMREFi1aVO2/W6NGlOnTp5t912g0+Pj4MH78eF577bWaZCmEEEIIIYQQQog6oKq31sSyUVFRrFmzhr1799KxY0cAZs6cybBhw/jkk09o1KhRhW1atmzJ4sWLy743adKE9957j4cffhi9Xo9OV73mkRo1osTExNRkMyGEEEIIIYQQQtxGiouLKS4uNltmZ2eHnZ1djfPcuXMn7u7uZQ0oAHfccQcajYbdu3dX+4U32dnZuLq6VrsBBWphTpS4uDji4uJuNBshhBBCCCGEEELUAUtOLPvBBx/g5uZm9vnggw9uaH+Sk5Px9fU1W6bT6fD09CQ5OblaeaSlpfHuu+/y5JNPXtffrlEjil6v56233sLNzY2QkBBCQkJwc3PjzTffpLS0tCZZCiGEEEIIIYQQ4hbz2muvlb2E5vKnqmlAXn31VRRFuebn5MmTNxxTTk4Ow4cPJzIykqlTp17XtjUazvPcc8+xZMkSPv74Y7p16waYutNMnTqV9PR0vvrqq5pkW2+ceg7Cuf9ItK7ulCacJ2vxLEovnK06fZ9hOPUYiM7DG0N+DkWHd5P9xwLQ3xoNRnYd++LQfRAaZzf0KfEUrF6APjG20rSu4yZjE9KswvKS6KPkLphZ9l3r7YfjgLvRBTdF0WgwpCaR+9vXGHMy6mo36sxDI7wY2NMdJwcNJ88V8tX8FJJSq/5/HxnmwJiBnoQF2ePpruP9rxPYfdh8lmg3Fy3jx/jQLsIJJ0cNx6ML+faXa+drace2z+PQ5h8oyE3Dq2Fzeo5+kwZBratMf/bwGvas/R+5mQm4eQfTddiLBEf0KVu/ceGrnNq/zGybwKY9GfHE92XfU+OPs2vVp1yMO4qi0RDaahA9Rr6KjZ1Tre9fbRjcyYYuEToc7CAm2ciSLSWkZV/7tW7dW+jo21aHi6NCUrqRpdtKibtY+ZjVx4fb0TxIy6zVxRyPNZQtH9XDhsYNtfh5KqRkqkz/rahW96subFq9kD+XzyEnK52A4KbcP/EVGoe3qjTt1nWL2b15BYlxZwAICo1k1EPPmqX/45ev2Ld9LZnpyeh0NqY0Dz5L46aV52ntxo70ZlAvD5wcNESdLeTL+UkkXay6fmgR7sBdg7xoEmSPl7sN730Zx66r6h13Fy0T7vKlbaQTzo5ajkUX8M3C5GvmW986N9PQvYUGZwdIyVBZtcdIQnrV51BksEL/tlrcnSEjB9YdMBCdYJ6+XxsNHcI12NvChVSVFbsMZOSWr+/dSkO4v4Kfp4LBCB8u1Ff6t9o2UegWqcXLFYpL4MR5Iyv3WH58+cAOOjo11+JgC7EpRpZt05Oec+16p2uklj6tdTg7QFKGyvIdpcSnmrZxsDPlGe6vwd1ZIb8Ijsca+HOfnuIrDpUPn7CvkO/8DSUcOWf5MrnsxK55HNv6I4V5aXj4NafbiDfwCaz6uhVzdA0H1s8gLysBV69gOg6eTGCz8uvWgQ2fE3NkFfnZyWi0Nnj5R9Jh4Av4BrYBIOncHlb/ML7SvEc+/Ss+AdZbH7UPU+jSTMHZHi5mwZ8HjSRd45ateQD0bqnBzQkycmHTESNnr/jht2cLhchABRdHMBghORO2HDWSePPdBgKw7c/5bPpjFrnZaTQKasaYCa8TFFb5sZQcd4Y1i2YSf+4EmWmJjHrkFXoPG2eWpqgwnzW/zuDYvg3kZmfgHxLB6PGvEtTEeo+RG+XZsyOhkyfi1r4l9o182Xf3M6Qs32DpsG4rlnzV8PUM3Zk8eTITJky4ZprQ0FD8/Py4ePGi2XK9Xk9GRgZ+fn7X3D43N5chQ4bg4uLC0qVLsbGxqVZsl9WoEWX+/PksXLjQ7E08rVu3JjAwkAcffNCqG1Ec2nXDbcw4sn79npLYaJz7DsP76ddJee9fGPNyKqbv0AO3kQ+SueBrSmJOo/NpiMfYp0FVyV72swX2oHbZRnbEadC95K+chz4hBvsuA3AZ+zxZX7yNWpBbIX3ur1+Btvyw0Tg64faPtyk5sa98mYcPrhNepvjQdgo2L0ctLkLr0wj1Jmx0umuQJ8P7efC/OcmkpJcydqQXU/8ZwLPvxFKqr7wisrfTEJtQzIYd2bz2lH+laV5/yh+DQeW9rxMoLDJw5wBPpj0fyLPTYigusb53qZ85tIrtf3xIn7un4hvUhiNb57Di+8d58OXVODp7VUifHHuAdfMn02XovwmJ6Ev0wRWsmfMs97ywGC+/pmXpApv1ov9975d91+psy/6dn53CH98+RpM2Q+k5+k1Ki/PZ/vv7bPzlNQaPM39DmDXo11ZHz1Y6Fm4sISPHyODONjwxwo7/W1iE3lD5Nm2aaLmzhw2LN5dw4aKRXq1N23y8oJC8QvO0vVrrUK9xaOyJ0hPUQENDr1p9c32d2Ld9LYvmfMpDT75BSHgrNq6cx8z/PMPUGb/j6uZZIf3p4/vo2HMITZq1wcbWjrXLZjHj3ad5e/piPLwaANCgUTAPPP4q3g0CKC0pYsOKefzvP0/z7szluFSSpzW7e7AXI/p78tnsRFLSShl7pw/T/hnEM1PPVV3v2GqIiS9m3fZs3ng6oNI0bzwTgN4A730ZT0GRkdF3ePKfF4J5ZupZq6h3WoQoDO6o4Y9dBhLSVLpGaHnkDi0zf9eTX0m7YKCPwj29tGw4aORUvJHWjTU80FfLNyv1XMwypenZQkOXCA1LtxvIylXp307LI3fo+OJ3PfpLz/paDZw4rxKfqtIuvPLzp1uEqXHnz/0G4lNVbHXg7qzUTUFchz5ttHRvoeW3zaVk5KoM6qDjsaE2TF9UUmW90zpUw4iuOpZu0xN30UiPllomDrXlk1+LyS8CV0cFV0eFVbv1pGSqeLgojO6pw9XRhnkbzK/jv20q5VR8+R8qKqnLvb0+546sYs+qj+g+aio+ga05vv0n1s5+grv/tQqHSq5bKecPsunXF+k46F8ENuvL2cMr2DDvOUZNWoRHA9N1y807hK4j38TFMxBDaRHHt89h7azHuWfyWhycPPENassDr24xy/fA+hkknt2Ft3/LetnvmogIVBjQRmHNfpXEDJVO4Qr399bw7WojBcUV0/t7waiuGjYdVTmTqNIiWOHuHhp+XGck7dKtdEYu/HnASFY+6LTQqakpz69XGymsJE9rdnDnapb//DH3TJxCUFgrtq7+mW8//AevfLoCF7eKx1JJSSFevoG06TKY33/+qNI8f/32bZLjonnwmQ9x8/Bh/7YVfPPe47z8yXLcPBvU9S5ZhNbJkZwjp4ibvZiOi76wdDjCivn4+ODj4/O36bp160ZWVhb79++nQ4cOAGzcuBGj0UiXLl2q3C4nJ4fBgwdjZ2fH8uXLsbev+KPA36nR3badnR0hISEVljdu3BhbW9uKG1gR577Dyd+xgYLdm9CnJJD16/eoJSU4du1XaXrbkKYUx5yicP92DBmpFJ86QsGBHdgEh9Vz5HXDvttAig9so/jwDgxpSeSvnAelJdi161FperWoADU/p+xjExqJWlpC8Yn9ZWkc+42m9MwxCtYvxpAchzEzldLThyttlLF2I/t78NvqdPYcyeN8QjGfzU7G001H17bOVW5z4Hg+85anVfgV+LJGvjY0D3XgqwUpnDlfREJKKV8vSMHWVqF3J9e62pUbcnjLbCK73EvzTnfj2SCMPne9g42NPSf3LK40/ZFtPxPUrCft+k7Eo0ETOg95Hm//SI5tn2eWTquzxdHVp+xj5+hWtu581CY0Wh29x7yNh28ovoGt6H33VM4d/ZPstPN1ur810au1Dev3l3I81kBShsrCjSW4Oiq0bKytcps+bXTsPqFn7ykDKZkqizeXUFqq0qm5eft2Iy+FPm10/PpX5Xeev28vZcdxPRl/8+uztVj/x8/0uOMuuvcfTaPAJjz05JvY2NmzY+OyStNPfOED+g65n8DGzfHzb8wjT01BVVVOHd1TlqZzr2FEtO6KT4MAGgWGcc/4yRQV5JFwPrqe9qr23DnAk19XpbH7cB6xCcVMn5WIp7uOrm1dqtxm//F85v6eyq5DldezjXxtaR7qyFfzkog+X0RCSglfzk/G1kahTye3Srepb90jNOyPNnLorEpqNqzYZaDUAO3CKr9V6Rqh4UyiyvbjRtKyYeMhI0kZKp2baczSbDli5FScSkoWLNlmwMURmgeVN4D8ddjIzigjKVlVNVBB/3YalmwzcDRGJTMPUrLgVLzlz7ceLXVsPKjnxHkjyRkqv2wqxdVRITK46tu7nq107DlpYP9pAxezVJZt01Oih47NTHVVSqbK3PWlRF0wkpGrcjbRyJ979UQEa9Bc1W5UWKKSV0jZp6qGG0s4tn0OzTreS9MOd+HhG0aPUVPR2dhzev+SStOf2PkTAeE9adVrIu6+Tegw8Hm8GkVwYmf5azKbtBmBf1h3XD0D8WgQTudhr1JanEdm8ing0jXNxafsY+/ozoWojTRtPwZFsXyjW1U6N1U4fE7laKxKeg6s2a+i10PrxpXH3DFc4Vwy7D6lkp4LW46pJGdBh/Dy9CcuqMRehKx8SMuBDYdU7G0VfK2jurkuW1bOoWv/e+jcdwx+AWHcPXEKNrb27NlU+bEU1KQVI8e+SLvuw9DpKj4XlZYUcXTPOkY8NJkmER3x9gtm8D2T8PYLYse6hXW9OxaTunYLp6d8Rsrv6y0dirhFREREMGTIEJ544gn27NnD9u3befbZZ3nggQfK3syTkJBA8+bN2bPHdM+Yk5PDoEGDyM/P54cffiAnJ4fk5GSSk5MxGKp/EatRI8qzzz7Lu+++azbDbnFxMe+99x7PPvtsTbKsH1otNoGhFJ8+Wr5MVSk+fRTbkPBKNymJPY1tQCg2QU1MWXj5Yh/RjqITB+sj4rql0aJrGERJTNQVC1VKYqKwCQitVhZ2bXtScmwvlF7++UnBNrwVhvQUXMY+j8fkT3Cd+Bo2zdrWdvR1roG3DZ5uOg6fLChbVlBk5HRMEc0aO9Q4Xxud6SajtLT8BlxVQV+qEtGk5vnWFYO+hNSE4wSEdy9bpmg0+Id3I+X8oUq3STl/CP8r0gMENu1RIX3i2T3Mmtqd+R8PYfPiqRTlZ5r9XY3WBkVTXk3pbEwtxUkx+7Emni4Krk4K0Vf9InvhopHgBpVXs1oN+PtoOB1f3vVdBaITzLex0cHYO+xYurWU3MJKMrrJ6EtLuXAuiojW5b8QaDQaIlp14dypI9XKo6SkCINBj6Nz5Xfj+tJStq5bjIOjMwEhTStNY60u1zuHovLLlpnqnUKah954vVNyVb1TqleJDLN8vaPVQEMvhXNJV8QHnEtSCfSp/EEuwMc8PcDZRJVAH9P54+EMLo4K55LKz7HiUkhIrTrPyjRpqKAo4OoIz96p499367i3txZXx+vYwTrg6WLqMXImwXz/4lLVa9c73ubbqMCZBCPBvlXfEtrbKhSVwNU9wUf1sOGtR+yYNMqWjk2rbjCubwZ9CemJx2kU1q1smaLR0CisG6kXDlW6zcULh2nUpJvZMv+wnlyMqzy9QV/Cqb2/Ymvvgqdf80rTXIj6i+KCLMI73FWj/agPGg34eUBMivn/3NiLKv5elZ8n/l4KsVelj0muOr1GYxoOV1SilvUSu1no9SXEx5wgvGX5saHRaGjasivnow/XKE+DwYDRaEBnaz60QWdrR8ypW+D5Qlgto2q02KeuzJs3j+bNmzNgwACGDRtGz549+fbbb8vWl5aWcurUKQoKTM9zBw4cYPfu3Rw9epSwsDAaNmxY9rmel+XUaDjPwYMH2bBhAwEBAbRpYxoHevjwYUpKShgwYAB33VV+sViypPJWWkvQOLmiaLUYc7PNlhtys7HzrfgeaYDC/dvROLng8/w0UEDR6sjb9id565bVQ8R1S3F0RtFoUfPNhzGp+bko3g3/dntdoxB0DfzJ/2NOeZ5OLih29jj0GELBX79TsH4xNmEtcbnvKXJ++i/686drfT/qioer6YYwK8d8fHxWrr5sXU3EJ5dwMb2UR0Z78+X8FIqLjdw5wBNvT9PDk7Upys9ENRoqdH92dPYm62LlrzsvyE2rMMzH0cWbgty0su+BzXvRuNUgXD39yUmPY/fq6az84UnGPLsQjUaLf1hXdvzxEQc3/UDrno+gLylk16pPL+WfWst7eWNcHE03jrmF5jeVeQVq2bqrOdkraDUKeVdtk1ug4ute/jBzZ3cbYlOMZnOg3MzycjMxGg24XtUF2sXdi+SE2GrlsWTuZ7h5+Jg1xAAc2beFHz57hZLiIlw9vHn+7a9xdvWordDrhYerqQ7IyjH//52VY8DjBuqH+ORiLqaXMn6ML5/PS6K42MioO7zw8bS5oXxri6Mdl84H8+V5hSrerpWfQ872VDh/8orA+VKbkLODUrasYprqN6J4uCgoQK9WWlbvNVBcYuqZMm6gjq/+0GOw0BQgl/ezQhkUqlXun6M9ldY7eYUqPu6VN6I42kH/dqbeK1f6c18pZxONlOohPEDDqB46bG1gx3HL11XFBVmVXrccnL3ISq38ulWYl4a9s3eF9IVXXLcALpz8i02/vIi+tBBHZx8GP/oD9k6V1zOn9y/CP7wHTm7XHptvSY62oNEoFYbt5BeBVxWd35ztqTDELr/ItPxKYQ1Nw35sdKaeSgs3Gym0oiFf1ZGfk4XRaKgwbMfZzYuLiZUfS3/H3sGJ4PC2rF/yNQ0aheLi7sXB7as4f/ow3n5BtRG2ELcNT09P5s+fX+X6kJAQ1CvGw/ft29fse03V6M7J3d2du+++22xZYGBgtbev7D3RxXoDdjrr+RXjMtuwSFwGjiHrtx8oOR+NzscPt7smYMzOJPdP62kgsgS7dj3Rp8SbT0J7qbtqyalDFO02ddczpMRjE9AE+w69ybPiRpQ+nVx4+qHyG513v4yvk79jMMKH3ybw7MN+zP80HINB5fDJAvYdy8OKe/vWuvC2w8v+7dWwGV4NmzHvw4Eknt1DQHg3PP3C6ffAB+xY/hG7V/8XRdHQqucjODh7oyiWnfejXbiWe/qUd9H9YWXdDPCODNES5q+9KSaKrS9rlv7Ivu1r+ffU77G56le8Zi078cb//UJebhbb1i/hu/++zCsfzK10nhVr0aezK5PGljdaT/u8+r+CXA+DEd7/Op5/jmvIwunNMBhUDp3MZ9/R26veqQkF0GkVVu/Rc/ZSz5dFWwy8dK+OED+Fs4n1M6ynbRMNY3qVT3w3e03dP43a2cCEIbZczDKyfr/5DwobD5Y3liSmG7DVKfRurbOKRpS61DC0C6OfXUJRfian9v3GXwv/xcinfqnQYJOfnUxC9Hb6PTDdQpFa3vmL8OM6Iw620DZUYXQ3DXM2VD7Pyu3moUkf8MvXbzFtUj/TD0eNI2jXfRjxMScsHZq4hVlyYtlbTY0aUWbNmnVDf/SDDz7gnXfeMVv2r86RTO5at5NuGfNzUA0GNC7mXcC1Lm4YcrMq3cZ12H0U7N1Cwa6NAOiT4lBs7XC//0ly1y3lmjM9Wjm1IA/VaEBxMp+HQ3FyQc3LrmKrS2xssW3RicJNv1fM02DAkJZkttyQloQuyLrnkdlzJI9TsbFl3y93f3d31ZF5xa/C7i46YuJv7A7g7IVi/vX+eRztNeh0Cjl5Bv7v5SDOXLC+h2V7Jw8UjZbCvHSz5QV5aTi6eFe6jaOLNwVXp8+tOj2Aq1cg9k4eZKedJyDc1G22abuRNG03koLcNGxsHUBROLJlNq6e1W+0rQsnYg38N6X8/9Xl9l8XB4XcgvI6wdlRITGt8p+p84tUDMaKvxi7OCrkXMojzF+Dl5vCuxPNh1uMH2xLTJKRr5bffHeizi4eaDRacrLNj4/crHRc3as+PgD+/H0Oa5f+yAtvf1PpMB07ewd8Gwbh2zCI0KateevZkezYsJQhd02s1X2oTXsO53E65lzZ9/J6R0vmFb3g3F21nIu70XqniOf/E2NW73zyaghnzlt+nFhBMZfOB/Plzg5KhZ4kl5X3KLninLOnrDfL5d4WVy67/D05s/rX7ss9zFKveNNWQbHp416PLwo7ccFI3JLyhhPtpXrH2UEx6wXn7GB601dlCoq4ot4x3yavwLxMbG3gsaG2FJeq/LyutMJQnqtduGhkQHsdWg0W651zmZ2je6XXrcK8dBydK69nHJy9KcpLq5De4arrlo2tIzZewbh6BeMb1JZF/x3M6f2LadPnSbN00fuXYOfoTlBE5XPuWYuCEjAaVRyvemmGk33FXlyX5RWZ1v9d+lIDZOZBJpCYofKPoQptGivsPHnz3Ds7ubqj0WjJveqalZedjsvfXLOuxbtBEJOmzKG4qIDiwnxcPXz46X+T8fKtfGJwIYR1qdHPuf379ycrK6vC8pycHPr37/+321f2nuhnO0bUJJTrYzBQGncOuytfeako2DVtSUls5ZMPKrZ2FRtKjNbz+r4bYjSgT7qATeMrx/Iq2DSOoDT+XJWbAdhFdkDR6Sg+urtinomxaL3Mu65qvRpgzDK/AFmbwmKV5NTSsk9cUgkZ2XpaNysf+O5gr6FpY3tOxdTOQ0dBkZGcPAMNfWxoEmxf4VXI1kCrs8XHvwXxZ3aWLVONRhLO7KJBcNtKt2kQ3JaE6J1my+Kjd1SZHiAvK5migiwcXX0rrHN08cbGzokzh1aj1dkR0LR7JTnUn+JSSM9Ryz4pmSo5+SrhAeW96exsIMhXw/mUyusLgxESUo2EB5RXwwqmhpPL2/x1oJT//lrE9N/KPwDLd5Tyy183WZ/oS3Q2NgSFRnDyiklhjUYjJ4/uIbRZ1a8eXbtsFqsWf8dzb35JcFiLav0tVVUpLbXuciosNpKUWlr2uXCp3mnTvPzp3FTvOHDyXC3XO742hAXbs/uQ5esdgxGS0lVCG5Y3KipAYz+FuNTKH7jiU1VC/cwbIUMbKsSlms6fzDzT8LjQhuXnmJ0N+PtUnWdl4i6a0npdMazIwdY0zCWrHouu5Kp652KmSk6BSpi/+f4F+ijXrnfSzLdRgLBGGs5f8Wp1OxuYONQWgwF+WltarQljG3kpFBSpFm9AAdN1y6tRCxLP7ipbphqNJJ7dhU9Q20q38Q1qY5YeIPHsDnwDK09flq+qYtCXVFh2+sBSwtqNQqO9vtdm1jfjpdcPhzQwP5eCfZUqXy+ekK4SfFX6kAZVp79MUcob/24WOp0tAY0jiT5WfmwYjUaij+8mOLzNDedvZ++Iq4cPBXnZnDqynRYdrbvRTQhhUqOeKJs2baKkpOKNaVFREVu3bv3b7St7T3RuPQ3lydu0Eo+xz1B64SwlF87i3GcYiq0dBbs3AeAxdhKG7AxyViwAoOjYfpz7Dac0PrZsOI/rsPspOrb/pu6FclnRznU4j34UQ+J59Ikx2He5A8XGluJD2wFwHvUoxtwsCjYuNdvOrl1PSk4eQi3Mr5jnjrU43/MkdudPUxp7Ctuwltg0bU3OnE/rZZ9q0x8bM7lvmBdJqSWkpJXy0EhvMrL17LrioWPa8wHsOpTHqs1ZANjbKTT0KR/q0cDLhsYBduTmG0jLNP2y3L29Mzm5BlIz9QQ3suPx+3zZfTiPQ1EFWKM2vSew8ZdX8QloSYPA1hzZOofSkkKadzLNf7RhwSs4ufnSddhkAFr3fITfvxrHoc0/EhzRlzOHVpIaf5w+90wDoLQ4n73rviC01SAcXbzJSY9j58r/w80riKBmPcv+7tHtc/ELboeNnSPxp3ewc+X/0WXYv7FzsL63GG09UsqADjakZqtk5BgZ0tmGnAKVYzHlTx//GGnHsRgD24+ZjoPNh/U80N+W+FQjF1KM9Gqtw9ZGYe9J0/rcworzrABk5qpk5JYv93JVsLMBF0fTRLSNLk3ul5JpHQ80V7tj5CPM/vwtgptEEhLWko0r51FSXEj3fqMAmDXjTdy9fBkz9p8ArF06iz9++ZLHXvgAL59GZGeafi22s3fE3sGR4qJCVi/+jtad+uLm4U1eThab1/xCVsZFOnQfaLH9rKnlGzK4f5g3iRdN9c7Do3zIyNKbvXnnP/8KYufBXFZuMk3GXKHe8balcYAdefmmegagR3sXsvMMpGaUEuJvxxP3NWD3oVwORlWsxy1hR5SRMT20JKSpJKSrdIvQYKuDg2dMB/GYHlpyC1TWHzR93xVl5NHBWrpHmiZobtlYQyMvhT92lZ9zu6KM9G6lIT1HJTNPpX9bLbkFcPJC+fnj5mRqFHFzUtAopkk2wfSK1hI9pOdC1AUjQztp+WOXgeJSlTvaaUnLMU2maUnbj+np305HWrapThjUUUdOgcqJ8+Un/uPDbDgea2TnCVO5bDuq594+NsSnGolLVenZUoutDew/bVp/uQHFRgc//1WKnS1cvmPLLzLd+kQEaXB2ULhw0YjeYGr87ddWx5Yj1jOUp2WP8Wxd/Bre/i3xCWjF8R0/oS8ppGmHMQBs/u0VnFwb0HHwvwGI7DaOVd+P4+i2WQQ268O5I6tISzhOj9GmntOlJQUc3vQNQc374ejiQ1FBFlG75lOQk0LjloPN/nbSuV3kZcbTtOM99bvTNbTntMqIzgrJGaYeI52aKtjo4EiM6fge0VkhtxA2HzV93xetMrafQuemCmeSVCKDFBp6wOp9pvU2WugeqRCdoJJXZGpwbB+m4OIAJ+Nuvnvn3sPHs/Cr1wkMbUFQWCu2rP6ZkuJCOvcxHUvzv3wNNw9fhj/4L8A0GW1K/FkADPpSsjMvkhAbhZ29I95+wQCcPLwNVBWfRo1JS77Aivmf4NuocVmetyKtkyNOYeVzvjg2DsC1TXNKMrIpiku6xpaitqi3SkcAK3BdjShHjpS/OeHEiRMkJyeXfTcYDKxZswZ/f//ai64OFB7cicbZFZdh96F1dac0Ppa0rz8om2xW6+GFesUMwpfnPXEdfj9aN08M+TkUHdtPzspb4xVkJSf2UeDkgkPfO9E4u6JPiSd3/gzUfNPNusbNs8LkOxqvBtgEhZMzt/JxviWnDpG/ch4OPYbgNOQBDOkp5P76Nfq4M3W+P7VtyZ8Z2NsqPPOQH06OGqLOFvLOzHhK9eVl4udji6tzeSNgWJA97/27/CIx8V5Tz4oNO7OZ8ZPpnPF00zHxbl/cXHVkZuv5a3c2v66y3p46YW2HUZifwd61MynITcW7UQQjHv+ubHhOXlai2esb/ULac8dDn7B77WfsXj0dN+8Qhoz/HC8/0xAMRaMlI+kUp/Yto6QoFydXHwKa9qDz4OfRXvE6wIsXjrL3z5mUFhfg4RtK77vfoVmHUfW789X01yE9tjYK9/SxxcEWYpKNfLei2OwXXC9XBSf78nI6fNaAs0MpgzvZ4HJp6M/3K4orTK75d+7ra0sT//Jj8N/3mcZEvDe3kMxc67th7dhjMLk5mfyx8CtystIICGnGc298iau7aU6BjLQklCvepbr5z1/R60v59pMXzfIZfu8/GHn/02g0GpITYtm5eTL5OVk4ubgT3KQFL777I40CrXsYYWUWr03H3lbh2Ycb4uSo4cSZQqbMiDOvd7xtzOudYAc+mBxc9v3x+xoAsGFHFp/NMd2cerrpmHhvA9MQxWw9G3dl88tK65mk+XisipOdkf5ttTg7QHKGys8bDGUTWLo5gaqWHxdxqSqLthoY0FbLgHYa0nNg4SaD2ds/th03YqODkd202NvChYsqc9fr0V9xH9mvjdbsNcpPjzT1HJi1Vl/2BpKl2w0M6ahlbH8tKhCbrPLzev3fDnGpa5sPm+YiuauXDfa2EJtiZNaa0qvqHQ1O9uWBHjlnxMlez8AONrg4QmK6yo+rS8rqHX9vDUGX3u7z8gPmP3h9tKCYzDxT42y3SC0juupAMfWQWbFLz96T1tOIEtp6GEX5mRzYMIPC3DQ8G0YwaMK3OFwazpOfnWQ2v1aD4Hb0ve//2L/+f+z/czquXsEMGDsTjwaXrluKluzUc2w8sIyigkzsHN3x8W/FsCfm4tHA/A2Pp/ctxjeoHe4+1XvToaVFxZmG8/RqabpGXcyCX7eUz13i6qiY3QsmpMPyXUZ6t9TQp5VCZh4s3m4k7dJ7CowqeLkotOqu4GAHhSWQlAFzN5anuZm06zaU/JwM1i76nJysNPyDm/PEq9+UDefJSksyuwfKyUzlv6+VN6BtWjGLTStm0SSiE8+8PRuAooI8Vi38jKyMZByd3WjdeSBD738erc66ey7dCLcOLem24eey75GfvA5A3E9LODLxNUuFJUSNKOp1TE+r0WjKKonKNnNwcGDmzJk89thj1x1IwvP3X/c2twt7r8pf4ylMHkuabOkQrFa/oTfX613rW3yC5eeCsFbDe8pso9fy389jLR2C1Wrf4+ZruKpPxcXW09BgjTw8bP8+0W3KaOlWOyvXKkzKpypKl+oNg71dDS89ZekQ6sUdD+6z2N9ev6Cjxf52XbiunigxMTGoqkpoaCh79uzBx8enbJ2trS2+vr5ob7bBjkIIIYQQQgghhBDVcF2NKMHBpq7CRhlPJYQQQgghhBBC3BSunLJC3JgaTSz7008/XXP9uHHjahSMEEIIIYQQQgghhLWqUSPK888/b/a9tLSUgoICbG1tcXR0lEYUIYQQQgghhBBC3HJq1IiSmZlZYVl0dDRPP/00L7300g0HJYQQQgghhBBCiNohk1PXHs3fJ6me8PBwPvzwwwq9VIQQQgghhBBCCCFuBTXqiVJlZjodiYmJtZmlEEIIIYQQQgghboAqL4epNTVqRFm+fLnZd1VVSUpK4vPPP6dHjx61EpgQQgghhBBCCCGENalRI8ro0aPNviuKgo+PD/379+fTTz+tjbiEEEIIIYQQQgghrEqNGlGMl7oCpaamAuDj41N7EQkhhBBCCCGEEKLWqDKxbK257olls7KymDRpEt7e3vj5+eHn54e3tzfPPvssWVlZdRCiEEIIIYQQQgghhOVdV0+UjIwMunXrRkJCAmPHjiUiIgKAEydOMHv2bDZs2MCOHTvw8PCok2CFEEIIIYQQQghxfVRVJpatLdfViDJt2jRsbW05e/YsDRo0qLBu0KBBTJs2jenTp9dqkEIIIYQQQgghhBCWdl3DeZYtW8Ynn3xSoQEFwM/Pj48//pilS5fWWnBCCCGEEEIIIYS4MapRtdjnVnNdjShJSUm0aNGiyvUtW7YkOTn5hoMSQgghhBBCCCGEsDbX1Yji7e1NbGxsletjYmLw9PS80ZiEEEIIIYQQQgghrM51NaIMHjyYN954g5KSkgrriouLeeuttxgyZEitBSeEEEIIIYQQQogboxqNFvvcaq57YtmOHTsSHh7OpEmTaN68OaqqEhUVxZdffklxcTE///xzXcUqhBBCCCGEEEIIYTnqdTp37pw6ZMgQVaPRqIqiqIqiqBqNRh08eLAaHR19vdlZnaKiInXKlClqUVGRpUOxSlI+1yblUzUpm2uT8qmalM21SflUTcrm2qR8qiZlc21SPlWTsrk2KR9xK1BUVa3RdLmZmZlER0cDEBYWdsvMhZKTk4ObmxvZ2dm4urpaOhyrI+VzbVI+VZOyuTYpn6pJ2VyblE/VpGyuTcqnalI21yblUzUpm2uT8hG3gusaznMlDw8POnfuXJuxCCGEEEIIIYQQQlit65pYVgghhBBCCCGEEOJ2JY0oQgghhBBCCCGEENUgjShXsbOzY8qUKdjZ2Vk6FKsk5XNtUj5Vk7K5NimfqknZXJuUT9WkbK5NyqdqUjbXJuVTNSmba5PyEbeCGk8sK4QQQgghhBBCCHE7kZ4oQgghhBBCCCGEENUgjShCCCGEEEIIIYQQ1SCNKEIIIYQQQgghhBDVII0oQgghhBBCCCGEENUgjSiXTJgwAUVR+PDDD82WL1u2DEVRLBSV9bhcPoqiYGtrS1hYGNOmTUOv11s6NIubMGECo0ePNlu2aNEi7O3t+fTTTy0TlJXq27cvL7zwQoXls2fPxt3dvd7jqW9XnkdXfoYMGVKW5uDBg9x77700aNAAe3t7wsPDeeKJJzh9+rQFI68fcXFxPPbYYzRq1AhbW1uCg4N5/vnnSU9PN0t35swZHn30UQICArCzs6Nx48Y8+OCD7Nu3z0KRW0ZqaipPP/00QUFB2NnZ4efnx+DBg9m+fbulQ6tXmzZtqvS8uvzp16+fpUO0uKrqnjNnzlg6NKuQnJzMc889R2hoKHZ2dgQGBjJy5Eg2bNhg6dAs5vIx89RTT1VYN2nSJBRFYcKECfUfmBW7+jzz8vJiyJAhHDlyxNKh3ZDqXpuvJTY2FkVROHToUJ3EqCgKy5Ytq5O8haiMNKJcwd7eno8++ojMzExLh2KVhgwZQlJSEtHR0UyePJmpU6fyf//3f5YOy+p8//33jB07lq+++orJkydbOhxhZS6fR1d+FixYAMCKFSvo2rUrxcXFzJs3j6ioKObOnYubmxtvvfWWhSOvW+fOnaNjx45ER0ezYMECzpw5w9dff82GDRvo1q0bGRkZAOzbt48OHTpw+vRpvvnmG06cOMHSpUtp3rz5bXe+3X333Rw8eJA5c+Zw+vRpli9fTt++fa/rxvZW0L179wrnVFJSEt988w2KovDMM89YOkSrUFnd07hxY0uHZXGxsbF06NCBjRs38n//938cPXqUNWvW0K9fPyZNmmTp8CwqMDCQhQsXUlhYWLasqKiI+fPnExQUZMHIrNeV59mGDRvQ6XSMGDHC0mHVWHWvzULcdlShqqqqjh8/Xh0xYoTavHlz9aWXXipbvnTpUlWKyVQ+o0aNMls2cOBAtWvXrpYJyIpcWTYfffSRam9vry5ZssSyQVlInz591EmTJqmTJk1SXV1dVS8vL/XNN99UjUZj2frnn3++wnazZs1S3dzc6jdYC6jsPLosPz9f9fb2VkePHl3p+szMzLoLzAoMGTJEDQgIUAsKCsyWJyUlqY6OjupTTz2lGo1GtUWLFmqHDh1Ug8FQIY9bvYyulJmZqQLqpk2bLB2KVTpx4oTq4uKivvHGG6qqqupff/2lAur69evVDh06qA4ODmq3bt3UkydPWjjS+nGtumfZsmVqu3btVDs7O7Vx48bq1KlT1dLS0voN0IKGDh2q+vv7q3l5eRXWZWZmqjExMSqgHjx40Gw5oP7111/1F2g9u3zMtGzZUp07d27Z8nnz5qmtW7dWR40apY4fP15VVdO1/bnnnlNfeukl1cPDQ23QoIE6ZcoUywRuQZWdZ1u3blUB9eLFi5YJ6gZV59qsqqoKqEuXLjVL4+bmps6aNats/ZWfPn36qKpaXmZTp05Vvb29VRcXF/Uf//iHWlxcXJZPcHCwOn36dLO827RpU3aMBQcHm+UdHBxcW7svRJWkJ8oVtFot77//PjNnziQ+Pt7S4Vg9BwcHSkpKLB2G1XjllVd49913WbFiBWPGjLF0OBYzZ84cdDode/bs4X//+x///e9/+f777y0dltVbu3YtaWlpvPzyy5Wuv5WHO2VkZLB27VqeeeYZHBwczNb5+fkxduxYfvnlFw4dOsTx48eZPHkyGk3Fy9etXEZXc3Z2xtnZmWXLllFcXGzpcKxKVlYWo0aNom/fvrz77rtm69544w0+/fRT9u3bh06n47HHHrNQlNZh69atjBs3jueff54TJ07wzTffMHv2bN577z1Lh1YvMjIyWLNmDZMmTcLJyanC+tupTqnKY489xqxZs8q+//jjjzz66KMV0s2ZMwcnJyd2797Nxx9/zLRp01i3bl19hmp18vLymDt3LmFhYXh5eVk6nOtW3Wuzqqp/m9eePXsAWL9+PUlJSSxZsqRs3YYNG4iKimLTpk0sWLCAJUuW8M4771Q7zr179wIwa9YskpKSyr4LUZekEeUqY8aMoW3btkyZMsXSoVgtVVVZv349a9eupX///pYOxyqsXr2ajz/+mN9//50BAwZYOhyLCgwMZPr06TRr1oyxY8fy3HPPMX369LL1X375ZdkD4OVPZWOub1UrVqyosP/vv/8+0dHRADRv3tzCEda/6OhoVFUlIiKi0vURERFkZmbe1mV0NZ1Ox+zZs5kzZw7u7u706NGD119//aYfe3+jjEYjDz30EDqdjnnz5lWY0+y9996jT58+REZG8uqrr7Jjxw6KioosFG39urruuffee3nnnXd49dVXGT9+PKGhoQwcOJB3332Xb775xtLh1oszZ86gqqrUKdfw8MMPs23bNs6fP8/58+fZvn07Dz/8cIV0rVu3ZsqUKYSHhzNu3Dg6dux4W84pc+V55uLiwvLly/nll18qbfi3dtW9Nqempv5tXj4+PgB4eXnh5+eHp6dn2TpbW1t+/PFHWrRowfDhw5k2bRozZszAaDRWK87Lebu7u+Pn51f2XYi6dPOd0fXgo48+Ys6cOURFRVk6FKty+cJgb2/P0KFDuf/++5k6daqlw7IKrVu3JiQkhClTppCXl2fpcCyqa9euZg8u3bp1Izo6GoPBAMDYsWM5dOiQ2WfatGmWCrfe9evXr8L+P/XUU9X6JedW93dlIGVk7u677yYxMZHly5czZMgQNm3aRPv27Zk9e7alQ7OY119/nZ07d/L777/j4uJSYX3r1q3L/t2wYUMALl68WG/xWdLVdc+MGTM4fPgw06ZNM2tceeKJJ0hKSqKgoMDSIdc5qVP+no+PD8OHD2f27NnMmjWL4cOH4+3tXSHdlecWmM6v2+XcutKV59mePXsYPHgwQ4cO5fz585YOrcbq+jxp06YNjo6OZd+7detGXl4ecXFxdfp3hbgR0ohSid69ezN48GBee+01S4diVS5fGKKjoyksLCzruinA39+fTZs2kZCQwJAhQ8jNzbV0SFbLzc2NsLAws4+vr6+lw6o3Tk5OFfbf09OTpk2bAnDy5EkLR1j/wsLCUBSlyobrqKgoPDw8busyqoq9vT0DBw7krbfeYseOHUyYMOG27Um5cOFCPvnkExYuXEh4eHilaWxsbMr+fbmxt7q/dt7srq57GjZsSF5eHu+8845Z48rRo0eJjo7G3t7e0iHXufDwcBRFuWadcrkHwZUPkqWlpXUemzV57LHHynq+VTUE7spzC0zn1+1ybl3pyvOsU6dOfP/99+Tn5/Pdd99ZOrTrVt1rs4+PD4qiVGhsqa3zRKPR1FneQtSUNKJU4cMPP+SPP/5g586dlg7Faly+MAQFBaHT6SwdjtUJDg5m8+bNJCcn39YNKbt37zb7vmvXLsLDw9FqtRaK6OYwaNAgvL29+fjjjytdn5WVVb8B1SMvLy8GDhzIl19+afYWCDC9enTevHncf//9tG3blsjISD799NNKb85v5TKqrsjISPLz8y0dRr07dOgQEydO5MMPP2Tw4MGWDuem0b59e06dOlWhYTcsLOymHH5wvTw9PRk8eDBffPFFpedNVlZW2dCApKSksuV19ZpWazVkyBBKSkooLS2V8+s6KYqCRqOpcG27GVT32qwoCj4+PmbnSHR0tFlvNltbW4CyXslXOnz4sFn+u3btwtnZmcDAQIAKeefk5BATE2OWh42NTaV5C1FXbv0rZA21atWKsWPHMmPGDEuHIm4igYGBbNq0iYsXLzJ48GBycnIsHVK9u3DhAv/+9785deoUCxYsYObMmTz//POWDstqFBcXk5ycbPZJS0vDycmJ77//npUrV3LnnXeyfv16YmNj2bdvHy+//PItP2/M559/TnFxMYMHD2bLli3ExcWxZs0aBg4ciL+/P++99x6KojBr1ixOnz5Nr169WLVqFefOnePIkSO89957jBo1ytK7UW/S09Pp378/c+fO5ciRI8TExPDbb7/x8ccf31blAJCWlsbo0aPp27cvDz/8cIXzqzrj9W9Xb7/9Nj/99BPvvPMOx48fJyoqioULF/Lmm29aOrR688UXX2AwGOjcuTOLFy8mOjqaqKgoZsyYQbdu3XBwcKBr1658+OGHREVFsXnz5tuqfMD04oWoqChOnDghP4j8jSuv8VFRUTz33HPk5eUxcuRIS4dWI9W5NgP079+fzz//nIMHD7Jv3z6eeuops95Jvr6+ODg4sGbNGlJSUsjOzi5bV1JSwsSJEzlx4gSrVq1iypQpPPvss2UNuf379+fnn39m69atHD16lPHjx1c4DkNCQtiwYQPJyclkZmbWQ8mI2500olzDtGnTbsuuiOLGBAQEsGnTJtLS0m7LhpRx48ZRWFhI586dmTRpEs8//zxPPvmkpcOyGmvWrKFhw4Zmn549ewIwatQoduzYgY2NDQ899BDNmzfnwQcfJDs7m//85z8WjrxuhYeHs2/fPkJDQ7nvvvto0qQJTz75JP369WPnzp1lk9B17tyZffv2ERYWxhNPPEFERAR33nknx48f57PPPrPsTtQjZ2dnunTpwvTp0+nduzctW7bkrbfe4oknnuDzzz+3dHj1auXKlZw/f55Vq1ZVOLcaNmxIp06dLB2i1Ro8eDArVqzgzz//pFOnTnTt2pXp06cTHBxs6dDqTWhoKAcOHKBfv35MnjyZli1bMnDgQDZs2MBXX30FmN5Io9fr6dChAy+88MItXx9XxtXVFVdXV0uHYfWuvMZ36dKFvXv38ttvv9G3b19Lh1Yj1b02f/rppwQGBtKrVy8eeughXnzxRbN5TnQ6HTNmzOCbb76hUaNGZo39AwYMIDw8nN69e3P//fdz5513ms25+Nprr9GnTx9GjBjB8OHDGT16NE2aNDGL89NPP2XdunUEBgbSrl27ui0UIQBFlVm1hBC1pG/fvrRt2/a2epgVQgghhBDXb8KECWRlZbFs2TJLhyLEdZGeKEIIIYQQQgghhBDVII0oQgghhBBCCCGEENUgw3mEEEIIIYQQQgghqkF6ogghhBBCCCGEEEJUgzSiCCGEEEIIIYQQQlSDNKIIIYQQQgghhBBCVIM0ogghhBBCCCGEEEJUgzSiCCGEEEIIIYQQQlSDNKIIIYQQQgghhBBCVIM0ogghhBBCCCGEEEJUgzSiCCGEEEIIIYQQQlSDNKIIIYQQQgghhBBCVMP/A0hn8ZXG9/bpAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "features.var()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 460 }, "id": "MYk_QQjjxtws", "outputId": "8295276f-dc0d-42a4-ca80-43e798b09379" }, "execution_count": 24, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "N 5146.512207\n", "P 12.153910\n", "K 12126.570135\n", "pH 0.063922\n", "EC 0.019929\n", "OC 0.096161\n", "S 5.223278\n", "Zn 0.013422\n", "Fe 5.837588\n", "Cu 0.185546\n", "Mn 13.503260\n", "B 0.035824\n", "dtype: float64" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0
N5146.512207
P12.153910
K12126.570135
pH0.063922
EC0.019929
OC0.096161
S5.223278
Zn0.013422
Fe5.837588
Cu0.185546
Mn13.503260
B0.035824
\n", "

" ] }, "metadata": {}, "execution_count": 24 } ] }, { "cell_type": "code", "source": [ "from sklearn.preprocessing import MinMaxScaler\n", "scaler = MinMaxScaler()\n", "scaled_features = scaler.fit_transform(features)\n", "\n", "scaled_features_df = pd.DataFrame(scaled_features, columns=features.columns)\n", "scaled_features_df.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 226 }, "id": "W3TNTUsQxvuu", "outputId": "9107e217-9de2-4e0a-d39e-1c29748a4b1c" }, "execution_count": 25, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " N P K pH ... Fe Cu Mn B\n", "0 0.269113 0.313187 0.536379 0.438596 ... 0.009671 0.338308 0.439224 0.056818\n", "1 0.596330 0.285714 0.536379 0.307018 ... 0.021277 0.238806 0.389173 0.772727\n", "2 0.596330 0.296703 0.536379 0.543860 ... 0.072534 0.736318 0.130746 0.602273\n", "3 0.174312 0.296703 0.624365 0.412281 ... 0.071567 0.398010 0.104699 0.772727\n", "4 0.461774 0.131868 0.446701 0.561404 ... 0.881044 0.298507 0.455567 0.715909\n", "\n", "[5 rows x 12 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NPKpHECOCSZnFeCuMnB
00.2691130.3131870.5363790.4385960.5600000.5128210.3500000.2459020.0096710.3383080.4392240.056818
10.5963300.2857140.5363790.3070180.5733330.5811970.8250000.3278690.0212770.2388060.3891730.772727
20.5963300.2967030.5363790.5438600.7200000.6239320.5416670.3770490.0725340.7363180.1307460.602273
30.1743120.2967030.6243650.4122810.3066670.5555560.4583330.1475410.0715670.3980100.1046990.772727
40.4617740.1318680.4467010.5614040.4400000.2478630.7633330.3770490.8810440.2985070.4555670.715909
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "scaled_features_df", "summary": "{\n \"name\": \"scaled_features_df\",\n \"rows\": 716,\n \"fields\": [\n {\n \"column\": \"N\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.21938591971734842,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 53,\n \"samples\": [\n 0.327217125382263,\n 0.9021406727828747,\n 0.7859327217125383\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"P\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.19155196562053622,\n \"min\": 0.0,\n \"max\": 0.9999999999999999,\n \"num_unique_values\": 61,\n \"samples\": [\n 0.3131868131868132,\n 0.27472527472527475,\n 0.8406593406593404\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"K\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.18632945366070472,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 53,\n \"samples\": [\n 0.6074450084602367,\n 0.7495769881556682,\n 0.8934010152284264\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"pH\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.22177980148781448,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 92,\n \"samples\": [\n 0.21052631578947345,\n 0.5526315789473681,\n 0.1403508771929829\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"EC\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.18822707957134807,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 67,\n \"samples\": [\n 0.1866666666666667,\n 0.3466666666666666,\n 0.44\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"OC\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.26504193634834394,\n \"min\": 0.0,\n \"max\": 1.0000000000000002,\n \"num_unique_values\": 51,\n \"samples\": [\n 0.17094017094017094,\n 0.35042735042735046,\n 0.7692307692307693\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.19045409399020355,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 90,\n \"samples\": [\n 0.6083333333333334,\n 0.2608333333333333,\n 0.7883333333333333\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Zn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.18992114726672912,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 52,\n \"samples\": [\n 0.4262295081967213,\n 0.36065573770491804,\n 0.5737704918032787\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.23366635389231413,\n \"min\": 0.0,\n \"max\": 1.0000000000000002,\n \"num_unique_values\": 305,\n \"samples\": [\n 0.0551257253384913,\n 1.0000000000000002,\n 0.7582205029013541\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cu\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.214303962611252,\n \"min\": 0.0,\n \"max\": 0.9999999999999999,\n \"num_unique_values\": 141,\n \"samples\": [\n 0.7164179104477612,\n 0.7014925373134328,\n 0.8955223880597013\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mn\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.18767508636626992,\n \"min\": 0.0,\n \"max\": 0.9999999999999999,\n \"num_unique_values\": 328,\n \"samples\": [\n 0.7614913176710928,\n 0.42951991828396313,\n 0.46935648621041876\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2150816238634983,\n \"min\": 0.0,\n \"max\": 0.9999999999999999,\n \"num_unique_values\": 65,\n \"samples\": [\n 0.3068181818181819,\n 0.3295454545454546,\n 0.05681818181818181\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 25 } ] }, { "cell_type": "code", "source": [ "scaled_features_df.var()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 460 }, "id": "qUi8jSNDyA1W", "outputId": "9e0c484e-340d-4e0b-dbae-42ee2da466f3" }, "execution_count": 26, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "N 0.048130\n", "P 0.036692\n", "K 0.034719\n", "pH 0.049186\n", "EC 0.035429\n", "OC 0.070247\n", "S 0.036273\n", "Zn 0.036070\n", "Fe 0.054600\n", "Cu 0.045926\n", "Mn 0.035222\n", "B 0.046260\n", "dtype: float64" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0
N0.048130
P0.036692
K0.034719
pH0.049186
EC0.035429
OC0.070247
S0.036273
Zn0.036070
Fe0.054600
Cu0.045926
Mn0.035222
B0.046260
\n", "

" ] }, "metadata": {}, "execution_count": 26 } ] }, { "cell_type": "code", "source": [ "from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import train_test_split\n", "\n", "Input, testInput, Target, testTarget = train_test_split(scaled_features_df, labels, test_size = 0.2, shuffle=True, random_state= 42)\n", "trainInput, validationInput, trainTarget, validationTarget = train_test_split(Input, Target, test_size = 0.2, shuffle=True, random_state=42)" ], "metadata": { "id": "PDverqFSyDaL" }, "execution_count": 28, "outputs": [] }, { "cell_type": "code", "source": [ "print(\"Training input shape:\", trainInput.shape)\n", "print(\"Validation input shape:\", validationInput.shape)\n", "print(\"Test input shape:\", testInput.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WCgESfH8yk6a", "outputId": "026a86fe-08f8-4c9d-d2a8-ac8e5db77e39" }, "execution_count": 29, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Training input shape: (457, 12)\n", "Validation input shape: (115, 12)\n", "Test input shape: (144, 12)\n" ] } ] }, { "cell_type": "code", "source": [ "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import Dense, Input\n", "from tensorflow.keras import initializers\n", "from tensorflow.keras.optimizers import SGD\n", "\n", "weight_initialization = initializers.HeNormal()\n", "model = Sequential([Input(shape=(12,)),\n", " Dense(64, activation='relu', kernel_initializer=weight_initialization),\n", " Dense(32, activation='relu', kernel_initializer=weight_initialization),\n", " Dense(16, activation='relu', kernel_initializer=weight_initialization),\n", " Dense(3, activation='softmax')])\n", "\n", "model.compile(\n", " optimizer=SGD(learning_rate=0.01, momentum=0.9),\n", " loss = 'sparse_categorical_crossentropy',\n", " metrics=['accuracy']\n", ")" ], "metadata": { "id": "X58--pyjyx39" }, "execution_count": 33, "outputs": [] }, { "cell_type": "code", "source": [ "checkpoint_callback = ModelCheckpoint(\n", " 'best_weights.keras',\n", " monitor='val_loss',\n", " save_best_only=True,\n", " mode='min',\n", " verbose=1\n", ")\n", "\n", "history = model.fit(\n", " trainInput, trainTarget,\n", " validation_data=(validationInput, validationTarget),\n", " epochs = 100,\n", " batch_size= 32,\n", " callbacks=[checkpoint_callback],\n", " verbose=1\n", ")\n", "model.summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "6I4zgEsz0JLW", "outputId": "5b2ddf6f-1f07-4ce2-d7a0-d94f3d21a017" }, "execution_count": 34, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 805ms/step - accuracy: 0.0938 - loss: 1.5935\n", "Epoch 1: val_loss improved from inf to 1.14866, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.2190 - loss: 1.3515 - val_accuracy: 0.4174 - val_loss: 1.1487\n", "Epoch 2/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.3438 - loss: 1.1005\n", "Epoch 2: val_loss improved from 1.14866 to 1.04625, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.4716 - loss: 1.0217 - val_accuracy: 0.5826 - val_loss: 1.0462\n", "Epoch 3/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7812 - loss: 0.7959\n", "Epoch 3: val_loss improved from 1.04625 to 0.95615, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6928 - loss: 0.8903 - val_accuracy: 0.7130 - val_loss: 0.9562\n", "Epoch 4/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.8125 - loss: 0.7972\n", "Epoch 4: val_loss improved from 0.95615 to 0.88711, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6922 - loss: 0.8606 - val_accuracy: 0.6870 - val_loss: 0.8871\n", "Epoch 5/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8438 - loss: 0.6379\n", "Epoch 5: val_loss improved from 0.88711 to 0.76429, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7654 - loss: 0.7546 - val_accuracy: 0.7217 - val_loss: 0.7643\n", "Epoch 6/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.7188 - loss: 0.7402\n", "Epoch 6: val_loss improved from 0.76429 to 0.67704, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7473 - loss: 0.6832 - val_accuracy: 0.7217 - val_loss: 0.6770\n", "Epoch 7/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.7188 - loss: 0.6779\n", "Epoch 7: val_loss improved from 0.67704 to 0.67488, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7893 - loss: 0.6046 - val_accuracy: 0.7043 - val_loss: 0.6749\n", "Epoch 8/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7188 - loss: 0.5870\n", "Epoch 8: val_loss improved from 0.67488 to 0.56562, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8008 - loss: 0.5059 - val_accuracy: 0.7217 - val_loss: 0.5656\n", "Epoch 9/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.8125 - loss: 0.5177\n", "Epoch 9: val_loss improved from 0.56562 to 0.47992, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8167 - loss: 0.4617 - val_accuracy: 0.7391 - val_loss: 0.4799\n", "Epoch 10/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - accuracy: 0.7812 - loss: 0.5089\n", "Epoch 10: val_loss improved from 0.47992 to 0.42612, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8339 - loss: 0.4103 - val_accuracy: 0.7478 - val_loss: 0.4261\n", "Epoch 11/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.7188 - loss: 0.5165\n", "Epoch 11: val_loss improved from 0.42612 to 0.42533, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8392 - loss: 0.3645 - val_accuracy: 0.7652 - val_loss: 0.4253\n", "Epoch 12/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.9062 - loss: 0.2583\n", "Epoch 12: val_loss did not improve from 0.42533\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8735 - loss: 0.3250 - val_accuracy: 0.7652 - val_loss: 0.4324\n", "Epoch 13/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.8125 - loss: 0.3178\n", "Epoch 13: val_loss improved from 0.42533 to 0.36292, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8660 - loss: 0.2960 - val_accuracy: 0.7913 - val_loss: 0.3629\n", "Epoch 14/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.8750 - loss: 0.2455\n", "Epoch 14: val_loss improved from 0.36292 to 0.32145, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8768 - loss: 0.2624 - val_accuracy: 0.8261 - val_loss: 0.3214\n", "Epoch 15/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.8438 - loss: 0.3387\n", "Epoch 15: val_loss improved from 0.32145 to 0.30249, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8665 - loss: 0.2970 - val_accuracy: 0.8348 - val_loss: 0.3025\n", "Epoch 16/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.8125 - loss: 0.2780\n", "Epoch 16: val_loss did not improve from 0.30249\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8608 - loss: 0.2688 - val_accuracy: 0.8348 - val_loss: 0.4058\n", "Epoch 17/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.9062 - loss: 0.1892\n", "Epoch 17: val_loss improved from 0.30249 to 0.29274, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8919 - loss: 0.2473 - val_accuracy: 0.8261 - val_loss: 0.2927\n", "Epoch 18/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.9375 - loss: 0.1333\n", "Epoch 18: val_loss did not improve from 0.29274\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9220 - loss: 0.2022 - val_accuracy: 0.8783 - val_loss: 0.3099\n", "Epoch 19/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.9062 - loss: 0.2285\n", "Epoch 19: val_loss improved from 0.29274 to 0.28112, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9042 - loss: 0.2585 - val_accuracy: 0.8609 - val_loss: 0.2811\n", "Epoch 20/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.8750 - loss: 0.2672\n", "Epoch 20: val_loss did not improve from 0.28112\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8846 - loss: 0.2764 - val_accuracy: 0.7826 - val_loss: 0.3788\n", "Epoch 21/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.9062 - loss: 0.1898\n", "Epoch 21: val_loss did not improve from 0.28112\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9163 - loss: 0.2046 - val_accuracy: 0.8348 - val_loss: 0.3267\n", "Epoch 22/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.9062 - loss: 0.1895\n", "Epoch 22: val_loss did not improve from 0.28112\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9034 - loss: 0.2150 - val_accuracy: 0.8000 - val_loss: 0.3390\n", "Epoch 23/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.9375 - loss: 0.1880\n", "Epoch 23: val_loss improved from 0.28112 to 0.25087, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9068 - loss: 0.2297 - val_accuracy: 0.8783 - val_loss: 0.2509\n", "Epoch 24/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9375 - loss: 0.2815\n", "Epoch 24: val_loss improved from 0.25087 to 0.24267, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9383 - loss: 0.2304 - val_accuracy: 0.9391 - val_loss: 0.2427\n", "Epoch 25/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.9688 - loss: 0.1306\n", "Epoch 25: val_loss improved from 0.24267 to 0.23402, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9214 - loss: 0.1786 - val_accuracy: 0.9043 - val_loss: 0.2340\n", "Epoch 26/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9688 - loss: 0.1110\n", "Epoch 26: val_loss improved from 0.23402 to 0.22865, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9561 - loss: 0.1598 - val_accuracy: 0.8957 - val_loss: 0.2286\n", "Epoch 27/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.9375 - loss: 0.2635\n", "Epoch 27: val_loss did not improve from 0.22865\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9306 - loss: 0.1989 - val_accuracy: 0.8348 - val_loss: 0.3010\n", "Epoch 28/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - accuracy: 0.9688 - loss: 0.0769\n", "Epoch 28: val_loss did not improve from 0.22865\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9403 - loss: 0.1495 - val_accuracy: 0.8000 - val_loss: 0.2730\n", "Epoch 29/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 35ms/step - accuracy: 0.8750 - loss: 0.1696\n", "Epoch 29: val_loss improved from 0.22865 to 0.21340, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9066 - loss: 0.1838 - val_accuracy: 0.9217 - val_loss: 0.2134\n", "Epoch 30/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.9375 - loss: 0.1661\n", "Epoch 30: val_loss did not improve from 0.21340\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9162 - loss: 0.2057 - val_accuracy: 0.8522 - val_loss: 0.3241\n", "Epoch 31/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.9375 - loss: 0.1732\n", "Epoch 31: val_loss did not improve from 0.21340\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9240 - loss: 0.2088 - val_accuracy: 0.9304 - val_loss: 0.2708\n", "Epoch 32/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - accuracy: 0.9062 - loss: 0.1921\n", "Epoch 32: val_loss did not improve from 0.21340\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9096 - loss: 0.2115 - val_accuracy: 0.8348 - val_loss: 0.2862\n", "Epoch 33/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.9062 - loss: 0.1658\n", "Epoch 33: val_loss improved from 0.21340 to 0.21030, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9184 - loss: 0.1870 - val_accuracy: 0.9391 - val_loss: 0.2103\n", "Epoch 34/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - accuracy: 1.0000 - loss: 0.1079\n", "Epoch 34: val_loss improved from 0.21030 to 0.19879, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9571 - loss: 0.1443 - val_accuracy: 0.9130 - val_loss: 0.1988\n", "Epoch 35/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 180ms/step - accuracy: 0.9375 - loss: 0.1475\n", "Epoch 35: val_loss did not improve from 0.19879\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9508 - loss: 0.1577 - val_accuracy: 0.8957 - val_loss: 0.2167\n", "Epoch 36/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - accuracy: 1.0000 - loss: 0.0727\n", "Epoch 36: val_loss did not improve from 0.19879\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9652 - loss: 0.1313 - val_accuracy: 0.9391 - val_loss: 0.2029\n", "Epoch 37/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.9375 - loss: 0.1212\n", "Epoch 37: val_loss did not improve from 0.19879\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9483 - loss: 0.1485 - val_accuracy: 0.8783 - val_loss: 0.2446\n", "Epoch 38/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9688 - loss: 0.0998\n", "Epoch 38: val_loss did not improve from 0.19879\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9233 - loss: 0.1974 - val_accuracy: 0.8783 - val_loss: 0.2875\n", "Epoch 39/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9062 - loss: 0.1880\n", "Epoch 39: val_loss did not improve from 0.19879\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9450 - loss: 0.1399 - val_accuracy: 0.9304 - val_loss: 0.1995\n", "Epoch 40/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 1.0000 - loss: 0.0455\n", "Epoch 40: val_loss did not improve from 0.19879\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9668 - loss: 0.1088 - val_accuracy: 0.8957 - val_loss: 0.2206\n", "Epoch 41/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 73ms/step - accuracy: 0.9688 - loss: 0.1340\n", "Epoch 41: val_loss improved from 0.19879 to 0.19577, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9601 - loss: 0.1395 - val_accuracy: 0.9304 - val_loss: 0.1958\n", "Epoch 42/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 145ms/step - accuracy: 0.9375 - loss: 0.1709\n", "Epoch 42: val_loss did not improve from 0.19577\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9539 - loss: 0.1199 - val_accuracy: 0.9043 - val_loss: 0.2315\n", "Epoch 43/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 1.0000 - loss: 0.1025\n", "Epoch 43: val_loss did not improve from 0.19577\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9733 - loss: 0.1108 - val_accuracy: 0.8348 - val_loss: 0.3262\n", "Epoch 44/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.9375 - loss: 0.0935\n", "Epoch 44: val_loss did not improve from 0.19577\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9560 - loss: 0.1080 - val_accuracy: 0.9217 - val_loss: 0.1980\n", "Epoch 45/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.9688 - loss: 0.0789\n", "Epoch 45: val_loss did not improve from 0.19577\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9560 - loss: 0.1243 - val_accuracy: 0.9130 - val_loss: 0.2059\n", "Epoch 46/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.9688 - loss: 0.1099\n", "Epoch 46: val_loss did not improve from 0.19577\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9504 - loss: 0.1375 - val_accuracy: 0.9304 - val_loss: 0.2561\n", "Epoch 47/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.9062 - loss: 0.1673\n", "Epoch 47: val_loss did not improve from 0.19577\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9415 - loss: 0.1759 - val_accuracy: 0.9130 - val_loss: 0.2000\n", "Epoch 48/100\n", "\u001b[1m14/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9763 - loss: 0.0975 \n", "Epoch 48: val_loss did not improve from 0.19577\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9754 - loss: 0.0990 - val_accuracy: 0.9043 - val_loss: 0.2118\n", "Epoch 49/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 146ms/step - accuracy: 1.0000 - loss: 0.0662\n", "Epoch 49: val_loss improved from 0.19577 to 0.19387, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9720 - loss: 0.1158 - val_accuracy: 0.9304 - val_loss: 0.1939\n", "Epoch 50/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 178ms/step - accuracy: 1.0000 - loss: 0.0574\n", "Epoch 50: val_loss did not improve from 0.19387\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9736 - loss: 0.1167 - val_accuracy: 0.9130 - val_loss: 0.2162\n", "Epoch 51/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.9688 - loss: 0.1938\n", "Epoch 51: val_loss improved from 0.19387 to 0.19044, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9643 - loss: 0.1210 - val_accuracy: 0.9130 - val_loss: 0.1904\n", "Epoch 52/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.9688 - loss: 0.1132\n", "Epoch 52: val_loss did not improve from 0.19044\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9546 - loss: 0.1408 - val_accuracy: 0.8696 - val_loss: 0.2523\n", "Epoch 53/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 83ms/step - accuracy: 0.9062 - loss: 0.1474\n", "Epoch 53: val_loss did not improve from 0.19044\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9569 - loss: 0.1164 - val_accuracy: 0.9043 - val_loss: 0.2063\n", "Epoch 54/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - accuracy: 0.9688 - loss: 0.0795\n", "Epoch 54: val_loss did not improve from 0.19044\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9827 - loss: 0.0813 - val_accuracy: 0.8696 - val_loss: 0.2256\n", "Epoch 55/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.9375 - loss: 0.1088\n", "Epoch 55: val_loss improved from 0.19044 to 0.18763, saving model to best_weights.keras\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9728 - loss: 0.0916 - val_accuracy: 0.9478 - val_loss: 0.1876\n", "Epoch 56/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.9688 - loss: 0.0868\n", "Epoch 56: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9754 - loss: 0.0926 - val_accuracy: 0.9304 - val_loss: 0.1999\n", "Epoch 57/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 1.0000 - loss: 0.0590\n", "Epoch 57: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9718 - loss: 0.1086 - val_accuracy: 0.9130 - val_loss: 0.2409\n", "Epoch 58/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 83ms/step - accuracy: 0.9062 - loss: 0.1925\n", "Epoch 58: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9478 - loss: 0.1208 - val_accuracy: 0.9217 - val_loss: 0.2097\n", "Epoch 59/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 85ms/step - accuracy: 1.0000 - loss: 0.0362\n", "Epoch 59: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9342 - loss: 0.1862 - val_accuracy: 0.9391 - val_loss: 0.2388\n", "Epoch 60/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 1.0000 - loss: 0.0787\n", "Epoch 60: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9301 - loss: 0.1610 - val_accuracy: 0.9043 - val_loss: 0.2482\n", "Epoch 61/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.9688 - loss: 0.0440\n", "Epoch 61: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9625 - loss: 0.0911 - val_accuracy: 0.9130 - val_loss: 0.2261\n", "Epoch 62/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 86ms/step - accuracy: 1.0000 - loss: 0.0205\n", "Epoch 62: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9783 - loss: 0.0721 - val_accuracy: 0.9130 - val_loss: 0.2451\n", "Epoch 63/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 81ms/step - accuracy: 0.9688 - loss: 0.0563\n", "Epoch 63: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9712 - loss: 0.0881 - val_accuracy: 0.9391 - val_loss: 0.1967\n", "Epoch 64/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9688 - loss: 0.0542\n", "Epoch 64: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9415 - loss: 0.1153 - val_accuracy: 0.9304 - val_loss: 0.2451\n", "Epoch 65/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 83ms/step - accuracy: 0.9688 - loss: 0.0661\n", "Epoch 65: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9494 - loss: 0.1230 - val_accuracy: 0.9130 - val_loss: 0.2356\n", "Epoch 66/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 79ms/step - accuracy: 1.0000 - loss: 0.0515\n", "Epoch 66: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9567 - loss: 0.1118 - val_accuracy: 0.9391 - val_loss: 0.2268\n", "Epoch 67/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.9688 - loss: 0.0738\n", "Epoch 67: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9446 - loss: 0.1586 - val_accuracy: 0.8696 - val_loss: 0.4411\n", "Epoch 68/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.8438 - loss: 0.3392\n", "Epoch 68: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9186 - loss: 0.1886 - val_accuracy: 0.9130 - val_loss: 0.2261\n", "Epoch 69/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.9688 - loss: 0.0973\n", "Epoch 69: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9573 - loss: 0.1117 - val_accuracy: 0.9391 - val_loss: 0.2280\n", "Epoch 70/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.9688 - loss: 0.2715\n", "Epoch 70: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9695 - loss: 0.1231 - val_accuracy: 0.9391 - val_loss: 0.2640\n", "Epoch 71/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 1.0000 - loss: 0.0650\n", "Epoch 71: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9516 - loss: 0.1194 - val_accuracy: 0.9565 - val_loss: 0.2397\n", "Epoch 72/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 77ms/step - accuracy: 0.9688 - loss: 0.0667\n", "Epoch 72: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9724 - loss: 0.0828 - val_accuracy: 0.9130 - val_loss: 0.2669\n", "Epoch 73/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 84ms/step - accuracy: 0.9375 - loss: 0.1273\n", "Epoch 73: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9718 - loss: 0.0918 - val_accuracy: 0.9391 - val_loss: 0.2136\n", "Epoch 74/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 85ms/step - accuracy: 0.9688 - loss: 0.1311\n", "Epoch 74: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9632 - loss: 0.1035 - val_accuracy: 0.9391 - val_loss: 0.1920\n", "Epoch 75/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 1.0000 - loss: 0.0274\n", "Epoch 75: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9874 - loss: 0.0560 - val_accuracy: 0.9478 - val_loss: 0.1924\n", "Epoch 76/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 81ms/step - accuracy: 1.0000 - loss: 0.0390\n", "Epoch 76: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9830 - loss: 0.0664 - val_accuracy: 0.9391 - val_loss: 0.1904\n", "Epoch 77/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 1.0000 - loss: 0.0751\n", "Epoch 77: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9938 - loss: 0.0588 - val_accuracy: 0.9130 - val_loss: 0.2423\n", "Epoch 78/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 1.0000 - loss: 0.0297\n", "Epoch 78: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9880 - loss: 0.0578 - val_accuracy: 0.9130 - val_loss: 0.2144\n", "Epoch 79/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 1.0000 - loss: 0.0347\n", "Epoch 79: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9886 - loss: 0.0560 - val_accuracy: 0.9391 - val_loss: 0.2002\n", "Epoch 80/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 1.0000 - loss: 0.0243\n", "Epoch 80: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9818 - loss: 0.0605 - val_accuracy: 0.9478 - val_loss: 0.2708\n", "Epoch 81/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.9375 - loss: 0.0967\n", "Epoch 81: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9379 - loss: 0.1376 - val_accuracy: 0.8783 - val_loss: 0.2840\n", "Epoch 82/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.9688 - loss: 0.1091\n", "Epoch 82: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9660 - loss: 0.0980 - val_accuracy: 0.8609 - val_loss: 0.3527\n", "Epoch 83/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 80ms/step - accuracy: 0.9688 - loss: 0.1613\n", "Epoch 83: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9713 - loss: 0.0785 - val_accuracy: 0.9043 - val_loss: 0.3986\n", "Epoch 84/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.9688 - loss: 0.0615\n", "Epoch 84: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9376 - loss: 0.1664 - val_accuracy: 0.9043 - val_loss: 0.2224\n", "Epoch 85/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - accuracy: 1.0000 - loss: 0.0555\n", "Epoch 85: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9558 - loss: 0.1196 - val_accuracy: 0.9130 - val_loss: 0.2059\n", "Epoch 86/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - accuracy: 1.0000 - loss: 0.0221\n", "Epoch 86: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9771 - loss: 0.0768 - val_accuracy: 0.9478 - val_loss: 0.2059\n", "Epoch 87/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - accuracy: 0.9688 - loss: 0.1281\n", "Epoch 87: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9821 - loss: 0.0700 - val_accuracy: 0.9304 - val_loss: 0.2236\n", "Epoch 88/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 1.0000 - loss: 0.0244\n", "Epoch 88: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9819 - loss: 0.0555 - val_accuracy: 0.9304 - val_loss: 0.1926\n", "Epoch 89/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.9688 - loss: 0.0705\n", "Epoch 89: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9858 - loss: 0.0574 - val_accuracy: 0.9043 - val_loss: 0.2395\n", "Epoch 90/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 82ms/step - accuracy: 0.9688 - loss: 0.0549\n", "Epoch 90: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9772 - loss: 0.0529 - val_accuracy: 0.9217 - val_loss: 0.1990\n", "Epoch 91/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9688 - loss: 0.0439\n", "Epoch 91: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9761 - loss: 0.0600 - val_accuracy: 0.9304 - val_loss: 0.1907\n", "Epoch 92/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 89ms/step - accuracy: 1.0000 - loss: 0.0289\n", "Epoch 92: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9907 - loss: 0.0406 - val_accuracy: 0.9130 - val_loss: 0.2492\n", "Epoch 93/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.9688 - loss: 0.0553\n", "Epoch 93: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9828 - loss: 0.0510 - val_accuracy: 0.9391 - val_loss: 0.2100\n", "Epoch 94/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 75ms/step - accuracy: 1.0000 - loss: 0.0227\n", "Epoch 94: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9804 - loss: 0.0563 - val_accuracy: 0.9478 - val_loss: 0.2122\n", "Epoch 95/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - accuracy: 0.9688 - loss: 0.0886\n", "Epoch 95: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9855 - loss: 0.0496 - val_accuracy: 0.9217 - val_loss: 0.2722\n", "Epoch 96/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 1.0000 - loss: 0.0439\n", "Epoch 96: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9841 - loss: 0.0515 - val_accuracy: 0.9217 - val_loss: 0.2307\n", "Epoch 97/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 84ms/step - accuracy: 1.0000 - loss: 0.0166\n", "Epoch 97: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9862 - loss: 0.0398 - val_accuracy: 0.9478 - val_loss: 0.2037\n", "Epoch 98/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 1.0000 - loss: 0.0306\n", "Epoch 98: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9933 - loss: 0.0352 - val_accuracy: 0.9304 - val_loss: 0.1955\n", "Epoch 99/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.9375 - loss: 0.0748\n", "Epoch 99: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9787 - loss: 0.0473 - val_accuracy: 0.9304 - val_loss: 0.2190\n", "Epoch 100/100\n", "\u001b[1m 1/15\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 85ms/step - accuracy: 1.0000 - loss: 0.0126\n", "Epoch 100: val_loss did not improve from 0.18763\n", "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9892 - loss: 0.0340 - val_accuracy: 0.9391 - val_loss: 0.1911\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"sequential_1\"\u001b[0m\n" ], "text/html": [ "
Model: \"sequential_1\"\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n", "│ dense_8 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m832\u001b[0m │\n", "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", "│ dense_9 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m2,080\u001b[0m │\n", "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", "│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m) │ \u001b[38;5;34m528\u001b[0m │\n", "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", "│ dense_11 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m51\u001b[0m │\n", "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n" ], "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
              "┃ Layer (type)                          Output Shape                         Param # ┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
              "│ dense_8 (Dense)                      │ (None, 64)                  │             832 │\n",
              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
              "│ dense_9 (Dense)                      │ (None, 32)                  │           2,080 │\n",
              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
              "│ dense_10 (Dense)                     │ (None, 16)                  │             528 │\n",
              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
              "│ dense_11 (Dense)                     │ (None, 3)                   │              51 │\n",
              "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m6,984\u001b[0m (27.29 KB)\n" ], "text/html": [ "
 Total params: 6,984 (27.29 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m3,491\u001b[0m (13.64 KB)\n" ], "text/html": [ "
 Trainable params: 3,491 (13.64 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m3,493\u001b[0m (13.65 KB)\n" ], "text/html": [ "
 Optimizer params: 3,493 (13.65 KB)\n",
              "
\n" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "model.load_weights('best_weights.keras')\n", "loss, accuracy = model.evaluate(testInput, testTarget, verbose=0)\n", "print(f\"test Accuracy: {accuracy:.2f}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "tHRIutyT0zHn", "outputId": "d3a9238f-a1ea-4fb7-e388-35ddbbbba16b" }, "execution_count": 35, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "test Accuracy: 0.88\n" ] } ] }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.figure(figsize=(12, 4))\n", "plt.subplot(1, 2, 1)\n", "plt.plot(history.history['accuracy'], label='Train Accuracy')\n", "plt.plot(history.history['val_accuracy'], label='Validation Accuracy')\n", "plt.title('Accuracy Over Epochs')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Accuracy')\n", "plt.legend()\n", "\n", "plt.subplot(1, 2, 2)\n", "plt.plot(history.history['loss'], label='Train Loss')\n", "plt.plot(history.history['val_loss'], label='Validation Loss')\n", "plt.title('Loss Over Epochs')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Loss')\n", "plt.legend()\n", "\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 223 }, "id": "4Uhcd8nk0-89", "outputId": "7a7002c2-ba7d-443b-fb7f-2b5a057a0fab" }, "execution_count": 37, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iTZffA8W/SvQed0EIHq6yykQ0CskRAEcTBEhQFFXHyioDieH+u170FHKiAAiIgyN57j7ILZZQOCnTPPL8/7iZt2nRBF3A+15WryTPvpKE8OTnn3DpN0zSEEEIIIYQQQgghhKhE+qoegBBCCCGEEEIIIYS480hQSgghhBBCCCGEEEJUOglKCSGEEEIIIYQQQohKJ0EpIYQQQgghhBBCCFHpJCglhBBCCCGEEEIIISqdBKWEEEIIIYQQQgghRKWToJQQQgghhBBCCCGEqHQSlBJCCCGEEEIIIYQQlU6CUkIIIYQQQgghhBCi0klQSgghxA3R6XRMnDixqochhBBCCFFh1q9fj06n448//qjqoQhxW5KglBC3kC+//BKdTke7du2qeii3pKioKMaPH09QUBB2dnb4+PgwaNAgtmzZUtVDs0in0xV5Gz9+fFUPTwghhLhjzJkzB51Ox+7du6t6KKWyZcsWBg8ejK+vL3Z2dgQFBfHkk08SFRVV1UMrxBj0Ker2+++/V/UQhRAVyLqqByCEKL25c+cSFBTEzp07OXXqFHXr1q3qId0ytmzZQr9+/QAYO3YsjRo14vLly8yZM4fOnTvzySef8Mwzz1TxKAvr1asXI0aMKLS8fv36VTAaIYQQQlR3n332Gc899xwhISE888wz+Pv7ExERwffff8+8efNYvnw5HTp0qOphFvLss8/Spk2bQsvbt29fBaMRQlQWCUoJcYuIjIxk69atLFy4kCeffJK5c+cyffr0qh6WRSkpKTg5OVX1MEyuXr3KkCFDcHBwYMuWLYSGhprWTZ48md69ezNp0iRatWpVqRdp6enp2NraotcXnbRav359Hn300UobkxBCCCFuXVu2bGHSpEl06tSJFStW4OjoaFr31FNP0bFjR4YMGcKRI0fw8PCotHGV5tqwc+fODBkypJJGJISoLqR8T4hbxNy5c/Hw8KB///4MGTKEuXPnWtzu2rVrPP/886YStYCAAEaMGEF8fLxpm/T0dGbMmEH9+vWxt7fH39+f+++/n9OnTwN5adTr1683O/bZs2fR6XTMmTPHtGzUqFE4Oztz+vRp+vXrh4uLC4888ggAmzZt4sEHH6R27drY2dkRGBjI888/T1paWqFxHzt2jKFDh+Lt7Y2DgwMNGjTgtddeA2DdunXodDoWLVpUaL9ff/0VnU7Htm3binztvvnmGy5fvsz7779vFpACcHBw4Mcff0Sn0/Hmm28CsHv3bnQ6HT/++GOhY61cuRKdTsfSpUtNyy5evMiYMWNMKfKNGzdm1qxZZvsZX9Pff/+dqVOnUqtWLRwdHUlMTCxy3KXVrVs3mjRpwp49e+jQoQMODg4EBwfz9ddfF9o2NjaWxx9/HF9fX+zt7QkPD7f4PA0GA5988glNmzbF3t4eb29v+vTpY7FsYfHixTRp0sT03FesWGG2PikpiUmTJpmVTfbq1Yu9e/fe9HMXQgghqpN9+/bRt29fXF1dcXZ2pkePHmzfvt1sm6ysLN544w3q1auHvb09NWrUoFOnTqxatcq0zeXLlxk9ejQBAQHY2dnh7+/PwIEDOXv2bLHnnzlzpukaJn9ACiA0NJT33nuP6OhovvnmGwA++OADdDod586dK3SsKVOmYGtry9WrV03LduzYQZ8+fXBzc8PR0ZGuXbsWaoMwY8YMdDodR48e5eGHH8bDw4NOnTqV6vUribGf5dy5c2nQoAH29va0atWKjRs3Ftq2NL8LKN21M6hro7fffpuAgADs7e3p0aMHp06dMtvm5MmTPPDAA/j5+WFvb09AQAAPPfQQ169fL5fnL8TtSDKlhLhFzJ07l/vvvx9bW1uGDx/OV199xa5du8zSnJOTk+ncuTMRERGMGTOGli1bEh8fz5IlS7hw4QJeXl7k5ORw7733smbNGh566CGee+45kpKSWLVqFYcPHy4UtCmN7OxsevfuTadOnfjggw9MF0ELFiwgNTWVp556iho1arBz504+++wzLly4wIIFC0z7Hzx4kM6dO2NjY8MTTzxBUFAQp0+f5u+//+btt9+mW7duBAYGMnfuXAYPHlzodQkNDS02tfvvv//G3t6eoUOHWlwfHBxMp06dWLt2LWlpabRu3ZqQkBDmz5/PyJEjzbadN28eHh4e9O7dG4CYmBjuuusu00WSt7c3//zzD48//jiJiYlMmjTJbP+ZM2dia2vLiy++SEZGBra2tsW+tunp6YUuigBcXV3N9r169Sr9+vVj6NChDB8+nPnz5/PUU09ha2vLmDFjAEhLS6Nbt26cOnWKiRMnEhwczIIFCxg1ahTXrl3jueeeMx3v8ccfZ86cOfTt25exY8eSnZ3Npk2b2L59O61btzZtt3nzZhYuXMjTTz+Ni4sLn376KQ888ABRUVHUqFEDgPHjx/PHH38wceJEGjVqxJUrV9i8eTMRERG0bNmy2OcvhBBC3CqOHDlC586dcXV15eWXX8bGxoZvvvmGbt26sWHDBlNP0BkzZvDuu+8yduxY2rZtS2JiIrt372bv3r306tULgAceeIAjR47wzDPPEBQURGxsLKtWrSIqKoqgoCCL509NTWXNmjV07tyZ4OBgi9sMGzaMJ554gqVLl/Lqq68ydOhQXn75ZebPn89LL71ktu38+fO55557TBlVa9eupW/fvrRq1Yrp06ej1+uZPXs2d999N5s2baJt27Zm+z/44IPUq1ePd955B03TSnz9kpKSLF7z1KhRA51OZ3q8YcMG5s2bx7PPPoudnR1ffvklffr0YefOnTRp0qRMv4vSXDsb/fe//0Wv1/Piiy9y/fp13nvvPR555BF27NgBQGZmJr179yYjI4NnnnkGPz8/Ll68yNKlS7l27Rpubm4lvgZC3JE0IUS1t3v3bg3QVq1apWmaphkMBi0gIEB77rnnzLabNm2aBmgLFy4sdAyDwaBpmqbNmjVLA7SPPvqoyG3WrVunAdq6devM1kdGRmqANnv2bNOykSNHaoD26quvFjpeampqoWXvvvuuptPptHPnzpmWdenSRXNxcTFbln88mqZpU6ZM0ezs7LRr166ZlsXGxmrW1tba9OnTC50nP3d3dy08PLzYbZ599lkN0A4ePGg6n42NjZaQkGDaJiMjQ3N3d9fGjBljWvb4449r/v7+Wnx8vNnxHnroIc3Nzc30Ghhf05CQEIuviyVAkbfffvvNtF3Xrl01QPvwww/Nxtq8eXPNx8dHy8zM1DRN0z7++GMN0H755RfTdpmZmVr79u01Z2dnLTExUdM0TVu7dq0GaM8++2yhMeX/nQCara2tdurUKdOyAwcOaID22WefmZa5ublpEyZMKNVzFkIIIaqj2bNna4C2a9euIrcZNGiQZmtrq50+fdq07NKlS5qLi4vWpUsX07Lw8HCtf//+RR7n6tWrGqC9//77ZRrj/v37NaDQ9WFBzZo10zw9PU2P27dvr7Vq1cpsm507d2qA9tNPP2mapv7/r1evnta7d2+za4HU1FQtODhY69Wrl2nZ9OnTNUAbPnx4qcZtvEYq6hYdHW3a1rhs9+7dpmXnzp3T7O3ttcGDB5uWlfZ3UZprZ+P4wsLCtIyMDNP6Tz75RAO0Q4cOaZqmafv27dMAbcGCBaV63kIIRcr3hLgFzJ07F19fX7p37w6o1OVhw4bx+++/k5OTY9ruzz//JDw8vFA2kXEf4zZeXl4Wm3rn/xaqrJ566qlCyxwcHEz3U1JSiI+Pp0OHDmiaxr59+wCIi4tj48aNjBkzhtq1axc5nhEjRpCRkWE2He+8efPIzs4usedSUlISLi4uxW5jXG8spxs2bBhZWVksXLjQtM2///7LtWvXGDZsGACapvHnn38yYMAANE0jPj7edOvduzfXr18vVKI2cuRIs9elJAMHDmTVqlWFbsb3gpG1tTVPPvmk6bGtrS1PPvkksbGx7NmzB4Dly5fj5+fH8OHDTdvZ2Njw7LPPkpyczIYNGwD1HtHpdBZ7lhV8j/Ts2dMsu65Zs2a4urpy5swZ0zJ3d3d27NjBpUuXSv28hRBCiFtJTk4O//77L4MGDSIkJMS03N/fn4cffpjNmzebrjHc3d05cuQIJ0+etHgsBwcHbG1tWb9+vVnpXEmSkpIASnXNk799wLBhw9izZ4+pjQOoayw7OzsGDhwIwP79+zl58iQPP/wwV65cMV3vpKSk0KNHDzZu3IjBYDA7T1lnCp42bZrFax5PT0+z7dq3b0+rVq1Mj2vXrs3AgQNZuXIlOTk5ZfpdlOba2Wj06NFmWeqdO3cGMF3zGDOhVq5cSWpqapmeuxB3MglKCVHN5eTk8Pvvv9O9e3ciIyM5deoUp06dol27dsTExLBmzRrTtqdPnzalLRfl9OnTNGjQAGvr8qvetba2JiAgoNDyqKgoRo0ahaenJ87Oznh7e9O1a1cAU2298T/yksbdsGFD2rRpY9ZLa+7cudx1110lzkLo4uJiulArSsELufDwcBo2bMi8efNM28ybNw8vLy/uvvtuQAXUrl27xrfffou3t7fZbfTo0YDq4ZRfUen0RQkICKBnz56Fbr6+vmbb1axZs1ADUeMMfcb+E+fOnaNevXqFGquHhYWZ1oN6j9SsWbPQRaAlBQOJAB4eHmYX0e+99x6HDx8mMDCQtm3bMmPGDLOglRBCCHGri4uLIzU1lQYNGhRaFxYWhsFg4Pz58wC8+eabXLt2jfr169O0aVNeeuklDh48aNrezs6O//u//+Off/7B19eXLl268N5773H58uVix2C8hinNNU/+wNWDDz6IXq83XfNomsaCBQtM/ZgAUwBt5MiRha55vv/+ezIyMgr1TSrrNU/Tpk0tXvMUbHVQr169QvvWr1+f1NRU4uLiyvS7KM21s1HBax5jWaPxmic4OJjJkyfz/fff4+XlRe/evfniiy+kn5QQJZCglBDV3Nq1a4mOjub333+nXr16ppuxP1JRDc9vRlEZU/mzsvKzs7MrFOjIycmhV69eLFu2jFdeeYXFixezatUqU5P0gt+mlcaIESPYsGEDFy5c4PTp02zfvr1UM9OFhYVx/PhxMjIyitzm4MGD2NjYmF3oDBs2jHXr1hEfH09GRgZLlizhgQceMAX0jM/h0UcftfjN3qpVq+jYsaPZecqSJXUrsLKysrhcy9c7YujQoZw5c4bPPvuMmjVr8v7779O4cWP++eefyhqmEEIIUW106dKF06dPM2vWLJo0acL3339Py5Yt+f77703bTJo0iRMnTvDuu+9ib2/P66+/TlhYmCnT3JK6detibW1tFuAqKCMjg+PHj9OoUSPTspo1a9K5c2fmz58PwPbt24mKijJlhkPeNc/7779f5DWPs7Oz2bnuxGueDz/8kIMHD/Kf//yHtLQ0nn32WRo3bsyFCxcqa5hC3HKk0bkQ1dzcuXPx8fHhiy++KLRu4cKFLFq0iK+//hoHBwdCQ0M5fPhwsccLDQ1lx44dZGVlYWNjY3Eb4zc/165dM1tuaWaWohw6dIgTJ07w448/MmLECNPy/DPLAKa06pLGDfDQQw8xefJkfvvtN9LS0rCxsTG7YCrKvffey7Zt21iwYIHFINbZs2fZtGkTPXv2NLuAGjZsGG+88QZ//vknvr6+JCYm8tBDD5nWe3t74+LiQk5ODj179ixxHBXp0qVLhaZbPnHiBICpIWqdOnU4ePAgBoPBLIh47Ngx03pQ75GVK1eSkJBQqmyp0vD39+fpp5/m6aefJjY2lpYtW/L222/Tt2/fcjm+EEIIUZW8vb1xdHTk+PHjhdYdO3YMvV5PYGCgaZmnpyejR49m9OjRJCcn06VLF2bMmMHYsWNN24SGhvLCCy/wwgsvcPLkSZo3b86HH37IL7/8YnEMTk5OdO/enbVr13Lu3DnT/+v5zZ8/n4yMDO69916z5cOGDePpp5/m+PHjzJs3D0dHRwYMGGA2FlATrVT1NY+lsscTJ07g6OiIt7c3QKl/F6W5di6rpk2b0rRpU6ZOncrWrVvp2LEjX3/9NW+99Va5nkeI24VkSglRjaWlpbFw4ULuvfdehgwZUug2ceJEkpKSWLJkCaBmajlw4ACLFi0qdCzjtzgPPPAA8fHxfP7550VuU6dOHaysrApNr/vll1+WeuzGb5Pyf3ukaRqffPKJ2Xbe3t506dKFWbNmERUVZXE8Rl5eXvTt25dffvmFuXPn0qdPH7NZUYry5JNP4uPjw0svvVSobCw9PZ3Ro0ejaRrTpk0zWxcWFkbTpk2ZN28e8+bNw9/fny5dupg9xwceeIA///zT4gVNXFxciWMrL9nZ2abpnUHNAPPNN9/g7e1t6rvQr18/Ll++bFaSmJ2dzWeffYazs7OptPKBBx5A0zTeeOONQucp+DspSU5OTqG0dR8fH2rWrFls5poQQghxK7GysuKee+7hr7/+MpXNg5ql99dff6VTp06mUrgrV66Y7evs7EzdunVN/y+mpqaSnp5utk1oaCguLi4l/t85depUNE1j1KhRpKWlma2LjIzk5Zdfxt/f36wPJaj/+62srPjtt99YsGAB9957r9kXXa1atSI0NJQPPviA5OTkQuetzGuebdu2mfXsPH/+PH/99Rf33HMPVlZWZfpdlObaubQSExPJzs42W9a0aVP0er1c8whRDMmUEqIaW7JkCUlJSdx3330W19911114e3szd+5chg0bxksvvcQff/zBgw8+yJgxY2jVqhUJCQksWbKEr7/+mvDwcEaMGMFPP/3E5MmT2blzJ507dyYlJYXVq1fz9NNPM3DgQNzc3HjwwQf57LPP0Ol0hIaGsnTp0kL9kYrTsGFDQkNDefHFF7l48SKurq78+eefFht2fvrpp3Tq1ImWLVvyxBNPEBwczNmzZ1m2bBn79+8323bEiBEMGTIEgJkzZ5ZqLDVq1OCPP/6gf//+tGzZkrFjx9KoUSMuX77MnDlzOHXqFJ988gkdOnQotO+wYcOYNm0a9vb2PP7444XKFP/73/+ybt062rVrx7hx42jUqBEJCQns3buX1atXk5CQUMpXzLITJ05Y/EbU19fXNG00qNT7//u//+Ps2bPUr1+fefPmsX//fr799ltTRtwTTzzBN998w6hRo9izZw9BQUH88ccfbNmyhY8//tjUX6J79+489thjfPrpp5w8eZI+ffpgMBjYtGkT3bt3Z+LEiaUef1JSEgEBAQwZMoTw8HCcnZ1ZvXo1u3bt4sMPP7yp10YIIYSobLNmzWLFihWFlj/33HO89dZbrFq1ik6dOvH0009jbW3NN998Q0ZGBu+9955p20aNGtGtWzdatWqFp6cnu3fv5o8//jD9/3rixAl69OjB0KFDadSoEdbW1ixatIiYmBizjG1LunTpwgcffMDkyZNp1qwZo0aNwt/fn2PHjvHdd99hMBhYvny5KSveyMfHh+7du/PRRx+RlJRUKBNdr9fz/fff07dvXxo3bszo0aOpVasWFy9eZN26dbi6uvL333/f6MsKwKZNmwoF40BNotKsWTPT4yZNmtC7d2+effZZ7OzsTF+a5v8yrbS/i9JcO5fW2rVrmThxIg8++CD169cnOzubn3/+2fQlphCiCJU/4Z8QorQGDBig2dvbaykpKUVuM2rUKM3GxkaLj4/XNE3Trly5ok2cOFGrVauWZmtrqwUEBGgjR440rdc0NX3va6+9pgUHB2s2Njaan5+fNmTIELNpc+Pi4rQHHnhAc3R01Dw8PLQnn3xSO3z4sAZos2fPNm03cuRIzcnJyeLYjh49qvXs2VNzdnbWvLy8tHHjxmkHDhwodAxN07TDhw9rgwcP1tzd3TV7e3utQYMG2uuvv17omBkZGZqHh4fm5uampaWlleZlNImMjNTGjRun1a5dW7OxsdG8vLy0++67T9u0aVOR+5w8edI0/fDmzZstbhMTE6NNmDBBCwwMNL2ePXr00L799lvTNsbphMsyTTDFTI/ctWtX03Zdu3bVGjdurO3evVtr3769Zm9vr9WpU0f7/PPPLY519OjRmpeXl2Zra6s1bdq00O9C0zQtOztbe//997WGDRtqtra2mre3t9a3b19tz549ZuObMGFCoX3r1KmjjRw5UtM09ft66aWXtPDwcM3FxUVzcnLSwsPDtS+//LLUr4MQQghR1WbPnl3s/8vnz5/XNE3T9u7dq/Xu3VtzdnbWHB0dte7du2tbt241O9Zbb72ltW3bVnN3d9ccHBy0hg0bam+//baWmZmpaZqmxcfHaxMmTNAaNmyoOTk5aW5ublq7du20+fPnl3q8Gzdu1AYOHKh5eXlpNjY2Wu3atbVx48ZpZ8+eLXKf7777TgM0FxeXIq+x9u3bp91///1ajRo1NDs7O61OnTra0KFDtTVr1pi2mT59ugZocXFxpRqr8RqpqNv06dNN2xqvPX755RetXr16mp2dndaiRQtt3bp1hY5bmt+FppV87VzUNVxkZKTZNe2ZM2e0MWPGaKGhoZq9vb3m6empde/eXVu9enWpXgch7lQ6TStjXqIQQlSh7OxsatasyYABA/jhhx+qejjVQrdu3YiPjy/3nghCCCGEENWJTqdjwoQJFttQCCFuTdJTSghxS1m8eDFxcXFmzdOFEEIIIYQQQtx6pKeUEOKWsGPHDg4ePMjMmTNp0aKFqSm3EEIIIYQQQohbk2RKCSFuCV999RVPPfUUPj4+/PTTT1U9HCGEEEIIIYQQN0l6SgkhhBBCCCGEEEKISieZUkIIIYQQQgghhBCi0klQSgghhBBCCCGEEEJUujuu0bnBYODSpUu4uLig0+mqejhCCCGEqOY0TSMpKYmaNWui19+53+fJNZQQQgghSqu01093XFDq0qVLBAYGVvUwhBBCCHGLOX/+PAEBAVU9jCoj11BCCCGEKKuSrp/uuKCUi4sLoF4YV1fXKh6NEEIIIaq7xMREAgMDTdcQdyq5hhJCCCFEaZX2+umOC0oZ081dXV3lgkoIIYQQpXanl6zJNZQQQgghyqqk66c7tzGCEEIIIYQQQgghhKgyEpQSQgghhBBCCCGEEJVOglJCCCGEEEIIIYQQotJVaU+pjRs38v7777Nnzx6io6NZtGgRgwYNKnaf9evXM3nyZI4cOUJgYCBTp05l1KhRlTJeIYQQQgghhBDiVmIwGMjMzKzqYYjbjI2NDVZWVjd9nCoNSqWkpBAeHs6YMWO4//77S9w+MjKS/v37M378eObOncuaNWsYO3Ys/v7+9O7duxJGLIQQQghR9cr6xd7ChQv56quv2L9/PxkZGTRu3JgZM2bI9ZMQQtzmMjMziYyMxGAwVPVQxG3I3d0dPz+/m5oMpkqDUn379qVv376l3v7rr78mODiYDz/8EICwsDA2b97M//73P7moEkIIIcQdo6xf7G3cuJFevXrxzjvv4O7uzuzZsxkwYAA7duygRYsWlTBiIYQQlU3TNKKjo7GysiIwMBC9Xrr3iPKhaRqpqanExsYC4O/vf8PHqtKgVFlt27aNnj17mi3r3bs3kyZNqpoBCSGEEEJUgbJ+sffxxx+bPX7nnXf466+/+PvvvyUoJYQQt6ns7GxSU1OpWbMmjo6OVT0ccZtxcHAAIDY2Fh8fnxsu5bulglKXL1/G19fXbJmvry+JiYmkpaWZXpT8MjIyyMjIMD1OTEys8HEKIYQQQlRnBoOBpKQkPD09q3ooQgghKkhOTg4Atra2VTwScbsyBjuzsrJuOCh12+fvvfvuu7i5uZlugYGBVT0kIYQQQogq9cEHH5CcnMzQoUOL3CYjI4PExESzmxBCiFvPzfT7EaI45fHeuqWCUn5+fsTExJgti4mJwdXV1WKWFMCUKVO4fv266Xb+/PnKGKoQQgghRLX066+/8sYbbzB//nx8fHyK3E6+2BNCCCFERbulglLt27dnzZo1ZstWrVpF+/bti9zHzs4OV1dXs5sQQgiR3597LtDvk028vewoxy8nVfVwqp3dZxN49PsdPPvbPq6myJTSt7Lff/+dsWPHMn/+/EJ9OguqzC/2VhyOpst765j0+74KO4cQQog7V1BQUKH+iqJ6qNKeUsnJyZw6dcr0ODIykv379+Pp6Unt2rWZMmUKFy9e5KeffgJg/PjxfP7557z88suMGTOGtWvXMn/+fJYtW1ZVT0EIIcQt7vtNZ3hrWQQAR6MT+W5TJE1ruTGkVQB9mvjhYGteH+9oY4W11S31nY6ZHIOGlb50qdZRV1L5vxXHWHYo2rRs99kEPn+kJS1re1TUEDl3JYU/91xgyYFLZOVohPm70rimK41qutLI35UADwcpRbgBv/32G2PGjOH333+nf//+JW5vZ2eHnZ1dJYxMiUpIpYaz9D0RQog7WUn/v0+fPp0ZM2aU+bi7du3CycnpBkeldOvWjebNm0twq5xVaVBq9+7ddO/e3fR48uTJAIwcOZI5c+YQHR1NVFSUaX1wcDDLli3j+eef55NPPiEgIIDvv/+e3r17V/rYhRBC3No0TeN/q0/y6ZqTAAxrHcj1tCzWHIvh0MXrHLp4nelLjhTaz8PRhmd71OPRu+pgcwsFpwwGjbeWRfDL9nMMblGLF+6pj4+rvcVtE9Oz+GLtKWZvOUtmjgG9Du5vGcDuswmcvZLK0K+38UqfhoztHGx28Zhj0Lh0LY3MHEOZx6dpsPfcVf7Yc4GdZxPM1l28lsbqiLzyfVd7a8L884JUjWq6Us/HBVvrW+f3cbPK+sXer7/+ysiRI/nkk09o164dly9fBtTMOW5ublXyHPIzvhdjEzNK2FIIIcTtLDo674uwefPmMW3aNI4fP25a5uzsbLqvaRo5OTlYW5cc1vD29i7fgYpyU6VBqW7duqFpWpHr58yZY3GfffsktVsIIcSNMxg03lx6lDlbzwLwUu8GPN0tFJ1OR0JKJkv2X2TBngscuVS4sfPV1Cze+PsoP287x3/6hdEjzKdaZO1EXUnF09kWZ7vC/7Vn5xh46Y+DLNp3EYB5u8/z98FLPNU1lLGdQ3CwtcJg0NgRmcAfey7wz+FoUjPVjD2d6nrxWv8wwvxdSUrPYsrCQyw9GM3byyPYEXmF7g19OHopkaPRiRyLTiItK+emn4tOB53reTOkVQA+LnZERCdy5FIiRy8lcjI2icT0bHZEJrAjMi94dXdDH2aNanPT575VlPWLvW+//Zbs7GwmTJjAhAkTTMuN21c1HxeVkRWXlIGmadXi35QQQojK5+fnZ7rv5uaGTqczLVu/fj3du3dn+fLlTJ06lUOHDvHvv/8SGBjI5MmT2b59OykpKYSFhfHuu++alakHBQUxadIkJk2aBKiMrO+++45ly5axcuVKatWqxYcffsh99913w2P/888/mTZtGqdOncLf359nnnmGF154wbT+yy+/5H//+x/nz5/Hzc2Nzp0788cffwDwxx9/8MYbb3Dq1CkcHR1p0aIFf/31101nd90KqjQoJYQQQlS0XWcTiElMN1u2JiLWFKB5c2BjRrQPMq3zdLJlVMdgRnUMJjPbgEbelycGAyzcd4GP/j3BmfgUxv60mw6hNXjjvsbU83Up07gysnPYe+4abYM9S11OV5TvNp7h7eUReDja8Hyv+gxvW9uUxZWelcMzv+1j1dEYrPQ6Jveqz6qjMew/f40PV53g151R9G3iz79HL3PhaprpmPV9nZnSN4xuDbxNAQIXexs+G96CdiE1mPn3UVZHxLI6ItZsLLbWeuxvMGPJz82eQS1qMbhFLfzd8iYwuSukhul+ZraBU7HJHI1OzA2GXefopUQa+JXt9b/VlfWLvfXr11fsgG6Sd25QKjPHwLXULDycpIxPCCHKm6Zp5fLl0Y1wsLEqty8cXn31VT744ANCQkLw8PDg/Pnz9OvXj7fffhs7Ozt++uknBgwYwPHjx6ldu3aRx3njjTd47733eP/99/nss8945JFHOHfuHJ6enmUe0549exg6dCgzZsxg2LBhbN26laeffpoaNWowatQodu/ezbPPPsvPP/9Mhw4dSEhIYNOmTYDKDhs+fDjvvfcegwcPJikpiU2bNhX7//ztRIJSQghRAQwGjaiEVI5GJ2Jvo6dbfR/0Nxl4EGX375HLPPHzHovrrPQ63h/SjPtbBhS5v6VysEfa1eG+8Jp8uf40P2yOZOvpKzz6ww62vHJ3qXtNZWTnMOKHneyITOCN+xozskNQqfYrSNM0Plp1gs/WqjKuq6lZTPvrCD9uPctr/cNoF1yDJ37ezZZTV7C11vPlwy3p2ciXp7uFsuTAJd5bcZyL19KYtSUSABc7a+4Nr8mQVgG0rO1u8eJRp9Px2F11aBHozvsrVTp9/jK6oBpONx1kK46ttV6dr6YrtMp7HTKyy14yKKoPO2sr3B1tuJaaRWxShgSlhBCiAqRl5dBo2soqOffRN3vjaFs+4Yc333yTXr16mR57enoSHh5uejxz5kwWLVrEkiVLmDhxYpHHGTVqFMOHDwfgnXfe4dNPP2Xnzp306dOnzGP66KOP6NGjB6+//joA9evX5+jRo7z//vuMGjWKqKgonJycuPfee3FxcaFOnTq0aNECUEGp7Oxs7r//furUqQNA06ZNyzyGW5UEpYQQopzsOZfAX/svcfRSIhHRiaRk5n0T1bimK6/1D6NDqFcVjvDWdSImiY0n4ugR5kuwV+nSmNOzcnjj76MANPB1wcPJxrTO1tqK0R2D6N7A54bG42Jvwyt9GvJw29r0/3QTMYkZHLp4nRalaP5tMGhMnn/AVHq27FD0DQWlCpYgvnhPfdwcbfnfqhOcjkthzJzdeDjacDU1CydbK74b2dr0/tPpdAxsXovejf2Ys/Usxy8n0a2BN70b+2FvY1XMWfM0qeXGj2PalnncFUGn05V63KL68nWx51pqFjGJ6Xdc5psQQojSa926tdnj5ORkZsyYwbJly0wBnrS0NLMydkuaNWtmuu/k5ISrqyuxsbHF7FG0iIgIBg4caLasY8eOfPzxx+Tk5NCrVy/q1KlDSEgIffr0oU+fPgwePBhHR0fCw8Pp0aMHTZs2pXfv3txzzz0MGTIED4+Km1SmOpGglBBC3CRLM5QB2FnraeDnQmR8CkcuJfLwdzvo1ciXKX0bEuLtXMTR7ixXkjP4ZXsU/Zv5UdfH8ofQ66lZPPr9DmKTMnhrWQRtgjwY0iqAfk39cbG3sbgPwFfrT3PxWho13exZNKFDuX07l1+gpyN3hdTg36MxbDtzpVRBqbeXR7DsYDTWeh3ZBo09565yLTUTd8fSZ4Zk5xh4+c+DLNyrShBnDmzMY7kliAOb1+SLdaeYvfksV1OzcHOwYc7oNhbHZm9jxfiuoaU+rxAVycfVjuMxScQmSbNzIYSoCA42Vhx9s2omCXMoxy+PCvZZevHFF1m1ahUffPABdevWxcHBgSFDhpCZmVnscWxszK8jdTodBkPFZF67uLiwd+9e1q9fz7///su0adOYMWMGu3btwt3dnVWrVrF161b+/fdfPvvsM1577TV27NhBcHBwhYynOpGglBDijqRpGnujrvLX/kv4udnzVNfQMte5W5qhbHCLALrU96KRvyvBXk5YW+m5kpzBJ2tOMndHFKuOxrDuWCztQ2tgna/ESafTMahFLe4Lr1neT5XYpHRmbT5LVo6BQc1r0aSWa7VoIpyckc3I2Ts5fDGRX3eeY9mznfFyLjz9/JtLjxKblIGLvTUpGdnsOnuVXWevMn3JEQa3CGDavY1wsDW/0DmfkMrXG04D8Fr/RhUSkDJqH5oblDp9hae71S122+83neGHzapU7sOh4Xyx7hQnYpLZcCKOgc1rlep8BoPGs7/vY/mhy1jpdXzwYDMGt8grQXS1t2FK3zAebVeHxfsu0q+ZP6ESBBW3AGNfqdik9BK2FEIIcSN0Ol2FXhNVlS1btjBq1CgGDx4MqMyps2fPVuoYwsLC2LJlS6Fx1a9fHysrdZ1qbW1Nz5496dmzJ9OnT8fd3Z21a9dy//33o9Pp6NixIx07dmTatGnUqVOHRYsWmSYyuZ3dfu9IIcQdTdM0jlxK5I89F4iITiTE29nU76ahnwvX07JYtO8if+y5QGR8imk/V3sbHr2rTqnPs+lkHM/9vp+EFPUNTP4Zygqq4WzHmwObMKJ9Hd5eFsG643FsOhlfaLttp6/Qqa4XnuXUSyU9K4fvN53hq/WnTaWEP2yOpIGvC0NaBTCwRU18XOzL5VxllZVj4Om5ezl8Uc1uF5OYwaTf9/PjmLZm/YjWHovhz70X0Olgzui21HJ3YNG+iyzYc54zcSn8tjOK07HJ/DCqtVnW1MylR8nINtA+pAb9mvoVOn95ah+qmnDvPnuVzGyDxT5UAH8fuMRbyyIAmNK3IQOb1yIiOokTMcmsOxZb6qDU6ogYlh+6jK2Vns8fbsE9jS0/v0BPR57pUe8GnpEQVSPAScObq8QmSqaUEEKI0qtXrx4LFy5kwIAB6HQ6Xn/99QrLeIqLi2P//v1my/z9/XnhhRdo06YNM2fOZNiwYWzbto3PP/+cL7/8EoClS5dy5swZunTpgoeHB8uXL8dgMNCgQQN27NjBmjVruOeee/Dx8WHHjh3ExcURFhZWIc+hupGglBDithCXlMFf+1Ww6djlJNPy/FPGG5ODjBNZONpa0bSWGzsiE3jz76OEB7jTNMCtxHMdvHCNJ37aQ1pWDqHeTkzt38hshrKi1PVxYfbotuw5l8CZuBSzdT9sjuTY5SRmbY7kxd4NSvmsLTMYNP4+eIn/++cYl66rjIPwQHdqezry75HLHI9J4u3lEfx3xTGe6BLCK30a3tT5ykrTNKYsPMTGE3E42Fgxc1ATXl98mM2n4vl0zUme71UfUGV7UxYeAmBsp2Ba1VHlZ091C2V81xA2noxn4ty97DybwMPf7eDHMW3xdLJl44k4/s2dae6NgY0rPCusvo8Lnk62JKRkcvDCNVoHFZ6x5dCF67ww/wAAozoE8USXEAB6hPnw9YbTrD8RR3aOocRG6Zqm8fk61dR8bOfgIgNSQtxyds9m0q7J1Ldpy/KkO+MiXAghRPn46KOPGDNmDB06dMDLy4tXXnmFxMTECjnXr7/+yq+//mq2bObMmUydOpX58+czbdo0Zs6cib+/P2+++SajRo0CwN3dnYULFzJjxgzS09OpV68ev/32G40bNyYiIoKNGzfy8ccfk5iYSJ06dfjwww/p27dvhTyH6kan3SnzDOZKTEzEzc2N69ev4+paOKNBiDtBjkErt9mxcgwaeh1l+uCvaRoTf9vHisOXC627K8STrx5thWsxvYIKWrzvIi8uOEC2Qf05s7XWc08jXzrX8+LclVTT1PHGPiXtgj1NPYkcba144uc9rDoaQ6CnA0sndsbNsehzR11J5f6vthCfnEnnel78MLJNkZkxZbHyyGWe/HkPLnbWbH71btwcSv/8C3r2t30sOXAJgJpu9rzStyEDmtVEr9dxPS2LpQcv8ceeC+yLugbAhw+G80CromegK28f/XucT9eeQq+D70a0pkeYL4v2XeD5eQfQ6eDH0W3pUt+bF+Yf4M+9FwjxcmL5c50tNrI+fPE6I2btJCElk7o+zswe1YaRs3dyJi6FxzsF8/q9jSrlOT09dw/LD13mhV71LWYnTZ6/n4V7L9KjoQ/fjmht+veXnWOg1VuruZ6WxYLx7WljIaCV34YTcYyctRN7Gz1bXrmbGhbKHUX5k2sHpUJfh9Nr4efBRBp8ecl/Dn881aF8jy+EEHeg9PR0IiMjCQ4Oxt6+arLjxe2tuPdYaa8bJFNKiDtIelYOL/9xkA0n4pg1qo0p8+RGjvPv0Rj+2HOBzSfjqOvjzJBWAQxqUatU5WC/7oxi2cFoi+u2nLrCkz/tYc6YNthZl9wQ8XxCKq8tOkS2QaNZgBtDWwcyoFlNi4GluKQMNE3Dx9V8jB8MCefezzdxPiGNF/84wLePtbIYZLuSnMHI2TuJT86kkb8rXz3aqlwCUgC9wnxp4OvC8Zgkftp69obLrs4npLLkwCX0OnjhngY83inYLJjj5mDDI+3q8Ei7Onyy+iT/W32C1xYfokktt0qZ7WrujnN8ulZl+rw9uCk9wnwB1YtrZ+RVftsZxaR5+3nxngamsr33H2xW5MxqTWq5Mf/J9jz2ww5OxSbT638bSM8y4OVsx3M9K6907a6QGiw/dJltZ64U+t2lZeawMjcA+3T3ULOAsLWVnm4NvPlr/yXWRMQWG5TSNI3P1pwE4JF2dSQgJW4vfmoq72B9DMmJV6p4MEIIIYSoLOXzaUoIUe2lZGTz+I+7WHLgEtfTsnhz6VHKmih5+OJ1Xlt0iDZvr+bZ3/ax8UQcBg1OxCTzzvJjtH93LWPm7OKfQ9HkGCwf+8LVVN7J7avzSp+G7PxPD9Ntwfj2ONlase3MFV5acBBDEccw0jSNV/48SEpmDm2DPFn8dEcevatOkZlO3i52hQJSAG6ONnz5cCtsrfSsOhrD95siC22TlpnD4z/uJjI+hVruDswZ3QZnu/KL6+v1OibcrZpk/7AlkpSM7Bs6zvLcGQDbBddgQve6RQZzACbeXZfO9bxIzzLw1Nw9JN/gOUtrX9RVXl98GIBne9RjeNvaZuunD2hE45quJKRk8p9Fqmzv8Y7BtKpTfPZQXR9nFoxvT1ANR9KzVP+AV/s2LFO23c1qH6L6Su05d5WM7ByzdasjYkjJzCHQ04GWFmbAu7uhDwDrjhU/BfGOyAR2n7uKrZXeVP4nxG3DqQbZLqqvmnfy8TL//ySEEEKIW5MEpYS4A1xPzeLRH3aw5dQVHG2tcLCx4sD5a6w8Urh8rijrjsVy3+ebmbsjiqT0bGq5O/Ds3XX557nOvHt/U1rV8SDHoLH2WCxPzd3LU7/sKfThXNM0Xv3zECmZObSu48ETXULwcbU33doEefL1Y62w1utYcuAS/7fiWLFjmrsjiq2nr2Bvo+e9Ic3Q30RJYtMAN14foEq9/rviGHO2RLJ430XT7am5e9h//hpuDjb8OKaNxeDWzerf1J9gLyeupWYxd8e5GzqGMSjVr5l/idta6XV8PKw5fq72nIlLYcrCQxX2QTDHoDHtryMYNLi3mT/PW8hisrex4stHWlLLPp2hVusIq2Fd6v5aAR6OzB/fnh4NfRjaOoD7W5SuaXh5qevjjJezHRnZBlNZpNFf+y8CMDC8lsUMvK71vdHr4HhMEucTUos8x+e5GWZD2wTgWwHvPyGqmq5mCwDqG86QmF6xQXIhhBBCVA8SlBLiNheblM6wb7exL0oFVOaObcfYzsEAvL/yONk5Jc9McfFaGs/P349Bg24NvPl1bDs2vdydyfc0IMzfleFta/PnUx1Y+0JXnu4Wiq21nn+PxvD4nN1mGT+/7oxi86l47Kz1vP9guMW+Vp3refPekGYAfLPxDHO2FM5aAlWm9u5ylXH1cu+GBHk5lfm1KejRdrW5L7wmOQaNGX8fZdK8/abb+uNx2Frr+WFka+r6VEyZm5Vex9PdQgH4dmMk6Vk5Jexh7nxCKgcuXEevgz6lbIBdw9mOzx9ugZVex98HLvHLjqgyj7s05u8+z6GL13Gxs2b6gKKbj9fxcGC591e8Z/MdcxruKDbTqyAfF3t+GNWG94aE31SA8kbodDruClEZXdvP5JUeXU3JZP3xOAAGtahpcV93R1ta52aDrTtuOVtqb9RVNp+Kx1qv48kuoeU5dCGqDauazQFooj9LXFJ61Q5GCCGEEJVCglJC3IYysw0cuXSdBbvPM+yb7Ry7nIS3ix3znryLFrU9GNclBA9HG07HpfDn3gslHmvC3L1cS80iPMCNbx5rRYe6XhY/9Id4O/Nyn4bMGdUGR1srNp+K59EfdnA9NcusbO+l3g0ILiaIdH/LAF7KzZB5Y+lRftx6lrTMvACNpmm8ulCV7bUJ8mBUh6AbeJUK0+l0vHt/U0Z1CKJzPS+zW4+GPswe1cbizGrlaVCLWtRydyA+OYN5u86Xad9/DqssqbbBnni7lL7fUOsgT17NnYFv5t/q9d5//prZa34zrqVm8l5u1tukXvWLH9vOb3CL2wWAb8ymcjl/ZWkfqkr4tp3OC0otOxRNtkGjcU3XYoOZd4epEr41EZaDUl/kZkkNblGLQE/H8hqyENWLv+or1UR3lpjEjCoejBBCCCEqgzQ6F+I2cT0ti4/+Pc7Os1c5FZtEVk5eGVYtdwfmjm1nyiZytbdhQve6vLUsgo9Xn2Rg81pFZqS8+08E+89fw9Xems8fblmq5uMd6noxd2w7Rs3exb6oawz7dhtuDjamsr3RHYNLPMbT3UKJvp7GL9ujmL7kCO+vPM69zfwZ0iqAiMtJbDllLNsr36wYJztrZtzXuNyOV1Y2Vnqe6hbK1MWH+XrDaYa3rV3qZurG5vH9m1nOyCnO2M7B7DybwKqjMUxfcgQAvU4FGhv5u9Kopqvpp1cZG2x/tOoEV1OzqO/rzIj2dYre8MppWP1G3uOLeyD9Oti7lfn5VAVjX6l9UddIz8rB3sbKVLo3qHnx5YQ9Gvrw33+Ose3MFVIzs3G0zfvv+cil66w5FoteB091kywpcRvLDUqF6i4RcTUB8Kra8QghhBCiwkmmlBC3idcWHeLHbeeIiE4kK0fD1d6au0I8eaJLCAuf7lCovO3Ru+pQ082e6Ovp/LzNcv+i5Yeimb3lLAAfDW1epgyNFrU9mPfkXXi72HHschI7IhOws1a9nyyV7RWk0+l4474mvNynAYGeDiRnZPP7rvMM+XqbqVn2S70bFptxVS1seB9+G66CK6U0pFUAvq52RF9PLzGTzehGSvfy0+lUf6lJPevRuZ4XNZxsMWhwKjaZJQcu8d9/jjFi1k5av7Watm+v5qlf9nA9NavE4x69lMgv29X7a8Z9jbGxKuK/HUMOLH4astMguCt4hoKWA5E3mS11cQ/M6gsrpkBWBZQDXT0Hvw6Df14h2MsJX1c7MnMM7D13lQtXU9l19io6HQwILz5QWNfHmQAPBzKzDWw5lZdpdT0ti//+o7LM7m1WkxBvZ8jJggWjYelkqG7NoI8uUa/3qdVl33fFFPj9Ecgsuq+WuM25+HLdugZ6nYbh0qGqHo0QQgghKoFkSglRBpqm8c7yCJIzcni5dwM8nGyrekgA/HMomqUHo7HS63h/SDPaBntSy92hyL49oJpKT+pVn5f/OMgX608xrG2g2WxlkfEpvPzHQQCe7BpCz0a+ZR5XQz9XFjzZnke+38HFa2m83Keh+lBdSqrHUl3Gdwll59kE/thzgeWHoknNLdsbXU5lexXGYIBNH0B2Ovw7Fe77rFS72dtYMa5zCG8ti2DW5kgeahNY7O8Sbrx0Lz8nO2sm9awPqPd6XFIGR6ITOXopkaO5P89eSSE2KYN/Dl+mno8zk+8puhG5pmnMWKKam/dv5k+H0GKyHrZ/Bee3g60LDPwctnwCCafhzHoIu7fsT0bTYMfX8O/rYMiCqK0qwPXgHPCqW/bjWRKxFP562hRw1HV/jfYhNVi8/xLbzlxh3/lrANwVXAM/t+Ibk+t0Ono09OHHbedYeyyGbg28+W1nFP/LzTKz0uuY0D133Gc2wJGF6r5fE2g9pnyez83IzlDv8Z3fqsdLL8Kz+0Bfyp5gF/bA9i/V/bVvQZ93KmacotqLdW6I27Ut2MUfBh6o6uEIIYQQooJJUEqIMth6+grfbVKNtzccj+Wzh1vSqk7hKd4rU0JKJlNzM4ee6hrK/S0DSr3v/S1q8e3GM5yKTebjVSfp2sDbFIDYfuYKyRnZtA3y5KViAg8lCfJy4p9JnTkVm0zL2jf2Wun1Ou4KqcFdITV4477G7DqbQKs6HpXezLrMEi+ogBTA3p8gbCDU61mqXYe2CeTDf09wMjaZnZEJtMstDSvKskNqJsX+TUueda80dDqdaVbE7g18TMuTM7JZuPcC0/46wi87oni6e90iSz+XHLjEzrMJONhY8Vq/sKJPFn8S1s5U93u/Be61IaQ77Poezqwr++BTE+CviXB8mXpctydc2g8xh+DbrnDvx9DswbIf1yg7A1ZNU0Evs+dxgvahPioodfoKiekqk6yoBucF3R3my4/bzrHySAw7IxM4HZcCQD0fZ6YPaEwDv9yeVEcW5e20ciqE3g0eQTf+fG7WldPwx2iIPqAeW9vDtXNwbBk0uq90x9j+Rb77X6pAZJ0O5T9WUe0leTSGa1vwuH60qocihBBCiEog5XtCGGWlqw9Xxfh+0xkArPU6Ll1PZ9g32/h242kMhiooobl+AdITmb7kCFdSMmng68IzPUqRAZLveVpb6XkxN+A0a0skI2ft5P9WHOPvA5eIS8rAz9WeT4e3wLqokqtScrW3ueGAVEFOdtZ0a+CDS76srmrryinzx0uegbRrpdrV1d7GFMwwzYhnMEDMkUIlWxeupnLg/DX0OujdpAyle9eiICO59NsDznbWPNzCm7vcrpKQksmifRctbpeckc07ubMjTry7LjXdHdSK2Ag4vc78tvgpFbwLvRtajlTbBXcGnV69hteKaPieEl/4WEcWwzddVEDKyhb6vg+P/AHjN0NQZ8hMhoVjVdAqK61Mzx2AhEj44Z68gFSHZ6BOJ9Nzax+issH2RF3lREwytlZ6+jQpXaCwXbAnDjZWJKRkcjouBU8nW2YOasI/z3WmU73cLLPsTDj2t7rvGgBZKeq5GEqeRbNCHF4I33RVASkHT3h4AbSfqNZt+6L4fY2unVe/N1C/IzRVypmZUrr9DQbY8W2p/22J6i3bR82+6pd6vIpHIoQQ4lbWrVs3Jk2aZHocFBTExx9/XOw+Op2OxYsX3/S5y+s4dwoJSglh9O9r8FlLOPGvxdWnYpNYdzwOnQ7+mtiRAeE1yTZovLP8GON+2s2B89c4fPG66XbsciLZORX0QfHaefi0Bde/6cPSAxew0uv44MHwUjUh55+X1PM8uwWA3o196VzPC50OQr2dGBBek1f6NOTHMW1Z/ULXEsuORDGMQc6Q7uAZAkmXYOVrpd79kXaqKfiKw9HEJ2fA8hfgqw4qgyiff3KzpNoGe+LjUsrf14U98GlL+LSFKpErA+tFY/k9YwLNdaf4YXOkxaDsZ2tPEpOYQZ0ajjzeKbex/fmd8GV7+HmQ+e3CLrBzVeWNxjJFezeo1UrdtzS+7Ez4vkfhYy0YCdfPg0cwPP4vtHtCHdPVH0b8BV1fAXSw72f45+UyPW+yM+Gn+yB6Pzh4wMPz4Z63VAkdQNwxAj0dqOXuYIob3t3QBzeH0gVQ7W2seKRdbZxsrXiyawjrX+rGY3fVMQ8KR25Q5YJOPur52DjC2U2w+4eyPZfycHazypDKTILa7VXgr/490HacCgie3w4Xdpd8nB1fq/5hwV3hobngWguuRsKaN0veNyUefn1Q/V1b8kz167ElyswmoDkAgdnnKqYPnBBCiGptwIAB9OnTx+K6TZs2odPpOHjwYJmPu2vXLp544ombHZ6ZGTNm0Lx580LLo6Oj6du3b7meq6A5c+bg7u5eoeeoLBKUEiKX4eQqdWffTxbXz8pt+N0rzJfGNd349KHmvDO4KbbWetYci2XgF1u497PNplufjzfx+l+HK2awlw9CTiZuV4/QVX+Ap7qG0jSgFDOU5WTnZSScXgOoSP5PY9pyfGZf1rzQjc+Gt+CpbqF0re+Ns51U+N4UY6aUX1MY+CWgg/2/FBn4LKhJLTeaB7qTlaOxbeU82D1Lrdj3s9l2Sw/lzrpXltK9Lf9TvZZSYuGnQbDuHdVsvCSXD8Hx5QB0sT3GqdhkNpyMM9vkdFwyszarMtfpAxrllfdt+QTQwNkPfBrn3fyawaAvwa1A6WlId/XTUgnf0cVw9awKyuQ/lk9jaDUKntwANVuY76O3gu7/geG/qcf7f4OkyyU/Z6Mji1R2mbNvbgCmt1ru3VD9jI1Ap1OlpkalLd0zmnpvI4682YcpfcPMeryZjQGg0UDVG6vnDPV41TSVxVWZNn+sfjZ5AEYuBbfcGQZd/KBpbnnkts+LP0Z6oiptBZVhZe8G932qHu/4WgW+inJ2C3zdSTVVt7aHer1u+KmI6sPdL5h4zRUrcjNDhRBC3FEef/xxVq1axYULhSf7mT17Nq1bt6ZZs2ZlPq63tzeOjqWftOlm+Pn5YWd3Yz1e70QSlBIC0NKuor+mZgjLPv4vZCSZrU9IyeTPPeoP49jOIYAK5jzcrjaLnu5Aqzoe+Lnam26+ruqP0MK9F7meVvIMZWWWeMl09zmHf0tXtgdwaS9kJKr70XnfMOh0Omyt5c9BuTMGpWrUhTrt4a6n1eO/n4W0q6U6xCPtauNKCu0OzchbGH3AlIVlLN3TlaV0L+GMatINEDYA0GDD/8FPAyExuvh9t31putvTKwHAFIAC1dz8jb+PkpWjcXdDH+5umNsg/8pp1WMIVIbP01vzbuM35Y6jgFBjUGq9eXmapuUFOzpNNj/W01thwCcquFGUBn0h8C4VlDM25i6JpsG23Eb1bZ8wD6D55PbLilOz5LUPVUEpF3tValpusjPzfm+NB6ufbcap8sGsVPhrQuWV8cUeg1OrAB10fw2sCgSwje/1o3+pGQqLsu8X9TfJq77q/QXqZ8sR6v7ipwuXmBpy1KyWP94LSdFq33Fr1T4lTAggqj8fV3uOGIIASD+/t2oHI4QQotLde++9eHt7M2fOHLPlycnJLFiwgMcff5wrV64wfPhwatWqhaOjI02bNuW3334r9rgFy/dOnjxJly5dsLe3p1GjRqxatarQPq+88gr169fH0dGRkJAQXn/9dbKy1Ge7OXPm8MYbb3DgwAF0Oh06nc405oLle4cOHeLuu+/GwcGBGjVq8MQTT5CcnHd9M2rUKAYNGsQHH3yAv78/NWrUYMKECaZz3YioqCgGDhyIs7Mzrq6uDB06lJiYGNP6AwcO0L17d1xcXHB1daVVq1bs3q0y3M+dO8eAAQPw8PDAycmJxo0bs3z58hseS0kkDUIIYNe2jbTNvW9tyODM1j8J6T7KtH7u9nNkZBtoWsuNNkHmvZEa13Tjz6fMG/JqmkafjzdxPCaJvw9c4tG76pR+MMeWq/KgblMsfsDSNI0d+w9yV+7jFjkHIO4I+JfiG4P8ZVCXy5j2ajDA5g/Bv0XxzbqvRaleMh2ezcucKE8pV2DjeyoTI6B12fY9shjijkPnFwp/iK4I8SfVzxq5QcO7p8LJlSpYtWIKDP666H1zDQivic3SX/HhCqnOdXD0rKVmkju6GDq/YCrda1eW0r3tXwOa+vA/7Bc4OB/+nqTKwL7uBA/9CrXbFd4vMRoOLTA9bKi/iF4Hm07Gc+xyIg39XFl1NIaNJ+KwtdIz7d5G+c75Ve45e4FPw9KNs1ZrsHGC1CsQczjvPX52swrMWTvc+MxzHSbCvO0q+6zzC2DrVPz2ZzepLDEbx8LnNGZKJV6E9Ov0a+rHppNxdK3vXWQT+BtyZh1kXFeZZrVz/wLo9Wq2wq86wrkt8MtgVVpoZGWrMpBK8/fByGCAPbNVcL7Ds+ocBRkbkzfsDzVCC6/3awIh3dTfnB3fWJ5NLyc7930BtJ9gfp573oZTa1XD9J/uU83vja6eUwF2gPDh0O8DsCv9rJ6ienOys+aEPoSuHCTz/D7s21f1iIQQ4jaiaeqLrKpg41iqL4+sra0ZMWIEc+bM4bXXXjPNQL1gwQJycnIYPnw4ycnJtGrVildeeQVXV1eWLVvGY489RmhoKG3bti3hDGAwGLj//vvx9fVlx44dXL9+3az/lJGLiwtz5syhZs2aHDp0iHHjxuHi4sLLL7/MsGHDOHz4MCtWrGD16tUAuLkV/lI0JSWF3r170759e3bt2kVsbCxjx45l4sSJZoG3devW4e/vz7p16zh16hTDhg2jefPmjBs3rsTnY+n5GQNSGzZsIDs7mwkTJjBs2DDWr18PwCOPPEKLFi346quvsLKyYv/+/djYqCz9CRMmkJmZycaNG3FycuLo0aM4O1fctZYEpcQdLz0rh+1b15H/z1fUxrm4tRlODWc7MrJz+Gm7+qZ/bOdg0x/G4uh0Oh5sHcBbyyJYsPt82YJSS5+H5MtQ755CQReDQWPaksO0On8arCBHZ42Vlq1mqypFgIPT+cqgkmMgKQZcfEs3rjPr1FTtdm7w0imwtrW83arparr6xIsq4FGeNA2WTFTlY0cWwdPbwdGzdPsmx8LCJyAnQwWkOr9QvmMrKDtDBeggLyhl6wiDvoJZveHAb6oEq0Hx9eb2kasZxDoMmo5PnJ9nSrheBaWOLGZP7TF8tlYFvkpdupd2VWWnQF5D6mZDVanbglEq+LNgJDy9zTy4AbDrO5Vd5FYbrkdhe/UU/Rr7svRwDD9simTmoCa8uVTNmDWuSzBBXrmBntQE2D9X3e8wsXTjBPUeC+qkAnln1uUFVowNtJsPB6fiZyUsUoN+asa6q2fV76LN2OK3N53z4cLvOQd3cPFXWTtxx3EMbMsnD7UodIibZiy9bXSfKkU08gyGXm/A8hct99+KP6kyiUqTRWT8d2IsmbRxVH25zLaJgwPz1P32xfw+2z+jxrP3J+j2SuHstWN/w/UocKwBzYaZr7N3VcG2nwfBxT3qlp+1A/T/EFo8UvJzEreciw71IR30lw9U9VCEEOL2kpUK75SttUC5+c+lkr8EzDVmzBjef/99NmzYQLdu3QBVuvfAAw/g5uaGm5sbL774omn7Z555hpUrVzJ//vxSBaVWr17NsWPHWLlyJTVrqtfjnXfeKdQHaurUqab7QUFBvPjii/z++++8/PLLODg44OzsjLW1NX5+RVcr/Prrr6Snp/PTTz/h5KSe/+eff86AAQP4v//7P3x91WcxDw8PPv/8c6ysrGjYsCH9+/dnzZo1NxSUWrNmDYcOHSIyMpLAwEAAfvrpJxo3bsyuXbto06YNUVFRvPTSSzRsqL5crVevnmn/qKgoHnjgAZo2bQpASEhImcdQFlKvI+54X60/Ta0M9cE+o15/ANob9vHqb1vJMWj8fSDaNBNdvzL07BnUohbWeh0HLlznRExSyTuAmj0qObfHzdWzZquycgxMnr+fX7ZHUVN3BQCrdk+qlYf+KLnsKiMZLuxU9+3d1c+yZEud35F7nOuWe/wAZKbCiRXqfsRSVSZWng7ON/UzIjmmbI2qd/2gAlIA696FmAqebjwhEtDA1gWc85VwBbZVWSEAfz+nAjZFSbuqtgF+yOnLt+d8uOTfA3RWcPkgr32/mMT0bFrX8WBIq8DSjWvPHDVjm09jlcli5FVPNQb3DFXBlRX/Md8vMyWvp9U9b4KVHWSn8WS4+m7jr/2XeHtZBBeupuHvZs+E7vlKSvfMURdBvk1UM+uyMI7RGFCNPwUn/lH3jSViN0Jvlbf/ti+LL3uLO5H7vtYVfc58faUqRHZGXvmjsXQvvzZj4cEfoe97ebc+/1W/p0t7IWp7yeeI3Kgy5c6sU+8xgNXTC/873p37b6lWq7yMLUvq9lCvS2YS7P258HpjoK/NWLBxKLw+tDs8ttj8OfV9T2VGPb1VAlK3sQRXVRLrcO24KlsVQghxR2nYsCEdOnRg1ix17Xnq1Ck2bdrE448/DkBOTg4zZ86kadOmeHp64uzszMqVK4mKiirV8SMiIggMDDQFpADaty+cmjtv3jw6duyIn58fzs7OTJ06tdTnyH+u8PBwU0AKoGPHjhgMBo4fz5tptnHjxlhZ5X3p6O/vT2xsbJnOlf+cgYGBpoAUQKNGjXB3dyciQl2rTp48mbFjx9KzZ0/++9//cvp03iz0zz77LG+99RYdO3Zk+vTpN9RYviwkKCXuaOcTUvl6w2ka61QmlF2rR8l0C8FOl4VD5Co+X3uK7zepD2QjOwRhY1X6fzJeznbc3VAFIxbszp3SvqR+Lwl5fwxMWTaobK6nftnL4v2XsNbraOKcW4McNkDNelWa3jjntoAhG9zr5PVuiS7Dt9Dnd+bdNzZbLujkv/lSgrXcMrEyMBiKnj0rMVrNsAWqdE+nV6VkEX+XfNysNJXlAyrLx5AFi5+CnAro92Vk7CflVbdwhkr311QfnOQYWPFq0cdYMUUFiGrUZUud8WgazD2UTJyP+k/zbsNWOtfz4qfH2+JgW4oysexMVUoFKjBWcFy2TqrhODo48CscX5G3bv+vKkjmEQRh96nxA01tLtGitjuZOQZ+zs0ofK1/GI621nnnNL43208se88fY1+pqG1qJq7tuT2t6vdVgbSb0fwRlb2TcDovmGqJ8ZwN+lkuVYNCfaXK3el8pXuBFgJBOh00HgTtnsy73fUUhOdmIBXXcNyQA+v/q3qKJceoQNL4zRDUWf17XpyvV1VWGuzM/bdk6T1UcEzGIN6Or9X7Jz1R3c5sULMuWtkVn6UW2t38ObV7Us3u51mx39iJKuYexHXNEStDFsRVUKBXCCHuRDaOKmOpKm42ZWsy/vjjj/Pnn3+SlJTE7NmzCQ0NpWtX9eXm+++/zyeffMIrr7zCunXr2L9/P7179yYzs/y+yNi2bRuPPPII/fr1Y+nSpezbt4/XXnutXM+Rn7F0zkin02GowF6hM2bM4MiRI/Tv35+1a9fSqFEjFi1Sn/HGjh3LmTNneOyxxzh06BCtW7fms88+q7CxSFBK3NFmLj0K2enU019UC/zDsQ1/AIB7rbbzv9UnOHY5CQcbKx5uW7uYI1n2YGsVnV607yLZh/+CdwPg6JKid7iSLyh1XQWyjl9O4tHvd7A6IgZbaz3fPNoCp4zcqLlrzbzymd2zVDZLUYyZJqHd88qgSpspZTCYl88cW64yNwo6ulj9rJVbdrjvl1I39CYnG77tAp+3gYsFmttqGiydBOnXVZnZoK+h4yS1bunzqs9UcQ7OU32J3GrDmH9Uplj0/rzZwypC/ibnBdk4qDI+nV6NzZgBY2QwwMYPVFmZTg+DvmLYXSoI9OPWc3x4UfVqGu60h+9Hts4LAJXkyCIV5HL2haZDLG9T+67CmVwGQ15g5q6nVZaRsS9UXASPdwo27d4+pIZ5KeGRhbnn9FOztJWVd0O1b3a6ypLb/2vuiSaU/VgF2TlDq9HqflFBm5R49Xso6ZzeDdTPigpKGQPBjQdZ7vFUlLtyx3xsmfnfFyNNg0XjYf27oBmgxaMwbh34NlLlczZOqlx0Z24w8+B8SI0Ht0AIG1jy+ZsNA0cv9ffs/4Lgv4Hq9tN9ueuHmmcSCoFqdn7YkPt3pSxfngghhCieTqe+hKyKWxm/mBw6dCh6vZ5ff/2Vn376iTFjxpjaqGzZsoWBAwfy6KOPEh4eTkhICCdOnCj1scPCwjh//jzR0XmVJtu3m2eVb926lTp16vDaa6/RunVr6tWrx7lz5pO32NrakpNT/OzVYWFhHDhwgJSUvM9pW7ZsQa/X06BBg1KPuSyMz+/8+fOmZUePHuXatWs0apTX87V+/fo8//zz/Pvvv9x///3Mnj3btC4wMJDx48ezcOFCXnjhBb777rsKGStIUEpUU7/tjOKe/20ofdnbDdhwIo5/j8YQZnVBTT3tWEMFeXJLY+62PogzKuvnwdYBuDlamJ69BN0aeOPlbEd8ciaX9yxVZVPHlha9gzGQAWRcOcd/Fh2i7ycb2X3uKk62Vvw4ui09altBTiagU+Nt0Bc8giH9Wt4HdkuMvWZCuoNfblAqupRBqbhjaoYsGycVIMi4bt6fClRA7MRKdb/f+6o8LCsF9vxYunNcO6caSV85CT/coxogG7OmDvymMlmsbFUwx8oaur0K3mGQEpeXQWWJwZBXJnTXeDVrWr/31eMN/weXD5dufGVVXFAKVL+wDs+q+39PyivjS4mHuUNg7Uz1uPMLENiWno188XGxIzkjmxXZrcjBisDM09hdi7R4+ELyz1jXdhxYFzNN7d1ToUY9VUq64lX12iecUVlFzXNLpozlanHH6dPYj7o+ztjb6JlxX+O8vmuaBlvzn7OIPmTF0enySviWvwjZaeAfrnpNlYe2T4DeWmUSFgyGggr2ZqerYGidDoXXG3nnZkrFVkBQKjsjr2y10aCy7evTUDWXR1PZSgUdWQiH5qvXYPA3MPAL1fsMVFbcPbnvw9VvqNJJ47+lduNLN1mAjb36t6qzcLnh4JEXXBYiHx9XOw5rQeqBBKWEEOKO5OzszLBhw5gyZQrR0dGMGjXKtK5evXqsWrWKrVu3EhERwZNPPmk2s1xJevbsSf369Rk5ciQHDhxg06ZNvPbaa2bb1KtXj6ioKH7//XdOnz7Np59+asokMgoKCiIyMpL9+/cTHx9PRkbhL+0feeQR7O3tGTlyJIcPH2bdunU888wzPPbYY6Z+UjcqJyeH/fv3m90iIiLo2bMnTZs25ZFHHmHv3r3s3LmTESNG0LVrV1q3bk1aWhoTJ05k/fr1nDt3ji1btrBr1y7CwtT17KRJk1i5ciWRkZHs3buXdevWmdZVBAlKiWonJSObd5dHcCImmTf/Lp++P4npWVy8lma6nU9I5Y0lRwAYG5ob+PJrpj4A+zSCGvWw1rIY430MZztrs0yQsrCx0nN/SzUDXXxMbqS6uJ4z+YJS588c59cdURg06NvEj+XPdVZTzSfmZnU5+4KVjXlvnO1fqlKcQi9AdG4JhA6Cu6gP9QBXI1X2UUmMvahqtVSZGlC4hM9YuucRpD7AG7NKdnxTup4gph5aOlVet+JVmPeo6v30T26JW7cpeWVS1naq1ExnBYf/zGsCXdCp1RB/AuxcocVjalnTB6FB/4ot4zNmpRQVlAL1fLwbQkosLH8Jzm5RPX1Or1GNnO/7XJX6od5L4zqrkqUHOjVDbyxrO1pEKWVBZzerzDhrB2j9ePHbFszkWpbbFL7V6LxZzoy/h9gIrK30/PlUB9a/2J0Gfi55x4ncCDFFzFhXFsbnmpqbEXcjZYBFcasFje9X943ZYEZZ6aUvPTRmSiVdUr3hytPptSoo7OIPgRZmRSyJ8d9iwczF5FhYltsktPOLEP5Q4X1bj1F9wLLT4McBEH9c9Ulr+Vjpz992HLwWU/j20mlV3ipEAb6u9hyRTCkhhLjjPf7441y9epXevXub9X+aOnUqLVu2pHfv3nTr1g0/Pz8GDRpU6uPq9XoWLVpEWloabdu2ZezYsbz99ttm29x33308//zzTJw4kebNm7N161Zef/11s20eeOAB+vTpQ/fu3fH29ua3334rdC5HR0dWrlxJQkICbdq0YciQIfTo0YPPPy+mtUIpJScn06JFC7PbgAED0Ol0/PXXX3h4eNClSxd69uxJSEgI8+apiWqsrKy4cuUKI0aMoH79+gwdOpS+ffvyxhtvACrYNWHCBMLCwujTpw/169fnyy+/LG4oN0Vm3xPVzp97L5CYng3A5lPxbD4ZT6d6Xjd8vJ+3n2Pm30fJzClck+vlbMs9NWIgirySNp1OZUttfI9J/kcYN+FVXOzLniVl9GCrAL7deAZ9cowKA8efUIGjfLNnaZrGkUuJ1Dh9CGPhU03iaFrTlan3NqJdSL4Zxq7nBqVc882c0eIRWPe2ymY5sUJN055f5IbcgzbPmznMNQASL6hMoaCOxT8JYz+pwLYq62LH1ypzIzsjL+PGGKRqNEi9hk2HwJo31If0o4tVmU5xruZm/NTvA6F3w7+vqayyY8sATTVVNmYWGdVqCZ2eh00fwLLJKpOlYCnQttz655Yj1IxeoMZ37/9UWdLlg7D46bzfv9oA6ve+uZ5FpkypInoQgcoiGfQlfN8LDv+hgmto4NUAHpyjSqjyGds5mAdbB+DuaAv7BsPp1SoY16VAptjFvSrzJ7+jf6mflmaPsySwDXR4BrZ8on6HemuVVWRkzJTKfT+7Odjg5lDg30lxM9aVRf6G7C41LTf6vhntJ6hsocMLwbexeq6gnltKnPq30qiEUjUHdzW2pEsQdxxq30DwqCj5/22VpXTPKKSbajIfcxh2z4bOk3NLYp+HtATwa1r0bJQ6nSrj+7K9em4ArUYWnkmvJDeSJSfuWN4u+TKlLh9W5d2lycwTQghxW2nfvj2ahX6znp6eLF68uNh9169fb/b47NmzZo/r16/Ppk2bzJYVPNd7773He++9Z7Zs0qRJpvt2dnb88ccfhc5d8DhNmzZl7dq1RY51zpw5hZZ9/PHHRW4PMGrUKLPssYJq167NX3/9ZXGdra2txQCaUUX2j7JEMqVEtWIwaMzarIITAR5qNqb3Vh6z+MeoNL5cf4rXFx8mM8eArbUeu3w3V3trZg5sgm1sbvmWX76gRO6HXv3pNbiQauHIpVfP14Xmge546a6pBdnppqyg+OQMvt90hr6fbOLezzbhmppXp+yoy+CvMWHmASmAxNwPhm618pbZOkHr3N44a2YW7vdkLLXL/+HemC1Vmr5SxqBUQFuVqeHirzI3Tuf+cc1MgRP/qvvGgIG1ncqQAFU2VtLv0Jgp5RmspqB//F+VdYWmmiEby/YK6vqyym5LvQLf9YALu/PWRR9U2To6K1VulJ+Lr5rFC1RA4t+p+W6vwe8Pl/y6FCX9usp+AjWbXXFqtYKOz+U+0CD8YXhiXaGAFKiGh+6OuR/uG/YHvY0KNMTl1tAbctTMgt/dXeD5TFVNpaFsM9Z1+48KkIHqB5X/PecRBNb2Zu9nM4mX4ORKQAftnir9OS1x8VO/Y1CNrq1uPEhsUc3mqqm3lgOrZ+S9Znt/Kts58/XZKhc52bDmTdXHCfKyFMtKp8vLltr5rcpcPPSHCvrqrdW/reKCRu614Z63co+lV6+HEBXIx8WeSM2PFM1eZenFl75PiBBCCCFuLfK1k6hW1hyL5eyVVFztrflt3F30+XgjBy9c55/Dl+mXv3lyCTRN4/9WHOfrDaqE6pm76zK5V/28XjdGhhz4S5XxmYI0oEqTvBqoUpXj/1guaymDB1vVxPufvDK5vXu28WX0VdYfjyXboII1AdbXcdJloOmswN4NXVoC+sTz4FwgSyzxgvrpWst8eftn1LTrcRGqV1KPacYXw7yflJF/Mzi+rOS+UqkJqs8TQEAblanRaBDs+EplcDToq3pJZaep3lb5X8dWY2Djh6r84uxmCO5c9HmMgQ2PIPWzZgt4cqPqLRXQOq88qiBrO3jwR/h1qMq2mtUbes5Q5VbGcqzGg8A9sPC+TR5Qs40VLA859If6EHT1bN54ysJYuufsm5edVZxur6o+PjXqlT7w4OChgoynVqlMtJYj4M+xcDb3G5/Qu8HJ23yfoM5lK5eysYfhv8GuH/IFznLprVQm2eVDqudYwYww43uuZovyKdEa8KkqxSwYXCwv/T+CrZ/m9mvLx8k7L7haEu8wFagtj75S1y+q32fUVvW47ZM3Vrpn1GSI6guVFK3+7W76SC3v+orKlCpJq1GqPNfZVwWphKhAvq52aOg5rAXRTndM/Y22EKgXQgghxK2vyjOlvvjiC4KCgrC3t6ddu3bs3LmzyG2zsrJ48803CQ0Nxd7envDwcFasKGYab3HL+WHzGQCGt6tNoKcjY3N76Hyw8jjZFsrvLDEYNKYuPmwKSP2nX0NeuKdB4YAUQPxJFUyxcTLPaDFOrw6FeyfdgPvqO2Cjy+v1tHrDBlZHxJBt0AgPcGPmoCaseFSV4+k86qAzTnd+7Xzhg5nK9woEpZxqwL25HzQ3f5w3W17cMdWw2trB/EOtMTOspEwpY+ZRjbrqHJCXDXVsueq7k39msPyvs1MNaD5c3TeWchWlYFAKVIlQt1ehbs/i9/WuD09uUOMyZKssl18eUMElKHrWNGMGyf3fmt8CcmcPNAZWyqqkJucFWdupEryyZsIYfw97flS9qM5uUu/lwd/AY4sKP6+y9AEyqhEKfd5RmWUFeef1lSok/2yP5SGwDXSfogJlFcG7vipTK/ia9X5b9dgqjfLKlDq5Sv0+o7aq/k0P/AD93ru5PlrWtnnBtVXT1MQI/uGq/LU0jP9Wipq1UYhy5GxnjYONFUcMQWrBpX1VOh4hhBBCVJwqDUrNmzePyZMnM336dPbu3Ut4eDi9e/cmNjbW4vZTp07lm2++4bPPPuPo0aOMHz+ewYMHs2+fXKzcDg5fvM72MwlY63WM6hAEwLguIXg62XImPoUFey6UeIwcg8bz8/czd0cUOh28e39TnuhSTPmUMSDj16RwrxbjB/5Ta1SPmJvgknXF7HEz22ie7BrCque78NfETjx2Vx2ck8+qlTXq5mX1XLcQlLJUvmfUaKDK/tFyVJ+krPS84ECd9uYf6I09lOKOFS73y8/Y5Dygbd6ygDYqKJaZBBF/qybnYLnXj3FK+hP/qNm7LNE0SDir7nvcWFN57N1gyGyV8WJlp5qFG7KgdgdVIlcWxoyygjMM5nd+J8zub3n2vtL0kyoPDfupEr7EC6r3kU9jeGL9TWf2lZopCFMgM6io7LzbXVln4DuzHr7qBJ+1zndrpWZfTEtQgeMnN5RfIKj1GNV0HtT7ZtBX5V8KKUQ50Ol0+Ljasd+QG9g3lh8LIYQQ4rZTpUGpjz76iHHjxjF69GgaNWrE119/jaOjI7NmzbK4/c8//8x//vMf+vXrR0hICE899RT9+vXjww8/rOSRi4pg7CXVv5k//m4qM8HZzpqJ3dVF6cerT5CeZWFmuXxmb4nkr/2XsNbr+PShFgxvW0KZibFsK38/KSOfMKjZUgU2vu0G+4tuBleiZPMpSnv7XGVK3zDq+eabqSx/do2xPOZaVOFjFVW+Z9TvA3DyUYGCDf+FM8Z+UgWCA661wMFTZRbFFjPLoanJeZu8ZXp9XuPnlVNUXyHPEMuvo1fdvF5Wp4to8JeaoAJccHOlQTodtHkcxq5WmW86PXQpooFzcYzZPZEbwFBEht7at+DcZtj4XuF1pt/lTTRKLw0HDwi7V91vORLGrVEZP5WlqCBM7FHVU8vGUTXHv1MYS0yTL5vPcleUzR+r2QmvnMx3y33vtBkHj68q38Cmo6f69wFw92uqqbsQ1ZSviz17tdy/oZcPQlZa1Q5ICCGEEBWiyoJSmZmZ7Nmzh54988py9Ho9PXv2ZNu2bRb3ycjIwN7evHTDwcGBzZs3F3mejIwMEhMTzW6i+olJTGfJAZUB9Hgn80yZR+6qTS13B2ISM5iz9WyRx4iMT+H9lSqj6Y2BjRkQXrPIbU2MmVL+FoIpAMN/h+AuqpfK4vGweIJq6l1WSblBqdzSNF38SdXPKj9jH6IaoeCWmylVsHzPYIDEaHW/qKCUo6eaWQ7UzGlncmfeK1hGpdPlPe+iptw25OSVAQYUCC4Ys6JS4tRP46x7ltRsoX4WVdZkLN1zqVk+5Vn+zeDp7TDpUMmlf5bUaqXKptKuwmULr01yXF7vphP/Fn5PlLV872YM+hom7oH7Pi19mVl5MWZKGWeUNDJl53XIm53xTmDvqmbqg5KzpbLSISr3/7oHfoBRy/NuE3dD/w8qplSxxwx1/NKW7QlRRbxd7bigeZFq66W+PLm0v6qHJIQQt6wbnTRKiJIYivoCvwyqrNF5fHw8OTk5+Pqa9ynx9fXl2DHLF/O9e/fmo48+okuXLoSGhrJmzRoWLlxITk7R2TPvvvsub7zxRrmOXZS/n7adJdug0TbIk2YB7mbr7KytmNyrPi8sOMCX605xbzN/AjwczbbJMWi8tOAAGdkGOtX14uGSMqRAlRgZm3xbyvAB1UfnscWw8QOVdbT/F7i4Gx6cozKpSsuYKRXQFpIu581Ylj8LwthMvEbdvHK66wUypVLiVOYWOjUjWVHC7oWmQ9WscjkZ4OilSrsK8mumSoiKanYeexQyk1WApuDzrdVafQA3Zm5ZKt0zKqms6arKksPzBkv3LLG2BbeAG9vXygaCOqmSwzPr84JqRsf+Bi33D3B2mmr03uR+9VjT8gUYKyEoZWNfPo3Eb4R7kOpVlp1m/n4uKjvvTuDdQP2biItQJbNFOb9d/R1w8VcltzfTL6osrKxVg3ohqjkfFztAx3mnxjTI3KBKyYv7NyWEEKIQGxsbdDodcXFxeHt7W+6xK8QN0DSNzMxM4uLi0Ov12NoWM5NzCW6p2fc++eQTxo0bR8OGDdHpdISGhjJ69Ogiy/0ApkyZwuTJk02PExMTCQy0MAuXqDKpmdnM3aGCL2M6WQ5KDGpRi+83RxIRnciDX2/j58fbUdfH2bR+ztaz7D53FSdbK/77QNPS/cG9fl41+9VbFx9g0ltBt1dU1sefj6uyuJ8GwaSDpc8CMQalXP3Bq77K0IqNyPsQn5OVly1Uox6k587UVzBTKjG3ybmLX8m9YPr+nyo/S45R5XMFe2ZB3kx5RTU7N5bu1WqpXof89HrVmHvb56pUrrgZvPI3gNa0wh/AjUGpG5nprqKEdldBqdPrCmeVGBu7O3mrQOGRRXlBqeQYFcjT6avX86kIer0qF4w+kPd+zs6Ac7kzxhnLNu8kPmGqn1lJfeiM2WQh3SovICXELcTXVWUKnrAJowEb8v4/EkIIUWpWVlYEBARw4cIFzp49W9XDEbchR0dHateujd7SZ81SqrKglJeXF1ZWVsTEmPfaiYmJwc/PcgaIt7c3ixcvJj09nStXrlCzZk1effVVQkJCijyPnZ0ddnZ3UPnILWj+rvNcS82itqcjvRpZmOELsNLrmDWqNY9+v4PTcSkM+2YbP45pS5NabrlleyoD5z/9wwplURXJmB3kHVa64FJwZxi/BT5vpXrGxEZAzealO5cxKOXspz60Xj6oAjTGfkDXolR5go2jypywd1XL069BemLe48QiZt6zxNEThsyCde8UPfucMUMs5ogqvyoYeDI2ly1qKvq7noKYw6r/TXEfrL3qAzpVDpccW3gmN0sz71U1Y5ZP1HbVy8RYGpccC2dzS4b7fwTzH1ON3jOSwc45r3TPvY7K1rrdeYepoJTx/Xx+pyp3dfK+M3sWeecGYC3NSJjfndgIXogyUJlSsFerxwBQf1ssfakhhBCiWM7OztSrV4+srKyqHoq4zVhZWWFtbX3TGXhVFpSytbWlVatWrFmzhkGDBgGqHnHNmjVMnDix2H3t7e2pVasWWVlZ/PnnnwwdOrQSRiwqwtWUTD5eo8rWnugSgpW+6De0v5sD859sz8jZOzl8MZHh323nh5FteH/lMdKzylC2Z1RSPylLnL1VdlHkRrV/aYNSxp5Szj75PrTmK2UzBjI8Q1X2iZ2LamKddlVldNnnfri/bgxKlaJfFqgStNHLi15fI1QFwrJS1RiMjZqNTE3Oi2hW7RYAI/4qeRw2DirgdDVSBS8KBqVudua9iuBVT/W4Srqkev+E3q2WRyxRpXs1W0LYANXgPeEMnFihZkmrzH5S1YHxPWN8P5uCLd3uzA+PxqzLgjMS5peakNfHLaRrxY9J3JY2btzI+++/z549e4iOjmbRokWm66mirF+/nsmTJ3PkyBECAwOZOnUqo0aNqpTxlpWPi8qU2pleW2U0p8TCtXPV68sLIYS4RVhZWWFlZVXyhkJUgSqdfW/y5Ml89913/Pjjj0RERPDUU0+RkpLC6NGjARgxYgRTpkwxbb9jxw4WLlzImTNn2LRpE3369MFgMPDyyy9X1VMQN+mDf49zLTWLhn4uPNSm5LLKGs52/DruLtoGeZKUns2wb7ex62wZy/aMSuonVRTj9kX1YbLEmCnl4mf5Q6spkJGvx5SlZufGTKkb7ZVUkN4KfJuo+wWfT8oVSMjtjRTQ+ubP5VNMX6nqmCml0+U1hzcGWgCOLFY/Gw9W2xh7aR3NXX6nBaUKvp/v5H5SkG8GvhgVfLLkzHpAA59GxfeGE6IYKSkphIeH88UXX5Rq+8jISPr370/37t3Zv38/kyZNYuzYsaxcubKCR3pjfF1VptSFZPL+3z2/q+oGJIQQQogKUaVBqWHDhvHBBx8wbdo0mjdvzv79+1mxYoWp+XlUVBTR0dGm7dPT05k6dSqNGjVi8ODB1KpVi82bN+Pu7l5Fz0DcjMMXr/PrTtVL6o37GmNtVbq3o6u9DT+OaUu3Bt4YJ5IoU9me0Y1kSkHJfZgsMZXv+eZlSsWfgJxsdd9SIMM9N+vruoWgVGkzpUrD+PwLzjJ3ITdLyqu+ytq6Wd75+krll52R97yqU1AK8gIrxv4/STFwbou632hg7s9B6ufJVZCRBPEWAoy3s/zv55R4uLRPPb4T+0mBynI0BpSLypaS0j1RDvr27ctbb73F4MHFTDKRz9dff01wcDAffvghYWFhTJw4kSFDhvC///2vgkd6Y4yZUtfTssiulfvFyAXpKyWEEELcbqq80fnEiROLLNdbv3692eOuXbty9OjRShiVqGiapjF9yRE0DQY2r0m7kBpl2t/B1opvH2vNJ2tOoNfpyla2ByoLyBgIMWYKlZbxG9vLhy33YSooMxUyEtV9Z1+wdc4rmbsaqcrELAWlTJlS+WbgS7ykfpamp1RpFZX5ZSzdCyiidK+sTBk1BRpAX4sCNPW6OHmVz7nKi7G06vJBFXAxlu7VagUeddQ6v6aq7DLhtJqF707LlHKvk/d+3vujen286oNbOb5HbzXeDVUwOTZCTZCQn6blyybrVulDE3eubdu20bNnT7NlvXv3ZtKkSVUzoBK4Olhja60nM9vAtRot8AJpdi6EEELchqo0U0rcuRbtu8iec1dxtLViSt8iZr4zpkEVwdZaz0u9G/LCPQ3K3lzNmBXkGZLXRLy0vOqBtQNkpaheQiUxZklZO6gsCr0+t/E3ec2Qr+SWyZllSuUGpfJnSl0v5/I9yJcpdRCy0lXmUnZGvn5SbcrnPPkbQOf/3eYv3atuPYicffKClpEbzEv3jPKX8B1akDeT4J0SlMr/ft75vfp5p2cAmWabtFSqGqkCsXqbwgErISrQ5cuXTZnoRr6+viQmJpKWlmZxn4yMDBITE81ulUWn05lK+C655M7uGnNYfdEjhBBCiNuGBKVEpUtKz+Kd5erD2rM96uHnZl94o62fwwf14OyWihnEjfaTgtw+TLmNx6MPFL8t5Cvd88kLuuTvw5OZkpe1lb/ky1i+Z8yUMuSopttQvuV7Po1UE9m0q/C2L7zlo27ncmeYK2rmvbLyqg86vZpRMDnfrJvVsZ9UfsZslgPzCpfuGRmDUidWqFkUrR3KN5utujO+n43vz9A7PCjlnft6XNpXOLhuLAUNbKtmaxSiGnv33Xdxc3Mz3QIDS+79WJ6MJXwXcmqomWkN2XklwkIIIYS4LUhQSlS6T1afJD45gxAvJ8Z0LGK2tb0/QUocLBqv+vSUN2MJ2Y1OWZ8/u6gk+ZucG5lmLIvIy5JyrAGOnnnbFGx0nhKnLsh1enAux+bI1nYQdp/ldTVbgFcDy+vKysY+b3a92Hx9pRJyM4uqbVAqN8ByciWgQa3WeQFDI9/G5plRNXJnUbxTGLPgAHRWUKdj1Y2lOqjTQQV6L+yCw3+ar7vTG8GLKuPn50dMTIzZspiYGFxdXXFwcLC4z5QpU7h+/brpdv78eYvbVRQfF5UpFZuUAQG5WbvSV0oIIYS4rdxBn5pEdbA36ipztp4FYPp9jbG1tvAWTLsK8blBo+tR8O/r5T+Qm+37U5YZ+JLyZUoZeefrr1TUWIyBj5RYVVZnLN1z8Qercm4H9+BsePU8vBplfhu3rnyDK5ZmHqzumVJ1OoCVbd7jxhaaCucv4YM7p8m5kU++EtyANmUvib3deAZDl9xZYZe/mPc3wJADkRvV/Ts9m0xUuvbt27NmzRqzZatWraJ9+/ZF7mNnZ4erq6vZrTL5uqpMqZikDJVdCDIDnxBCCHGbkaCUKJUcQ/H9nU7HJXP/l1sY+MUWTsZYzmzaejqeR7/fQbZBo3djX7rW97Z8sAt71E+73IvfPbPh9NobHbplNxuUyp8pVULvq7zyvXzZTcaeM1dO5mVtFRyLgwfYOKn71y9UzMx7+dm7gr2b+a28ezzl7ytlZApKFZE1V9VsHc1LGAuW7hmZBaXukH5SRvkzpSTYonSerILXaVdh6fPq78Sl/ZB+HezcwL95VY9Q3OKSk5PZv38/+/fvByAyMpL9+/cTFaVKvqdMmcKIESNM248fP54zZ87w8ssvc+zYMb788kvmz5/P888/XxXDL5WgGmpW3SOXEvMm3Ti/o+T/d4UQQghxy5CglCiWpmlMXXyIsNdXMP2vw1xNySy0zV/7L3LfZ5vZG3WNA+evcd/nW/hzzwWzbVYdjWHU7F2kZubQqa4XHw1tXvRJjan5DfpBm3G5J3kG0supwWpqAqQlqPs3mtHi01iVKaVeyZsRryjJl9VP53wNZt1qqxnLcjLh5L+Wx6LT5Wt2HpUvKHUL9yoqmCmlaXlBKc9qGpSCvEBLQJu830lBPo3yGn6XV8njrcItMC+ILGVpipUNDP5aNTQ/vgwOzoczucH14M7ln+0o7ji7d++mRYsWtGjRAoDJkyfTokULpk2bBkB0dLQpQAUQHBzMsmXLWLVqFeHh4Xz44Yd8//339O7du0rGXxptg9XMvHvOJpDt21T9e0qNz5tQQgghhBC3PLkqFsX6aNUJftmuLmp/3HaORfsu8myPejzWvg6aBm/8fZTfdqr1d4V4Yq3Xs/lUPC8sOMD2M1d4c2ATVh65zAsLDpCTmyH16fAW2FlbFX3S/LO+NXsITq1SgYt/p8J9n978kzL2cHKtBbZON3YMG3vVFyr2qMqWcismUJQcq3665AtK6fVq/0v74NJetcxSdo17bRXAuXabBKVMmVLHVEAqJU7NYogur4dWddT2CRXMDB9e9DY6HQz6CiL+hsaDKm1o1YJerwIwCZF5JTZC9Rrr9gqsfQv+eTlv1kzJJhPloFu3bmjFZAzNmTPH4j779t06jcIb+Lngam9NYno2R2IzCfcPh4u7VQmfZ0hVD08IIYQQ5UCCUqJIc3ec47O1qsztya4hbDwRT0R0Im8ti+Dn7edwsLHi2OUkdDp45u56PNejHgBfrjvF/1afYMGeC2w7c4WL19LQNLi/ZS3ee6AZ1lbFJOgZcuDCbnU/IHd2qoFfwJz+sPdHaHQf1O15c0/MVLp3k31//JqpoFT0QWjQt+jtkixkSoHqK5V/FiFLQan8zc6NPaWKC4BVdzXqqkbtGdchKVqVJYL6sG5tW/y+VcnOBXq/XfJ2Aa3V7U7UsH9Vj6B66vg8RCyF6P1q5kmQbDIhSslKr6NtsCerI2LZEXmF8MC2Kih1YSeED6vq4QkhhBCiHEj5nrBo1dEYXl98GIBne9RjSt8wlj7TifceaIa3ix3nrqRy7HISNZxs+WlMWyb3qo+VXoeVXsczPerxy9h2eLvYceGqCkiN6hDEB0PCiw9IgcoKykxSvZR8GqllQZ2g7ZPq/pJnITPl5p7czfaTMirtDHzGTKmCQSmffH140Fn+1tdUvnf+9siUsrHPe56xEdW/ybkQN8vKWmWRGZvlu9WWDA8hyqBdbgnfjjMJeTPwnZcZ+IQQQojbhWRKiUL2Rl3lmd/2YtBgaOsAnu+pMqCs9DqGtgmkfzN/vt8UyfmrqbzUu4Fpdpz8OoR6sfzZzny06jj1fFwY3TEIXWmaZhsvNANamfdc6Tkdjv6lAjPnd0Do3Tf+BK+cVD9vNihVmhn4DDlq9jywnCll5BYINham5M6fKWXsXXUrB6VAlfBdOaUavGfkNsWXoJS4nfmEwd2vw6rXVbZneU8gIMRtrG2wJwA7zyaQM7ANVgAxR9QXVDdagi+EEEKIakOCUsJMZHwKY3/cTXqWgW4NvHl7cNNCwSQnO2ueyw1UFcfbxY53729WtgFcyJ3qOaBAXxpbJ6jVEo4vVz2hbiooldtT6qaDUk3Vz+tRqt+Qo2fhbVKvgGYAdOBUYLbB/JlSRZUSutdWP6+ezZvF71Yu3wP1Af3YUoiLgJxstUyCUuJ21/FZqHdP9W7oL0Q11LimK8521iSlZ3MszZXGrrXUF1QX96pJA4QQQghxS5PyPWESl5TBiFk7SEjJpGktN754uCU2JZXblbfzO9RPS82SjYEbY/ndjTAYyi8o5eAO7nXU/cuHLG9j7Cfl5FV4ti23QLB1Ln4sxqBU0iXQctSMfwUzrm41+ZudS/meuJP4NARru6oehRC3FGsrPa3qeAC5JXyB7dSKyI1VOCohhBBClBcJSgkAUjKyGTNnF+cT0gj0dGDWqDY42VVyIl1qQl7Aydg3Ij9j4OZmglJJlyA7DfTWeQGfm1FSXylTPym/wut0OvCqr+4XlSnl5JPXiwbAxR/0xcxceCvwyS1bjDuWN623ZI8IIYQogqmELzIB6vZQC0/+W4UjEkIIIUR5kaCUICvHwIRf93Lo4nU8HG34cXRbvF2q4Nt8Y+lejXqWS+Fq5JYM3kxQyrivRxBY2dz4cYz8wtXPovpKJRtn3vOxvP6up1WpYtgAy+v1+rxp5OHWL92D3Bn4rCAjUc3AB+AhQSkhhBCW3RWS11dKM87AG70fkmKqblBCCCGEKBcSlLrDaZrGa4sOsf54HPY2en4Y1YYQb+eqGYyxybml0j3Iy5S6FgXZGTd2DtPMeyX3xCqVEjOlci+YXSxkSgE0exDGrjIPPBVkbHYO4Fqz7GOsbqztzDPD7FzBwaPqxiOEEKJaa1rLHXsbPQkpmZxMdQL/5mrFqVVVOi4hhBBC3DwJSt3hPl59kvm7L6DXwWfDW9KydhUGBy4YZ96zULoHKtvI1kU1Dk+IvLFzmPpJFVEuV1bGGfjiT0BmauH1xm9xi8qUKg33/EGp2yBTCvL6SoHKWpPZyIQQQhTB1lpvuj7ZEZkA9XurFVLCJ4QQQtzyJCh1B9t4Io5P1pwEYOagJvRqVIUNtHOy4cIedb+oTCmd7uabnZsypW6yybmRi5+aVU8zQOzRwuuNmVKWekqVlrGZOtw+QSljXymQJudCCCFK1C64BgA7zlxRM1kCnF4HOVlVOCohhBBC3CwJSt3Bvt6gsoYevas2j7SrU8LWFSz2KGSlqEyo/Fk0Bd1ss/PyDkrpdHnZUtEHCq9PLodMqfzle7dDTykonCklhBBCFKNdbl+pHZEJaDVbgKOX6k0Ytb2KRyaEEEKImyFBqTvUkUvX2Xr6ClZ6HU91K6cAzc0wle61Ln52uZsJSmVnwtVz5scpD8X1lSqpp1RpmJXvFdN76laSPyglM+8JIYQoQfNAd2yt9MQlZXA2IR2MDc9PrqzagQkhhBDipkhQ6g41a/NZAPo28aOWu0PFnOT0Ovi4KcxwM7+94QmLxkNGUt6253Nn3iuqdM/IFJQ6bXl9+nX4uhMsfb7wuqtnQcsBG6ebCxIVVFymlKmn1E2URt5ujc5B/R711uq+ZEoJIYQogb2NFc0D3YHcEr76uSV8J6XZuRBCCHErk6DUHSg2MZ0lBy4CMLZzSPmfICcb1syEnwermfIK0nLgwG/wbTe4fEgtO79D/QwoKShVQk+p02vVMXfPhsRo83Wm0r3Q8m2sbQykXdoPSZfzlmckq5JEuMmgVAD4NAa/pjd3nOrE2hbq9wEnH6jZoqpHI4QQ4haQv4SP0LtBZwVxx/KyoIUQQghxy7Gu6gGIyvfz9nNk5Wi0ruNh+tax3CRegj/Hwrkt6nHLkdBtSl5WDEBchMqUunIKvusB3V6Bq7mz6QW0Kv74xkyplFiVFWXvZr7emHGFBhFLoN2TeevKu5+UkVsA1GoNF3dDxN/Qdpxabizds3ECO+cbP77eCsZvyr1/G8WRh/0ChmywsqnqkQghhLgFtA1WQamdkQng0BwC20HUVjULn/H/XiGEEELcUm6jT7iiNNIyc/hlu/pG8fFO5dzL5/RaVTp3bgvYOsMDP8B9n4KrPzh7592Cu8D4zVCvN+RkwJo31f5eDcDBo/hz2LvmZQtZypYy9qYCOLLIfJ1xe696N/b8itN4cOFzmvpJlUN2k96q+F5btyKdTgJSQgghSq1VHQ+s9TouXkvjfEIq1OulVpz8t2oHJoQQQogbJkGpO8zCfRe4mppFoKcD9zQux75Kadfg90cg9Qr4NoUnNkDTIUVv7+gJw3+HXjPzsqhK6idlVFRfqax0875OUdtU5paRcfvyzpQCaDRQ/Ty3Na+Ez/jzdim5E0IIIaqQo601TQNUhvTW0/FQv7daEbkRstKqcGRCCCGEuFESlLqDGAwaszarMrnRHYKx0pdjX6XjyyErFbzqw9jV4FWKwI9eDx2fhdEroOUI6DipdOcqqq9U9AHIyVTTRAe2U8uOLslbn7+nVHlzD4SANoCWd87kcmhyLoQQQgiTuxv4APD3gWjwaQSutSA7HSI3VfHIhBBCCHEjJCh1B9lwIo7TcSm42FkztE1gyTuUhbFsrckQsLEv276BbeC+z0oXyIJ8mVIFglLG0r3AttD4fvNxZSRBcm7mkmcFBKWgcAmfBKWEEEKIcjWweS1AZUrFJGVAPeMsfFLCJ4QQQtyKJCh1B/khN0vqobaBONuVY4/7tKtwep2633hQ+R23KEUFpc7nC0o1ui932Xa4fjGvdM/JGxzcK2ZcxhI+Y9lgUjn2lBJCCCEEtWs40qqOBwYN/j5wKV9QaiVoWtUOTgghhBBlJkGpO8TyQ9FsPhWPlV7HyA5B5XvwY8vBkAU+jcG7Qfke25L8PaWMF6CaBhdyZ94LaAuuNaF2e/X46F8VN/Nefm4BuWWDuSV8kiklhBBClLtBzWsCsHj/RQjpCla2cC0K4k9W8ciEEEIIUVYSlLoD7IxMYNK8/QCM6hBEgIdj+Z7AWK5WGVlSAB5BoNNDZnJe4Of6BUiKVk3Ta7bIHU9uOd3RxRXbTyq/RoPyzmkKSpVjQ3khhBDiDte/WU2s9ToOX0zk1DUt7//9ywerdmBCCCGEKDMJSt3mTsYkMfbHXWRmG7inkS//6RdWvidITYAzuaV7xoBMRbO2A/c66r4x2GTsJ+XbBGxzg25h9wE6OL8DzmxQyyoyUwrMS/iMJYPOPhV7TiGEEOIO4ulkS5f63gD8tf8ieDdUK+KOV+GohBBCCHEjqjwo9cUXXxAUFIS9vT3t2rVj586dxW7/8ccf06BBAxwcHAgMDOT5558nPT29kkZ7a4lJTGfU7F0kpmfTqo4Hnw5vUb4z7gEcWwaGbBUM8q5fvscujjG4ZEzVN/WTape3jat/Xglf1Nbc/epV7LjcakHgXep+du701C6SKSWEEEKUp0EtVMPzxfsvonnlXn/EHavCEQkhhBDiRlRpUGrevHlMnjyZ6dOns3fvXsLDw+nduzexsbEWt//111959dVXmT59OhEREfzwww/MmzeP//znP5U88uovKT2LkbN2cvFaGiHeTnw/ojX2Nlblf6LKLt0zKtjsPH+T8/yMJXwF96tI+c+p04NjjYo/pxBCCHEH6RXmi5OtFecT0jiFClBJppQQQghx66nSoNRHH33EuHHjGD16NI0aNeLrr7/G0dGRWbNmWdx+69atdOzYkYcffpigoCDuuecehg8fXmJ21Z0gPSuHA+ev8dvOKF5ffJhBX2zh2OUkvJzt+HF0WzycbMv/pKkJEJlbFtdocPHbljdjb6grpyErLa+PREAb8+0a5ZbwgfrpGVzxYzPO/Afg5AP6CggGCiGEEHcwB1srejdWmciLL7iqhQmnITuzCkclhBBCiLKqsqBUZmYme/bsoWfPnnmD0evp2bMn27Zts7hPhw4d2LNnjykIdebMGZYvX06/fv2KPE9GRgaJiYlmt9vNu8sjaDRtBQO/2MKUhYf4efs5Tsel4GxnzZzRbQj0LOfG5kbHluaW7jUFr0rIQMovf6bUpf1qHM6+4F7bfDsXP6jTQd13r636UVW0/DP/ST8pIYQQokIMzC3h+zUiG83WWV0LJJyp4lEJIYQQoiysq+rE8fHx5OTk4Ovra7bc19eXY8cs9wR4+OGHiY+Pp1OnTmiaRnZ2NuPHjy+2fO/dd9/ljTfeKNexVyeZ2QZ+3HYWgwY1nGxpVNOVRv6uNKrpSvvQGvi42FfcyauqdA/yglJXI/P6RQW0AZ2FnllNHoBzW8CvaeWNr8kDqtl5Rc/2J4QQQtyhOobWwMvZjvjkDBI9QnBLOKj6Svk0rOqhCSGEEKKUqiwodSPWr1/PO++8w5dffkm7du04deoUzz33HDNnzuT111+3uM+UKVOYPHmy6XFiYiKBgYGVNeQKd+jiddKzDHg62bJ7ak90loIyFSHlSt6MdgX7NlUG11pgbQ/Z6XDoT7Usf5Pz/FqNBhsHCOpUeeNr/TjYOkFQ58o7pxBCCHEHsbbSMyDcn9lbzhKRXZO7OAjxJ6p6WEIIIYQogyoLSnl5eWFlZUVMTIzZ8piYGPz8LM9W9vrrr/PYY48xduxYAJo2bUpKSgpPPPEEr732Gnp94WpEOzs77OwqoWSriuyMTACgTZBH5QWkQJXuaTkq+6gqsoH0evAMhdgj6gaFm5zn37b5w5U3tqo6pxBCCHGHGdS8FrO3nGXjtRrcpUdm4BNCCCFuMVXWU8rW1pZWrVqxZs0a0zKDwcCaNWto3769xX1SU1MLBZ6srFQTaU3TKm6w1djOyCsAtA2u5BneDudmJ1VFlpRR/mCY3gb8m1fZUIQQQghR+ZoFuFGnhiMR2TXVApmBTwghhLilVGn53uTJkxk5ciStW7embdu2fPzxx6SkpDB69GgARowYQa1atXj33XcBGDBgAB999BEtWrQwle+9/vrrDBgwwBScupPkGDR2n70KQLtgz8o7cdzx3Fn3dND4/so7b0Fe9fLu+zcDmwrsnyWEEEKIaken09Eu2JNtCblBqfiTkJMNVrdUhwohhBDijlWl/2MPGzaMuLg4pk2bxuXLl2nevDkrVqwwNT+Piooyy4yaOnUqOp2OqVOncvHiRby9vRkwYABvv/12VT2FKhURnUhSRjbOdtaE+btW3om3faF+NuwPnsGVd96CauSb8a+oflJCCCGEuK21rO3BH7u9ycAOu5wMuHZOJhoRQgghbhFV/jXSxIkTmThxosV169evN3tsbW3N9OnTmT59eiWMrPoz9pNqHeSBlb6yGpzHw4Hf1f32EyrnnEXJH5QKaFN14xBCCCFElWlVxwMDek5r/jTSnVV9pSQoJYQQQtwSqqynlLh5xqBU28os3dv1A+RkQM2WUNty769KY5YpVUSTcyGEEELc1kK9nXG1t+a4oZZaIM3OhRBCiFtGlWdKiRujaRo7z6qgVKX1k8pKh13fqfvtJ0BlzvZniaMn9PsADDngFlC1YxFCCCFEldDrdTSv7cHJ07XACog7UdVDEkIIIUQpSVDqFnU6LpmElEzsrPU0reVeOSc9NB9S4sAtEBoNqpxzlqTtuKoegRBCCCGqWMva7hw9JZlSQgghxK1GyvduUTtyS/da1vbA1roSfo2altfgvN2TMquNEEIIUcW++OILgoKCsLe3p127duzcubPY7T/++GMaNGiAg4MDgYGBPP/886Snp1fSaCtWy9oenNRys6bjT4DBULUDEkIIIUSpSFDqFlXp/aROrVHfPNq6QMsRlXNOIYQQQlg0b948Jk+ezPTp09m7dy/h4eH07t2b2NhYi9v/+uuvvPrqq0yfPp2IiAh++OEH5s2bx3/+859KHnnFaF7bnfP4kKFZQ1YqXD9f1UMSQgghRClIUOoWpGkaO85Ucj+pbZ+rny1HgL1b5ZxTCCGEEBZ99NFHjBs3jtGjR9OoUSO+/vprHB0dmTVrlsXtt27dSseOHXn44YcJCgrinnvuYfjw4SVmV90qXO1tCPVx54zmrxbEHa/aAQkhhBCiVCQodQu6cDWNy4npWOt1tKjtUb4H1zS4ek41CTXeTq2GM+tAp1ele0IIIYSoMpmZmezZs4eePXualun1enr27Mm2bdss7tOhQwf27NljCkKdOXOG5cuX069fv0oZc2VoWced05r0lRJCCCFuJdIY6BZk7CfVLMANB1ur8j34lk9g9XTL68LuA4865Xs+IYQQQpRJfHw8OTk5+Pr6mi339fXl2DHLwZiHH36Y+Ph4OnXqhKZpZGdnM378+GLL9zIyMsjIyDA9TkxMLJ8nUEFa1Pbg5B7jDHySKSWEEELcCiRT6ha0M/IKAG2Da5TvgS8fhrVvqfv2bmDvnndzrwNdXynf8wkhhBCiUqxfv5533nmHL7/8kr1797Jw4UKWLVvGzJkzi9zn3Xffxc3NzXQLDAysxBGXnWp2rjKlDBKUEkIIIW4JkilVjZ27ksKna07Rp4kfPcN80Ol0QF6T83LtJ5WTBYufAkMWNOgHD/0KuecTQgghRPXh5eWFlZUVMTExZstjYmLw8/OzuM/rr7/OY489xtixYwFo2rQpKSkpPPHEE7z22mvo9YW/p5wyZQqTJ082PU5MTKzWgakQLycu2wYBoMUeUy0J5FpGCCGEqNYkU6oa+2nbOf7ce4FxP+3m4e92cPjidWIS0zl7JRWdDloFlWM/qU0fweWD4OAB934sF3FCCCFENWVra0urVq1Ys2aNaZnBYGDNmjW0b9/e4j6pqamFAk9WVqoFgKZpFvexs7PD1dXV7Fad6fU6PGo3JFvTY5WVBEnRVT0kIYQQQpRAMqWqseOXk0z3t525woDPNxMe4A5AI39XXO1tyudE0Qdh43vqfr8PwMW3+O2FEEIIUaUmT57MyJEjad26NW3btuXjjz8mJSWF0aNHAzBixAhq1arFu+++C8CAAQP46KOPaNGiBe3atePUqVO8/vrrDBgwwBScuh2E1/Hh7Fk/6uouqWbnrjWrekhCCCGEKIYEpaqx4zEqKPXlIy1ZeeQyf+2/xP7z1wBoW16le9mZsPhpMGRDw3uhyQPlc1whhBBCVJhhw4YRFxfHtGnTuHz5Ms2bN2fFihWm5udRUVFmmVFTp05Fp9MxdepULl68iLe3NwMGDODtt9+uqqdQIVrVUX2l6nJJNTsPvbuqhySEEEKIYkhQqppKSMkkLknNeNOtgTf9mvozqkMQby+L4ODF6wxqXqt8TrTpQ4g5BA6ecO//pGxPCCGEuEVMnDiRiRMnWly3fv16s8fW1tZMnz6d6dOLmGH3NhEe6M5srRawi7SLR3Co6gEJIYQQolgSlKqmTuRmSdX2dMTRVv2aWtT24I+nOqBpmqnp+U05+hds+kDd7/8BOPvc/DGFEEIIIaqIs501Ka6hkApp0RESlBJCCCGqOWl0Xk0Zg1L1fV0KrbvpgFRWOix7EeaPUGV7je9XNyGEEEKIW5xTQBMA7K+eUDPwCSGEEKLakqBUNWVsct7Az7l8D3zlNPzQC3Z9px53fA7u/1bK9oQQQghxW6hVtxk5mg7HnERIvFTVwxFCCCFEMSQoVU0Vlyl1ww4vhG+6wuWDqofUwwug15tgVU6z+AkhhBBCVLHmwX5EaHUAyD63vYpHI4QQQojiSFCqGtI0LV+mVDkFpU6tgT9GQ2YS1G4P4zdD/XvK59hCCCGEENVEsJcTh/QNAbh2fFMVj0YIIYQQxZGgVDUUk5hBYno21nodIV7lUL6Xfh2WPKvuN38ERi4Ft3KavU8IIYQQohrR6XQk1Gih7p/fUcWjEUIIIURxJChVDR3PLd0L9nLC1rocfkUrX4PEC+ARBP3eByuZdFEIIYQQty+rOu0BcE88DhnJVTwaIYQQQhRFglLV0Inc0r365VG6d3I17PsZ0MGgr8DW6eaPKYQQQghRjQWHNuCiVgMrcuDinqoejhBCCCGKIEGpasiYKdXgZpucp12DJc+o++3GQ50ON3c8IYQQQohbQLMAN/YY6gOQdXZbFY9GCCGEEEUpc1AqKCiIN998k6ioqIoYj6AcZ95b+RokXQLPEOgxrRxGJoQQQghR/fm52nPMphEAqae3VPFohBBCCFGUMgelJk2axMKFCwkJCaFXr178/vvvZGRkVMTY7kgGg2YKSjXwc4HkWLh61vyWEl/ygU6shP2/kFe251hxgxZCCCGEqEZ0Oh1pvq0BcIjZC4acKh6REEIIISy5oaDU/v372blzJ2FhYTzzzDP4+/szceJE9u7dWxFjvKOcv5pKepYBO2s9dS4sgQ/qwSfh5rf368LRJUUfJO0q/P2cut9+AtS+q3IGL4QQQghRTXiEtCBZs8c2OxliI6p6OEIIIYSw4IZ7SrVs2ZJPP/2US5cuMX36dL7//nvatGlD8+bNmTVrFpqmlec47xjHc5uc1/VxRr9ntlpoZQc2TupmbQ9oKuiUHGv5ICumQFI01KgLd0+tnIELIYQQQlQjTQNr/D979x3eZPk1cPybpHsvOoBCgbKh7L1EQRREQBDEwRDBAYoiPxUHigtfRcCBoshyATJEVAQZouxd9l4t0Enp3kneP+4kbekubQPlfK4r1/PkmXdDW5LTc87NQUOwehK+y7qDEUIIIUSByhyUysrK4pdffuHBBx/k5Zdfpm3btnz33XcMHjyY119/nccee6w8x3nHMJfudfBKg/DdgAZePAxvXFWP18LBrzmkxcGfk+DG4N+pv+DQEtBoVdmerWPlfxFCCCGEEFbWvKY7+43S7FwIIYS4ldmU9oQDBw6wcOFClixZglarZcSIEcyaNYtGjRpZjhk0aBDt2rUr14FWOcdWg0ctqNE6z+ZTUckA9ML05ql2Z3D1zznAxg4GfgXzesKJ3+HoSmg+RO1LjctVtjcBAttX8BchhBBCCHFr8nGx56Jjc8hahf7iLmytPSAhhBBC5FPqTKl27dpx5swZvv76a65cucKMGTPyBKQA6tSpwyOPPFJug6xyrp2D5SPh+wGQnphn12lT+V7T65vVhqaD8p8fEALd/6fW106GpCi1vu41SI4CnwbQ842KGr0QQgghxG3BWLMdeqMGh5TLkBhh7eEIIYQQ4galDkqdP3+edevW8fDDD2NrW/DfnJydnVm4cGGJrzlnzhyCgoJwcHCgQ4cO7Nmzp9Bj77rrLjQaTb5Hv379SvulWM/1C2qZkQgHf7Bszsw2cC4mmerE4n4tFNBA4wcLvka3l8G/uWpq/sdLcPJPOLwsV9meQ4V/GUIIIYQQt7KGtQM4aaylnkhfKSGEEOKWU+qgVHR0NLt37863fffu3ezbt6/UA1i2bBmTJk3i7bff5sCBA7Ro0YI+ffoQHV1wE+9Vq1YRERFheRw9ehSdTsfDDz9c6ntbTUpszvquuaDPBuDitRSyDUYG2ptex9pdwNWv4GvobGHgXNDawqk/YeVTanvnF6Bm2wocvBBCCCHE7SGkhgf7DKqvFGH5378KIYQQwrpKHZQaP3484eHh+bZfuXKF8ePHl3oAM2fOZOzYsYwePZomTZowd+5cnJycWLBgQYHHe3l54e/vb3ls2LABJyen2ysolXvWvIQwOPk7kDPz3kBb05umpgOLvo5/M+jxqlrPSoVqjeCuKeU8WCGEEEKI21PzGu7sNzQEIPuSZEoJIYQQt5pSB6WOHz9O69at821v1aoVx48fL9W1MjMz2b9/P7169coZkFZLr1692LmzZLOkzJ8/n0ceeQRnZ+dS3duqUkxBKVsntdzxJRiNnI5KoqYmhgbZp1QZXmGle7l1fRECO6hrDfxKyvaEEEIIIUzcnWyJdG8BgDbqCGSmWnlEQgghhMit1EEpe3t7oqKi8m2PiIjAxqZ0k/nFxsai1+vx88tboubn50dkZGSx5+/Zs4ejR4/y1FNPFXpMRkYGiYmJeR5Wlxyjlm2fBJ09XNkH4Xs4FZnE/VpTllRRpXu56Wxh5O8w6TjUaFNxYxZCCCGEuA35BwYTYfRCa8yGK/utPRwhhBBC5FLqoNS9997LlClTSEhIsGyLj4/n9ddfp3fv3uU6uOLMnz+f5s2b0759+0KPmT59Ou7u7pZHYGBgJY6wEOZMKb+mEDJUre/8ktNRSfTTmVLLiyvdy83GHhw9y3WIQgghhBBVQUigB/vNfaWk2bkQQghxSyl1UGrGjBmEh4dTu3ZtevbsSc+ePalTpw6RkZF8+umnpbqWj48POp0uX+ZVVFQU/v7+RZ6bkpLC0qVLGTNmTJHHmQNo5kdB/bAqnTlTyrkadFJ9uIwn/6D69b201J7HWNLSPSGEEEIIUaSQmrmanR9ZATvnwLFfVePzhCvWHZwQQghxhytdvR1Qo0YNDh8+zE8//cShQ4dwdHRk9OjRDB8+HFtb21Jdy87OjjZt2rBp0yYGDhwIgMFgYNOmTUyYMKHIc5cvX05GRgaPP/54kcfZ29tjb29fqnFVOHOmlHM18G0Mwb3QnN3I57ZfAKAJ6gouvlYcoBBCCCFE1dC0uhvvGJuoJzEnYf3reQ/o8iL0nlbp4xJCCCFEGYJSAM7OzowbN65cBjBp0iRGjhxJ27Ztad++PbNnzyYlJYXRo0cDMGLECGrUqMH06dPznDd//nwGDhyIt7d3uYyj0hgMkBKr1k2Bp8RWT+N2diM+GlO/q6aDrDQ4IYQQQoiqxdnehuxqTRgf8wKvNE+mtk08JEVAfBgkXoETv0tQSgghhLCSMgWlQM3CFxYWRmZmZp7tDz5YurKzYcOGERMTw9SpU4mMjKRly5asW7fO0vw8LCwMrTZvleGpU6fYtm0bf//9d1mHbz1p18GoV+vO1YhMSOeJdXZ8bgiksTYco0aLRkr3hBBCCCHKTfMaHqyM6kg9n/pM6m0q5UuOhhn1Ie48ZKaA3W00k7MQQghRRZQ6KHX+/HkGDRrEkSNH0Gg0GI1GADQaDQB6vb7Ug5gwYUKh5XpbtmzJt61hw4aW+952zKV7jp6ExWfx2PxdhMelsdT5IabpP0MT3Bucfaw7RiGEEEKIKqRFoDsrD1zmyOX4nI0uvuDsq96bRR2HwHZWG58QQghxpyp1o/OJEydSp04doqOjcXJy4tixY/z333+0bdu2wACSuEGyCkplOPgwZO4OwuPSCPJ24qnxr8HIP2DQXCsPUAghhBAVJTw8nMuXL1ue79mzhxdffJFvv/3WiqOq+prXcAfg0OWEvH/Y9G+mllFHrDAqIYQQQpQ6KLVz507effddfHx80Gq1aLVaunbtyvTp03nhhRcqYoxVS4qaee9IvB3RSRk09HPll2c6EejlBHW6gZOXlQcohBBCiIry6KOP8s8//wAQGRlJ79692bNnD2+88QbvvvuulUdXdTWp7oadjZa4lEwuxKbk7PAzBaUij1pnYEIIIcQdrtRBKb1ej6urKwA+Pj5cvXoVgNq1a3Pq1KnyHV1VZMqUish2xcvZjmVPd8TX1cHKgxJCCCFEZTh69Cjt27cH4JdffqFZs2bs2LGDn376iUWLFll3cFWYvY2OFjVVttS+S9dzdviHqGWUBKWEEEIIayh1UKpZs2YcOnQIgA4dOvDxxx+zfft23n33XerWrVvuA6xyTD2lYo3uVPdwwMPJzsoDEkIIIURlycrKwt7eHoCNGzdaJohp1KgRERER1hxaldemtspGP5AnKGUu3zumZkgWQgghRKUqdVDqzTffxGD6T/vdd9/lwoULdOvWjbVr1/L555+X+wCrnGRVvhdrdMfd0dbKgxFCCCFEZWratClz585l69atbNiwgfvuuw+Aq1ev4u3tbeXRVW1ta3sCN2RKedcHnT1kJkP8ResMTAghhLiDlXr2vT59+ljWg4ODOXnyJHFxcXh6elpm4BNFMPWUikWCUkIIIcSd5v/+7/8YNGgQn3zyCSNHjqRFixYArFmzxlLWJypGa1NQ6mx0MvGpmSpbXWcDvo0g4pDqK+UlWf9CCCFEZSpVplRWVhY2NjYcPZq37t7Ly0sCUiVlKd9zk6CUEEIIcYe56667iI2NJTY2lgULFli2jxs3jrlzZQbeiuTlbEfdas4A7M+dLeXXXC2lr5QQQghR6UoVlLK1taVWrVro9fqKGk/Vl6d8T/pJCSGEEHeStLQ0MjIy8PRUWTuXLl1i9uzZnDp1Cl9fXyuPruozl/DtL6ivlMzAJ4QQQlS6UveUeuONN3j99deJi4uriPFUbUZjnkbnkiklhBBC3FkGDBjA999/D0B8fDwdOnTg008/ZeDAgXz99ddWHl3V19bU7DxPXyk/c1DqiBVGJIQQQtzZSh2U+vLLL/nvv/+oXr06DRs2pHXr1nkeogjpCaDPBKSnlBBCCHEnOnDgAN26dQNgxYoV+Pn5cenSJb7//nuZMKYSmPtKHQqPJzPbNNueOVMqIQzS4q0zMCGEEOIOVepG5wMHDqyAYdwhTE3OUzVOZGAnQSkhhBDiDpOamoqrqysAf//9Nw899BBarZaOHTty6dKlUl1rzpw5fPLJJ0RGRtKiRQu++OKLIpulx8fH88Ybb7Bq1Sri4uKoXbs2s2fPpm/fvjf1Nd1O6lVzxtPJluupWRy7mkCrWp7g6AluNSHxMkQdg6Au1h6mEEIIcccodVDq7bffrohx3BmSVelenMYDAA8nCUoJIYQQd5Lg4GBWr17NoEGDWL9+PS+99BIA0dHRuLm5lfg6y5YtY9KkScydO5cOHTowe/Zs+vTpU2hvqszMTHr37o2vry8rVqygRo0aXLp0CQ8Pj/L60m4LGo2GNrU92Xgimv2XrqugFKhsqcTLqtm5BKWEEEKISlPq8j1xE0yZUteM6k2nZEoJIYQQd5apU6cyefJkgoKCaN++PZ06dQJU1lSrVq1KfJ2ZM2cyduxYRo8eTZMmTZg7dy5OTk55ZvTLbcGCBcTFxbF69Wq6dOlCUFAQPXr0oEWLFuXydd1O2pj6SuVtdm6agU/6SgkhhBCVqtRBKa1Wi06nK/QhimAKSkXqJSglhBBC3ImGDBlCWFgY+/btY/369Zbt99xzD7NmzSrRNTIzM9m/fz+9evWybNNqtfTq1YudO3cWeM6aNWvo1KkT48ePx8/Pj2bNmvHhhx/ekTMqtzH1ldp36TpGo1FtNDc7j5IZ+IQQQojKVOryvV9//TXP86ysLA4ePMjixYuZNm1auQ2sSjKV70UbVFDKTYJSQgghxB3H398ff39/Ll++DEDNmjWL7AV1o9jYWPR6PX5+fnm2+/n5cfLkyQLPOX/+PJs3b+axxx5j7dq1nD17lueee46srKxCWzNkZGSQkZFheZ6YmFjiMd7KQmq6Y6vTEJOUQXhcGrW8nXIypaJPgD4bdKV+iyyEEEKIMij1/7gDBgzIt23IkCE0bdqUZcuWMWbMmHIZWJWUooJSsUZ3tBpwtZc3PEIIIcSdxGAw8P777/Ppp5+SnJwMgKurKy+//DJvvPEGWm3FdFYwGAz4+vry7bffotPpaNOmDVeuXOGTTz4pNCg1ffr0KvkHRwdbHc1quHMwLJ79YXEqKOVZB2ydISsF4s5BtYbWHqYQQghxRyi3dz4dO3Zk06ZN5XW5qilZle/F4o6boy1arcbKAxJCCCFEZXrjjTf48ssv+eijjzh48CAHDx7kww8/5IsvvuCtt94q0TV8fHzQ6XRERUXl2R4VFYW/v3+B5wQEBNCgQYM8rRYaN25MZGQkmZmZBZ4zZcoUEhISLI/w8PASfpW3vrbmEr6Lpr5SWi34NVHr0ldKCCGEqDTlEpRKS0vj888/p0aNGuVxuaorV6aU9JMSQggh7jyLFy/mu+++49lnnyUkJISQkBCee+455s2bx6JFi0p0DTs7O9q0aZPnj4EGg4FNmzZZGqffqEuXLpw9exaDwWDZdvr0aQICArCzsyvwHHt7e9zc3PI8qooCm51LXykhhBCi0pW6fszT0xONJifDx2g0kpSUhJOTEz/++GO5Dq7KMfWUipGglBBCCHFHiouLo1GjRvm2N2rUiLi4uBJfZ9KkSYwcOZK2bdvSvn17Zs+eTUpKCqNHjwZgxIgR1KhRg+nTpwPw7LPP8uWXXzJx4kSef/55zpw5w4cffsgLL7xQPl/Ybcbc7PxUVBIJaVnqfZm/KSgVKUEpIYQQorKUOig1a9asPEEprVZLtWrV6NChA56enuU6uConJad8r7YEpYQQQog7TosWLfjyyy/5/PPP82z/8ssvCQkJKfF1hg0bRkxMDFOnTiUyMpKWLVuybt06S/PzsLCwPP2pAgMDWb9+PS+99BIhISHUqFGDiRMn8uqrr5bPF3abqeZqT21vJy5dSyU0PJ4eDaqBn6nZuWRKCSGEEJWm1EGpUaNGVcAw7gCZKZCVCsA1oxshEpQSQggh7jgff/wx/fr1Y+PGjZZSu507dxIeHs7atWtLda0JEyYwYcKEAvdt2bIl37ZOnTqxa9euUo+5qmpT25NL11LZfzHOFJQy9ZRKioCUa+Dsbd0BCiGEEHeAUveUWrhwIcuXL8+3ffny5SxevLhcBlUlmUr3srT2pOAg5XtCCCHEHahHjx6cPn2aQYMGER8fT3x8PA899BDHjh3jhx9+sPbw7ihtTX2l9lw0lU3au6pZ+ACipNm5EEIIURlKHZSaPn06Pj4++bb7+vry4YcflsugqiRT6V6yjRegkaCUEEIIcYeqXr06H3zwAStXrmTlypW8//77XL9+nfnz51t7aHeUTvVUJtSBS/GkZerVRn9TCZ/MwCeEEEJUilIHpcLCwqhTp06+7bVr1yYsLKxcBlUlmTKlErSq75aHkwSlhBBCCCGsJcjbiRoejmTqDTnZUgGmvl5XDlhvYEIIIcQdpNRBKV9fXw4fPpxv+6FDh/D2ltr7QqWooNR1jTuAZEoJIYQQQliRRqOha7DK/t92RmW0E9hRLcN2gdFopZEJIYQQd45SB6WGDx/OCy+8wD///INer0ev17N582YmTpzII488UhFjrBqS1ZudGKMEpYQQQgghbgVd6puCUmevqQ012oDWBpKuQkK4FUcmhBBC3BlKPfvee++9x8WLF7nnnnuwsVGnGwwGRowYIT2limLKlIoyuAHgJkEpIYQQ4o7x0EMPFbk/Pj6+cgYi8uhi6it1IiKRmKQMqrk6QUBLuLJPZUt51LLuAIUQQogqrtRBKTs7O5YtW8b7779PaGgojo6ONG/enNq1a1fE+KoOU0+piGxXADwc7aw5GiGEEEJUInd392L3jxgxopJGI8y8XexpEuDG8YhEdpyLZUDLGlCroykotRNChlp7iEIIIUSVVuqglFn9+vWpX79+eY6lakuJBeBypgpKuUujcyGEEOKOsXDhQmsPQRSiW30fjkcksv2sOSjVCXZ+qTKlhBBCCFGhSt1TavDgwfzf//1fvu0ff/wxDz/8cLkMqkoyl+/pTUEpKd8TQgghhLC6LpZm57EYjUaVKQUQfRzSrltxZEIIIUTVV+qg1H///Uffvn3zbb///vv577//ymVQVZKp0Xksbui0GpztdFYekBBCCCGEaF/HCzsbLVcT0rkQmwLOPuBtqgYI32PdwQkhhBBVXKmDUsnJydjZ5e+HZGtrS2JiYqkHMGfOHIKCgnBwcKBDhw7s2VP0f/7x8fGMHz+egIAA7O3tadCgAWvXri31fStVVjpkJABq9j0PR1s0Go2VByWEEEIIIRxsdbSt7QnAtrOq3YIlWypsp5VGJYQQQtwZSh2Uat68OcuWLcu3fenSpTRp0qRU11q2bBmTJk3i7bff5sCBA7Ro0YI+ffoQHR1d4PGZmZn07t2bixcvsmLFCk6dOsW8efOoUaNGab+MypWisqQMWjsScZbSPSGEEEKIW0juEj5A9ZUC6SslhBBCVLBSNzp/6623eOihhzh37hx33303AJs2beLnn39mxYoVpbrWzJkzGTt2LKNHjwZg7ty5/PnnnyxYsIDXXnst3/ELFiwgLi6OHTt2YGurAjtBQUGl/RIqn6mfVIa9F6RqcJOglBBCCCHELaNbfR8+WX+Kneeuka03YGPOlLqyX2W82zpYd4BCCCFEFVXqTKn+/fuzevVqzp49y3PPPcfLL7/MlStX2Lx5M8HBwSW+TmZmJvv376dXr145g9Fq6dWrFzt3FpwqvWbNGjp16sT48ePx8/OjWbNmfPjhh+j1+kLvk5GRQWJiYp5HpTP1k0qz8wKkybkQQgghxK2kaXV33B1tScrI5vCVBPCqC86+oM+EiFBrD08IIYSoskodlALo168f27dvJyUlhfPnzzN06FAmT55MixYtSnyN2NhY9Ho9fn5+ebb7+fkRGRlZ4Dnnz59nxYoV6PV61q5dy1tvvcWnn37K+++/X+h9pk+fjru7u+URGBhY4jGWG1P5XrKNCkp5OElQSgghhBDiVqHTaugS7A2YSvg0GukrJYQQQlSCMgWlQM3CN3LkSKpXr86nn37K3Xffza5dFVt3bzAY8PX15dtvv6VNmzYMGzaMN954g7lz5xZ6zpQpU0hISLA8wsPDK3SMBTKV7yXqVBNNyZQSQgghhLi1WPpKnZW+UkIIIURlKVVPqcjISBYtWsT8+fNJTExk6NChZGRksHr16lI3Offx8UGn0xEVFZVne1RUFP7+/gWeExAQgK2tLTqdzrKtcePGREZGkpmZWeCsgPb29tjb25dqbOXOVL4XhzsgQSkhhBBCiFtNt+BqABwMu05KRjbOlkypXWAwgLbMf8sVQgghRCFK/L9r//79adiwIYcPH2b27NlcvXqVL774osw3trOzo02bNmzatMmyzWAwsGnTJjp16lTgOV26dOHs2bMYDAbLttOnTxMQEFBgQOqWYcqUijVKUEoIIYQQ4lZUy9uJQC9HsvRG9lyIA/8QsHWG9HiIPWXt4QkhhBBVUomDUn/99Rdjxoxh2rRp9OvXL0+2UllNmjSJefPmsXjxYk6cOMGzzz5LSkqKZTa+ESNGMGXKFMvxzz77LHFxcUycOJHTp0/z559/8uGHHzJ+/PibHkuFSlZBqSiDGyBBKSGEEEKIW1FXUwnfP6eiQWcDNduqHdJXSgghhKgQJQ5Kbdu2jaSkJNq0aUOHDh348ssviY2NvambDxs2jBkzZjB16lRatmxJaGgo69atszQ/DwsLIyIiwnJ8YGAg69evZ+/evYSEhPDCCy8wceJEXnvttZsaR4UzNTqPyHYFJCglhBBCCHErurepaiHx5+EIsvQG6SslhBBCVLAS95Tq2LEjHTt2ZPbs2SxbtowFCxYwadIkDAYDGzZsIDAwEFdX11IPYMKECUyYMKHAfVu2bMm3rVOnThXeUL3cmTKlwjNdAAlKCSGEEELciroF++DtbMe1lEy2nY2lp8zAJ4QQQlSoUndsdHZ25sknn2Tbtm0cOXKEl19+mY8++ghfX18efPDBihjj7U2fDWlxAIRlOAPg7iRBKSGEEEKIW42NTkv/FtUB+O3gFVW+p9FBfBgkXLHy6IQQQoiq56amEWnYsCEff/wxly9fZsmSJeU1pqolPcGyGp6uZgH0cLyFm7ILIYQQQtzBBrRUQan1x6JIwRH8m6sdl7ZbcVRCCCFE1VQuc9vqdDoGDhzImjVryuNyVUvadQCM9m5kGtTLLeV7QgghhBC3ppaBHtT2diItS8+G41FQv7facWS5dQcmhBBCVEHlEpQSRTAFpfT2HgDY6bQ42MrLLoQQQghxK9JoNAxoWQOA1aFXoMVwtePsRkiKtOLIhBBCiKpHoiMVzRSUyrJzB8DN0RaNRmPNEQkhhBBCiCIMNJXwbT0TS6x9TQjsAEYDHP7FyiMTQgghqhYJSlU0U5PzDFsVlPKQJudCCCGEELe0utVcaFHTHb3ByB+HrkLLR9WO0J/BaLTu4IQQQogqRIJSFc2UKZWqcwOkn5QQQgghxO0gp4TvKjQdBDYOEHMCrh608siEEEKIqkOCUhXNFJRK0boCEpQSQgghhLgd9G9RHZ1WQ2h4PBeTbaDRA2rHIZlxWgghhCgvEpSqaKagVKJGglJCCCGEELeLaq72dAn2AeC30FwlfEeWQ3aGFUcmhBBCVB0SlKpopqBUAi6ABKWEEEIIIW4X5obnq0OvYKzTA1yrq/d2p9dbeWRCCCFE1SBBqYpmCkpdMzgDEpQSQgghhLhd9Gnqj6OtjguxKRy+mgwthqkdoT9bd2BCiKrh2jmY3wdOrbP2SISwGglKVTRTUCpW7wRIUEoIIYQQ4nbhbG9D7yZ+AKw5dBVamEr4zvwNydFWHJkQoko48TuE74L9i6w9EiGsRoJSFc0UlIrJlqCUEEIIIcTt5oGQAAD+PByBwbs+1GgLRr3qLVWYjGQ4/AssHy0fNoUQhTMHt1MkyC3uXDbWHkCVZwpKRWY6AODhJEEpIYQQQojbRY+G1XC1tyEyMZ39Yddp1/JRuLIPDvwAgR3B1hHsnMDGEa4eUMGqk2shO01d4NRaaD5UHSOEELklR5mWEpQSdy4JSlUkgwHS4gG4kuEISKaUEEIIIcTtxN5Gx71N/Vl54DK/H7pKu3sfgnVTIOYEfHd34Sd61YO0OPUHyovboMG9lTdoIcTtwRKUigKjETQa645HCCuQ8r2KlJEAGAG4nGYHSFBKCCGEEOJ280ALVcK39kgkensPuGcq+DQE91rg5AO2piwo1wDoOB7G/gPP74emg9T2M39bZ+BCiFtbSoxa6jMhPd6qQxHCWiRTqiKZSveMdi7EJalNEpQSQgghhLi9dA32wcPJltjkDHafv0bnzhOg84S8BxnVHyLzZDrUvxf2LYAz68H4iWRBCCHyMmdKgSrhc/S03liEsBLJlKpI5qCUg4flfYqbBKWEEEIIUQ7mzJlDUFAQDg4OdOjQgT179pTovKVLl6LRaBg4cGDFDrAKsdVpua+pPwC/H75a8EEaTf6gU53uoLOD+DCIPVPBoxRC3FayMyyfF4G8ASoh7iASlKpIpl8y2XYeADjYanGw1VlxQEIIIYSoCpYtW8akSZN4++23OXDgAC1atKBPnz5ERxfdLPfixYtMnjyZbt26VdJIq47+LaoD8NfRSLL0hpKdZOcMQV3V+s2W8CVFQsShm7uGEOLWYS7dM5Nm5+IOJUGpimRqcp5p5wZI6Z4QQgghysfMmTMZO3Yso0ePpkmTJsydOxcnJycWLFhQ6Dl6vZ7HHnuMadOmUbdu3UocbdXQoY4XPi52xKdmsf1sbMlPrG9qcH6zQamlj8K3PSXjSoiq4sbMKMmUEncoCUpVJFOmVLqNOyBBKSGEEELcvMzMTPbv30+vXr0s27RaLb169WLnzp2Fnvfuu+/i6+vLmDFjSnSfjIwMEhMT8zzuZDY6Lfc3Uw3P/zgcUfITzUGpSzsgI6lsN09PhCv7waiH8N1lu4YQ4tZyY2aUBKVKxmiEPfPg2Gprj0SUEwlKVSRTUCpF6wpIUEoIIYQQNy82Nha9Xo+fn1+e7X5+fkRGRhZ4zrZt25g/fz7z5s0r8X2mT5+Ou7u75REYGHhT464KHghRQan1xyLJyNaX7CTveuBVFwxZcP7fst046miu9WNlu4YQ4taSL1NKyvdK5OI2WDsZfn0aDCX8PSxuaRKUqkipcQAkW4JSdtYcjRBCCCHuQElJSTzxxBPMmzcPHx+fEp83ZcoUEhISLI/w8PAKHOXtoV2QF35u9iSlZ/Pf6Uos4cvdS0qCUkJUDeYglI2D6blkSpXIrq/VMjtdXrMqQoJSFcmUKZWACyCZUkIIIYS4eT4+Puh0OqKi8r4Zj4qKwt/fP9/x586d4+LFi/Tv3x8bGxtsbGz4/vvvWbNmDTY2Npw7d67A+9jb2+Pm5pbncafTajX0a64anv9R2Cx8BanfWy3PbMAyJXNp5AlKHS3bNYQQtxZzQMWvqem5ZEoVK+48nFqb8zzhsvXGIsqNBKUqkikodd3oDEhQSgghhBA3z87OjjZt2rBp0ybLNoPBwKZNm+jUqVO+4xs1asSRI0cIDQ21PB588EF69uxJaGiolOWV0gMtVAnfhuNRpGWWsHSkdlewcYSkq2XLdModlEq9Jh9ehagKzEEp/+Z5n4vC7f4WyBWUl6BUlSBBqYpkCkrFGSQoJYQQQojyM2nSJObNm8fixYs5ceIEzz77LCkpKYwePRqAESNGMGXKFAAcHBxo1qxZnoeHhweurq40a9YMOztpL1AarQI9CPRyJDVTz9x/C84yy8fWAer2UOulLeHLSoOYU2rdwUMto2+yhO/KAfiuF4TvubnrCCHKzhxcNgelUq9Jj6SipCfCwR/VuqvKWCXxivXGI8qNBKUqkikoFZPtBICHkwSlhBBCCHHzhg0bxowZM5g6dSotW7YkNDSUdevWWZqfh4WFERFRihniRIlpNBpe6dMIgK+2nOV0VAln1MtdwlcaUcfVrHvO1aBOd9O2mwxK7ZkHl/fCxndu7jpCiLIzZ0b5NgGNFowGSClFr7o7zcEfITMJfBpC88FqW4IEpaoCG2sPoEozBaWishwByZQSQgghRPmZMGECEyZMKHDfli1bijx30aJF5T+gO8gDIQH8FnqFjSeieXXlYVY80xmdVlP0ScGmoFT4bvUe0dGzZDeLCFVL/xDwawYn1qhA1c24ekAtL22Ha+fUDIFCiMpjNOZkSrkGqKBzcpR6uPoVfe6dyKCH3XPVesdnQZ+l1hOlfK8qkEypimI0WoJSVzMlKCWEEEIIUVVoNBreG9gMF3sbDobF88POi8Wf5FkbqjVSWU/n/in5zcz9pAJa5DREjjpa6jFbZCTllAMCHPyh7NcSQpRNZjJkpap1F19w9lXr0i+uYKf+gvhLKpgfMgzca6jt0lOqSpCgVEXJSFJvOoAr6fYAuElQSgghhBCiSghwd+TV+1UZ38frT3ElPq34k8wlfLlnjypOnqBUE7Uecwr02aUYbe7rHSZPo+DQJWW/lhCibMzBJztXsHNWgSmQZueF2fWVWrYZDXZO4GYOSkn5XlVwSwSl5syZQ1BQEA4ODnTo0IE9ewpvurho0SI0Gk2eh4ODQyWOtoRMWVLYOBKTpl5m6SklhBBCCFF1PNa+Fu2CPEnN1PPGr0cwGo1Fn9BkoFoeWw3x4cXfQJ8F0aZSvYAW4BEEts6gz4C4EjZZv5G5dK9+H3DyhuRIOLuxbNcSQpSNOfhkDka5+OXdLnJcDVWlxlobaD9WbXOvqZYp0ZCdYbWhifJh9aDUsmXLmDRpEm+//TYHDhygRYsW9OnTh+jowlMX3dzciIiIsDwuXbpUiSMuIVNQyujoSVKG+uuTlO8JIYQQQlQdWq2G6Q+FYKfTsuVUDGsOXS36hJptIagbGLJgx+fF3yDmJOgzwd4dPINAqwXfxmpfWZudXzEFpWp1gJBH1LqU8AlRuSxBKVMwykXK9wpl7iXVdBC4mWbdc/IGG1NiSmIxv3fFLc/qQamZM2cyduxYRo8eTZMmTZg7dy5OTk4sWLCg0HM0Gg3+/v6Wh3mmmVuKKShlME/dC7g5SFBKCCGEEKIqCfZ14fm7gwF4Z80xopPSiz6h+//Ucv9iSComK8JSuhcCGlMjdUtfqTIGpa4eVMvqraH1E2r99Dr5MCxEZTL/vEmmVNEyU+DYr2q9wzM52zWanBK+RCnhu91ZNSiVmZnJ/v376dWrl2WbVqulV69e7Ny5s9DzkpOTqV27NoGBgQwYMIBjx25yWtyKYApKZdm5A+Boq8POxuoxQCGEEEIIUc6e7lGPxgFuXE/N4tUVh4su46vTHWq2VyV4O78o+sK5+0mZmYNS0WWYgS81Dq5fUOvVW6qsqxptwZANh5aU/npCiLKRTKmSubAVstPBvRbUaJN3nzQ7rzKsGiWJjY1Fr9fny3Ty8/MjMjKywHMaNmzIggUL+O233/jxxx8xGAx07tyZy5cL/mbMyMggMTExz6NSmIJSGTYqKOXmaFM59xVCCCGEEJXKzkbL7GEtsbPR8s+pGH7aHVb4wRpNTrbU3gWQcq3wYyMOq2VBQamyzMBnzpLyqqtmsQJo9bhaHvxRzR6dW1IkRB4p/X2EEEWTnlIlc2a9Wja4Nydb1MzN1FdKglK3vdsudadTp06MGDGCli1b0qNHD1atWkW1atX45ptvCjx++vTpuLu7Wx6BgYGVM1BTUCrdxg2Q0j0hhBBCiKqsob8rr96nZuN7/8/jnItJLvzg+r3BPwSyUmD31wUfY9DnBIRyB6V8TTPwxYdBein/2Jq7dM+s2WCwdYLY0xBummwoOxO2fgqftYS53SD2TOnuI4QomqV8zy/vUjKlchiNcPpvtV6/T/797lK+V1VYNSjl4+ODTqcjKipvRDgqKgp/f/8SXcPW1pZWrVpx9uzZAvdPmTKFhIQEyyM8vAQznZQHU1AqRecKSJNzIYQQQoiqbnTnILoEe5OeZeClZaFk6Q0FH5g7W2r3t5CekP+Ya+dU0MrWCbyDc7Y7eYFrgFqPPlG6AVqCUq1ytjm45cwKePB7VS4ztytsehey0wAjnN9SuvsIIYpWWPleRgJkFdOX7k4RfRwSL6uG5nW65d9v7imVIEGp251Vg1J2dna0adOGTZs2WbYZDAY2bdpEp06dSnQNvV7PkSNHCAgIKHC/vb09bm5ueR6VIi0egCSNCwBuEpQSQgghhKjStFoNMx5ugZuDDYcvJ/D5piIyjBo9ANUaqQ+he+bl32/uJ+XXDLS6vPssfaVK2VfVPPNejdZ5t5sbnocugcUPQOwpcK4GdXuq7eYMKnFrSLwK+ixrj0LcjBsbnTu4g85eradIthQAp02le3W6g61j/v3upgooyZS67Vm9fG/SpEnMmzePxYsXc+LECZ599llSUlIYPXo0ACNGjGDKlCmW4999913+/vtvzp8/z4EDB3j88ce5dOkSTz31lLW+hIKZMqUSUZlSbg7SU0oIIYQQoqoLcHfkw4eaAzDnn7PsvxRX8IFaLXSbrNZ3zlGzTOUWWUCTczNzCV9pZuBLioSkq6DRqtLB3Gp1Aq96YNQDGmg7BibshS4T1f7wXSW/T2UwGGDD23B0lbVHUvnO/wszG8Pm96w9ElFWBkP+8j2NRkr4bnTGXLp3b8H7LY3OK6kSSlQYqwelhg0bxowZM5g6dSotW7YkNDSUdevWWZqfh4WFERERYTn++vXrjB07lsaNG9O3b18SExPZsWMHTZo0sdaXULA09QbkutEZkEwpIYQQQog7xQMh1RnUqgYGIzy5aB+rDlwueEa+poNU0/G0ONj4Tt5G4wXNvGfm10wto0oxA5+5dM+nIdi75N2n0cCAOdDyMXhqEzwwUzVCr9lWBbHiwyAxIv81reXiVtg+G34bDxlJ1h5N5Tq1Vi3PbbbuOETZpcXlBICdfXK2W2bgk2bnpF2H8N1qvUEB/aQgp3wvPQEyiujhJ255t0T6zoQJE5gwYUKB+7Zs2ZLn+axZs5g1a1YljOommTKlrhlUUEp6SgkhhBBC3DmmDWjK+ZhkDl1OYNIvh/jzcAQfDGqOv7tDzkE6G7hnKiwfBXu+BX0m9JupAkGWoFRI/ov75cqUMhrzz0pVkMJK98xqd1KP3OxdValg5BG4vAeaDCj+PpXB3AA+KxWOrc4pP7wTXNmvlrFnVcaN1uo5BqK0zEEnJ2/Q5fqMKDPw5Ti7CYwGqNYYPGoVfIyDG9i7QUaiKuGr1rByxyjKjfwWqyimoFRstqp/ldn3hBBCCCHuHG4Otqx4tjP/69MQO52WTSej6T3rX37ZG543a6rpIHjwSxWI2r8IVo1VTc7TE0Brqz6U3cinAWhtVD+qG/upxJyG1AJKBgtqcl4SgR3UMmx36c6rSLnLFkN/st44Klt2JkQcNq2nqSbQ4vZzY5NzM5dqpv1Svmcp3WtQSOmemaXZufws3M4kKFURjEZLUCoq2wkAN8dbIilNCCGEEEJUEludlvE9g/njha60qOlOUno2r6w8zDtrbugF1foJGDxfBZqOroQfH1Lb/ZqAjV3+C9vYg3d9tW4O0BiNsOUjmNMOvulueS9q2XfVlClVvZBMqcKYg1Lht1JQ6kjOethOFcS7E0QdBX1GzvPY09Ybiyi7G5ucm0mmlGLQw5kNar1+IaV7Zu411VKand/WJChVEbJSVfo1EJEhmVJCCCGEEHeyBn6urHy2M6/e1wiAxTsvsf1sbN6Dmj0EjyxR05/HX1LbCuonZWaegS/qGGRnwK9Pw5bpaltCOPw5OefY+DBIvaYyr/yblW7w5qBUxCHISivducUxGPIGz0pCnwUxp9R6NfV6Evpz+Y7rVmUu3TOLLWJ2R3HrKjRTytxT6g7PlLqyX/XdsnfP+f1TGHfJlKoKJChVEcz/uWptiU5XU/hKo3MhhBBCiDuXjU7Ls3fV4/GOqj/KlFVHSM3MzntQg3vh8ZVgZ2pEXlRWk7mv1KXt8P1AOLwMNDro/IJaHl0BR1aoY8yle35NVZZVaXjUAhd/MGTlXKe8/P0GfFwPjv1a8nNiz6g//tq5Qo9X1LZDS1R2RVVnDkrZmPqSSabU7UkypYpmLt0Lvlv13SuKmylTKkEypW5nEpSqCOaglKMniRnqzYY0OhdCCCGEEK/e14gAdwfC4lKZ+Xf+oIKhVhcWNZ7HPIeR7PcoonTFPAPf2Y0QtkM1/H18Bdz7Xk6w5o9JKoPAUrpXyn5SoJqoB7ZX6+VZwmcwqECaUQ9rJqpsrpIwlyv6NYGG/cDBQ5XuXPi3/MZ2qzIHpRr1U8sYCUrdlgrNlJKgFACn16tlcaV7kJMpJf3VbmsSlKoIuYNSaSooJeV7QgghhBDC1cGWDwapgNKC7Rc4GJZTvpaZbeClX0J5Z7eRD+L78NTPR7l0LaXgC/k2yVl3rwVj/oZ6d6vn3V6GGm1UI/TVz8JlUzCjsJn3imPpK7WnbOcXJCJUlRSCGufKsaDPLvIUIKeflF8zsHWA5kPU84NVvOF5ekJOZlSL4WopmVK3p5KU7+WeDOFOkhgBkYcBDdTvXfzxlkbnkil1O5OgVEUwBaUMDh6kZalUYml0LoQQQgghAO5u5MfAltUxGOHVlYfJzDaQnJHNmMV7+S30KjZaDbW9nbiemsWYxftISMvKfxH3mtB8qMomGLsJfHPN0qezhUHfgq0TXPgPLm1T20vb5NysVke1DN9dfh+Wz21SyxptVSle+C7Y+mnx51kypUw9tVo+ppYn/4C0+LzHRp+EDVMr9wPr+S3wVefyn63wiinbzaN2zr9HSnTpe3IJ6yusfM/Z9Dw7HTISK3dMtwpz6V6NNuDsU/zxuRud36mBvCpAglIVwfSfQ5a9p2WTq2RKCSGEEEIIk6n9m+LlbMfpqGQ+XHuC4d/uYuuZWBxtdXw3si2/PN0JfzcHzkYnM+HnA2TrDXkvoNHA4Hnw2C/5P9wC+ATDve9bnqYZ7Vh0ppT9pMz8Q0BnrzKbymumu7Ob1bLlo/DATLX+70fFB3PMQSn/5mpZvZXKGstOh2Orco47tAzm9YTtn5Us2FUeDAZY+wpEH4O935Xvtc2lezXagL0ruFZXz2PPlu99RMUrLFPKzkmV4cKd2ew85jTs+lqtNyhB6R7kZEplpUqA9jYmQamKYPqByLRVv1Rc7W3QaTXWHJEQQgghhLiFeDnb8c6DKttn0Y6LHLmSgJezHUvGdeSuhr74uTnw3ci2ONrq2Homlnd+P4axtJkAbZ9kn107AI4ag3jnz9Os3F+G3is2djmlf+XRVyo9ES6bSgGD74GQoRAyDIwGWPWUKlUrSMo1SIpQ6+bMMI1GBbZAzcKXlQ6/vwi/jlMfVEFlL1WG039BrGlmwPLsvwU5mVI126qlT321lBK+20t2Rk7wpKBgsqWE7w7qK6XPhm2zYG5XiDmhZt0LGVqyc20dwMmUUSUz8N22JChVEUy/aNJsVFBKZt4TQgghhBA36h8SQK/GKlsi0MuRlc92pmWgh2V/sxruzH6kJRoN/LgrjEU7Lpbq+tdTs3g6aQzfZ/dmZ53nAXhl5WH+PhZZ+sFa+krtKv25N7rwHxiywaseeAapbX1nqNK0+DD48+WCz4s6qpaedVS2kFnIMDXj4OW98O1dsH8hoIEuL6rtcedK3ki9rIxG2Doz53n8JUgqw+tc2LWv7FPrNdqopU8DtZSg1O0lJUYttbbg6Jl/v6XZ+R2SKRV1HOb3ho3vgD4DgnvBcztyfi+UhKXZeRXsK5UUdUdkgElQqiKYvnFStKZMKQfpJyWEEEIIIfLSaDR89khLPhkSwurnulDHxznfMX2a+vPafY0AeO+P4/x6sOTZAFvPxnLN6MbPPi8wYeQTDGlTE73ByIQlB9lxLrZ0gy3PZufmflLB9+Rsc3CDwd+pINKR5RC+N/955qCUuZ+UmYsv1L9XrcecAEcveGwF9J6WE8Q5X8Gz813argJHOnvwqKW2lVe2VOIVlTmj0alSSsgVlDpTPvcQlSN36Z6mgEqa3M3Oq7rTf8M33dXsoPbuMOAr9XNr7hNVUm6m46taplRyNHzZDr7pAVlp1h5NhZKgVEUwBaWSNC6AZEoJIYQQQoiCOdvb8HDbQLxdCu/3NK57XR7rUAuDESb9cqjEJXj/nlJZGd0bVEOr1fDRQ83p09SPzGwDYxfv4+iVQsrkChLYXi1jTt7cX+6NRjhrCkrVuyfvvsD20OwhtX50Zf5zb+wnlVun50BroxqnP/0f1O+ltte9Sy0ruoRv2yy1bPU4BJtmDSuv2QrN/aT8mqi+QyDle7erwpqcm1kypUpQvpcSC9cvFn3MtXPwVSfY9G6Jh1hpdnwOhiz1e2D8bmj1WMGBuuLkbnZelRz/Tc1MGn8JDv5o7dFUKAlKVQTTzB+JpqCUuwSlhBBCCCFEGWk0Gt4b0IxHO9TCaITJKw7xy77wIs8xGo38d0YFpXo0qAaAjU7L58Nb0SXYm5RMPR/9dbLkg3D2Ae9gtV5QFlNJxZ1XH7K0thDUNf/+pqag1PHVqnF4bpFH1PLGTCmAOt3hlfPw1EbwCMzZXreHWl74t+Jm54o8Amc3gkYLnZ/PySoLK4dSR4DL5tK9tjnbzJlScechO7N87iMqXmFNzs1KmimVmaoa+X/RpvCAa3YGrBgN0cdh++eqJ9utIj0Rwnaq9X4zwC2g7Ncyl+9VtUypY6tz1rd/VqV/ziUoVRFMfz26bjBlSsnMe0IIIYQQ4iZotRo+GNiMJzrWxmiEV1YcZumewvsknYhIIiYpA0dbHW2DcnrX2Nvo+L/BIei0GradjS1ltpS5hO8mytLMWVK1OoK9S/79wfeoGciSIvLeR5+tsrQA/JoVfG0H9/yZFjXbga2T6uUTfbzs4y7Kttlq2fQh8KoDtUyvU8Sh8im7MTc5N5ciArhVB1tnMOrh+oWSXSc+HK4evPnxiLIrLlPKuYSNznd+qfqkGbLhl5EFz4q5Yar6HgSVkXR0RdnGXBEu/JvTV86r7s1dyzwDX0IVypRKilQlwaB6jyWEw+Fl1h1TBZKgVEUwBaWuGVR6rZuj9JQSQgghhBA3R6PR8O6ApozqHATAa6uO8NPuSwUea86S6lTPG3sbXZ59NT2d6B+iMhO++e98yQdgLuG7qaDURrUMvqfg/Tb20KifWj+2Kmf7tTOgzwQ7F9UQvaRs7KF2Z7VeESV8cRdyxtn1RbX0qK0yYQxZNx8EMuhzrpE7KKXRlK6ET58FC/vCvHtyyiArQ9TxnH9zUYJMqRKU7yVF5gRCXfwhPR6WPJJ31soTf8DuuWq90QNqeSuVgJ3ZoJb1e9/8tSzle1UoU+rE74BRBdW7TlLbts1UwfkqSIJSFSE1DoCYbFNQSjKlhBBCCCFEOdBoNLzdvwljutYB4K3VRzkdlZTvOEs/qfo+BV5nXPd6APx5+Crhcaklu3lgR7UM26VmyCttcCM7Ay5uVes39pPKzVLC95sKykDOvfyagraUH2Eqsq/Uji/AaFB9pMy9rjSa8skqA5UdlpWignHVGubdZ35ekqDU6fWQEKYyqw4tubkxlZQ+G34YCD8Ohks7KueeJZWRDKFLVNCsMlmCUoX1lCpB+d4/H6jviRptYdwWcK2uvgdWjFE/L/Hh8Nt4dWynCfDgF6Czg8jDOSWw1mQ05gpOl0NQypwplRiRv+T3VhB5BH6bULpMrmO/qmXTQdD2SZUtFXc+Z3sVI0Gp8paVBtkqTTcqyxGQnlJCCCGEEKL8aDQa3uzXmHub+GEwwv/d0BsqJSObfZfUH0l7NCz4w2+T6m50b1ANgxHmbyth+ZdPAxWYMmTB3u/g684wvw8cWgZZ6cWfH7YLslJViVJhJXiggkgO7uoDvDmYUVQ/qeLUMfWVurhdZQyVl+TonOyTri/l3WfpK3WTQSlzk/PqrUCbN+MtJ1OqBDPw7V+Us35kRU6wryJd2pYThNn1VcXfryRSYmHzBzCrKax+Bubfm1PiVpCw3bBqnAoIFOXgj/DHJIg4XPRxlvK9YjKlUmIK/jeKOpbzPdfnQ9WLafjPYOMIZzfA32/CyjEqe6pGG7jnbXDygob3q3NCfy56fGVhNJauX1v0CdWU3MYBgrrc/P1dA1Q/N0MWpNyCsxaufwMO/gDrXi3Z8UmROb/3mgxQZc4dTUHGrZ/emoG3myRBqfJmanKORkd0pppFRWbfE0IIIYQQ5Umj0fDa/Y3QaTVsOhnNrvM5TYx3nrtGlt5IoJcjQd5OhV7jme6ql8vSvWHEpZSgia5WC6P/ghG/qQ9LWhsI3wW/jlMf8je/D4lXCz//nKmfVPA9RWc72dhBo/5q3ZwZYMmUKiKYVRi/ZuDkrbJLzE3Dy8POOaDPUCU25hJBs9yZUjfTYN0clKrROv8+c7Pz4jKlrl/KyUyxc1H9ui5uK/uYSur4mpz1k3+qcZS3c5vhj5eKnxEyPhzW/g9mNYP/PlZBGxtHyExSmVwF9WQ6swG+f1D18tn0XuHXToyANS/AvvnwTTf4cYgKgBb0715c+Z6zD6BRGW2m6ps8/n5TZeY1GZDTu6x6KxhoCvrt+kp9z9m7weD56mcJoOVjanl4Wfk2zM5MgTnt4bteqvl6SZw1le4FdQNbx5sfg85GBaagYpudRxwu+PukKElROdmhJ36Hq6HFn3N8Dap0r31OaWL7serfNOYEnPqzdGO4DUhQqryZfyE6epCYrmo+3Rykp5QQQgghhChfdau5MLy9mmlu+l8nMZo+BOeedU9TxBTrnep507yGO+lZBn7YWcKAgVarMpmGfg8vHYOeb6rymdRY+O8TmN0cVjwJ4Xvyfyg/u1ktiyrdM2s2SC1PrFFlYFFH1fOyBKW02pxsqfIq4UuNU9liAN1ezt9gPaAF6OwhLa70H2RzswSl2uTfZwlKnSk68HXwB8CoXoPmD6tth38p+5hKwmCAk3+odedqKpCy59vyvUdmKqx6GvYtgLWvFH5c3AX4uou6f3YaVG+tvn9fPqFKLlNi4MeHVADB7NivsGQ4ZJsyAE+sybs/twOLVRDJ0Utl7JzdAIv6woI+cHJtTmaL0Vh8o3OdrQqgQv6+Umc2qiCc1hZ6vZN3X7OHoEeuTJwHP1dN983q3aMCYanX4Mz6Ql+qUjv2qwqKXtkH618v2Tnl2U/KzNLsvIKCUtfOwby71aO4AGhux39T3/tm/3xY/Dm5S/fMHD1UYArU79mKmknUSiQoVd4sQSlPEtNUerBkSgkhhBBCiIow8Z4GONnpOBQez9ojkQD8e9rcT6pakedqNBrGmbKlFu+8SFpmKUu6XP2hx/9g4mH1Ib9WZzWj1tGVML83fBYCa56Ho6tUyU7UEUAD9XoWf+06PVQflZQYU0AgQm33a1K6MZqVd1+pPd9CZjL4NYcG9+Xfb2OXk90Uvqts98hMzel5VKNt/v1edVUQJCOx8MbY+iw48INabzsaQoaq9eO/lc/MgIUJ363GZO8OD8xW2w78oHo5lZcDi3PKtY78khPsyM2gh9XPQkaC+rcasQbGblaZRo6e8NhK8AyC6xfhp8GqWfjBH1Vg1ZAFzQar196QDQe+z399fVZOaWTfT+D5/aoHkM5evQZLh8OXbWD3N+r1yDJlExUWlIKCm53rs1WWFECHpwuesa7Ha9BnOgz8Om9AA1Q2UcgwtV6eJXzm7y2A/QtVg/WiZCSpMl6A4F7lNw53c1+pCpqBb8+36vshPR52zS35eUdXqmW7p0CjUwHB8L2FH58YAWE71XqTAXn3dXxOzSQacShnFtMqQoJS5S13UCrdFJSSRudCCCGEEKICVHO1twSWPl5/krPRSVy6loqNVkPn4IKbnOd2fzN/Ar0ciUvJZMX+8LINQmejPkA9+Rc8/R+0fFx9KI8PUx/kV4yGr0xN0gNamEqUirumLTQ2lfCZsws8g8DetWxjrGvKlLqyT30wvhkZSbDra7XebVL+LCmzm212fmqtysBx8Qe36vn329ir1wQg5lTB1zi9HpIjVbZSw36qJ5h7LVW2dnpd2cZVEidMpXsN74OGfcE7WAWGCmuyXtrMj6x02P6ZWq/WSC1/fzH/v+2OL9SHfDsXeOQn9X2Q+9/L1Q+e+FW9PpFHVCbMb+NVdkvrEfDQPBUEAhV0uXH2s5N/qoCpczX1/epVFx6YBS8ehi4vqt5ocefhr1fgs5bqHDtXsHMu/GszB6wu/Kv6tW3/DH59WpVuOXpC98kFn6fVQqfnoOWjBe9v9bhanl5fdCP1koo5rQKuGi20MN1zzYSiS3jP/6uCO151wbvezY/BzJIpVQFBqYwkOPhTzvNdX+e07ClKfLgpIK1R2ZQthqvt/3xQ+DknTKV7gR1yAm1mzj4q4Amw8Z2S9fG7TUhQqryZglJGR08S09QvLXcnCUoJIYQQQoiKMbZbXXxc7Ll0LZUXl4UC0DbIExf74ltI2Oi0jO2mglrztl4gW3+TTXQDWsDAOfDKeXhshWrQ65urOXmTB0t+LfMsfNdMjbyLKN3L1hs4djWBjOxCsr08g9TDkH3zM8Htna8yJrzr589myO1mmp1npcOmd9V629GFB76K6ytlzuJp+ZjK3tJqofkQta2iSviMxpx+Uo0fVPfs8Ix6vuvr/I2aL+1QZZ9rXij5PQ7+oIJBbjXhyXXgURsSL8PGaTnHRB7NCQDc9xF41i74Wl514fGVKlh07aza1mkC9P9cNZdvMkCV1CVegdN/5T3XXMLZeqQKEpq5+kPvaTDpBPSdoYJypsmwcC2kn5SZOVNq+2eqX9uGqXB0hdrW4zUVmCqLag1V1pdRr3pL3ayDpiyp+vdC/88goKX6LLxqXOGN9M39pMozSwpyei8llqF878p+2DOv8EkQQpeoIK53fajWWAVXd39T/HXNZXi1u6igco//qT585/8p/HdQQaV7uXWZqMpEo47AhreKH8NtQoJS5c0UlDLYe5Bp+k9dekoJIYQQQoiK4mxvw4u91ExsR68kAtC9QdGle7k93CYQTydbwuJSeWHpQWKTMwo87kp8Gq//eoRpvx8jPauYUj97F9Uz5r4P4bkd8PJpGLUWOpci8BDUDaOjt+Xp8svuzN92gfA4VQKVrTew7UwsU1Ydof2Hm+j3+TZGLdhbeGCtPEr4stJg55dqvduk/DPi5WYOSsWeytu02mCAf6bD8tGFZ1zs+QbiL6kGzp2fL/weRc3Al7vBeesROdvNZVxnNhTcTPtmXTmgggO2zqqpPagsEXt3iDuXMyaAc/+oRuMJ4aoc7+L24q+fnQnbZqv1ri+qIE1/U9bU3u9UeVh2hsou0meqTC1zllBhAlrA8CUqgNrrHbj3/ZxAoI19zutnDkKByk67uFVlCrUZVfB17ZxVL6Dxe+HRX1SAq1tOplNyRjbT157gTFSuDK/mD6sgW7VGpj5gQ9X3QP/PcvoKlZU5iyr055vrS6TPysl6a/WECngOnq/Kyy5uhR2f5z/HaFR9sQCCy7GfFOQEpS5uK3o2xRsd/kXNILp2Mvz7f/n3GwzqZxFUxlyP/6n1XXNUqWdRzKV7zUzBdc8g9VqBmgHyxtc/8WrhpXtmLr7wkKk3255vVRluSSVcVllyt2A/KglKlTdTUCrD1g0ArQac7SQoJYQQQgghKs6wdoHUrZZTEtSjFEEpRzsdr/dtjE6rYe2RSHrP/JffQq9YGqcnZ2QzY/0p7p6xhZ93h7Fw+0VGL9xLUnohmQUFcfVT07/rSlFBoLPhfLW7LU83xlXjvT+O0+3jf7hv9n+0/3ATj8/fzZI9ObMH7jx/jY/+Olnw9SxBqX+Lvm/KNfj5EfhpqGqSnduB71WfK49aOU3DC+PsrTJkIGfWP6NRNYT+9yM4tgpWjsmfVZISC//NUOv3TC261MunoVoWlCllbnBe9668pVK+jVSDb0NWTmZGaYXtUkG1yCP5950wfVCu3ztndjV7F2hjCuzsMs0Ud3o9/DxM9Vmyd1fbNk0r/kPzoZ9V0MvFP+dDfr2eqmwUo+pjtnGaao7v5KOCOUU0/Leo000FULu+lP/4tk8CGhXQNAcA985Xywb3g0dg0dfWaqFBH9V7reVwy+bvd17km//O8+4fx3OOrd9Llf+N3w0j18DgeSpI1mZU0UHQkmg2WJXWRh+HqwfLfp3T69XPgbOv+roAfILh/o/V+ub3c5r0m8WcVP9uOnsI6lr2exek3t0qazD1mgoyFfd9bTTC1pmwaqz6OQDYNktl1+V2frPKnrNzhRaPQJOB6mcuPQF2F9G4/9o5iAhVfaRyB5i6TwadHVzapsozczNnFwZ2LLhc16x+b5UxBfDb8/l/RxXk+kX4pgf8PDSn7PUWIkGp8mYKSqXpVFDK1cEWrbYEvwSFEEIIIUphzpw5BAUF4eDgQIcOHdizZ0+hx86bN49u3brh6emJp6cnvXr1KvJ4cfux1Wl59T7VWyfA3YHG/m6lOv/htoH8Nr4LjQPcuJ6axcSloYz9fh/f77zIXZ9s4ct/zpKRbaB1LQ+c7XTsPH+NR77dRUxSwVlV5WVxYmvLeq+77qFDHS+0GjgZmURcSiZeznYMbx/ID2Pa8+WjrQD4btsF1hwqoK9NUHe1jD5W+Exq1y+qJu2n/1JNib/uAvsWqg+x2Rk5H+i6vFiyAFugqZeWudn5Px/AblM/Kp29yhoyl+mZbZmumpcHtICQR4q+fu4Z+HLL3eC8oCwec7bUkeV5t187B79PzCn7K0jEIZXddGyVCiqlxObsy126d2OpZvtxKqvo/D8q6Lb0MdBnqF5Xz2wFG0fVf+t0EbPD6bNUMAHUB3Nbh5x9fd5XQZLY0yqTBaD/bAxO1fjf8kO8s+ZY4dctjketnIb2+xaohu3mTKF2Y8p82b0XVKbangtxxWcflgdHD2j8gFr/9+PCy+yKYy7da/FI3p+DVo+rwI0hG34YBEdW5OwzZ8gFdQU7p7LdtzB2zjBmg5plMDsNlo9S2Yg3loqC+pr/fFkFQEGVajZ6QI15zYS8fcPMZXqtHlf97LQ66GGa6XHnl5CeWPB4jq5Sy7p35e2h514T2oxW6xveVmWDG9+BlWNVUAwKL93L7e63oGZ7VUq44kmVPViYtHgVYE81/Zxufk9lM95CJChV3kxBqRSdasLoLjPvCSGEEKKcLVu2jEmTJvH2229z4MABWrRoQZ8+fYiOLrh57ZYtWxg+fDj//PMPO3fuJDAwkHvvvZcrVypopiJhFX2a+vPNE22YP7Jdmf4o2qyGO2smdOHl3g2w1WnYeCKaqb8dIzY5g9reTsx9vA0rn+3M0nGd8Ha249jVRB6eu8NSTlfeTkYm8mNkIFsMLcmo24eHe3Vl2dOd2Pdmb74Y3oqfnurAntfvYfpDIXSrX40HQqrz7F0qI+jVFYc5FXlD02tnb/APUes/DMxfxhdxCL7rrUrM3APVbIJZKfDHi/DTw7D9c9VXyMVf9WgqicD2ahm+R5Wc/feJet53Bgw0ZQxtn53z4T3mlAqCAdz7gcqwKYq5fC/xct6Z7U6vy9vg/EbNhgAaVS50/RJkpqjg2FcdVUDq94mw7vX8H+rjLsCPQ9TMg2jU67FidM4H+aijcP2CCrjVvzfvuR611Id/UB+MDVmqb9jQxarfk7mh+KZ3Cw4mgCq3ir+kvq4bg22OnmoGPLMWj0Lj/hy7msjy/ZdZtOMip6Nu+J4ojXZPqeXBn1SpYUai6kdVtwSzSRbAYDCy/5KpyibbYFmvcJ3Gg9ZWBV7/eKn05VyJEXDmb7VuzlQz02ig/2zVuyo9QWUCrhqn1s2zI9Yv59I9M0cPVSLZ8Tn1/N+PYMUoVTKY+7HsCdg3H9Co2Qr7fAD9PlVN6a8ezAkaXztn+jo1ecsmmw5SweD0eFVCVxBL6d7g/Pu6TQIbB5VJtXayCkYd+UX9vNo4FN2nzkxnC0MWgIMHXD2gAlsF0WfB8pGqhNi1uiqbNGSrf5ebnfChHElQqryZglLJGhWUcnOU0j0hhBBClK+ZM2cyduxYRo8eTZMmTZg7dy5OTk4sWLCgwON/+uknnnvuOVq2bEmjRo347rvvMBgMbNpUtaaVFiow1aR66bKkcrPVaXn+nvr88Xw3WtfywNPJljf7NWbDSz24r5k/Go2G5jXdWfFsZ2p6OnLxWioPfb2D41cLyRi4CUv3hGNAyy8NZ2I/4hdLgMbL2Y7+LarTJdgHG13ejzOT721I12Af0rL0PP3DPhLSbigx7P2uCl5EH4fvB8CS4erD57nNsLAvpESrhupjNsCoP1VgSGevGjT/8766RpcX8mboFKWWKVPq0g7Y+LZav+dt9SG3+ZBcZTgTVFDs77dUI+pGD6hysuI4eakSNVAZQuc2qyyR5aZsDHOD8xu5BUAdU+bYuinwZTvY+qnqwRTQQm3fNUd9eM02ZcMlx8CPD5leo+bqNbJ1hgv/5bw25iyp4HsKninRHDAwj23wdzmZNl1fVGV80cdyGnvnps+Graayxs7PF5xt02SAynwJ7g33fwTAzvM5mVx/FJRBV1L17gbPOio7ZYPp37LdU8UHDgtxNiaZxPScrJxtZ2OLOLoc1WijXneNVgXXCgtoFObQz2p2wsCOUK1B/v2Onqr5fI9X1T0OL4Ovu+b0SyrvflK56Wzgvunw4Jcq8Hb8N/hpcN7HqT/Vz/TDC9VshaAa099raoq/+QM1Y+Keeep5/d55y1+1Ouhu6i2188v8wZ2o42qmRJ0dNCogIOzqr8oca7ZXP+ftn1a/lwbPh2d3qJ/NkvAIhIGmANquOSozLDkmZ7/RqDLCzm9RP6ePLlWloG41TTNCvlqy+1QCiZiUN1NQKsEclHKQTCkhRNWg1+vJyipF/xAhbhO2trbodDfZp6MSZWZmsn//fqZMmWLZptVq6dWrFzt37izRNVJTU8nKysLLy6vQYzIyMsjIyCnNSkws/6CDuHU19Hdl1XNdMBiMBWZd1fFxZuWznRkxfw+nopIY9NV2Xru/ESM7BZVL64q0TD2rDqiZtIa3r1Xi83RaDZ8Pb0X/L7Zx8Voqk5aFMm9E25wx1esJzx9QTY33zINTa00ZHEaVQRDUDR75SWVNAHSeoGYK+3WcCho5eRfe1Log3vVVNkN6vHrebbLKlDC7522IOqZKm74foD5LaG3Uh9SS8mkAYbGw+EE1S5hZYMeim6SHDFN9bU79qZ571FKZI436qbK+1c+pEr2UGNVceemj6sOsRy14fIX6cD3gC1U+tG2Wyo45YS7dKyTbo1ZHVXqk0UCXl/IGdBw9VcBv83uqzLHJwJyAmj5b/ZvFnVezj7UtpGROo1GZL7nsPHfNsv7HkQhe6t0ATUl6TN1Iq1Wlen+/qbK8bBxzGoeXwb6L6nOjjVZDtsHItjOxvHpfmS9XOk0Hquyl319QmXqOHqqXVnGMRjj4o1pv/UThx+lsoefrqpxu1ViV3Qaq2XfuAE9Faf2E6uf2zwf5G5I7uEPPN6B2p7zbWz2uvu8v/Aurx6usP8jJ4Mut2WD1/XjtrMrsu2dqThDWnCUV3Eu9rgVpM1I9blajvioIu/NLlRm29VNVNtt2jOrpdWAxoIEh83OCzQ99C4sfgNCfVKDVPBunFUlQqryZZtCIM6iGhBKUEkLc7oxGI5GRkcTHx1t7KEJUGA8PD/z9/cv2QaWSxcbGotfr8fPLO624n58fJ08W0uD5Bq+++irVq1enV6/Cp+WePn0606ZNK3S/uDMUFWDyc3Pgl6c78fzSg/x3OoZpvx9nw/EoPnm4BTU8HG/qvmuPRJCYnk2glyNd6vkUf0IuXs52zH28DYPn7mDTyWheXXmY9wc1w97GFHx28oL7/081r17/Rs409c0Gq8wDG/u8F/RtBE9tUs2T/ZoW3Xj8RlqtCoQd+xU6PAN3v3nDfp3KkJh3tyobBGg3tnQf3Ks1hLAdKiBl7w4hQ9VscQEhRZ/XuL8KAKXFq0BZ5+dzGpOHDFUlcsueULOpfdZCZVE5ecPjv6qAFKjX7PJ+lamxaqxqWq61zem/dCONRjV7LkzHZ1Ufn+sX4eD3KhMpbDf8OSknSND1JdU4vQSy9Ab2XMiZYfB8TAonI5NoHFDGbMKWj6km3tnp0HywCqSVkblcb3DrmizbF87RqwlcT8nE07mAzLaK0GakCthseEtlSzl6qoCr0ajKvgxZKtPJNtfP8qXtKjBo56KChsWp1QGe2QbrXlNBkOYPl6zpfHmo3QlG/VHy4zUa1RT/q07q5wlUYKvu3fmP1eqg+ysqWL3nWzWbYcgwFbQsqnSvIvR+T2V37p2nAlFHV+aMAaDPh9Dw/pznQV1UcPy/j+GPSVCznSqftSIJSpW3sZsg9Rrhh7KBMOkpJYS47ZkDUr6+vjg5Od0WH9qFKCmj0UhqaqqlF1NAQAnT5m9jH330EUuXLmXLli04OBRegjRlyhQmTcrJ6EhMTCQwsJgZpsQdx93JlsWj2/Hjrkt8sPYEO85d475Z/zFtQFMGtapR5v8zluwJA+CRdrXKlHnVvKY7Hz3UnJeXH2L5/suci0lm7hNt8HXN9T1fraHK+Dm/RfXJCRlWeCmWzlYFasrigdmqRKdWx4I/kDt6wPAlqp+VjX1OI+WS6vqiCh4EtofGD5a8ibSDGzy3U51rzgzLrV5PGL0WfhoCyVFg66R69vgE5z2u9zTVi8f8Qb5uj8IzRIpj56y+/rWTVSPuq6E5TbUdPNS9Wo0o8eWOXEkgJVOPu6Mt7YK82Hgiij8PR5Q9KOXkpZrcH/wBOk8s2zVM9l9SwbL7m/tzMPw6p6OS2XHuGv1CKvH/oS4vqOy8bTNVH7E/X1YZg7nZu6kgpKt/zgQBzQaXODCIg5vqn9b7XRXUvJV51VGB47/fUM/bP13474SQoSoIu3MOXDuj+lTtM83IaONYeGC2vGm1akbHlsPVz8u++apHXVaqCup2fDb/OT1eVb/3Lu9RweRRa1Xpo5VIUKq8ufiCiy9xWScA6SklhLi96fV6S0DK2/sWfyMhRBk5Oqq/AkdHR+Pr63vLl/L5+Pig0+mIiso7e1hUVBT+/v5Fnjtjxgw++ugjNm7cSEhI0VkU9vb22NvbF3mMEAAajYYnOgXRJdiHSb8cIjQ8nkm/HOKvo5F8MLAZvm4FBz+NRiPJGdm43lBZcDoqiX2XrmOj1fBw25plHtdDrWvi5WzH80sOciAsnge/2M43T7ShRaBH3gPr3lXme5SIo0f+UqEbVWsILxxQASKnwstqC+QZBA/MLOPYisn0CQhRvaN2fKECETXb5j9GZwsPL4JvuqtmzSXJoClK65HqfvGXcgJSrR6HXtPyzmRWAubSvY51vejbPEAFpY5E8PK9ZSzhA+g5RT1uQkxSBhevpaLRQKtannQNrsbpqGS2nY2t3KAUqNKzzBTY803+gBSohu4ZiapnmVnrMpSelfLfzmo6PquyAxOvqkBPYTQaaDtaZZdd3Ap7v4OTf6rXsPEDJQ/alafqLeHBL+De99WkCTXbFRwI19mo/lJfd1UzXp7bDA3uzX9cJbklGp2XZkrj3JYuXYpGo2HgwIEVO8AySDQ1VZTyPSHE7czcQ8rJqZyn7hXiFmP+Hr8d+qbZ2dnRpk2bPE3KzU3LO3Uq/IPvxx9/zHvvvce6deto27aAD5ZC3KS61VxY8UwnJt/bAButhg3Ho+g1819W7L+MMdcMX1l6Ayv2X6b3rP8ImfY3b/92lOSMnA/D5iypXo398mY2lcFdDX35bXwX6lVzJjIxnYe/2cmvBy/f1DUrjLNP6QNSlcGzNvSbUXRgzdVPZVX1m3lTfZYA1Ufq3vdUgM63KTy5HgbMKVNQY9d5FZTqVNebXo39sLfRciE2heMR1u2RZy7da+DrirujLV3rqz/8bTsbU9RpFUOjgb4fw+SzMOmEWr56CV6/Cq+FwYR9MPJ3eGieynYasgBqtqn8cVYWrQ4eXQbPbC24Wf+NNBo1acDQ7+HFo+p1yj0LpDU4uKvMyaICr55BMHAODF9m1YAU3AKZUuYpjefOnUuHDh2YPXs2ffr04dSpU/j6+hZ63sWLF5k8eTLdupVgVgorMM/04Sble0KIKkBK9kRVd7t9j0+aNImRI0fStm1b2rdvz+zZs0lJSWH0aDXj1ogRI6hRowbTp08H4P/+7/+YOnUqP//8M0FBQURGRgLg4uKCi4sV/porqiwbnZYJd9fnnsZ+/G/FIY5eSWTy8kP8fugqbz3QhP9Ox/Dd1vNcTUi3nLN45yX+Ph7FewOa0bW+D6sOXAFgeIeSNzgvSt1qLqwe34UXl4ay6WQ0Ly07BMCgVmXPwipKWqYeR7tbO+OyQnjXK78m1k0GwOQzKpNLW7bXMjPbYGkm3qmeD872NtzdyJe/jkby5+EImlYvoGSxkphL99oEqUy1DnW8sdFqCI9LI+xaKrW8rfDHQJdqBW93cAef+pU7ltuVW0DZy3ytobAJCSqZ1TOlSjulMahykscee4xp06ZRt27dShxtySWmm4NSVo/7CSGEKAdBQUHMnj3b2sMQAoBhw4YxY8YMpk6dSsuWLQkNDWXdunWW5udhYWFERERYjv/666/JzMxkyJAhBAQEWB4zZsyw1pcgqrjGAW6sfq4Lr9zXEDsbLf+ejqHXzH9594/jXE1Ip5qrPa/d34jvRrSllpcTEQnpPPX9Ph76agcJaVnU8HCkW3D5lfu4Otgyb0RbRncJAuCt1ccIj0stt+sDxKVk8uyP+2ny9jp+2Rterte+Izn7lDkgBXDocjxpWXq8ne1o4KeC7+bSuD8OR+TJ3qts+0yZUm1rq6CUs70NrWup9a3WyJYSwoqsGpQyT2mce+aXkkxp/O677+Lr68uYMYVMBZpLRkYGiYmJeR6VITFNpSBLo3MhhKhcGo2myMc777xTpuvu3buXcePGlcsYlyxZgk6nY/z48eVyPXFnmjBhApcuXSIjI4Pdu3fToUMHy74tW7awaNEiy/OLFy9iNBrzPcr68yBESdjotDx3VzBrX+hK61oeANT2duLDQc3Z+kpPnulRj15N/Fj/Ynee7l4XnVZjKat6pF1gmRqcF0Wr1fBG38a0re1JckY2Ly0LJVtvKJdrbzkVTZ/Z//HX0UiMRvh4/UnSMvXlcm1RNjvOmvtJeVuyYe9u5IuDrZawuFSOXrFOCV96lp6jVxIAaFs7p1yza30VhN1+NtYq4xLCWqwalCpqSmNzWvmNtm3bxvz585k3b16J7jF9+nTc3d0tj8qaNcaSKSU9pYQQolJFRERYHrNnz8bNzS3PtsmTc6aiNhqNZGcX0NSzANWqVSu33lrz58/nlVdeYcmSJaSnpxd/QgXKzMy06v2FEFVfsK8ry5/pzN8vdWfzy3fxaIdaONjmZMA42umY0rcxv43vQpvantTxceaR9uVTuncjG52WWcNa4mJvw75L1/lqy7mbul5app6pvx1l1MK9xCRlEOzrQg0PR2KTM/lp96VyGrUoi53nVXCnY72ciVqc7Gy4p5H67PnHkatWGdeRKwlk6Y1Uc7Un0MvRsr1LsDkodQ29wXpZXEJUNquX75VGUlISTzzxBPPmzcPHp2TpvFOmTCEhIcHyCA+vnFRa6SklhBDW4e/vb3m4u7uj0Wgsz0+ePImrqyt//fUXbdq0wd7enm3btnHu3DkGDBiAn58fLi4utGvXjo0bN+a57o3lexqNhu+++45Bgwbh5ORE/fr1WbNmTbHju3DhAjt27OC1116jQYMGrFq1Kt8xCxYsoGnTptjb2xMQEMCECRMs++Lj43n66afx8/PDwcGBZs2a8ccffwDwzjvv0LJlyzzXmj17NkFBQZbno0aNYuDAgXzwwQdUr16dhg0bAvDDDz/Qtm1bXF1d8ff359FHHyU6OjrPtY4dO8YDDzyAm5sbrq6udOvWjXPnzvHff/9ha2ub7w9KL7744i3b+1EIUbl0Wg0N/FzRFZH91KyGOyuf7cw/k++immvFzfwY6OXEewObAvDZpjMcCLteputciE3hgS+28v1OFXwa1TmIP57vygv3BAMw99/zki1lJelZeg6ExQPQuV7e2YPNJXx/WqmEz9znqk0tzzz9DFvUdMfV3oaEtCyOXU2o9HHdCo5eSeCbf8+VKSh3+HI815IzKmBUoqJZNShV2imNz507x8WLF+nfvz82NjbY2Njw/fffs2bNGmxsbDh3Lv9fOuzt7XFzc8vzqGhGo1Fm3xNCVElGo5HUzGyrPMrzjeNrr73GRx99xIkTJwgJCSE5OZm+ffuyadMmDh48yH333Uf//v0JCwsr8jrTpk1j6NChHD58mL59+/LYY48RFxdX5DkLFy6kX79+uLu78/jjjzN//vw8+7/++mvGjx/PuHHjOHLkCGvWrCE4WH3AMRgM3H///Wzfvp0ff/yR48eP89FHH6HTla7nxqZNmzh16hQbNmywBLSysrJ47733OHToEKtXr+bixYuMGjXKcs6VK1fo3r079vb2bN68mf379/Pkk0+SnZ1N9+7dqVu3Lj/88IPl+KysLH766SeefPLJUo1NCCEqw8CWNejfojp6g5GXloXmmf2vJE5FJvHw3J2ci0nB19We759szzsPNsXBVsdDrWtS09OR2OQMyZaykgNh18nMNuDrak9dH+c8+3o29MXRVsfl62kcvlz5wR9zk/O2pibnZjY6rSWra+uZO7OE77VVh5n+10n+OFy6LLbDl+N58Mvt3DPzX/4+VnDFlbh1WbULd+4pjQcOHAjkTGmc+6/CZo0aNeLIkSN5tr355pskJSXx2WefVVppXnFSMvWYg7vSU0oIUZWkZelpMnW9Ve59/N0+ONmVz39b7777Lr1797Y89/LyokWLFpbn7733Hr/++itr1qwp8P8js1GjRjF8+HAAPvzwQz7//HP27NnDfffdV+DxBoOBRYsW8cUXXwDwyCOP8PLLL3PhwgXq1KkDwPvvv8/LL7/MxIkTLee1a9cOgI0bN7Jnzx5OnDhBgwYNAMo04YezszPfffcddnZ2lm25g0d169bl888/p127diQnJ+Pi4sKcOXNwd3dn6dKl2Nqq/9vMYwAYM2YMCxcu5H//+x8Av//+O+np6QwdehvNQiOEuGNoNBreH9iMA5euc+laKlNXH2X64ObY2xQf5D9yOYERC3ZzPTWLxgFu/DCmPT4uOZldtjotz98dzKsrjzD33/M81qH2nTkbnxXtOqf6SXWq551vdlVHOx33NPblj8MR/HkkghaBHpU2LqPRyH5Tk/M2tT3z7e9W34cNx6PYfjaW8T2DK21ct4LkjGyOX1V9vraeiWVAyxolPnf3eRXoi0/NYtwP+xnZqTZT+jbOUyYsbl1WL9+bNGkS8+bNY/HixZw4cYJnn30235TGU6ZMAbCUKeR+eHh44OrqSrNmzfK8ubYmc5aUrU6Dg63VX2IhhBA3aNu2bZ7nycnJTJ48mcaNG+Ph4YGLiwsnTpwoNlMqJCTEsu7s7Iybm1u+krfcNmzYQEpKCn379gVUxnDv3r0tM85GR0dz9epV7rnnngLPDw0NpWbNmnmCQWXRvHnzfP9n7t+/n/79+1OrVi1cXV3p0aMHgOU1CA0NpVu3bpaA1I1GjRrF2bNn2bVrFwCLFi1i6NChODs7F3i8EEJYm7ujLTOHtkCjgVUHr9Dxw028+/txTkYW3gB738U4Hp23i+upWbQM9GDp2I55AlJmki1lXTvPm4JSdb0L3P+AqYRvTejVcmt2XxLnYlK4npqFvY2WptXd8+0395Xad/H6HVf6eTg83pLYseNsbKky5M3ljsG+apbFxTsvMeirHZyNTi73cYryZ9VMKVBTGsfExDB16lQiIyNp2bJlvimNtdrbK7CTu8n5jZF5IYS4nTna6jj+bh+r3bu83BgomTx5Mhs2bGDGjBkEBwfj6OjIkCFDim0CfmOARqPRYDAU/uZ2/vz5xMXF4eiY09jUYDBw+PBhpk2blmd7QYrbr9Vq872Jy8rKynfcjV9/SkoKffr0oU+fPvz0009Uq1aNsLAw+vTpY3kNiru3r68v/fv3Z+HChdSpU4e//vqLLVu2FHmOEEJYW4e63vzf4BA+/fsUUYkZLNh+gQXbL9Cipjt3N/LD28UOb2c7vJztiEvJZNIvh0jL0tO+jhcLRrXDxb7gj1O2Oi0Tegbz2qpbJ1sqLVNPUkYWvq4OVh1HRUvNzCY0PB5QmVIF6dnIFy9nOyIT0/nnVAy9m/gVeFx5O2DKkmoR6IGdTf7PuHV9nKnu7sDVhHT2Xoyje4NqlTKuW0Hu3m5XE9K5eC2VOj4l+8PWMVOG1et9G6HRaJj8yyFORCTS/4ttfDuiDd3q3zmv4+3I6kEpUFMaF1YeUdwb2tzTHd8qElKlybkQomrSaDTlVkJ3K9m+fTujRo1i0KBBgMqcunjxYrne49q1a/z2228sXbqUpk2bWrbr9Xq6du3K33//zX333UdQUBCbNm2iZ8+e+a4REhLC5cuXOX36dIHZUtWqVSMyMhKj0Wj5o0hoaGixYzt58iTXrl3jo48+spTC79u3L9+9Fy9eTFZWVqHZUk899RTDhw+nZs2a1KtXjy5duhR7byGEsLahbQN5qFUNtp6JZdnecDaeiOLQ5QQOFdJvqFt9H759om2xQaaHWtfky3/Ocvl6Gj/vCWNM1zoFHnc9JZM/j0Sw9kgEtjotw9oF0ruJH7a68vnDvNFoZPn+y3y49gTxqVm0ruXB0LaB9AsJwLUK9r/dd/E6WXoj1d0dqOVV8Ky59jY6hrSpybf/nWfJnrBKC0rtM/eTKqB0D9T7rK71ffhl32VWH7xyRwWlDpoa05vtOBdboqBUWqaeczEqI6ppdXf83Bz4a2I3XlwWyo5z15jx92kJSt3iqt4ni1tAYrpqlChBKSGEuD3Ur1+fVatW0b9/fzQaDW+99VaRGU9l8cMPP+Dt7c3QoUPzZdH27duX+fPnc9999/HOO+/wzDPP4Ovry/33309SUhLbt2/n+eefp0ePHnTv3p3Bgwczc+ZMgoODOXnyJBqNhvvuu4+77rqLmJgYPv74Y4YMGcK6dev466+/ip3ko1atWtjZ2fHFF1/wzDPPcPToUd577708x0yYMIEvvviCRx55hClTpuDu7s6uXbto3769ZQa/Pn364Obmxvvvv8+7775brq+fEEJUJBudlp6NfOnZyJfY5Ax+C73KmagkrqVkEpeSyfWUTBLSsri7kS/vD2pWot5TdjY52VJfbzmHq4MNbg62uDuqx8VrKfx68ApbTkWTpc/Jcv33dAx+bvY82r42wzsE3lRm09noJF7/9Sh7LuRMwnEgLJ4DYfFM+/04fZsH8GTXoAJLycqD0WgkPctQqVliltK9ej5FVq080i6Qb/87z5ZT0VyJT6OGR9EZweVhXxH9pMwe61CbX/Zd5rdDV3mpdwMCCwmsVSVGo5GDpuy2uxv5svlkNDvOXuOxDrWLPfdkZCIGI/i42OFrmrXT182B2Y+0pOOHmzgUHk94XOod8TreriQoVQFyZt6Tl1cIIW4HM2fO5Mknn6Rz5874+Pjw6quvkphYeE+RsliwYAGDBg0q8A3y4MGDeeKJJ4iNjWXkyJGkp6cza9YsJk+ejI+PD0OGDLEcu3LlSiZPnszw4cNJSUkhODiYjz76CIDGjRvz1Vdf8eGHH/Lee+8xePBgJk+ezLffflvk2KpVq8aiRYt4/fXX+fzzz2ndujUzZszgwQcftBzj7e3N5s2b+d///kePHj3Q6XS0bNkyTzaUVqtl1KhRfPjhh4wYMeJmXzIhhLAKHxf7QrOaSit3ttQrKw4XelyTADcGtqpOQloWS/eEE5WYwayNp/li8xmCfV1wtrfBxfRwc7RlWLtAWhbRoDs9S89X/5zl63/PkaU34mir46Xe9XkgpDq/H7rKsn3hnI9JYeWBy/x++Cqrnu1MsxrlG5i6EJvC2O/3EZeSyYpnOlG3mku5Xr8wO86qmesKK90zq1vNhU51vdl5/hrL9oQx6d6GFTam1Mxs/jsdy/mYFKDooFSLQA+61fdh65lYvvnvHO8PbF5h47pVXLyWSlxKJnY2Wp7qVkcFpc7FYjAY0WqLbodjLt1rUt09z3ssX1cHOtb1Zse5a/xxOIJn76pXoV+DKDuNsTzn2L4NJCYm4u7uTkJCQrF/OS6rhdsvMO334/QLCWDOo60r5B5CCFEZ0tPTLTPDOThU7R4UonyMGTOGmJgY1qxZY+2hlEpR3+uV8d7hdiCvgxBls//SdX7cdYnrqSrbKjEti4S0bJztdfRtHsDAljVo6O9qOT4jW89fRyL5Ydcly0xtN7LVafhgYHOGtss/+/iZqCTG/3yA01GqpOnuRr5Me7BpnkwRo9HIgbB4Pll/kl3n46jp6cgfz3fFw6l8Jo7aff4aT/+4n3hTW5OOdb1YMrZjhffb/fd0DCMX7MFGq2Hbq3fj7170e5ffD13l+SUH8XOzZ/urd2NTTiWTAJevp7LuaCRbTsWw50IcmaaG6o38XVn3Yvciz9157hrD5+3CzkbLtld64utWtd+Drdx/mZeXH6JNbU+WjutIi2l/k5qpZ+0L3WhSvej/b6asOsySPeE8e1c9Xr2vUZ59S/aEMWXVEZoEuLF2YreK/BJEAUr6vkFSeSpAQlpOo3MhhBDiTpCQkMCRI0f4+eefb7uAlBBCVKQ2tT2LzIy5kb2NjoGtajCwVQ3OxSRzNT6NlIxskjP0JKdnse3sNTaeiOKVlYc5GZnE630bYaNTE10s33eZqWuOkp5lwMfFjvcGNOO+Zv75gkEajYY2tT355om29P9iG2Fxqby0LJT5I9sVm5lSnF8PXuaVFYfJ0htpXsOdM9FJ7Dofx/J9lwsMopWXLL2B9/44DsDIzkHFBqQA7m3qh5ezHVGJGWw+Gc29Tf3LZSz/no5h3Pf7yMjOaQUQ6OXIXQ18eaJT8SVpHet60aa2J/svXee7bRd4vW/jchnXrepguAq+tgr0wFanpX0dL7acimHHudhig1LmTKmmBRx3X1N/3lp9lOMRiZyLSaZeJWXridK5vaa1u00kpqmeUu7SU0oIIcQdYsCAAdx7770888wz9O7d29rDEUKIKqFeNRe61a/Gfc0CGNKmJqO61OHbJ9rwYq/6ACzYfoHRi/ZyJT6Nl5aF8srKw6RnGega7MPaid24v3lAkdlJ7o62fP14a+xttPxzKoYvNp8t81iNRiOzNpzmpWWHyNIbub+ZP7883YlJvdXEHB+sPUFMUkaZr1+cn3Zd4mx0Ml7OdrxwT/0SnWNvo+PhNjUBlVVTHjYej2LsYhWQahHowVsPNGHTyz347389eW9gMxr4uRZ7DY1Gw/ieqtzsx12XuJ5S9GzAt7sDl+IBaG0K3nap5wPAdlMpZmGy9AZORiYBFNgXzdPZji7B6lp/HIoor+GKciZBqQqQmG6efU8S0YQQQtwZtmzZQmpqKrNmzbL2UIQQokrTajW82KsBXz/WGkdbHVvPxNL1/zazOvQqOq2G//VpyPdPti9xg/Sm1d35cJDqWzR702m2nIou1Xgysw2sOXSVIXN38tmmMwA806Mecx5tjaOdjie71KFpdTcS0rJ415TJVN7iUjKZueE0AC/f26BUyQGPtK8FwJbTMVy+nnpT41h3NIJnftxPpt7A/c38Wf50J8Z0rUO9ai6lLl3s2dCXxgFupGbqWbTj4k2N61aWkpHNyUiV7dS6lgpKdQ5W/cD2XIgjS1/4xDPnYpLJzDbgYm9D7UIamfdvUR2APw5fLc9hi3IkUZMKkCjle0IIIYQQQogKdH/zAGp7OzP2+31ciU+jursDnw1vRbsgr1Jfa3CbmhwIu85Pu8OYuDSUWcNakJSeTURCOhHxacQkZ+DtbE+QjzNB3k7U9nbGVqfhl33hLNsbTmyyyuSx1Wl4b0AzS6AH1MyGHz0UwoA52/j90FUealWDno18y+11AJi14TSJ6dk08nflkXa1ij8hlzo+znSupxpiL9sbzstlbHi+5tBVXloWit5g5MEW1Zk5tMVN9agyZ0tN+Pkgi3ZcZGz3urjYV72P74cux2MwQnV3B0vJZWN/NzydbLmemsXhy/G0qV3w9/SxK6Ym5wFuhZad3tvUD7tVWs5EJ3MqMilP/zZxa6h639W3AEtPKSnfE0IIIYQQQlSQJtXd+P35rmw+GU2vxr431ah8av8mHL2ayKHweJ5ctK9U5/q52fNIu1oMb1+rwF5OzWu6M6ZrHeZtvcCbq4/y90vdcS6nAMvJyER+2n0JgLf7N0VXhp5Yj3aoZQlKTbynfomCSZnZBsLiUjgbncLhy/HM/fccBiMMbl2Tj4eElGkcN7q/WQB1fU5zPjaFn3Zd4ukeVW8GuYNh8QC0ytV3TavV0KmeN2uPRLL97LXCg1KWmfcK7zvl5mBLj4bV2HA8it8PXaWhf8XNsijKRoJSFSAxXfWUcnOQl1cIIYQQQghRcbyc7Rhi6ot0M+xtdHz1WGvGLt5HWpYefzcHAkzZKz4u9sQmZ3DpWioXYlO4dC2FlEw9XYK9ebxDbXo18cO2mEDOS70bsPZIJFfi0xj3wz5qejiRnJlNSkY2aZl6ugb78HSPetjZlDy7yGg08t4fxzEY4f5m/nSq512mr/3eJv54O9sRnZTBhuNR3N88oMDjsvQGvv3vPCv3X+ZSXCp6Q96J7Ie3D+SDgc1vulm8mU6r4Zm76vHKisPM23qBQa1rlLgs83ZxMCynyXlunev5mIJSsYX2CDt2NQEouMl5bg+EBLDheBR/HL7Ky/c2qPBZIEXpSNSkApjL96TRuRBCCCGEEOJ2UcPDkbUTuxV7nNFoJCPbgIOtrsTXdrKz4YNBzRi1cC/bz14DruXZv/tCHOuPRzJraEvql6AZeEa2nl/2hrP97DXsbLQ3NUOdnY2WIW1r8s2/55m4LJSTkUk8e1e9PF/f6agkXv7lEEeuJFi2OdvpqOfrQl0fZzrU9eaRdoHlHvAY1KoGn208w5X4NLp8tJm+zQMY2TmIVoEelntlZOs5eiWRw5fjqVvNhR4NqpX4+ulZej7bdIb1RyN5f2AzOpsag1cGo9HIAVOmVOsbZqg0Nyg/GBZPWqYeR7u832sGg5Hjlpn38jc5z61XYz8cbLVcvJbKsauJNKtR9PGicklQqgLkNDqXoJQQQgghhBCiatFoNKUKSJnd1dCXmUNbcCoqCVd7G5xNj7RMPbM2nubolUT6fbGNV/o05MkudfJlHGVk69l6Opa1RyLYcDyKpAxVoTK2Wx0CC2l0XVLP3RXMsSuJbDsby2ebzvDrwStMe7Ap3RtUY97W88z8+zSZegPujra80bcx3RtUw8/NvsKzbmx1Wr5+vDXvrDnGgbB4fgu9ym+hVwmp6U7rWp4cuhzPsSuJZOZqCP5wm5pMG9AUJ7uiP+4fCo/n5eWHOBudDMDLyw/x90vdca2k3siXrqUSl5KJhg6oTAAAJ2dJREFUnU6bL9spyNuJAHcHIhLS2Xcpjm718wbawq+nkpSRjZ1OS30/lyLv42xvwz2N/PjzSAS/H7oqQalbjASlypneYCTJUr4nQSkhhBBCCCGEMHuodcGlhvc38+eVlYfZciqG9/88wcYTUbSp7Ul0YgbRSRnEJGUQFpdKsikQBaqX1aBWNXn+7oLLu0rD3dGWH8a0588jEbz3x3HC4lIZvWivJTAC0LNhNT4aHIKfW+WW0IXU9GDVc104cjmBxTsvsubQVQ5fTuDw5ZysLW9nOxoFuLLz3DWW779MaHg8cx5rTYMCss4ysvXM3niGb0x9sHxc7LHTabiakM7H607x3sBmlfJ1HQxXpXvNarhhb5M3yKnRaOhcz4eVBy6z/ey1fEEpcz+pBv4uxZaOgirh+/NIBH8cjuC1+xtJCd8tRIJS5Sw5PeeXpJujvLxCCHG7uuuuu2jZsiWzZ88GICgoiBdffJEXX3yx0HM0Gg2//vorAwcOvKl7l9d1hBBCiNuFr5sDC0e14+c9Ybz/xwl2nY9j1/m4fMf5udnTt3kA/ZoH0LqWZ7n1bwL1/+8DIdW5q6Evn286w4JtF4hISMfF3oapDzTh4bY1rRrMaF7TnRkPt+D1vo1Zvi+cyMR0S8ZULS8nNBoNO89dY+LSg5yJTubBL7fx7oPNuL+5P2ejkzkTlcyZ6CQ2n4zmXEwKAA+2qM60B5tyIiKRR7/bzQ+7LjGgZXXalmEWx9I6cCkegFa1PAvc3yXYm5UHLrPzXGy+fZZ+UgEly3rq2cgXZzsdV+LT2H/peqV8faJkJGpSzsylew622nzRXiGEEBWvf//+ZGVlsW7dunz7tm7dSvfu3Tl06BAhISGluu7evXtxdnYur2EC8M4777B69WpCQ0PzbI+IiMDTs+A3aOUtLS2NGjVqoNVquXLlCvb29pVyXyGEEOJGGo2GxzrUpks9HxZsv4AGFayq5mJPNTd7AtwdaODrWq6BqIK42Nvwet/GDGlTkw3HoxjYqgY1PBwr9J6l4eVsV+hMfJ3qebN2YjdeWhbK1jOxvLLyMK+sPJzvOB8XO94f2Jz7mvkD0DnYh6Fta/LLvsu8uvIwayd2q/DPswdMTc5bFxKU6lxP9ZU6ciWBiIQ0Atxz/g3MmVLNahTd5NzMwVZHn2b+rDpwhYlLQ/l5bAdqe5fv+zpRNhKUKmcJpibnUronhBDWMWbMGAYPHszly5epWTNvicDChQtp27ZtqQNSANWqlbxp6M3y9/evtHutXLmSpk2bYjQaWb16NcOGDau0e9/IaDSi1+uxsZG3J0IIcScL8nHm3QGVU0JWlAZ+rgWWv93qfFzsWTy6PV//e46ZG06jNxjxc7Onvq8rwb4uNPR35b6m/ng62+U57/W+jdl8MoZzMSnM+ecck3o3qLAxpmZmczIyCYDWtT0KPMbf3YG2tT3Zd+k6r6w4zOLR7S0BSXNQqkkxTc5ze+2+RoSGx3M+JoVh3+xiybiO1PGRwJS1lXy+TVEi0uRcCCGs64EHHqBatWosWrQoz/bk5GSWL1/OmDFjuHbtGsOHD6dGjRo4OTnRvHlzlixZUuR1g4KCLKV8AGfOnKF79+44ODjQpEkTNmzYkO+cV199lQYNGuDk5ETdunV56623yMpS/08sWrSIadOmcejQITQaDRqNxjJmjUbD6tWrLdc5cuQId999N46Ojnh7ezNu3DiSk5Mt+0eNGsXAgQOZMWMGAQEBeHt7M378eMu9ijJ//nwef/xxHn/8cebPn59v/7Fjx3jggQdwc3PD1dWVbt26ce7cOcv+BQsW0LRpU+zt7QkICGDChAkAXLx4EY1GkycLLD4+Ho1Gw5YtWwDYsmULGo2Gv/76izZt2mBvb8+2bds4d+4cAwYMwM/PDxcXF9q1a8fGjRvzjCsjI4NXX32VwMBA7O3tCQ4OZv78+RiNRoKDg5kxY0ae40NDQ9FoNJw9e7bY10QIIYS43Wm1Gsb3DObg1N4cevtedr/eix+f6sA7DzZlePta+QJSAB5Odkx7sCkAX285yylT0KgiHL6cgN5gJMDdIU8G1I0+GhyCg62WrWdiWbzzIgDRSenEJGWg0UDjgJIHDX3dHFg6riP1fV2ITExn2Dc7LU3ehfVIUKqcJVoypeSvvEKIKshohMwU6zyMxhIN0cbGhhEjRrBo0SKMuc5Zvnw5er2e4cOHk56eTps2bfjzzz85evQo48aN44knnmDPnj0luofBYOChhx7Czs6O3bt3M3fuXF599dV8x7m6urJo0SKOHz/OZ599xrx585g1axYAw4YN4+WXX6Zp06ZEREQQERFRYJZSSkoKffr0wdPTk71797J8+XI2btxoCf6Y/fPPP5w7d45//vmHxYsXs2jRonyBuRudO3eOnTt3MnToUIYOHcrWrVu5dOmSZf+VK1fo3r079vb2bN68mf379/Pkk0+Sna36J3799deMHz+ecePGceTIEdasWUNwcHCJXsPcXnvtNT766CNOnDhBSEgIycnJ9O3bl02bNnHw4EHuu+8++vfvT1hYmOWcESNGsGTJEj7//HNOnDjBN998g4uLCxqNhieffJKFCxfmucfChQvp3r17mcYnhBBC3K7cHGxxL0XCRN/m/vRq7EeW3sj/Vhzi72ORHAi7TnhcKqmZ2cVfoASMRiPrjkYChZfumQX7uvB638YAfPTXSc5EJVmypOr6OBc7w+CNfF0dWDKuI438XYlOyuCRb3dyOqrigm+ieBI5KWeJaeoHtTQ/+EIIcdvISoUPq1vn3q9fBbuSpVg/+eSTfPLJJ/z777/cddddgApKDB48GHd3d9zd3Zk8ebLl+Oeff57169fzyy+/0L59+2Kvv3HjRk6ePMn69eupXl29Hh9++CH3339/nuPefPNNy3pQUBCTJ09m6dKlvPLKKzg6OuLi4oKNjU2R5Xo///wz6enpfP/995aeVl9++SX9+/fn//7v//Dz8wPA09OTL7/8Ep1OR6NGjejXrx+bNm1i7NixhV57wYIF3H///Zb+VX369GHhwoW88847AMyZMwd3d3eWLl2Kra36f61Bg5xU/vfff5+XX36ZiRMnWra1a9eu2NfvRu+++y69e/e2PPfy8qJFixaW5++99x6//vora9asYcKECZw+fZpffvmFDRs20KtXLwDq1q1rOX7UqFFMnTqVPXv20L59e7Kysvj555/zZU8JIYQQIi+NRsN7A5uy6/w1Dl9OYNwP+/Psr+HhyOMdazO8fSAeTvmzrYpzJT6N11YeZusZ1by8R8Pi2yM80bE2m05E8+/pGCYuDaV3E/Xep2kpSvdy83Gx5+exHXn8u90cj0hk8Fc7aBvkSQM/V+r7udLAz4UGfq442EqP6MogmVLlTMr3hBDC+ho1akTnzp1ZsGABAGfPnmXr1q2MGTMGAL1ez3vvvUfz5s3x8vLCxcWF9evX58nEKcqJEycIDAy0BKQAOnXqlO+4ZcuW0aVLF/z9/XFxceHNN98s8T1y36tFixZ5mqx36dIFg8HAqVOnLNuaNm2KTpfz5ikgIIDo6OhCr6vX61m8eDGPP/64Zdvjjz/OokWLMBgMgCp569atmyUglVt0dDRXr17lnnvuKdXXU5C2bdvmeZ6cnMzkyZNp3LgxHh4euLi4cOLECctrFxoaik6no0ePHgVer3r16vTr18/y7//777+TkZHBww8/fNNjFUIIIaq6AHdHFoxqR+8mfrQI9KCGhyP2Nip0cCU+jf9bd5JO0zfz5uojnIspWfmb0WhkyZ4w+sz6j61nYrG30fJmv8YMaV2z2HM1Gg2fDAnBw8mW4xGJzP1XtRFoWr1kTc4L4uVsx89jO9CipjtJGdn8cyqGb/47z+Tlh3jwy+20e38jszactny+FxVHMqXKWaI0OhdCVGW2TipjyVr3LoUxY8bw/PPPM2fOHBYuXEi9evUsQYxPPvmEzz77jNmzZ9O8eXOcnZ158cUXyczMLLfh7ty5k8cee4xp06bRp08fS8bRp59+Wm73yO3GwJFGo7EElwqyfv16rly5kq9kUK/Xs2nTJnr37o2jY+E9HoraB6DVqjevuUsoC+txdeOshpMnT2bDhg3MmDGD4OBgHB0dGTJkiOXfp7h7Azz11FM88cQTzJo1i4ULFzJs2DCcnEr3PSSEEELcqdrX8aJ9HS/Lc6PRSHJGNuuPRTF/2wVORCTy464wftwVRiN/V3xc7PF2scPL2Q5vZzs0Gg2Z2QYysg1kZhs4djWB3RfiAGhT25OPh4RQr5pLicfj6+bA9EHNefanA2Rkq/c3Zc2UMvNwsmPFs505cOk6p6OTOROVxOmoJE5HJROXkslnm86waMdFxnWvy6jOQTjbl0/4JCUjm90XrhF2LZWwuDTC4lK5fD0VVwcbRnQK4v5m/tjo8ucPpWfpOXw5gSAfJ3xdHcplLLcCCUqVM8vse47y0gohqiCNpsQldNY2dOhQJk6cyM8//8z333/Ps88+i0ajZmzZvn07AwYMsGQJGQwGTp8+TZMmTUp07caNGxMeHk5ERAQBAQEA7Nq1K88xO3bsoHbt2rzxxhuWbbn7NQHY2dmh1+uLvdeiRYtISUmxBG+2b9+OVqulYcOGJRpvQebPn88jjzySZ3wAH3zwAfPnz6d3796EhISwePFisrKy8gW9XF1dCQoKYtOmTfTs2TPf9c2zFUZERNCqVSuAPE3Pi7J9+3ZGjRrFoEGDAJU5dfHiRcv+5s2bYzAY+Pfffy3lezfq27cvzs7OfP3116xbt47//vuvRPcWQgghRH4ajQZXB1uGtKnJ4NY12HU+jvnbLrDpZJRpFr3i+zLZ22j5X5+GjO5SB51pFr3SuL95AINb12TlgcvAzWVKmdnqtHSo602Hut6WbQaDkb+ORjJr42nORifzyfpTLNh2gbsb+WJro0Wn0aDTarDRavB0tsPfzYEAdwf83NWyqD5XB8Ku8/zPB7kSn1bg/r0Xr1PLy4mx3evycJua2Oq07Dp/jd9Cr/DX0UiS0rNxsNUyrns9nulRt9Q9tW5Ft/9XcItJTFc9pSRTSgghrMvFxYVhw4YxZcoUEhMTGTVqlGVf/fr1WbFiBTt27MDT05OZM2cSFRVV4qBUr169aNCgASNHjuSTTz4hMTExX3Cnfv36hIWFsXTpUtq1a8eff/7Jr7/+mueYoKAgLly4QGhoKDVr1sTV1RV7e/s8xzz22GO8/fbbjBw5knfeeYeYmBief/55nnjiCUs/qdKKiYnh999/Z82aNTRrlnfK7REjRjBo0CDi4uKYMGECX3zxBY888ghTpkzB3d2dXbt20b59exo2bMg777zDM888g6+vL/fffz9JSUls376d559/HkdHRzp27MhHH31EnTp1iI6OztNjqyj169dn1apV9O/fH41Gw1tvvZUn6ysoKIiRI0fy5JNP8vnnn9OiRQsuXbpEdHQ0Q4cOBUCn0zFq1CimTJlC/fr1CyyvFEIIIUTpaTQaOtXzplM9b67Ep3E2Opm4lAyuJWcSm5xJXEoGRiPY22qx0+mwt9XibKejX0h16vjc3B8333mwCVfj06jh6VjgDILlQavV0C8kgPua+fP7oavM3niai9dSWb7/conO79XYl4n3NKB5zZxMLqPRyPxtF/jor5NkG4z4uznQMtCDWt5OBHo5UdPTkUPh8SzecZGwuFTeWn2UzzaeRqPREJOUYbmOq70NSRnZfL7pDMv2hvG/Po14qFUNtGUI8t0qJChVzszle9LoXAghrG/MmDHMnz+fvn375un/9Oabb3L+/Hn69OmDk5MT48aNY+DAgSQkJJToulqtll9//ZUxY8bQvn17goKC+Pzzz7nvvvssxzz44IO89NJLTJgwgYyMDPr168dbb71laSIOMHjwYFatWkXPnj2Jj49n4cKFeYJnAE5OTqxfv56JEyfSrl07nJycGDx4MDNnzizz62Juml5QP6h77rkHR0dHfvzxR1544QU2b97M//73P3r06IFOp6Nly5Z06dIFgJEjR5Kens6sWbOYPHkyPj4+DBkyxHKtBQsWMGbMGNq0aUPDhg35+OOPuffee4sd38yZM3nyySfp3LkzPj4+vPrqqyQmJuY55uuvv+b111/nueee49q1a9SqVYvXX389zzFjxozhww8/ZPTo0WV5mYQQQghRjBoejtTwKL6svry4OtiyZFzHSrmXTqthYKsaPBASwF9HIwmLS0VvMJJtMGIwGMnSG7iWkklkQjqRielEJqSTnJHNxhPRbDwRTa/GfrzYqz6Bnk5qJsPjUQD0ax7AR4Ob43pDIkvPhr6M616XX/aGM2/rBUs2lYeTLX2bBzCgRXXaBXmx/lgkH/51gvC4NCYvP8TiHRd5pH0gHep4U6+as6Uy4HahMRpLOMd2FZGYmIi7uzsJCQm4ud18ut+NHp67g70Xr/PVY63p2zyg3K8vhBCVKT09nQsXLlCnTh0cHKpO7bq4M2zdupV77rmH8PDwYrPKivper+j3DrcLeR2EEEKIop2LSWbO5rOsDr2CwRRpcXe0JSEtCzudlrceaMzjHWsXGzjK0hv491QMOp2GLvV8sLPJ22MqPUvPoh0X+XLzWZIzsi3bfVzs6VDHiza1PfF2scPZzgZnextc7G1wtNNiNILBCEaMGAxqWd/XNd/1y0NJ3zdIplQ5S5BG50IIIYRVZWRkEBMTwzvvvMPDDz9c5jJHIYQQQojSqFfNhZnDWjL+7mC+3HyW30KvkJCWRaCXI1892iZPSV9RbHVaejUp/P2Lg62OZ3rUY0ibmvy0K4yd52M5EBZPbHIGfx6J4M8jESUe87ZXe1LT03qTwUhQqpw52upwttNJo3MhhBDCSpYsWcKYMWNo2bIl33//vbWHI4QQQog7TL1qLswa1pIJdwez6/w1HgipXiEtfnxc7JnYqz4TqU9Gtp5D4QnsOn+No1cSSErPJiUzm+SMbFIyssnINqABtBoNGo3qDWZ+bk0SOSlnv03oau0hCCGEEHe0UaNG5evNJYQQQghR2epVc6FeNZdKuZe9jY72dbxoX8erUu5XXsq/cFAIIYQQQgghhBBCiGJIUEoIIYQQQgghhBBCVDoJSgkhhCjWHTZRq7gDyfe4EEIIIUTluyWCUnPmzCEoKAgHBwc6dOjAnj17Cj121apVtG3bFg8PD5ydnWnZsiU//PBDJY5WCCHuHLa2qiFjamqqlUciRMUyf4+bv+dvB6V5/wSwfPlyGjVqhIODA82bN2ft2rWVNFIhhBBCiIJZvdH5smXLmDRpEnPnzqVDhw7Mnj2bPn36cOrUKXx9ffMd7+XlxRtvvEGjRo2ws7Pjjz/+YPTo0fj6+tKnTx8rfAVCCFF16XQ6PDw8iI6OBsDJyQmNlWfoEKI8GY1GUlNTiY6OxsPDA51OZ+0hlUhp3z/t2LGD4cOHM336dB544AF+/vlnBg4cyIEDB2jWrJkVvgIhhBBCCNAYrZyv3qFDB9q1a8eXX34JgMFgIDAwkOeff57XXnutRNdo3bo1/fr147333iv22MTERNzd3UlISMDNze2mxi6EEHcCo9FIZGQk8fHx1h6KEBXGw8MDf3//AoOut+J7h9K+fxo2bBgpKSn88ccflm0dO3akZcuWzJ07t0T3vBVfByGEEELcmkr6vsGqmVKZmZns37+fKVOmWLZptVp69erFzp07iz3faDSyefNmTp06xf/93/9V5FCFEOKOpdFoCAgIwNfXl6ysLGsPR4hyZ2tre9tkSEHZ3j/t3LmTSZMm5dnWp08fVq9eXeh9MjIyyMjIsDxPTEy8uYELIYQQQtzAqkGp2NhY9Ho9fn5+ebb7+flx8uTJQs9LSEigRo0aZGRkoNPp+Oqrr+jdu3eBx8obKiGEKB86ne62+uAuRFVVlvdPkZGRBR4fGRlZ6H2mT5/OtGnTbn7AQgghhBCFuCUanZeWq6sroaGh7N27lw8++IBJkyaxZcuWAo+dPn067u7ulkdgYGDlDlYIIYQQ4jY0ZcoUEhISLI/w8HBrD0kIIYQQVYxVM6V8fHzQ6XRERUXl2R4VFYW/v3+h52m1WoKDgwFo2bIlJ06cYPr06dx11135jp0yZUqedPXExEQJTAkhhBDitlWW90/+/v6lfr9lb2+Pvb39zQ9YCCGEEKIQVs2UsrOzo02bNmzatMmyzWAwsGnTJjp16lTi6xgMhjwlernZ29vj5uaW5yGEEEIIcbsqy/unTp065TkeYMOGDaV6vyWEEEIIUd6smikFMGnSJEaOHEnbtm1p3749s2fPJiUlhdGjRwMwYsQIatSowfTp0wFVjte2bVvq1atHRkYGa9eu5YcffuDrr78u0f3Mkw1KbykhhBBClIT5PYOVJyzOo7TvnyZOnEiPHj349NNP6devH0uXLmXfvn18++23Jb6nvIcSQgghREmV9P2T1YNSw4YNIyYmhqlTpxIZGUnLli1Zt26dpRlnWFjY/7d357FRlmsfx39T2g7TsrQs3SQ9FG0oe5ACKWCMtgEqIbK4QEZS0YQABVniguzGIIuKBiRFjOIfbIoRhGo1FbAEwlLKbkshEQGBUhGQtqwy9/nj5J3XOXDetxyG556W7yeZpPM8d2euua6k/HLz9KnCwv73gq6amhqNHTtWv/32mzwej9LS0rRixQo9//zztXq/qqoqSeJX+AAAwF2pqqpS06ZNbZch6e7zU69evbRq1SpNnz5dU6dOVWpqqtavX6+OHTvW+j3JUAAA4G79f/nJZULpv/0c4PP5dObMGTVu3Fgulyvor/8/96w6deoUvypoCTOwi/7bxwzsYwZ2Bbv/xhhVVVUpKSkpYKPnQUOGqt/ov33MwD5mYBf9ty+YM6htfrJ+pZTTwsLC1KpVq/v+Pty/yj5mYBf9t48Z2McM7Apm/0PlCimbyFAPBvpvHzOwjxnYRf/tC9YMapOfHtz/7gMAAAAAAIA1bEoBAAAAAADAcWxKBZnb7dasWbPkdrttl/LAYgZ20X/7mIF9zMAu+l83MTe76L99zMA+ZmAX/bfPxgweuBudAwAAAAAAwD6ulAIAAAAAAIDj2JQCAAAAAACA49iUAgAAAAAAgOPYlAqyJUuWqHXr1mrYsKF69uyp3bt32y6pXpo7d666d++uxo0bKy4uToMGDVJ5eXnAmmvXrik3N1fNmzdXo0aNNHToUJ07d85SxfXbvHnz5HK5NHHiRP8x+n//nT59Wi+88IKaN28uj8ejTp06ac+ePf7zxhjNnDlTiYmJ8ng8ysrK0rFjxyxWXL/cunVLM2bMUEpKijwejx5++GG9/fbb+vutGplBcG3dulUDBw5UUlKSXC6X1q9fH3C+Nv2+cOGCvF6vmjRpopiYGL388suqrq528FPgTshPziFDhRYylB1kKHvIT84L9fzEplQQffHFF5o8ebJmzZqlvXv3qkuXLurXr58qKyttl1bvFBUVKTc3Vzt37lRhYaFu3rypvn37qqamxr9m0qRJ2rhxo9auXauioiKdOXNGQ4YMsVh1/VRcXKyPP/5YnTt3DjhO/++vixcvqnfv3oqIiFBBQYFKS0v1/vvvKzY21r9mwYIFWrRokZYuXapdu3YpOjpa/fr107Vr1yxWXn/Mnz9feXl5+uijj1RWVqb58+drwYIFWrx4sX8NMwiumpoadenSRUuWLLnj+dr02+v16ueff1ZhYaHy8/O1detWjRo1yqmPgDsgPzmLDBU6yFB2kKHsIj85L+Tzk0HQ9OjRw+Tm5vqf37p1yyQlJZm5c+darOrBUFlZaSSZoqIiY4wxly5dMhEREWbt2rX+NWVlZUaS2bFjh60y652qqiqTmppqCgsLzeOPP24mTJhgjKH/TnjjjTdMnz59/uN5n89nEhISzLvvvus/dunSJeN2u83q1audKLHeGzBggHnppZcCjg0ZMsR4vV5jDDO43ySZdevW+Z/Xpt+lpaVGkikuLvavKSgoMC6Xy5w+fdqx2hGI/GQXGcoOMpQ9ZCi7yE92hWJ+4kqpILlx44ZKSkqUlZXlPxYWFqasrCzt2LHDYmUPhj///FOS1KxZM0lSSUmJbt68GTCPtLQ0JScnM48gys3N1YABAwL6LNF/J2zYsEHp6el69tlnFRcXp65du+qTTz7xnz9+/LgqKioCZtC0aVP17NmTGQRJr169tGnTJh09elSSdODAAW3btk3Z2dmSmIHTatPvHTt2KCYmRunp6f41WVlZCgsL065duxyvGeSnUECGsoMMZQ8Zyi7yU2gJhfwUfs+vAEnS+fPndevWLcXHxwccj4+P15EjRyxV9WDw+XyaOHGievfurY4dO0qSKioqFBkZqZiYmIC18fHxqqiosFBl/bNmzRrt3btXxcXFt52j//ffL7/8ory8PE2ePFlTp05VcXGxXnnlFUVGRionJ8ff5zv9TGIGwTFlyhRdvnxZaWlpatCggW7duqU5c+bI6/VKEjNwWG36XVFRobi4uIDz4eHhatasGTOxhPxkFxnKDjKUXWQou8hPoSUU8hObUqjzcnNzdfjwYW3bts12KQ+MU6dOacKECSosLFTDhg1tl/NA8vl8Sk9P1zvvvCNJ6tq1qw4fPqylS5cqJyfHcnUPhi+//FIrV67UqlWr1KFDB+3fv18TJ05UUlISMwBQJ5ChnEeGso8MZRf5Cf+OX98LkhYtWqhBgwa3/WWMc+fOKSEhwVJV9d+4ceOUn5+vLVu2qFWrVv7jCQkJunHjhi5duhSwnnkER0lJiSorK/Xoo48qPDxc4eHhKioq0qJFixQeHq74+Hj6f58lJiaqffv2AcfatWunkydPSpK/z/xMun9ee+01TZkyRcOGDVOnTp00YsQITZo0SXPnzpXEDJxWm34nJCTcdvPsv/76SxcuXGAmlpCf7CFD2UGGso8MZRf5KbSEQn5iUypIIiMj1a1bN23atMl/zOfzadOmTcrIyLBYWf1kjNG4ceO0bt06bd68WSkpKQHnu3XrpoiIiIB5lJeX6+TJk8wjCDIzM3Xo0CHt37/f/0hPT5fX6/V/Tf/vr969e9/2J7yPHj2qf/zjH5KklJQUJSQkBMzg8uXL2rVrFzMIkitXrigsLPCf0QYNGsjn80liBk6rTb8zMjJ06dIllZSU+Nds3rxZPp9PPXv2dLxmkJ9sIEPZRYayjwxlF/kptIREfrrnW6XDb82aNcbtdpvPP//clJaWmlGjRpmYmBhTUVFhu7R6Z8yYMaZp06bmp59+MmfPnvU/rly54l8zevRok5ycbDZv3mz27NljMjIyTEZGhsWq67e//+UYY+j//bZ7924THh5u5syZY44dO2ZWrlxpoqKizIoVK/xr5s2bZ2JiYsw333xjDh48aJ5++mmTkpJirl69arHy+iMnJ8c89NBDJj8/3xw/ftx8/fXXpkWLFub111/3r2EGwVVVVWX27dtn9u3bZySZhQsXmn379pkTJ04YY2rX7/79+5uuXbuaXbt2mW3btpnU1FQzfPhwWx8JhvzkNDJU6CFDOYsMZRf5yXmhnp/YlAqyxYsXm+TkZBMZGWl69Ohhdu7cabukeknSHR/Lly/3r7l69aoZO3asiY2NNVFRUWbw4MHm7Nmz9oqu5/49UNH/+2/jxo2mY8eOxu12m7S0NLNs2bKA8z6fz8yYMcPEx8cbt9ttMjMzTXl5uaVq65/Lly+bCRMmmOTkZNOwYUPTpk0bM23aNHP9+nX/GmYQXFu2bLnjz/6cnBxjTO36/ccff5jhw4ebRo0amSZNmpiRI0eaqqoqC58Gf0d+cg4ZKvSQoZxHhrKH/OS8UM9PLmOMuffrrQAAAAAAAIDa455SAAAAAAAAcBybUgAAAAAAAHAcm1IAAAAAAABwHJtSAAAAAAAAcBybUgAAAAAAAHAcm1IAAAAAAABwHJtSAAAAAAAAcBybUgAAAAAAAHAcm1IAcJdcLpfWr19vuwwAAIA6g/wE4E7YlAJQp7z44otyuVy3Pfr372+7NAAAgJBEfgIQqsJtFwAAd6t///5avnx5wDG3222pGgAAgNBHfgIQirhSCkCd43a7lZCQEPCIjY2V9K9Lw/Py8pSdnS2Px6M2bdroq6++Cvj+Q4cO6cknn5TH41Hz5s01atQoVVdXB6z57LPP1KFDB7ndbiUmJmrcuHEB58+fP6/BgwcrKipKqamp2rBhg//cxYsX5fV61bJlS3k8HqWmpt4WAgEAAJxEfgIQitiUAlDvzJgxQ0OHDtWBAwfk9Xo1bNgwlZWVSZJqamrUr18/xcbGqri4WGvXrtWPP/4YEJry8vKUm5urUaNG6dChQ9qwYYMeeeSRgPd466239Nxzz+ngwYN66qmn5PV6deHCBf/7l5aWqqCgQGVlZcrLy1OLFi2cawAAAMBdIj8BsMIAQB2Sk5NjGjRoYKKjowMec+bMMcYYI8mMHj064Ht69uxpxowZY4wxZtmyZSY2NtZUV1f7z3/77bcmLCzMVFRUGGOMSUpKMtOmTfuPNUgy06dP9z+vrq42kkxBQYExxpiBAweakSNHBucDAwAA3CPyE4BQxT2lANQ5TzzxhPLy8gKONWvWzP91RkZGwLmMjAzt379fklRWVqYuXbooOjraf753797y+XwqLy+Xy+XSmTNnlJmZ+X/W0LlzZ//X0dHRatKkiSorKyVJY8aM0dChQ7V371717dtXgwYNUq9evf6rzwoAABAM5CcAoYhNKQB1TnR09G2XgweLx+Op1bqIiIiA5y6XSz6fT5KUnZ2tEydO6LvvvlNhYaEyMzOVm5ur9957L+j1AgAA1Ab5CUAo4p5SAOqdnTt33va8Xbt2kqR27drpwIEDqqmp8Z/fvn27wsLC1LZtWzVu3FitW7fWpk2b7qmGli1bKicnRytWrNCHH36oZcuW3dPrAQAA3E/kJwA2cKUUgDrn+vXrqqioCDgWHh7uvxnm2rVrlZ6erj59+mjlypXavXu3Pv30U0mS1+vVrFmzlJOTo9mzZ+v333/X+PHjNWLECMXHx0uSZs+erdGjRysuLk7Z2dmqqqrS9u3bNX78+FrVN3PmTHXr1k0dOnTQ9evXlZ+f7w91AAAANpCfAIQiNqUA1Dnff/+9EhMTA461bdtWR44ckfSvv+yyZs0ajR07VomJiVq9erXat28vSYqKitIPP/ygCRMmqHv37oqKitLQoUO1cOFC/2vl5OTo2rVr+uCDD/Tqq6+qRYsWeuaZZ2pdX2RkpN588039+uuv8ng8euyxx7RmzZogfHIAAID/DvkJQChyGWOM7SIAIFhcLpfWrVunQYMG2S4FAACgTiA/AbCFe0oBAAAAAADAcWxKAQAAAAAAwHH8+h4AAAAAAAAcx5VSAAAAAAAAcBybUgAAAAAAAHAcm1IAAAAAAABwHJtSAAAAAAAAcBybUgAAAAAAAHAcm1IAAAAAAABwHJtSAAAAAAAAcBybUgAAAAAAAHAcm1IAAAAAAABw3D8BYDtJ8Sin0fgAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "from keras.utils import plot_model\n", "from keras.models import load_model\n", "plot_model(model, to_file='model_architecture.png',show_shapes=False)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 839 }, "id": "PAF64zMW1oYo", "outputId": "3b333866-f411-404f-985e-1336449238d0" }, "execution_count": 38, "outputs": [ { "output_type": "execute_result", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAM2CAYAAAANfpQ3AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de0zT1//H8Xdpy61SKji5C8xNXYybBkEc+0cdDnA4mAh4icmymWgW41yYcS5uyRKXbIv6D8TovvrPRoK6TEO8bQQ0UxBkYzE6RHAsDEGBUhkXYaX0/P74RQL2fEoLbXlXXo/kk2B7PudzetxTqrSdSgghCAC4Oewz3SsAADnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAlMaRQVevXqWtW7e6ey0Az70FCxZQRUWFQ2MdinNoaIja2tqmtCgAINLr9Q6PxdNaAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMKWZ7gW4ksFgoMePHzs8/smTJ9TT00OPHz+m9vZ2qq2tpZqaGqqsrKTu7m43rhRgYs9VnM4KDAykwMBAioyMpMWLF1NqaioREQ0PD9PZs2fp2LFjVFFRMc2rhJkKT2sltFot5ebmUnl5OZWXl1NsbOx0LwlmIMQ5gdWrV9Pt27cpLy9vupcCMwzidEBQUBAVFxdTVlbWdC8FZpAZE2d6ejqpVKpxh16vp7i4OMrMzKSvv/6a2traFM9Xq9VUUlJCK1eu9OCqYSabMXHK9PX1UUtLC50/f5727dtHcXFxtH37durv75eO9/Pzo6KiIvLxcWzb/Pz8aNOmTXT8+HG6desWdXR0kNlsJqPRSHfu3KHTp09Tfn4+6XQ6h+YzGAwkhLA5zp8/P25caGgoffrpp1RZWUkmk4nMZjM9evSIqquraf/+/TR37lyHrjeWr68vvfPOO3T06FGqqqqi9vZ26u/vJ4vFQj09PXTv3j06d+4c7d69m2JiYpye/ylX75lXEw64dOmSICL2h8FgUHwMaWlpDs+zcOFC0dHRoTjXtm3b7J6vUqnERx99ZHeOsR4+fChyc3MnXJdGo5GeX1lZOTomJydH9PT02L2eyWQSGzdudGgvfHx8xM6dO0VXV5dDj0UIIcxmszh+/LgIDg52eM/dtWfcjldeecXRbTyEOBWO5ORkMTw8LJ2rsbFR8bxZs2aJixcvOvobMM4333wz4brMZrPNefX19YKIRF5enrBarQ5dy2KxiMzMTLvX0mq1oqSkZFKPRQgh/vrrLxEbGzvhY3L3nnE6EKeEs3ESkThx4oTifMuXL7cZ7+PjI0pLSx3dfKmCggK7a+rt7bU5p7W1Vbz44ouiv7/fqWu1t7eLoKAgxWt9+eWXU3osQgjx559/Cj8/P8VreGLPOB2IU2IycS5YsEBxvk8++cRmfEFBgXRsX1+f+Pjjj0VcXJzQarUiPDxcfPDBB+LRo0c2YwcHB0V8fLzimkwmk805RqNRnDlzxoHfSVs7duxQ3MuhoSGb8Q8ePBDbt28XL730kvD39xdarVaEhYWJ7OxsUVNTI72GbK88uWecDsQpMZk4iUg0NzdL5zt16tS4cUFBQcJoNNqMM5vNIjk5WTp3fHy86O7utjnnhx9+UFyP7BpWq3X06WxdXZ3IyMgQer1e6PV6kZGRIerr6xX3paysTHqdzZs3S8evWLFCcW06nU7U1dXZnNPQ0CAd76k943QgTonJxvn9999L57t58+a4cXv27JGOO3HihN35Zd85BgYGhE6nk46X/cf8VEVFhfQpZGhoqGhtbZWe093dLb3OZ599Jh1v72kw0f9HbTQaxa1bt8SFCxfEsWPHxIEDB4Svr6/NWE/tGacDcUpMNs5Dhw5J52tubh437tq1a9Jx69atszv/vHnzpOcp/WuqUpwDAwMiOjpa8Toffvih4t7Mnj3bZrxSnDt37nTZ75en9ozT4UycM/rnnI5QendKYGDg6NcajYaWL18uHXfv3j278//zzz/077//2tyemJjoxCqJTp8+TQ8ePFC8/9mfhY4VHBxsc1tLS4t0bFFREZ09e5ZycnJozpw5Tq1xLA57xt2MfleKI/z9/aW3WyyW0a9jY2MVxzU1NU3qukuWLHFq/OXLl+3e39raSlarVfoCCj8/P5vbLl68SP/995/NfSqVirKysigrK4uEENTY2EhVVVV07do1unr1Kv39998OrZfDnnGH75wTCAkJkd4+9lVE4eHhLr9ufHy8U+Pv3r1r936r1UpGo1F6n0qlsrnNZDLRwYMH7c6pUqlo4cKF9N5779HJkyepubmZWlpa6OjRo5SUlGT3XA57xh3inMD8+fOlt499ChkQEODy6wYFBTk1XvY071l9fX1OzXnw4EEqLCx06px58+bRjh07qKamhkpLSykiIkI6jsOecYc47VCr1ZSSkiK9r7GxcfRrs9ns8mvr9Xqnxo+MjLh8DVarlXbt2kXp6elUW1vr9PmZmZlUW1sr/QOOw55xhzjtWLNmjeKfxjdu3Bj92t5Ho0RHR9u8G8aRg9N3gcuXL1NSUhItWbKE9u7dS7/88gs9efLEoXOjoqLo1KlTNk+dn/c9cwXEaUdBQYH09pGREfr5559Hf20ymRTnCAsLc/m6psudO3fo22+/pbfeeouCg4MpMTGRdu3aRcXFxdTe3q54XkJCAq1evXrcbTNlz6YCcSrIyckZ/UyhZ126dIk6OztHf93W1qb4Ixd3/MMHBxaLhX777TcqLCykrVu3UnR0NK1du1bxxyBvvvnmuF/PxD1zFuKUWLZsGX333XfS+4QQ9MUXX9jcPvZp7livv/66S9fGlRCCysrKKDU1laxWq839UVFRNrfN9D2bCOIcQ6VS0ZYtW+jXX38lg8EgHfPTTz9RXV2dze0XLlyQjt+2bRv5+voqXjMtLY16e3upqamJrl+/Tj/++CMVFRXZfKfxpIiICMrPz6fPP/+ciouLqba2ljo6OhT3ZKzW1lbpj2xkf0d9nvbMLRx5HdHz+vI9lUolQkJCxGuvvSb27NkjfdH2WG1tbSIyMlJ6bZ1OJ33HiBBCHDlyRHpOQECAuHnzps14q9UqXn31Vek5Si/fs/fSvafH/fv3pecuWrRo3LjExESnHsfYY+nSpdL3lO7evXva9ozTgdfWusHg4KD0PZxjj3379imef+bMGbFixQqh0+lEaGioSEtLE9XV1dKxJ0+eVLyGJ+IkIsU/qEpKSsT69etFRESECAwMFBqNRsyePVssW7ZM7N27V3R2dtqcYzabRURExLTtGacDcbpYZ2enWLVq1YTX9/HxEeXl5VO6VlNTk9Dr9dMeZ0pKirBYLFN6LE8dOHBgWveM04E4XaiqqkrExMQ4tYaysrJJXevu3bsTRuapOIlIbNmyRfqxKM4oKioSarV6WveM04E4XaC6unrCz9hROjQajdi/f7/i36eeNTg4KA4fPiwCAwMnnNuTcRKRSEhIEDdu3HB6/xoaGkR2djaLPeN0OBPnjH9XytOPXezq6qL79+/TlStXqLy8nBoaGiY9p8Vioa+++ooKCwvp3XffpTVr1lBCQgK98MILZDAYaGBggEwmE92+fZuuXLlCxcXF1NXV5cJH5Tq///47rVy5khISEmjdunWUnJxM8fHxFBYWRjqdjtRqNfX19VFPTw81NDTQH3/8QaWlpVRdXe3UdZ6nPXMZRxL2lu+cOHBwP/Bma4DnAOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKZUQggx0aChoSHq6uryxHrASUeOHKEjR47Y3F5fX0+zZs2ahhWBPVqtlsLDwx0ZeljjyCh/f3+KiYmZ2qrALfR6vfT2qKgoxfvAO+BpLQBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYEoz3QsAWw8fPqTr1687NLa+vl56+7lz5yggIGDC84OCgigtLc2p9YFnqIQQYroXAeMZjUaKjIyk4eFht1/r/fffp//9739uvw447TCe1jI0Z84cSk1N9ci18vPzPXIdcB7iZGrTpk1uv0Z4eDitWrXK7deByUGcTGVnZ5NOp3PrNfLz80mtVrv1GjB5iJMpnU5Hb7/9tluv4YnvzjB5iJMxd/59cP78+ZSYmOi2+WHqECdjGRkZFBIS4pa5N2/eTCqVyi1zg2sgTsZ8fX0pOzvbLXPn5eW5ZV5wHcTJnDv+Xrh06VJavHixy+cF10KczK1atYqioqJcOif+Icg7IE7mfHx8aOPGjS6bT6VSUW5ursvmA/dBnF7Ald/p3njjDYqLi3PZfOA+iNMLJCUl0csvv+ySufCU1nsgTi/hip95ajQa2rBhgwtWA56AOL3E5s2bpzzH2rVrae7cuS5YDXgC4vQSixYtoqVLl05pDjyl9S6I04tMJS5/f39av369C1cD7oY4vcimTZvIx2dyv2Xr168nvV7v4hWBOyFOLxITE0MpKSmTOhdPab0P4vQyk4nMYDBQenq6G1YD7oQ4vczGjRtJq9U6dc6GDRvIz8/PTSsCd0GcXmYyny+EzwnyTojTCznz1BafE+S9EKcXcubzhfA5Qd4LcXohZz5fCP9K670Qp5dyJDp8TpB3Q5xeKj09fcLPF8LnBHk3xOmlHPl8IXxOkHdDnF7M3lNbfE6Q93Po/zJ29epV2rp1q7vXApOgVqtpZGTE5vbm5maKjo6ehhWBPQsWLKCKigqHxjoU59DQELW1tU1pUeBZvb291NvbO93LgGc48+YDPK0FYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU5rpXoArGQwGevz4scPjnzx5Qj09PfT48WNqb2+n2tpaqqmpocrKSuru7nbjSgEm9lzF6azAwEAKDAykyMhIWrx4MaWmphIR0fDwMJ09e5aOHTtGFRUV07xKmKnwtFZCq9VSbm4ulZeXU3l5OcXGxk73kmAGQpwTWL16Nd2+fZvy8vKmeykwwyBOBwQFBVFxcTFlZWVN91JgBpkxcaanp5NKpRp36PV6iouLo8zMTPr666+pra1N8Xy1Wk0lJSW0cuVKD64aZrIZE6dMX18ftbS00Pnz52nfvn0UFxdH27dvp/7+ful4Pz8/KioqIh8fx7bNz8+PNm3aRMePH6dbt25RR0cHmc1mMhqNdOfOHTp9+jTl5+eTTqdzaD6DwUBCCJvj/Pnz48aFhobSp59+SpWVlWQymchsNtOjR4+ourqa9u/fT3PnznXoemP5+vrSO++8Q0ePHqWqqipqb2+n/v5+slgs1NPTQ/fu3aNz587R7t27KSYmxun5n3L1nnk14YBLly4JImJ/GAwGxceQlpbm8DwLFy4UHR0dinNt27bN7vkqlUp89NFHducY6+HDhyI3N3fCdWk0Gun5lZWVo2NycnJET0+P3euZTCaxceNGh/bCx8dH7Ny5U3R1dTn0WIQQwmw2i+PHj4vg4GCH99xde8bteOWVVxzdxkOIU+FITk4Ww8PD0rkaGxsVz5s1a5a4ePGio78B43zzzTcTrstsNtucV19fL4hI5OXlCavV6tC1LBaLyMzMtHstrVYrSkpKJvVYhBDir7/+ErGxsRM+JnfvGacDcUo4GycRiRMnTijOt3z5cpvxPj4+orS01NHNlyooKLC7pt7eXptzWltbxYsvvij6+/udulZ7e7sICgpSvNaXX345pccihBB//vmn8PPzU7yGJ/aM04E4JSYT54IFCxTn++STT2zGFxQUSMf29fWJjz/+WMTFxQmtVivCw8PFBx98IB49emQzdnBwUMTHxyuuyWQy2ZxjNBrFmTNnHPidtLVjxw7FvRwaGrIZ/+DBA7F9+3bx0ksvCX9/f6HVakVYWJjIzs4WNTU10mvI9sqTe8bpQJwSk4mTiERzc7N0vlOnTo0bFxQUJIxGo804s9kskpOTpXPHx8eL7u5um3N++OEHxfXIrmG1WkefztbV1YmMjAyh1+uFXq8XGRkZor6+XnFfysrKpNfZvHmzdPyKFSsU16bT6URdXZ3NOQ0NDdLxntozTgfilJhsnN9//710vps3b44bt2fPHum4EydO2J1f9p1jYGBA6HQ66XjZf8xPVVRUSJ9ChoaGitbWVuk53d3d0ut89tln0vH2ngYT/X/URqNR3Lp1S1y4cEEcO3ZMHDhwQPj6+tqM9dSecToQp8Rk4zx06JB0vubm5nHjrl27Jh23bt06u/PPmzdPep7Sv6YqxTkwMCCio6MVr/Phhx8q7s3s2bNtxivFuXPnTpf9fnlqzzgdzsQ5o3/O6Qild6cEBgaOfq3RaGj58uXScffu3bM7/z///EP//vuvze2JiYlOrJLo9OnT9ODBA8X7n/1Z6FjBwcE2t7W0tEjHFhUV0dmzZyknJ4fmzJnj1BrH4rBn3M3od6U4wt/fX3q7xWIZ/To2NlZxXFNT06Suu2TJEqfGX7582e79ra2tZLVapS+g8PPzs7nt4sWL9N9//9ncp1KpKCsri7KyskgIQY2NjVRVVUXXrl2jq1ev0t9//+3QejnsGXf4zjmBkJAQ6e1jX0UUHh7u8uvGx8c7Nf7u3bt277darWQ0GqX3qVQqm9tMJhMdPHjQ7pwqlYoWLlxI7733Hp08eZKam5uppaWFjh49SklJSXbP5bBn3CHOCcyfP196+9inkAEBAS6/blBQkFPjZU/zntXX1+fUnAcPHqTCwkKnzpk3bx7t2LGDampqqLS0lCIiIqTjOOwZd4jTDrVaTSkpKdL7GhsbR782m80uv7Zer3dq/MjIiMvXYLVaadeuXZSenk61tbVOn5+ZmUm1tbXSP+A47Bl3iNOONWvWKP5pfOPGjdGv7X00SnR0tM27YRw5OH0XuHz5MiUlJdGSJUto79699Msvv9CTJ08cOjcqKopOnTpl89T5ed8zV0CcdhQUFEhvHxkZoZ9//nn01yaTSXGOsLAwl69ruty5c4e+/fZbeuuttyg4OJgSExNp165dVFxcTO3t7YrnJSQk0OrVq8fdNlP2bCoQp4KcnJzRzxR61qVLl6izs3P0121tbYo/cnHHP3xwYLFY6LfffqPCwkLaunUrRUdH09q1axV/DPLmm2+O+/VM3DNnIU6JZcuW0XfffSe9TwhBX3zxhc3tY5/mjvX666+7dG1cCSGorKyMUlNTyWq12twfFRVlc9tM37OJIM4xVCoVbdmyhX799VcyGAzSMT/99BPV1dXZ3H7hwgXp+G3btpGvr6/iNdPS0qi3t5eampro+vXr9OOPP1JRUZHNdxpPioiIoPz8fPr888+puLiYamtrqaOjQ3FPxmptbZX+yEb2d9Tnac/cwpHXET2vL99TqVQiJCREvPbaa2LPnj3SF22P1dbWJiIjI6XX1ul00neMCCHEkSNHpOcEBASImzdv2oy3Wq3i1VdflZ6j9PI9ey/de3rcv39feu6iRYvGjUtMTHTqcYw9li5dKn1P6e7du6dtzzgdeG2tGwwODkrfwzn22Ldvn+L5Z86cEStWrBA6nU6EhoaKtLQ0UV1dLR178uRJxWt4Ik4iUvyDqqSkRKxfv15ERESIwMBAodFoxOzZs8WyZcvE3r17RWdnp805ZrNZRERETNuecToQp4t1dnaKVatWTXh9Hx8fUV5ePqVrNTU1Cb1eP+1xpqSkCIvFMqXH8tSBAwemdc84HYjThaqqqkRMTIxTaygrK5vUte7evTthZJ6Kk4jEli1bpB+L4oyioiKhVqundc84HYjTBaqrqyf8jB2lQ6PRiP379yv+fepZg4OD4vDhwyIwMHDCuT0ZJxGJhIQEcePGDaf3r6GhQWRnZ7PYM06HM3HO+HelPP3Yxa6uLrp//z5duXKFysvLqaGhYdJzWiwW+uqrr6iwsJDeffddWrNmDSUkJNALL7xABoOBBgYGyGQy0e3bt+nKlStUXFxMXV1dLnxUrvP777/TypUrKSEhgdatW0fJyckUHx9PYWFhpNPpSK1WU19fH/X09FBDQwP98ccfVFpaStXV1U5d53naM5dxJGFv+c6JAwf3A2+2BngOIE4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYEolhBATDRoaGqKuri5PrAecdOTIETpy5IjN7fX19TRr1qxpWBHYo9VqKTw83JGhhzWOjPL396eYmJiprQrcQq/XS2+PiopSvA+8A57WAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4ApjTTvQCw9fDhQ7p+/bpDY+vr66W3nzt3jgICAiY8PygoiNLS0pxaH3iGSgghpnsRMJ7RaKTIyEgaHh52+7Xef/99+t///uf264DTDuNpLUNz5syh1NRUj1wrPz/fI9cB5yFOpjZt2uT2a4SHh9OqVavcfh2YHMTJVHZ2Nul0OrdeIz8/n9RqtVuvAZOHOJnS6XT09ttvu/UanvjuDJOHOBlz598H58+fT4mJiW6bH6YOcTKWkZFBISEhbpl78+bNpFKp3DI3uAbiZMzX15eys7PdMndeXp5b5gXXQZzMuePvhUuXLqXFixe7fF5wLcTJ3KpVqygqKsqlc+IfgrwD4mTOx8eHNm7c6LL5VCoV5ebmumw+cB/E6QVc+Z3ujTfeoLi4OJfNB+6DOL1AUlISvfzyyy6ZC09pvQfi9BKu+JmnRqOhDRs2uGA14AmI00ts3rx5ynOsXbuW5s6d64LVgCcgTi+xaNEiWrp06ZTmwFNa74I4vchU4vL396f169e7cDXgbojTi2zatIl8fCb3W7Z+/XrS6/UuXhG4E+L0IjExMZSSkjKpc/GU1vsgTi8zmcgMBgOlp6e7YTXgTojTy2zcuJG0Wq1T52zYsIH8/PzctCJwF8TpZSbz+UL4nCDvhDi9kDNPbfE5Qd4LcXohZz5fCJ8T5L0Qpxdy5vOF8K+03gtxeilHosPnBHk3xOml0tPTJ/x8IXxOkHdDnF7Kkc8XwucEeTfE6cXsPbXF5wR5P4f+L2NXr16lrVu3unstMAlqtZpGRkZsbm9ubqbo6OhpWBHYs2DBAqqoqHBorENxDg0NUVtb25QWBZ7V29tLvb29070MeIYzbz7A01oAphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwpZnuBbiSwWCgx48fOzz+yZMn1NPTQ48fP6b29naqra2lmpoaqqyspO7ubjeuFGBiz1WczgoMDKTAwECKjIykxYsXU2pqKhERDQ8P09mzZ+nYsWNUUVExzauEmQpPayW0Wi3l5uZSeXk5lZeXU2xs7HQvCWYgxDmB1atX0+3btykvL2+6lwIzDOJ0QFBQEBUXF1NWVtZ0LwVmkBkTZ3p6OqlUqnGHXq+nuLg4yszMpK+//pra2toUz1er1VRSUkIrV6704KphJpsxccr09fVRS0sLnT9/nvbt20dxcXG0fft26u/vl4738/OjoqIi8vFxbNv8/Pxo06ZNdPz4cbp16xZ1dHSQ2Wwmo9FId+7codOnT1N+fj7pdDqH5jMYDCSEsDnOnz8/blxoaCh9+umnVFlZSSaTicxmMz169Iiqq6tp//79NHfuXIeuN5avry+98ygwQsMAABfuSURBVM47dPToUaqqqqL29nbq7+8ni8VCPT09dO/ePTp37hzt3r2bYmJinJ7/KVfvmVcTDrh06ZIgIvaHwWBQfAxpaWkOz7Nw4ULR0dGhONe2bdvsnq9SqcRHH31kd46xHj58KHJzcydcl0ajkZ5fWVk5OiYnJ0f09PTYvZ7JZBIbN250aC98fHzEzp07RVdXl0OPRQghzGazOH78uAgODnZ4z921Z9yOV155xdFtPIQ4FY7k5GQxPDwsnauxsVHxvFmzZomLFy86+hswzjfffDPhusxms8159fX1gohEXl6esFqtDl3LYrGIzMxMu9fSarWipKRkUo9FCCH++usvERsbO+FjcveecToQp4SzcRKROHHihOJ8y5cvtxnv4+MjSktLHd18qYKCArtr6u3ttTmntbVVvPjii6K/v9+pa7W3t4ugoCDFa3355ZdTeixCCPHnn38KPz8/xWt4Ys84HYhTYjJxLliwQHG+Tz75xGZ8QUGBdGxfX5/4+OOPRVxcnNBqtSI8PFx88MEH4tGjRzZjBwcHRXx8vOKaTCaTzTlGo1GcOXPGgd9JWzt27FDcy6GhIZvxDx48ENu3bxcvvfSS8Pf3F1qtVoSFhYns7GxRU1MjvYZsrzy5Z5wOxCkxmTiJSDQ3N0vnO3Xq1LhxQUFBwmg02owzm80iOTlZOnd8fLzo7u62OeeHH35QXI/sGlardfTpbF1dncjIyBB6vV7o9XqRkZEh6uvrFfelrKxMep3NmzdLx69YsUJxbTqdTtTV1dmc09DQIB3vqT3jdCBOicnG+f3330vnu3nz5rhxe/bskY47ceKE3fll3zkGBgaETqeTjpf9x/xURUWF9ClkaGioaG1tlZ7T3d0tvc5nn30mHW/vaTDR/0dtNBrFrVu3xIULF8SxY8fEgQMHhK+vr81YT+0ZpwNxSkw2zkOHDknna25uHjfu2rVr0nHr1q2zO/+8efOk5yn9a6pSnAMDAyI6OlrxOh9++KHi3syePdtmvFKcO3fudNnvl6f2jNPhTJwz+uecjlB6d0pgYODo1xqNhpYvXy4dd+/ePbvz//PPP/Tvv//a3J6YmOjEKolOnz5NDx48ULz/2Z+FjhUcHGxzW0tLi3RsUVERnT17lnJycmjOnDlOrXEsDnvG3Yx+V4oj/P39pbdbLJbRr2NjYxXHNTU1Teq6S5YscWr85cuX7d7f2tpKVqtV+gIKPz8/m9suXrxI//33n819KpWKsrKyKCsri4QQ1NjYSFVVVXTt2jW6evUq/f333w6tl8OecYfvnBMICQmR3j72VUTh4eEuv258fLxT4+/evWv3fqvVSkajUXqfSqWyuc1kMtHBgwftzqlSqWjhwoX03nvv0cmTJ6m5uZlaWlro6NGjlJSUZPdcDnvGHeKcwPz586W3j30KGRAQ4PLrBgUFOTVe9jTvWX19fU7NefDgQSosLHTqnHnz5tGOHTuopqaGSktLKSIiQjqOw55xhzjtUKvVlJKSIr2vsbFx9Guz2ezya+v1eqfGj4yMuHwNVquVdu3aRenp6VRbW+v0+ZmZmVRbWyv9A47DnnGHOO1Ys2aN4p/GN27cGP3a3kejREdH27wbxpGD03eBy5cvU1JSEi1ZsoT27t1Lv/zyCz158sShc6OioujUqVM2T52f9z1zBcRpR0FBgfT2kZER+vnnn0d/bTKZFOcICwtz+bqmy507d+jbb7+lt956i4KDgykxMZF27dpFxcXF1N7ernheQkICrV69etxtM2XPpgJxKsjJyRn9TKFnXbp0iTo7O0d/3dbWpvgjF3f8wwcHFouFfvvtNyosLKStW7dSdHQ0rV27VvHHIG+++ea4X8/EPXMW4pRYtmwZfffdd9L7hBD0xRdf2Nw+9mnuWK+//rpL18aVEILKysooNTWVrFarzf1RUVE2t830PZsI4hxDpVLRli1b6NdffyWDwSAd89NPP1FdXZ3N7RcuXJCO37ZtG/n6+ipeMy0tjXp7e6mpqYmuX79OP/74IxUVFdl8p/GkiIgIys/Pp88//5yKi4uptraWOjo6FPdkrNbWVumPbGR/R32e9swtHHkd0fP68j2VSiVCQkLEa6+9Jvbs2SN90fZYbW1tIjIyUnptnU4nfceIEEIcOXJEek5AQIC4efOmzXir1SpeffVV6TlKL9+z99K9p8f9+/el5y5atGjcuMTERKcex9hj6dKl0veU7t69e9r2jNOB19a6weDgoPQ9nGOPffv2KZ5/5swZsWLFCqHT6URoaKhIS0sT1dXV0rEnT55UvIYn4iQixT+oSkpKxPr160VERIQIDAwUGo1GzJ49Wyxbtkzs3btXdHZ22pxjNptFRETEtO0ZpwNxulhnZ6dYtWrVhNf38fER5eXlU7pWU1OT0Ov10x5nSkqKsFgsU3osTx04cGBa94zTgThdqKqqSsTExDi1hrKyskld6+7duxNG5qk4iUhs2bJF+rEozigqKhJqtXpa94zTgThdoLq6esLP2FE6NBqN2L9/v+Lfp541ODgoDh8+LAIDAyec25NxEpFISEgQN27ccHr/GhoaRHZ2Nos943Q4E+eMf1fK049d7Orqovv379OVK1eovLycGhoaJj2nxWKhr776igoLC+ndd9+lNWvWUEJCAr3wwgtkMBhoYGCATCYT3b59m65cuULFxcXU1dXlwkflOr///jutXLmSEhISaN26dZScnEzx8fEUFhZGOp2O1Go19fX1UU9PDzU0NNAff/xBpaWlVF1d7dR1nqc9cxlHEvaW75w4cHA/8GZrgOcA4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AplRCCDHRoKGhIerq6vLEesBJR44coSNHjtjcXl9fT7NmzZqGFYE9Wq2WwsPDHRl6WOPIKH9/f4qJiZnaqsAt9Hq99PaoqCjF+8A74GktAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgSjPdCwBbDx8+pOvXrzs0tr6+Xnr7uXPnKCAgYMLzg4KCKC0tzan1gWeohBBiuhcB4xmNRoqMjKTh4WG3X+v999+n//3vf26/DjjtMJ7WMjRnzhxKTU31yLXy8/M9ch1wHuJkatOmTW6/Rnh4OK1atcrt14HJQZxMZWdnk06nc+s18vPzSa1Wu/UaMHmIkymdTkdvv/22W6/hie/OMHmIkzF3/n1w/vz5lJiY6Lb5YeoQJ2MZGRkUEhLilrk3b95MKpXKLXODayBOxnx9fSk7O9stc+fl5bllXnAdxMmcO/5euHTpUlq8eLHL5wXXQpzMrVq1iqKiolw6J/4hyDsgTuZ8fHxo48aNLptPpVJRbm6uy+YD90GcXsCV3+neeOMNiouLc9l84D6I0wskJSXRyy+/7JK58JTWeyBOL+GKn3lqNBrasGGDC1YDnoA4vcTmzZunPMfatWtp7ty5LlgNeALi9BKLFi2ipUuXTmkOPKX1LojTi0wlLn9/f1q/fr0LVwPuhji9yKZNm8jHZ3K/ZevXrye9Xu/iFYE7IU4vEhMTQykpKZM6F09pvQ/i9DKTicxgMFB6erobVgPuhDi9zMaNG0mr1Tp1zoYNG8jPz89NKwJ3QZxeZjKfL4TPCfJOiNMLOfPUFp8T5L0Qpxdy5vOF8DlB3gtxeiFnPl8I/0rrvRCnl3IkOnxOkHdDnF4qPT19ws8XwucEeTfE6aUc+XwhfE6Qd0OcXszeU1t8TpD3c+j/Mnb16lXaunWru9cCk6BWq2lkZMTm9ubmZoqOjp6GFYE9CxYsoIqKCofGOhTn0NAQtbW1TWlR4Fm9vb3U29s73cuAZzjz5gM8rQVgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTmulegCsZDAZ6/Pixw+OfPHlCPT099PjxY2pvb6fa2lqqqamhyspK6u7uduNKASb2XMXprMDAQAoMDKTIyEhavHgxpaamEhHR8PAwnT17lo4dO0YVFRXTvEqYqfC0VkKr1VJubi6Vl5dTeXk5xcbGTveSYAZCnBNYvXo13b59m/Ly8qZ7KTDDIE4HBAUFUXFxMWVlZU33UmAGmTFxpqenk0qlGnfo9XqKi4ujzMxM+vrrr6mtrU3xfLVaTSUlJbRy5UoPrhpmshkTp0xfXx+1tLTQ+fPnad++fRQXF0fbt2+n/v5+6Xg/Pz8qKioiHx/Hts3Pz482bdpEx48fp1u3blFHRweZzWYyGo10584dOn36NOXn55NOp3NoPoPBQEIIm+P8+fPjxoWGhtKnn35KlZWVZDKZyGw206NHj6i6upr2799Pc+fOdeh6Y/n6+tI777xDR48epaqqKmpvb6f+/n6yWCzU09ND9+7do3PnztHu3bspJibG6fmfcvWeeTXhgEuXLgkiYn8YDAbFx5CWlubwPAsXLhQdHR2Kc23bts3u+SqVSnz00Ud25xjr4cOHIjc3d8J1aTQa6fmVlZWjY3JyckRPT4/d65lMJrFx40aH9sLHx0fs3LlTdHV1OfRYhBDCbDaL48ePi+DgYIf33F17xu145ZVXHN3GQ4hT4UhOThbDw8PSuRobGxXPmzVrlrh48aKjvwHjfPPNNxOuy2w225xXX18viEjk5eUJq9Xq0LUsFovIzMy0ey2tVitKSkom9ViEEOKvv/4SsbGxEz4md+8ZpwNxSjgbJxGJEydOKM63fPlym/E+Pj6itLTU0c2XKigosLum3t5em3NaW1vFiy++KPr7+526Vnt7uwgKClK81pdffjmlxyKEEH/++afw8/NTvIYn9ozTgTglJhPnggULFOf75JNPbMYXFBRIx/b19YmPP/5YxMXFCa1WK8LDw8UHH3wgHj16ZDN2cHBQxMfHK67JZDLZnGM0GsWZM2cc+J20tWPHDsW9HBoashn/4MEDsX37dvHSSy8Jf39/odVqRVhYmMjOzhY1NTXSa8j2ypN7xulAnBKTiZOIRHNzs3S+U6dOjRsXFBQkjEajzTiz2SySk5Olc8fHx4vu7m6bc3744QfF9ciuYbVaR5/O1tXViYyMDKHX64VerxcZGRmivr5ecV/Kysqk19m8ebN0/IoVKxTXptPpRF1dnc05DQ0N0vGe2jNOB+KUmGyc33//vXS+mzdvjhu3Z88e6bgTJ07YnV/2nWNgYEDodDrpeNl/zE9VVFRIn0KGhoaK1tZW6Tnd3d3S63z22WfS8faeBhP9f9RGo1HcunVLXLhwQRw7dkwcOHBA+Pr62oz11J5xOhCnxGTjPHTokHS+5ubmceOuXbsmHbdu3Tq788+bN096ntK/pirFOTAwIKKjoxWv8+GHHyruzezZs23GK8W5c+dOl/1+eWrPOB3OxDmjf87pCKV3pwQGBo5+rdFoaPny5dJx9+7dszv/P//8Q//++6/N7YmJiU6skuj06dP04MEDxfuf/VnoWMHBwTa3tbS0SMcWFRXR2bNnKScnh+bMmePUGsfisGfczeh3pTjC399fervFYhn9OjY2VnFcU1PTpK67ZMkSp8ZfvnzZ7v2tra1ktVqlL6Dw8/Ozue3ixYv033//2dynUqkoKyuLsrKySAhBjY2NVFVVRdeuXaOrV6/S33//7dB6OewZd/jOOYGQkBDp7WNfRRQeHu7y68bHxzs1/u7du3bvt1qtZDQapfepVCqb20wmEx08eNDunCqVihYuXEjvvfcenTx5kpqbm6mlpYWOHj1KSUlJds/lsGfcIc4JzJ8/X3r72KeQAQEBLr9uUFCQU+NlT/Oe1dfX59ScBw8epMLCQqfOmTdvHu3YsYNqamqotLSUIiIipOM47Bl3iNMOtVpNKSkp0vsaGxtHvzabzS6/tl6vd2r8yMiIy9dgtVpp165dlJ6eTrW1tU6fn5mZSbW1tdI/4DjsGXeI0441a9Yo/ml848aN0a/tfTRKdHS0zbthHDk4fRe4fPkyJSUl0ZIlS2jv3r30yy+/0JMnTxw6Nyoqik6dOmXz1Pl53zNXQJx2FBQUSG8fGRmhn3/+efTXJpNJcY6wsDCXr2u63Llzh7799lt66623KDg4mBITE2nXrl1UXFxM7e3tiuclJCTQ6tWrx902U/ZsKhCngpycnNHPFHrWpUuXqLOzc/TXbW1tij9yccc/fHBgsVjot99+o8LCQtq6dStFR0fT2rVrFX8M8uabb4779UzcM2chTolly5bRd999J71PCEFffPGFze1jn+aO9frrr7t0bVwJIaisrIxSU1PJarXa3B8VFWVz20zfs4kgzjFUKhVt2bKFfv31VzIYDNIxP/30E9XV1dncfuHCBen4bdu2ka+vr+I109LSqLe3l5qamuj69ev0448/UlFRkc13Gk+KiIig/Px8+vzzz6m4uJhqa2upo6NDcU/Gam1tlf7IRvZ31Odpz9zCkdcRPa8v31OpVCIkJES89tprYs+ePdIXbY/V1tYmIiMjpdfW6XTSd4wIIcSRI0ek5wQEBIibN2/ajLdareLVV1+VnqP08j17L917ety/f1967qJFi8aNS0xMdOpxjD2WLl0qfU/p7t27p23POB14ba0bDA4OSt/DOfbYt2+f4vlnzpwRK1asEDqdToSGhoq0tDRRXV0tHXvy5EnFa3giTiJS/IOqpKRErF+/XkRERIjAwECh0WjE7NmzxbJly8TevXtFZ2enzTlms1lERERM255xOhCni3V2dopVq1ZNeH0fHx9RXl4+pWs1NTUJvV4/7XGmpKQIi8Uypcfy1IEDB6Z1zzgdiNOFqqqqRExMjFNrKCsrm9S17t69O2FknoqTiMSWLVukH4vijKKiIqFWq6d1zzgdiNMFqqurJ/yMHaVDo9GI/fv3K/596lmDg4Pi8OHDIjAwcMK5PRknEYmEhARx48YNp/evoaFBZGdns9gzToczcc74d6U8/djFrq4uun//Pl25coXKy8upoaFh0nNaLBb66quvqLCwkN59911as2YNJSQk0AsvvEAGg4EGBgbIZDLR7du36cqVK1RcXExdXV0ufFSu8/vvv9PKlSspISGB1q1bR8nJyRQfH09hYWGk0+lIrVZTX18f9fT0UENDA/3xxx9UWlpK1dXVTl3nedozl3EkYW/5zokDB/cDb7YGeA4gTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgCnECMIU4AZhCnABMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATCFOAKYQJwBTiBOAKcQJwBTiBGAKcQIwhTgBmEKcAEwhTgCmECcAU4gTgCnECcAU4gRgSiWEEBMNGhoaoq6uLk+sB+C5ptVqKTw83JGhhzWOjPL396eYmJiprQoAnIKntQBMIU4AphAnAFOIE4ApxAnAFOIEYApxAjCFOAGYQpwATP0fT/vfMAZFHFkAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "execution_count": 38 } ] }, { "cell_type": "code", "source": [ "model.save('model.h5')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-cgLMo3R10so", "outputId": "f7082c5d-46e1-4e9e-8cf1-7954f43242eb" }, "execution_count": 39, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" ] } ] }, { "cell_type": "code", "source": [ "import pickle\n", "with open('history.pkl', 'wb') as file:\n", " pickle.dump(history.history, file)" ], "metadata": { "id": "iAPAtmhQ13FW" }, "execution_count": 40, "outputs": [] }, { "cell_type": "code", "source": [ "for layer in model.layers:\n", " weights, biases = layer.get_weights()\n", " plt.figure(figsize=(12, 5))\n", " plt.subplot(1, 2, 1)\n", " plt.hist(weights.flatten(), bins=30, color='blue')\n", " plt.title(f\"Weight Distribution for {layer.name}\")\n", " plt.xlabel(\"Weight value\")\n", " plt.ylabel(\"Frequency\")\n", "\n", " plt.subplot(1, 2, 2)\n", " plt.hist(biases.flatten(), bins=30, color='orange')\n", " plt.title(f\"Bias Distribution for {layer.name}\")\n", " plt.xlabel(\"Bias value\")\n", " plt.ylabel(\"Frequency\")\n", "\n", " plt.tight_layout()\n", " plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "yrvCrYvh1-di", "outputId": "d0e7ea59-7cd0-42b5-c4fb-616521a51ace" }, "execution_count": 41, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgW0lEQVR4nO3deVxUZf//8fcoMiCyiClIouK+pmVpuFMWapqW3XcuGZpmdeOe3en9rdTKsO4yrSzLSrQyy1LbbrUyl9x3291yIRU0UxBURLh+f/RjagQUhuEMy+v5eJzHo3Od65zzOWcG59NnrrmOzRhjBAAAAAAAAFionKcDAAAAAAAAQNlDUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKsMCgQYNUu3Ztl/etVKmSewNyUXx8vGw2mw4ePFjk57r0nh08eFA2m03PP/98kZ9bkiZNmiSbzWbJuS6VmpqqoUOHKjQ0VDabTaNHj/ZIHDabTZMmTfLIuQEAZVdJ+PwhJ7IGORFQ+lGUQpn14YcfymazafHixTm2tWjRQjabTStXrsyxrWbNmmrbtq0VIRbI2bNnNWnSJK1atSpf/VetWiWbzeZY7Ha7QkJC1LlzZz3zzDM6ceKER+KyUnGN7ZlnnlF8fLweeughvfPOOxo4cKCnQyo1jh07pmHDhikiIkK+vr6qW7euxo4dq5MnT3o6NAAotbILOH9fqlWrpqioKC1dutTT4ZETqfjGRk5UdMiJUFx4eToAwFPat28vSVq7dq3uuOMOR3tKSop++OEHeXl5ad26dYqKinJsS0hIUEJCgvr27Vugc82ePVtZWVnuCTwPZ8+e1eTJkyVJnTt3zvd+I0eO1A033KDMzEydOHFC69ev18SJEzVt2jR9+OGHuummmxx9Bw4cqL59+8putxd5XJ6+Z4899pjGjx9fpOfPyzfffKMbb7xREydO9Mj5S6vU1FRFRkYqLS1N//rXvxQeHq5du3bplVde0cqVK7Vt2zaVK8d3NQBQVJ588klFRETIGKOkpCTFx8ere/fu+uyzz9SjRw9Hv3PnzsnLy/r/TSEnIicqK8iJUJxQlEKZFRYWpoiICK1du9apfcOGDTLG6B//+EeObdnr2QWt/KpQoULhgi1CHTp00F133eXUtmvXLt16663q06ePfvrpJ1WvXl2SVL58eZUvX75I40lLS5Ofn5/H75mXl5dHEmJJOn78uJo0aeK24128eFFZWVny9vZ22zFLok8//VSHDh3S559/rttuu83RHhwcrCeffFK7du3Stdde68EIAaB069atm66//nrH+pAhQxQSEqL333/fqSjl4+PjifDIifJATlT6kBOhOKH8iTKtffv22rFjh86dO+doW7dunZo2bapu3bpp48aNTt9MrVu3TjabTe3atXO0vfvuu2rVqpV8fX0VHBysvn37KiEhwek8uc0pdfLkSQ0cOFABAQEKCgpSTEyMdu3aJZvNpvj4+ByxHjlyRL1791alSpVUtWpVjRs3TpmZmZL+nFugatWqkqTJkyc7hp+7+tv3Fi1aaPr06Tp9+rReeeUVR3tu8yds3bpV0dHRuuqqq+Tr66uIiAjdd999+Yore76s/fv3q3v37vL399eAAQPyvGfZXnzxRdWqVUu+vr7q1KmTfvjhB6ftnTt3zvUbyL8f80qx5TZ/wsWLF/XUU0+pbt26stvtql27tv7zn/8oPT3dqV/t2rXVo0cPrV27Vq1bt5aPj4/q1KmjefPm5X7D/7/snw8cOHBAX3zxhSOm7Pt9/PhxRwLv4+OjFi1aaO7cuU7H+Ps8E9OnT3fE+tNPP+V53vT0dI0ZM0ZVq1aVv7+/br/9dv3222+59j1y5Ijuu+8+hYSEyG63q2nTpnr77bdzvY4PP/xQU6ZMUY0aNeTj46Obb75Z+/btc+q7d+9e9enTR6GhofLx8VGNGjXUt29fJScnO/XLz9/ZlaSkpEiSQkJCnNqz/wfD19e3QMcDABROUFCQfH19cxQ8Ls1hDh06pH/9619q2LChfH19VaVKFf3jH//IMZ9TRkaGJk+erPr168vHx0dVqlRR+/bt9dVXX7kcIzkRORE5EVC0GCmFMq19+/Z65513tGnTJscH9rp169S2bVu1bdtWycnJ+uGHH3TNNdc4tjVq1EhVqlSRJE2ZMkWPP/64/vnPf2ro0KE6ceKEXn75ZXXs2FE7duxQUFBQrufNyspSz549tXnzZj300ENq1KiRPvnkE8XExOTaPzMzU9HR0WrTpo2ef/55ff3113rhhRdUt25dPfTQQ6patapee+01PfTQQ7rjjjt05513SpIjblfcddddGjJkiL788ktNmTIl1z7Hjx/XrbfeqqpVq2r8+PEKCgrSwYMHtWjRIknKV1wXL15UdHS02rdvr+eff14VK1a8bFzz5s3TmTNnFBsbq/Pnz2vGjBm66aab9P333+f4YL0cV+7Z0KFDNXfuXN111116+OGHtWnTJsXFxennn3/OMTfZvn37HPcwJiZGb7/9tgYNGqRWrVqpadOmuR6/cePGeueddzRmzBjVqFFDDz/8sCPWc+fOqXPnztq3b5+GDx+uiIgILVy4UIMGDdLp06c1atQop2PNmTNH58+f17Bhw2S32xUcHHzZ63r33XfVv39/tW3bVt98843Tt2bZkpKSdOONN8pms2n48OGqWrWqli5dqiFDhiglJSXH5KNTp05VuXLlNG7cOCUnJ+u5557TgAEDtGnTJknShQsXFB0drfT0dI0YMUKhoaE6cuSIPv/8c50+fVqBgYGSXP87u1THjh1Vrlw5jRo1Si+88IJq1Kih7777TlOmTFHv3r3VqFGjfB0HAOCa5ORk/f777zLG6Pjx43r55ZeVmpqqe+6557L7bdmyRevXr1ffvn1Vo0YNHTx4UK+99po6d+6sn376yZE7TJo0SXFxcRo6dKhat26tlJQUbd26Vdu3b9ctt9zictzkRDmRE5ETAW5jgDLsxx9/NJLMU089ZYwxJiMjw/j5+Zm5c+caY4wJCQkxM2fONMYYk5KSYsqXL2/uv/9+Y4wxBw8eNOXLlzdTpkxxOub3339vvLy8nNpjYmJMrVq1HOsff/yxkWSmT5/uaMvMzDQ33XSTkWTmzJnjtK8k8+STTzqd59prrzWtWrVyrJ84ccJIMhMnTszXta9cudJIMgsXLsyzT4sWLUzlypUd63PmzDGSzIEDB4wxxixevNhIMlu2bMnzGJeLK/vaxo8fn+u2v9+zAwcOGEnG19fX/Pbbb472TZs2GUlmzJgxjrZOnTqZTp06XfGYl4tt4sSJ5u//RO7cudNIMkOHDnXqN27cOCPJfPPNN462WrVqGUlmzZo1jrbjx48bu91uHn744RznulStWrXMbbfd5tQ2ffp0I8m8++67jrYLFy6YyMhIU6lSJZOSkmKM+es+BQQEmOPHj1/xXNnX9a9//cupvX///jnuzZAhQ0z16tXN77//7tS3b9++JjAw0Jw9e9YY89d7q3HjxiY9Pd3Rb8aMGUaS+f77740xxuzYseOK78GC/J3lx5tvvmmCgoKMJMcSExNjMjIyCnQcAED+ZecPly52u93Ex8fn6H/p50/258vfbdiwwUgy8+bNc7S1aNEix+dnfpATkRP9/brIiciJYC1+vocyrXHjxqpSpYpjrqhdu3YpLS3N8XS9tm3bat26dZL+nGsqMzPTMZ/UokWLlJWVpX/+85/6/fffHUtoaKjq16+f65P7si1btkwVKlTQ/fff72grV66cYmNj89znwQcfdFrv0KGDfv31V9cuPJ8qVaqkM2fO5Lk9+9uYzz//XBkZGS6f56GHHsp33969e+vqq692rLdu3Vpt2rTR//73P5fPnx/Zxx87dqxTe/Y3d1988YVTe5MmTdShQwfHetWqVdWwYUOXX7P//e9/Cg0NVb9+/RxtFSpU0MiRI5WamqrVq1c79e/Tp49jKP6Vjiv9Obnr3136DZ8xRh9//LF69uwpY4zTez46OlrJycnavn270z6DBw92mrMh+35k34Psb/2WL1+us2fP5hpfYf7OcnP11VerdevWmj59uhYvXqyxY8fqvffe89gErgBQlsycOVNfffWVvvrqK7377ruKiorS0KFDHaOJ8vL3nxJlZGTo5MmTqlevnoKCgpw+e4KCgvTjjz9q7969bo+dnOgv5ETkRIA78fM9lGk2m01t27bVmjVrlJWVpXXr1qlatWqqV6+epD+LUtnzB2QXp7KLUnv37pUxRvXr18/12JeblPLQoUOqXr16jmHZ2ee9lI+PT44P08qVK+vUqVP5uErXpaamyt/fP8/tnTp1Up8+fTR58mS9+OKL6ty5s3r37q3+/fvn+2k0Xl5eqlGjRr5jyu1+N2jQQB9++GG+j+GKQ4cOqVy5cjleo9DQUAUFBenQoUNO7TVr1sxxjMK8ZocOHVL9+vVzPAmlcePGju1/FxERke/jlitXTnXr1nVqb9iwodP6iRMndPr0ab3xxht64403cj3W8ePHndYvvQeVK1eWJMc9iIiI0NixYzVt2jS999576tChg26//Xbdc889juSsMH9nl1q3bp169OihjRs3Oiba7d27twICAjR58mTdd999bp1MFQDgrHXr1k4Tnffr10/XXnuthg8frh49euQ5+fS5c+cUFxenOXPm6MiRIzLGOLb9fb6dJ598Ur169VKDBg3UrFkzde3aVQMHDizUdAbZyIn+Qk5ETgS4E0UplHnt27fXZ599pu+//94xn1S2tm3b6pFHHtGRI0e0du1ahYWFqU6dOpL+nBfKZrNp6dKluT59pVKlSm6Lsaif7pKbjIwM7dmzR82aNcuzj81m00cffaSNGzfqs88+0/Lly3XffffphRde0MaNG/N1D+x2u9sfOWuz2ZwS1mzZE8MX9tj5kddrlltcRcHdE1RmT/h/zz335Dn32aVJf37uwQsvvKBBgwbpk08+0ZdffqmRI0cqLi5OGzduVI0aNdz6d/b6668rJCTE6X+IJOn222/XpEmTtH79ehIwALBQuXLlFBUVpRkzZmjv3r15zi80YsQIzZkzR6NHj1ZkZKQCAwNls9nUt29fpwfSdOzYUfv373d8prz55pt68cUXNWvWLA0dOtTlOMmJ8j52fpATkRMBl0NRCmVe9sintWvXat26dU5DdFu1aiW73a5Vq1Zp06ZN6t69u2Nb3bp1ZYxRRESEGjRoUKBz1qpVSytXrtTZs2edRktd+hSOgshvYpBfH330kc6dO6fo6Ogr9r3xxht14403asqUKZo/f74GDBigBQsWaOjQoW6PK7ch+Xv27HF6Kk3lypVzHRJ+6TdnBYmtVq1aysrK0t69ex3fxEl/TnR5+vRp1apVK9/HckWtWrX03XffKSsryylh/eWXXxzbXT1uVlaW9u/f7/RN4O7du536ZT+FJjMzU126dHHpXHlp3ry5mjdvrscee0zr169Xu3btNGvWLD399NOF+ju7VFJSUq5JePbPLC5evFio4wMACi77397U1NQ8+3z00UeKiYnRCy+84Gg7f/68Tp8+naNvcHCwBg8erMGDBys1NVUdO3bUpEmTClWUIidyRk5ETgS4E3NKocy7/vrr5ePjo/fee09HjhxxGillt9t13XXXaebMmUpLS3MUsCTpzjvvVPny5TV58uQc3/QYY3Ty5Mk8zxkdHa2MjAzNnj3b0ZaVlaWZM2e6fB3Zxa3cErSC2rVrl0aPHq3KlStfdp6rU6dO5bj2li1bSpLjkcDujEuSlixZoiNHjjjWN2/erE2bNqlbt26Otrp16+qXX37RiRMnHG27du1y/AQzW0Fiyy5ITp8+3al92rRpkpTrk1ncqXv37kpMTNQHH3zgaLt48aJefvllVapUSZ06dXLpuNn37aWXXnJqv/Q6y5cvrz59+ujjjz/O8bhpSU73Or9SUlJyJD3NmzdXuXLlHO+fwvydXapBgwZKSkrSqlWrnNrff/99SdK1115b4GsAALguIyNDX375pby9vZ2KG5cqX758js+Al19+Ocf/VF/6mVCpUiXVq1fP8ZniCnKinMiJyIkAd2KkFMo8b29v3XDDDfr2229lt9vVqlUrp+1t27Z1fDP396JU3bp19fTTT2vChAk6ePCgevfuLX9/fx04cECLFy/WsGHDNG7cuFzP2bt3b7Vu3VoPP/yw9u3bp0aNGunTTz/VH3/8Icm1UU++vr5q0qSJPvjgAzVo0EDBwcFq1qzZZYeaS9K3336r8+fPKzMzUydPntS6dev06aefKjAwUIsXL1ZoaGie+86dO1evvvqq7rjjDtWtW1dnzpzR7NmzFRAQ4EhYXI0rL/Xq1VP79u310EMPKT09XdOnT1eVKlX073//29Hnvvvu07Rp0xQdHa0hQ4bo+PHjmjVrlpo2baqUlBSX7lmLFi0UExOjN954Q6dPn1anTp20efNmzZ07V71791ZUVJRL15Nfw4YN0+uvv65BgwZp27Ztql27tj766COtW7dO06dPv+w8F5fTsmVL9evXT6+++qqSk5PVtm1brVixItdRe1OnTtXKlSvVpk0b3X///WrSpIn++OMPbd++XV9//bXj/Ztf33zzjYYPH65//OMfatCggS5evKh33nnHkexJhfs7u9Tw4cM1Z84c9ezZUyNGjFCtWrW0evVqvf/++7rlllvUpk2bAsUPACiYpUuXOkazHD9+XPPnz9fevXs1fvx4BQQE5Llfjx499M477ygwMFBNmjTRhg0b9PXXX6tKlSpO/Zo0aaLOnTurVatWCg4O1tatW/XRRx9p+PDh+YqPnIiciJyInAgeYNVj/oDibMKECUaSadu2bY5tixYtMpKMv7+/uXjxYo7tH3/8sWnfvr3x8/Mzfn5+plGjRiY2Ntbs3r3b0efSx+4a8+ejd/v372/8/f1NYGCgGTRokFm3bp2RZBYsWOC0r5+fX47zXvp4XmOMWb9+vWnVqpXx9vbO87G+2bIfUZu9VKhQwVStWtV07NjRTJkyJddH5176+OPt27ebfv36mZo1axq73W6qVatmevToYbZu3ZqvuPK6ttzuWfZjff/73/+aF154wYSHhxu73W46dOhgdu3alWP/d99919SpU8d4e3ubli1bmuXLl+f6OuQVW273NyMjw0yePNlERESYChUqmPDwcDNhwgRz/vx5p365Pb7YmLwfy3ypvPZPSkoygwcPNldddZXx9vY2zZs3N3PmzHHq8/f7lF/nzp0zI0eONFWqVDF+fn6mZ8+eJiEhIdf3UFJSkomNjTXh4eGmQoUKJjQ01Nx8883mjTfecPTJ69Ha2bFlx/zrr7+a++67z9StW9f4+PiY4OBgExUVZb7++uscMebn7yw/fvnlF3PXXXc54q9Vq5YZN26cSUtLK9BxAAD5l50//H3x8fExLVu2NK+99prJyspy6n/p58+pU6ccn3+VKlUy0dHR5pdffjG1atUyMTExjn5PP/20ad26tQkKCjK+vr6mUaNGZsqUKebChQuXjY+c6PKxkROREwFFyWaMRTPMAbiiJUuW6I477tDatWvVrl07T4cDAAAAAECRoSgFeMi5c+ecngaSmZmpW2+9VVu3blViYqLbnxQCAAAAAEBxwpxSgIeMGDFC586dU2RkpNLT07Vo0SKtX79ezzzzDAUpoADOnTun5OTky/YJDg6Wt7e3RREBAABYj5wIJREjpQAPmT9/vl544QXt27dP58+fV7169fTQQw/lezJOAH+Kj4/X4MGDL9tn5cqV6ty5szUBAQAAeAA5EUoiilIAgBLt2LFj+vHHHy/bp1WrVqpcubJFEQEAAFiPnAglEUUpAAAAAAAAWK6cpwMAAAAAAABA2VPqJzrPysrS0aNH5e/vL5vN5ulwAABACWKM0ZkzZxQWFqZy5crOd3nkTwAAoDDym0OV+qLU0aNHFR4e7ukwAABACZaQkKAaNWp4OgzLkD8BAAB3uFIOVeqLUv7+/pL+vBEBAQEejgYAAJQkKSkpCg8Pd+QTZQX5EwAAKIz85lClviiVPeQ8ICCApAoAALikrP2EjfwJAAC4w5VyqLIzOQIAAAAAAACKDYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5L08HAMDzbDbPnt8Yz54fAAAALphfyCSyP0kgUNYxUgoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsJyXpwMAAFshnyZseJowAAAAAJQ4jJQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAABKmDVr1qhnz54KCwuTzWbTkiVLcvT5+eefdfvttyswMFB+fn664YYbdPjwYeuDBQAAyANFKQAAgBImLS1NLVq00MyZM3Pdvn//frVv316NGjXSqlWr9N133+nxxx+Xj4+PxZECAADkzcvTAQAAAKBgunXrpm7duuW5/f/+7//UvXt3Pffcc462unXrWhEaAABAvjFSCkCJZ7MVbgGA0iQrK0tffPGFGjRooOjoaFWrVk1t2rTJ9Sd+2dLT05WSkuK0AAAAFDWKUgAAAKXI8ePHlZqaqqlTp6pr16768ssvdccdd+jOO+/U6tWrc90nLi5OgYGBjiU8PNziqAEAQFlEUQoAAKAUycrKkiT16tVLY8aMUcuWLTV+/Hj16NFDs2bNynWfCRMmKDk52bEkJCRYGTIAACijmFMKAACgFLnqqqvk5eWlJk2aOLU3btxYa9euzXUfu90uu91uRXgAAAAOjJQCAAAoRby9vXXDDTdo9+7dTu179uxRrVq1PBQVAABAToyUAgAAKGFSU1O1b98+x/qBAwe0c+dOBQcHq2bNmnrkkUd09913q2PHjoqKitKyZcv02WefadWqVZ4LGgAA4BIUpQAAAEqYrVu3KioqyrE+duxYSVJMTIzi4+N1xx13aNasWYqLi9PIkSPVsGFDffzxx2rfvr2nQgYAAMiBohSAMs9mK9z+xrgnDgDIr86dO8tc4R+f++67T/fdd59FEQEAABQcc0oBAAAAAADAch4tSk2aNEk2m81padSokWP7+fPnFRsbqypVqqhSpUrq06ePkpKSPBgxAAAAAAAA3MHjI6WaNm2qY8eOOZa/P6p4zJgx+uyzz7Rw4UKtXr1aR48e1Z133unBaAEAAAAAAOAOHp9TysvLS6GhoTnak5OT9dZbb2n+/Pm66aabJElz5sxR48aNtXHjRt14441WhwoAAAAAAAA38fhIqb179yosLEx16tTRgAEDdPjwYUnStm3blJGRoS5dujj6NmrUSDVr1tSGDRs8FS4AAAAAAADcwKMjpdq0aaP4+Hg1bNhQx44d0+TJk9WhQwf98MMPSkxMlLe3t4KCgpz2CQkJUWJiYp7HTE9PV3p6umM9JSWlqMIHAAAAAACAizxalOrWrZvjv6+55hq1adNGtWrV0ocffihfX1+XjhkXF6fJkye7K0QAAAAAAAAUAY//fO/vgoKC1KBBA+3bt0+hoaG6cOGCTp8+7dQnKSkp1zmosk2YMEHJycmOJSEhoYijBgAAAAAAQEEVq6JUamqq9u/fr+rVq6tVq1aqUKGCVqxY4di+e/duHT58WJGRkXkew263KyAgwGkBAAAAAABA8eLRn++NGzdOPXv2VK1atXT06FFNnDhR5cuXV79+/RQYGKghQ4Zo7NixCg4OVkBAgEaMGKHIyEievAcAAAAAAFDCebQo9dtvv6lfv346efKkqlatqvbt22vjxo2qWrWqJOnFF19UuXLl1KdPH6Wnpys6OlqvvvqqJ0MGAAAAAACAG9iMMcbTQRSllJQUBQYGKjk5mZ/yAXmw2TwdQclWuv8VBcq2sppHlNXrBlBA8wuZRPYniQJKq/zmEsVqTikAAAAAAACUDRSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQCFZLMVbgGAglqzZo169uypsLAw2Ww2LVmyJM++Dz74oGw2m6ZPn25ZfAAAAPlBUQoAAKCESUtLU4sWLTRz5szL9lu8eLE2btyosLAwiyIDAADIPy9PBwAAAICC6datm7p163bZPkeOHNGIESO0fPly3XbbbRZFBgAAkH+MlAIAAChlsrKyNHDgQD3yyCNq2rSpp8MBAADIFSOlAAAASplnn31WXl5eGjlyZL76p6enKz093bGekpJSVKEBAAA4MFIKAACgFNm2bZtmzJih+Ph42fL5NIW4uDgFBgY6lvDw8CKOEgAAgKIUAABAqfLtt9/q+PHjqlmzpry8vOTl5aVDhw7p4YcfVu3atXPdZ8KECUpOTnYsCQkJ1gYNAADKJH6+BwAAUIoMHDhQXbp0cWqLjo7WwIEDNXjw4Fz3sdvtstvtVoQHAADgQFEKAACghElNTdW+ffsc6wcOHNDOnTsVHBysmjVrqkqVKk79K1SooNDQUDVs2NDqUAEAAPJEUQoAAKCE2bp1q6KiohzrY8eOlSTFxMQoPj7eQ1EBAAAUDEUpAACAEqZz584yxuS7/8GDB4suGAAAABcx0TkAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMsxpxRQDNhsno4AAAAAAABrMVIKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5L08HAABlnc1WuP2NcU8cAAAAAGAlRkoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5YpNUWrq1Kmy2WwaPXq0o+38+fOKjY1VlSpVVKlSJfXp00dJSUmeCxIAAAAAAABuUSyKUlu2bNHrr7+ua665xql9zJgx+uyzz7Rw4UKtXr1aR48e1Z133umhKAEAAAAAAOAuHi9KpaamasCAAZo9e7YqV67saE9OTtZbb72ladOm6aabblKrVq00Z84crV+/Xhs3bvRgxAAAAAAAACgsjxelYmNjddttt6lLly5O7du2bVNGRoZTe6NGjVSzZk1t2LDB6jABAAAAAADgRl6ePPmCBQu0fft2bdmyJce2xMREeXt7KygoyKk9JCREiYmJeR4zPT1d6enpjvWUlBS3xQsAAAAAAAD38NhIqYSEBI0aNUrvvfeefHx83HbcuLg4BQYGOpbw8HC3HRsAAAAAAADu4bGi1LZt23T8+HFdd9118vLykpeXl1avXq2XXnpJXl5eCgkJ0YULF3T69Gmn/ZKSkhQaGprncSdMmKDk5GTHkpCQUMRXAgAAAAAAgILy2M/3br75Zn3//fdObYMHD1ajRo306KOPKjw8XBUqVNCKFSvUp08fSdLu3bt1+PBhRUZG5nlcu90uu91epLEDAAAAAACgcDw2Usrf31/NmjVzWvz8/FSlShU1a9ZMgYGBGjJkiMaOHauVK1dq27ZtGjx4sCIjI3XjjTd6KmwAAACPW7NmjXr27KmwsDDZbDYtWbLEsS0jI0OPPvqomjdvLj8/P4WFhenee+/V0aNHPRcwAABALjz+9L3LefHFF9WjRw/16dNHHTt2VGhoqBYtWuTpsAAAADwqLS1NLVq00MyZM3NsO3v2rLZv367HH39c27dv16JFi7R7927dfvvtHogUAAAgbzZjjPF0EEUpJSVFgYGBSk5OVkBAgKfDAXJls3k6ApRkpftfccCzSkIeYbPZtHjxYvXu3TvPPlu2bFHr1q116NAh1axZ84rHLAnXDaAYmF/IJLY/SQxQWuU3lyjWI6UAAABQeMnJybLZbAoKCvJ0KAAAAA4em+gcAAAARe/8+fN69NFH1a9fvzy/qUxPT1d6erpjPSUlxarwAABAGcZIKQAAgFIqIyND//znP2WM0WuvvZZnv7i4OAUGBjqW8PBwC6MEAABlFUUpAACAUii7IHXo0CF99dVXl53PYcKECUpOTnYsCQkJFkYKAADKKn6+BwAAUMpkF6T27t2rlStXqkqVKpftb7fbZbfbLYoOAADgTxSlAAAASpjU1FTt27fPsX7gwAHt3LlTwcHBql69uu666y5t375dn3/+uTIzM5WYmChJCg4Olre3t6fCBgAAcEJRCgAAoITZunWroqKiHOtjx46VJMXExGjSpEn69NNPJUktW7Z02m/lypXq3LmzVWECAABcFkUpAACAEqZz584yxuS5/XLbAAAAigsmOgcAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACzn5ekAgNLAZvN0BCjLCvv+M8Y9cQAAAABAQTBSCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwnJenAwAAlHw2W+H2N8Y9cQAAAAAoORgpBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJZzqSj166+/ujsOAACAUo8cCgAA4C8uFaXq1aunqKgovfvuuzp//ry7YwIAACiVyKEAAAD+4lJRavv27brmmms0duxYhYaG6oEHHtDmzZvdHRsAAECpQg4FAADwF5eKUi1bttSMGTN09OhRvf322zp27Jjat2+vZs2aadq0aTpx4oS74wQAACjxyKEAAAD+UqiJzr28vHTnnXdq4cKFevbZZ7Vv3z6NGzdO4eHhuvfee3Xs2DF3xQkAAFBqkEMBAAAUsii1detW/etf/1L16tU1bdo0jRs3Tvv379dXX32lo0ePqlevXu6KEwBQRGy2wi8ACqawOdSaNWvUs2dPhYWFyWazacmSJU7bjTF64oknVL16dfn6+qpLly7au3dvEV4RAABAwblUlJo2bZqaN2+utm3b6ujRo5o3b54OHTqkp59+WhEREerQoYPi4+O1fft2d8cLAABQYrkrh0pLS1OLFi00c+bMXLc/99xzeumllzRr1ixt2rRJfn5+io6OZnJ1AABQrHi5stNrr72m++67T4MGDVL16tVz7VOtWjW99dZbhQoOAACgNHFXDtWtWzd169Yt123GGE2fPl2PPfaYY8TVvHnzFBISoiVLlqhv376FuwgAAAA3cakolZ/h397e3oqJiXHl8AAAAKWSFTnUgQMHlJiYqC5dujjaAgMD1aZNG23YsCHXolR6errS09Md6ykpKS6fHwAAIL9c+vnenDlztHDhwhztCxcu1Ny5cwsdFAAAQGlkRQ6VmJgoSQoJCXFqDwkJcWy7VFxcnAIDAx1LeHi4W2IBAAC4HJeKUnFxcbrqqqtytFerVk3PPPNMoYMCAAAojYprDjVhwgQlJyc7loSEBI/FAgAAyg6XilKHDx9WREREjvZatWrp8OHDhQ4KAACgNLIihwoNDZUkJSUlObUnJSU5tl3KbrcrICDAaQEAAChqLhWlqlWrpu+++y5H+65du1SlSpVCBwUAAFAaWZFDRUREKDQ0VCtWrHC0paSkaNOmTYqMjHTLOQAAANzBpYnO+/Xrp5EjR8rf318dO3aUJK1evVqjRo3iiS4AAAB5cFcOlZqaqn379jnWDxw4oJ07dyo4OFg1a9bU6NGj9fTTT6t+/fqKiIjQ448/rrCwMPXu3dvdlwQAAOAyl4pSTz31lA4ePKibb75ZXl5/HiIrK0v33nsvc0oBAADkwV051NatWxUVFeVYHzt2rCQpJiZG8fHx+ve//620tDQNGzZMp0+fVvv27bVs2TL5+Pi494IAAAAKwWaMMa7uvGfPHu3atUu+vr5q3ry5atWq5c7Y3CIlJUWBgYFKTk5mfgQUGZvN0xEAJZvrn0RA0SqqPKK451DkTwDyZX4hk+D+JABAaZXfXMKlkVLZGjRooAYNGhTmEAAAAGUOORQAAICLRanMzEzFx8drxYoVOn78uLKyspy2f/PNN24JDgAAoDQhhwIAAPiLS0WpUaNGKT4+XrfddpuaNWsmG79dAgAAuCJyKAAAgL+4VJRasGCBPvzwQ3Xv3t3d8QAewf8TAACsQA4FAADwl3Ku7OTt7a169eq5OxYAAIBSjRwKAADgLy4VpR5++GHNmDFDhXhwnyTptdde0zXXXKOAgAAFBAQoMjJSS5cudWw/f/68YmNjVaVKFVWqVEl9+vRRUlJSoc4JAADgKe7KoQAAAEoDl36+t3btWq1cuVJLly5V06ZNVaFCBaftixYtytdxatSooalTp6p+/foyxmju3Lnq1auXduzYoaZNm2rMmDH64osvtHDhQgUGBmr48OG68847tW7dOlfCBgAA8Ch35VAAAAClgUtFqaCgIN1xxx2FPnnPnj2d1qdMmaLXXntNGzduVI0aNfTWW29p/vz5uummmyRJc+bMUePGjbVx40bdeOONhT4/AACAldyVQwEAAJQGLhWl5syZ4+44lJmZqYULFyotLU2RkZHatm2bMjIy1KVLF0efRo0aqWbNmtqwYQNFKQAAUOIURQ4FAABQUrk0p5QkXbx4UV9//bVef/11nTlzRpJ09OhRpaamFug433//vSpVqiS73a4HH3xQixcvVpMmTZSYmChvb28FBQU59Q8JCVFiYmKex0tPT1dKSorTAgAAUFy4K4cCAAAo6VwaKXXo0CF17dpVhw8fVnp6um655Rb5+/vr2WefVXp6umbNmpXvYzVs2FA7d+5UcnKyPvroI8XExGj16tWuhCVJiouL0+TJk13eHwAAoKi4M4cCAAAo6VwaKTVq1Chdf/31OnXqlHx9fR3td9xxh1asWFGgY2U/GrlVq1aKi4tTixYtNGPGDIWGhurChQs6ffq0U/+kpCSFhobmebwJEyYoOTnZsSQkJBQoHgAAgKLizhwKAACgpHNppNS3336r9evXy9vb26m9du3aOnLkSKECysrKUnp6ulq1aqUKFSpoxYoV6tOnjyRp9+7dOnz4sCIjI/Pc3263y263FyoGAACAolCUORQAAEBJ41JRKisrS5mZmTnaf/vtN/n7++f7OBMmTFC3bt1Us2ZNnTlzRvPnz9eqVau0fPlyBQYGasiQIRo7dqyCg4MVEBCgESNGKDIykknOAQBAieSuHAoAAKA0cOnne7feequmT5/uWLfZbEpNTdXEiRPVvXv3fB/n+PHjuvfee9WwYUPdfPPN2rJli5YvX65bbrlFkvTiiy+qR48e6tOnjzp27KjQ0FAtWrTIlZABAAA8zl05FAAAQGlgM8aYgu7022+/KTo6WsYY7d27V9dff7327t2rq666SmvWrFG1atWKIlaXpKSkKDAwUMnJyQoICPB0OCimbDZPRwCUbQX/JAKs4e48oqTkUORPAPJlfiGT6P4kAEBpld9cwqWf79WoUUO7du3SggUL9N133yk1NVVDhgzRgAEDnCbtBAAAwF/IoQAAAP7iUlFKkry8vHTPPfe4MxYAAIBSjxwKAADgTy4VpebNm3fZ7ffee69LwQAAAJRm5FAAAAB/cWlOqcqVKzutZ2Rk6OzZs/L29lbFihX1xx9/uC3AwmJOBOQHc0oBnsWcUiiu3J1HlJQcivwJQL4wpxSAPOQ3l3Dp6XunTp1yWlJTU7V79261b99e77//vstBAwAAlGbkUAAAAH9xqSiVm/r162vq1KkaNWqUuw4JAABQ6pFDAQCAssptRSnpz4k7jx496s5DAgAAlHrkUAAAoCxyaaLzTz/91GndGKNjx47plVdeUbt27dwSGAAAQGlDDgUAAPAXl4pSvXv3dlq32WyqWrWqbrrpJr3wwgvuiAsAAKDUIYcCAAD4i0tFqaysLHfHAQAAUOqRQwEAAPzFrXNKAQAAAAAAAPnh0kipsWPH5rvvtGnTXDkFAABAqUMOBQAA8BeXilI7duzQjh07lJGRoYYNG0qS9uzZo/Lly+u6665z9LPZbO6JEgAAoBQghwIAAPiLS0Wpnj17yt/fX3PnzlXlypUlSadOndLgwYPVoUMHPfzww24NEgAAoDQghwIAAPiLzRhjCrrT1VdfrS+//FJNmzZ1av/hhx9066236ujRo24LsLBSUlIUGBio5ORkBQQEeDocFFN8IQ14VsE/iQBruDuPKCk5FPkTgHyZX8gkuj8JAFBa5TeXcGmkVEpKik6cOJGj/cSJEzpz5owrhwQAlGGFLQxT1EJJQQ4FAADwF5eevnfHHXdo8ODBWrRokX777Tf99ttv+vjjjzVkyBDdeeed7o4RAACgVCCHAgAA+ItLI6VmzZqlcePGqX///srIyPjzQF5eGjJkiP773/+6NUAAAIDSghwKAADgLy7NKZUtLS1N+/fvlyTVrVtXfn5+bgvMXZgTAfnBnFJAycbP91BUiiqPKOocKjMzU5MmTdK7776rxMREhYWFadCgQXrsscfy9WQ/8icA+cKcUgDyUKRzSmU7duyYjh07po4dO8rX11fGGB5hDAAAcAVFnUM9++yzeu211zR37lw1bdpUW7du1eDBgxUYGKiRI0e67TwAAACF4dKcUidPntTNN9+sBg0aqHv37jp27JgkaciQITzKGAAAIA9W5VDr169Xr169dNttt6l27dq66667dOutt2rz5s1uOwcAAEBhuVSUGjNmjCpUqKDDhw+rYsWKjva7775by5Ytc1twAAAApYlVOVTbtm21YsUK7dmzR5K0a9curV27Vt26dcu1f3p6ulJSUpwWAACAoubSz/e+/PJLLV++XDVq1HBqr1+/vg4dOuSWwAAAAEobq3Ko8ePHKyUlRY0aNVL58uWVmZmpKVOmaMCAAbn2j4uL0+TJk912fgAWKeycTgDgYS6NlEpLS3P6di/bH3/8IbvdXuigAAAASiOrcqgPP/xQ7733nubPn6/t27dr7ty5ev755zV37txc+0+YMEHJycmOJSEhwW2xAAAA5MWlolSHDh00b948x7rNZlNWVpaee+45RUVFuS04AACA0sSqHOqRRx7R+PHj1bdvXzVv3lwDBw7UmDFjFBcXl2t/u92ugIAApwUAAKCoufTzveeee04333yztm7dqgsXLujf//63fvzxR/3xxx9at26du2MEAAAoFazKoc6ePaty5Zy/eyxfvryysrLcdg4AAIDCcmmkVLNmzbRnzx61b99evXr1Ulpamu68807t2LFDdevWdXeMAAAApYJVOVTPnj01ZcoUffHFFzp48KAWL16sadOm6Y477nDbOQAAAArLZowxBdkhIyNDXbt21axZs1S/fv2iisttUlJSFBgYqOTkZIaiI0825ogESrSCfZIB+efOPMLKHOrMmTN6/PHHtXjxYh0/flxhYWHq16+fnnjiCXl7e19xf/InoIQo6ROd9+cDHCit8ptLFPjnexUqVNB3331XqOAAAADKGitzKH9/f02fPl3Tp0+35HwAAACucOnne/fcc4/eeustd8cCAABQqpFDAQAA/MWlic4vXryot99+W19//bVatWolPz8/p+3Tpk1zS3AAAAClCTkUAADAXwpUlPr1119Vu3Zt/fDDD7ruuuskSXv27HHqY2NyHgAAACfkUAAAADkVqChVv359HTt2TCtXrpQk3X333XrppZcUEhJSJMEBAACUBuRQAAAAORVoTqlLH9S3dOlSpaWluTUgAACA0oYcCgAAICeXJjrPdmmCBQAAgCsjhwIAAChgUcpms+WY74D5DwAAAC6PHAoAACCnAs0pZYzRoEGDZLfbJUnnz5/Xgw8+mOPJMYsWLXJfhAAAACUcORQAAEBOBSpKxcTEOK3fc889bg0GAACgNCKHAgAAyKlARak5c+YUVRwAAAClFjkUAABAToWa6BwAAAAAAABwBUUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJbzaFEqLi5ON9xwg/z9/VWtWjX17t1bu3fvdupz/vx5xcbGqkqVKqpUqZL69OmjpKQkD0UMAAAAAAAAd/BoUWr16tWKjY3Vxo0b9dVXXykjI0O33nqr0tLSHH3GjBmjzz77TAsXLtTq1at19OhR3XnnnR6MGgAAAAAAAIXl5cmTL1u2zGk9Pj5e1apV07Zt29SxY0clJyfrrbfe0vz583XTTTdJkubMmaPGjRtr48aNuvHGGz0RNgAAAAAAAAqpWM0plZycLEkKDg6WJG3btk0ZGRnq0qWLo0+jRo1Us2ZNbdiwwSMxAgAAAAAAoPCKTVEqKytLo0ePVrt27dSsWTNJUmJiory9vRUUFOTUNyQkRImJibkeJz09XSkpKU4LAABAWXPkyBHdc889qlKlinx9fdW8eXNt3brV02EBAAA4ePTne38XGxurH374QWvXri3UceLi4jR58mQ3RQUAAFDynDp1Su3atVNUVJSWLl2qqlWrau/evapcubKnQwMAAHAoFkWp4cOH6/PPP9eaNWtUo0YNR3toaKguXLig06dPO42WSkpKUmhoaK7HmjBhgsaOHetYT0lJUXh4eJHFDgAAUNw8++yzCg8P15w5cxxtERERHowIAAAgJ4/+fM8Yo+HDh2vx4sX65ptvciRLrVq1UoUKFbRixQpH2+7du3X48GFFRkbmeky73a6AgACnBQAAoCz59NNPdf311+sf//iHqlWrpmuvvVazZ8/2dFgAAABOPDpSKjY2VvPnz9cnn3wif39/xzxRgYGB8vX1VWBgoIYMGaKxY8cqODhYAQEBGjFihCIjI3nyHgAAQB5+/fVXvfbaaxo7dqz+85//aMuWLRo5cqS8vb0VExOTo396errS09Md68zJCQAArGAzxhiPndxmy7V9zpw5GjRokCTp/Pnzevjhh/X+++8rPT1d0dHRevXVV/P8+d6lUlJSFBgYqOTkZEZNIU95vBUBlBCe+yRDaVdS8whvb29df/31Wr9+vaNt5MiR2rJlS65PMJ40aVKuc3KWtOsGypz5ZTyJ7U8CABRX+c2hPP7zvdyW7IKUJPn4+GjmzJn6448/lJaWpkWLFuW7IAUAAFAWVa9eXU2aNHFqa9y4sQ4fPpxr/wkTJig5OdmxJCQkWBEmAAAo44rFROcAAABwn3bt2mn37t1ObXv27FGtWrVy7W+322W3260IDQAAwMGjI6UAAADgfmPGjNHGjRv1zDPPaN++fZo/f77eeOMNxcbGejo0AAAAB4pSAAAApcwNN9ygxYsX6/3331ezZs301FNPafr06RowYICnQwMAAHDg53sAAAClUI8ePdSjRw9PhwEAAJAnRkoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjonOUeLZbJ6OAICnefrfAWM8e34AAACgJGKkFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOS9PBwB4+lHuAAAAAADAeoyUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwnJenA0DJZ7N5OgIAAAAAAFDSMFIKAAAAAAAAlqMoBQAAAAAAAMtRlAIAACjlpk6dKpvNptGjR3s6FAAAAAeKUgAAAKXYli1b9Prrr+uaa67xdCgAAABOKEoBAACUUqmpqRowYIBmz56typUrezocAAAAJxSlAAAASqnY2Fjddttt6tKly2X7paenKyUlxWkBAAAoal6eDgCeZ7N5OgIAAOBuCxYs0Pbt27Vly5Yr9o2Li9PkyZMtiAoAAOAvjJQCAAAoZRISEjRq1Ci999578vHxuWL/CRMmKDk52bEkJCRYECUAACjrGCkFAABQymzbtk3Hjx/Xdddd52jLzMzUmjVr9Morryg9PV3ly5d3bLPb7bLb7Z4IFQAAlGEUpQAAAEqZm2++Wd9//71T2+DBg9WoUSM9+uijTgUpAAAAT6EoBQAAUMr4+/urWbNmTm1+fn6qUqVKjnYAAABPYU4pAAAAAAAAWI6RUgAAAGXAqlWrPB0CAACAE0ZKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByHi1KrVmzRj179lRYWJhsNpuWLFnitN0YoyeeeELVq1eXr6+vunTpor1793omWAAAAAAAALiNR4tSaWlpatGihWbOnJnr9ueee04vvfSSZs2apU2bNsnPz0/R0dE6f/68xZECAAAAAADAnbw8efJu3bqpW7duuW4zxmj69Ol67LHH1KtXL0nSvHnzFBISoiVLlqhv375WhgoAAAAAAAA3KrZzSh04cECJiYnq0qWLoy0wMFBt2rTRhg0bPBgZAAAAAAAACsujI6UuJzExUZIUEhLi1B4SEuLYlpv09HSlp6c71lNSUoomQAAAAAAAALis2I6UclVcXJwCAwMdS3h4uKdDAgDgsmy2wi0AAABASVRsi1KhoaGSpKSkJKf2pKQkx7bcTJgwQcnJyY4lISGhSOMEAAAAAABAwRXbn+9FREQoNDRUK1asUMuWLSX9+VO8TZs26aGHHspzP7vdLrvdblGUAAAAcNn8Qg7162/cEwfKJt5/JV9hX8PCKunvAf4GUAx4tCiVmpqqffv2OdYPHDignTt3Kjg4WDVr1tTo0aP19NNPq379+oqIiNDjjz+usLAw9e7d23NBAwAAAAAAoNA8WpTaunWroqKiHOtjx46VJMXExCg+Pl7//ve/lZaWpmHDhun06dNq3769li1bJh8fH0+FDAAAAAAAADfwaFGqc+fOMibvIX82m01PPvmknnzySQujAgAAAAAAQFErthOdAwAAAAAAoPSiKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAgFImLi5ON9xwg/z9/VWtWjX17t1bu3fv9nRYAAAATihKAQAAlDKrV69WbGysNm7cqK+++koZGRm69dZblZaW5unQAAAAHLw8HQAAAADca9myZU7r8fHxqlatmrZt26aOHTt6KCoAAABnFKUAAABKueTkZElScHBwrtvT09OVnp7uWE9JSbEkLgAAULZRlAIAACjFsrKyNHr0aLVr107NmjXLtU9cXJwmT55scWRACTff5ukIAKDEY04pAACAUiw2NlY//PCDFixYkGefCRMmKDk52bEkJCRYGCEAACirGCkFAABQSg0fPlyff/651qxZoxo1auTZz263y263WxgZAAAARSkAAIBSxxijESNGaPHixVq1apUiIiI8HRIAAEAOFKVKARs/ZwcAj+LfYRQ3sbGxmj9/vj755BP5+/srMTFRkhQYGChfX18PRwcAAPAn5pQCAAAoZV577TUlJyerc+fOql69umP54IMPPB0aAACAAyOlAAAAShljjKdDAAAAuCJGSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5bw8HQAAAABQIs23FW7//sY9cXhKWb9+oLDK+t9QYa/fHcr6PSwG189IKQAAAAAAAFiOkVIAAJRwtkJ+SWY8/yUZAAAAyiBGSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALOfl6QBKA5utcPsb4544AABwRWE/xzyNz1EAAICSiZFSAAAAAAAAsFyJKErNnDlTtWvXlo+Pj9q0aaPNmzd7OiQAAIBijxwKAAAUZ8W+KPXBBx9o7NixmjhxorZv364WLVooOjpax48f93RoAAAAxRY5FAAAKO6KfVFq2rRpuv/++zV48GA1adJEs2bNUsWKFfX22297OjQAAIBiixwKAAAUd8W6KHXhwgVt27ZNXbp0cbSVK1dOXbp00YYNGzwYGQAAQPFFDgUAAEqCYv30vd9//12ZmZkKCQlxag8JCdEvv/yS6z7p6elKT093rCcnJ0uSUlJSii7QQirGoQEAUOwV5edodv5gStgj/gqaQ3ksfzpbyP09nUSV9PgLq6Rff2HjBwr7Hvb031BJP787ePrfocLy9Gt42UPnL4cq1kUpV8TFxWny5Mk52sPDwz0QTf4EBno6AgAASi4rPkfPnDmjwFL8gV0S8ydJ0v0l/DUp6fEXVlm/fpR8nn4Pl/Xzu0NpuIbCsOD6r5RDFeui1FVXXaXy5csrKSnJqT0pKUmhoaG57jNhwgSNHTvWsZ6VlaU//vhDVapUkc1mK9J4i1JKSorCw8OVkJCggIAAT4cD8ZoUR7wmxROvS/HDa5J/xhidOXNGYWFhng6lQAqaQxXX/In3quu4d67j3rmOe+c67p1ruG+uK+p7l98cqlgXpby9vdWqVSutWLFCvXv3lvRnkrRixQoNHz48133sdrvsdrtTW1BQUBFHap2AgAD+2IoZXpPih9ekeOJ1KX54TfKnJI6QKmgOVdzzJ96rruPeuY575zruneu4d67hvrmuKO9dfnKoYl2UkqSxY8cqJiZG119/vVq3bq3p06crLS1NgwcP9nRoAAAAxRY5FAAAKO6KfVHq7rvv1okTJ/TEE08oMTFRLVu21LJly3JM3AkAAIC/kEMBAIDirtgXpSRp+PDhef5cr6yw2+2aOHFijqH18Bxek+KH16R44nUpfnhNyo6SnkPxXnUd98513DvXce9cx71zDffNdcXl3tlMSXvGMQAAAAAAAEq8cp4OAAAAAAAAAGUPRSkAAAAAAABYjqIUAAAAAAAALEdRqpiaMmWK2rZtq4oVKyooKChf+xhj9MQTT6h69ery9fVVly5dtHfv3qINtIz5448/NGDAAAUEBCgoKEhDhgxRamrqZffp3LmzbDab0/Lggw9aFHHpM3PmTNWuXVs+Pj5q06aNNm/efNn+CxcuVKNGjeTj46PmzZvrf//7n0WRli0FeV3i4+Nz/E34+PhYGG3pt2bNGvXs2VNhYWGy2WxasmTJFfdZtWqVrrvuOtntdtWrV0/x8fFFHieQG1c+ayVpw4YNuummm+Tn56eAgAB17NhR586dsyDi4sPVeyf9mUd269Yt3/9mlCYFvW9//PGHRowYoYYNG8rX11c1a9bUyJEjlZycbGHUnkMu5pqC3LfZs2erQ4cOqly5sipXrqwuXbpc8T6XZgV9z2VbsGCBbDabevfuXbQBFmMFvXenT59WbGysqlevLrvdrgYNGhT53yxFqWLqwoUL+sc//qGHHnoo3/s899xzeumllzRr1ixt2rRJfn5+io6O1vnz54sw0rJlwIAB+vHHH/XVV1/p888/15o1azRs2LAr7nf//ffr2LFjjuW5556zINrS54MPPtDYsWM1ceJEbd++XS1atFB0dLSOHz+ea//169erX79+GjJkiHbs2KHevXurd+/e+uGHHyyOvHQr6OsiSQEBAU5/E4cOHbIw4tIvLS1NLVq00MyZM/PV/8CBA7rtttsUFRWlnTt3avTo0Ro6dKiWL19exJECObnyWbthwwZ17dpVt956qzZv3qwtW7Zo+PDhKleubKW6ruYpkjR9+nTZbLYijrB4Kuh9O3r0qI4eParnn39eP/zwg+Lj47Vs2TINGTLEwqg9g1zMNQW9b6tWrVK/fv20cuVKbdiwQeHh4br11lt15MgRiyP3PFfyTEk6ePCgxo0bpw4dOlgUafFT0Ht34cIF3XLLLTp48KA++ugj7d69W7Nnz9bVV19dtIEaFGtz5swxgYGBV+yXlZVlQkNDzX//+19H2+nTp43dbjfvv/9+EUZYdvz0009GktmyZYujbenSpcZms5kjR47kuV+nTp3MqFGjLIiw9GvdurWJjY11rGdmZpqwsDATFxeXa/9//vOf5rbbbnNqa9OmjXnggQeKNM6ypqCvS37/XYN7SDKLFy++bJ9///vfpmnTpk5td999t4mOji7CyICcXP2sbdOmjXnsscesCLHYcvXeGWPMjh07zNVXX22OHTuWr38zSpPC3Le/+/DDD423t7fJyMgoijCLDXIx1xT0vl3q4sWLxt/f38ydO7eoQiy2XLl3Fy9eNG3btjVvvvmmiYmJMb169bIg0uKnoPfutddeM3Xq1DEXLlywKkRjjDFl6+ujUuzAgQNKTExUly5dHG2BgYFq06aNNmzY4MHISo8NGzYoKChI119/vaOtS5cuKleunDZt2nTZfd977z1dddVVatasmSZMmKCzZ88WdbilzoULF7Rt2zan93i5cuXUpUuXPN/jGzZscOovSdHR0fxNuJErr4skpaamqlatWgoPD1evXr30448/WhEu8sDfCooLVz5rjx8/rk2bNqlatWpq27atQkJC1KlTJ61du9aqsIsFV/OUs2fPqn///po5c6ZCQ0OtCLVYKUx+93fJyckKCAiQl5dXUYRZLJCLucbVXOnvzp49q4yMDAUHBxdVmMWSq/fuySefVLVq1crE6MW8uHLvPv30U0VGRio2NlYhISFq1qyZnnnmGWVmZhZprBSlSonExERJUkhIiFN7SEiIYxsKJzExUdWqVXNq8/LyUnBw8GXvcf/+/fXuu+9q5cqVmjBhgt555x3dc889RR1uqfP7778rMzOzQO/xxMRE/iaKmCuvS8OGDfX222/rk08+0bvvvqusrCy1bdtWv/32mxUhIxd5/a2kpKSUuTl54FmufNb++uuvkqRJkybp/vvv17Jly3Tdddfp5ptvLlNza7qap4wZM0Zt27ZVr169ijrEYsnV+/Z3v//+u5566ql8/1SypCIXc40r9+1Sjz76qMLCwnIU+Eo7V+7d2rVr9dZbb2n27NlWhFhsuXLvfv31V3300UfKzMzU//73Pz3++ON64YUX9PTTTxdprBSlLDR+/Pgck/teuvzyyy+eDrPMKerXZdiwYYqOjlbz5s01YMAAzZs3T4sXL9b+/fvdeBVAyREZGal7771XLVu2VKdOnbRo0SJVrVpVr7/+uqdDA1BEivKzNisrS5L0wAMPaPDgwbr22mv14osvOgrgJV1R3rtPP/1U33zzjaZPn+7eoIsBq/LulJQU3XbbbWrSpIkmTZpU+MCBS0ydOlULFizQ4sWLeTDMFZw5c0YDBw7U7NmzddVVV3k6nBInKytL1apV0xtvvKFWrVrp7rvv1v/93/9p1qxZRXre0ju+tBh6+OGHNWjQoMv2qVOnjkvHzh5unZSUpOrVqzvak5KS1LJlS5eOWVbk93UJDQ3NMSncxYsX9ccffxRouHubNm0kSfv27VPdunULHG9ZddVVV6l8+fJKSkpyak9KSsrz/oeGhhaoPwrOldflUhUqVNC1116rffv2FUWIyIe8/lYCAgLk6+vroahQmhTlZ2123tOkSROn9saNG+vw4cOuB11MFOW9++abb7R///4cT3ru06ePOnTooFWrVhUics+yIr87c+aMunbtKn9/fy1evFgVKlQobNjFGrmYawqTKz3//POaOnWqvv76a11zzTVFGWaxVNB7t3//fh08eFA9e/Z0tGV/ceHl5aXdu3eXmf//cuV9V716dVWoUEHly5d3tDVu3FiJiYm6cOGCvL29iyRWilIWqlq1qqpWrVokx46IiFBoaKhWrFjhKEKlpKRo06ZNBXqCX1mU39clMjJSp0+f1rZt29SqVStJfyZzWVlZjkJTfuzcuVOSnIqHuDJvb2+1atVKK1ascDzWNSsrSytWrNDw4cNz3ScyMlIrVqzQ6NGjHW1fffWVIiMjLYi4bHDldblUZmamvv/+e3Xv3r0II8XlREZG5njcL38rcKei/KytXbu2wsLCtHv3bqf2PXv2qFu3boUP3sOK8t6NHz9eQ4cOdWpr3ry5XnzxRaf/qSuJijq/S0lJUXR0tOx2uz799NMyMYKFXMw1ruZKzz33nKZMmaLly5c7zXlWlhT03jVq1Ejff/+9U9tjjz2mM2fOaMaMGQoPD7ci7GLBlfddu3btNH/+fGVlZTmeXrtnzx5Vr169yApSknj6XnF16NAhs2PHDjN58mRTqVIls2PHDrNjxw5z5swZR5+GDRuaRYsWOdanTp1qgoKCzCeffGK+++4706tXLxMREWHOnTvniUsolbp27WquvfZas2nTJrN27VpTv359069fP8f23377zTRs2NBs2rTJGGPMvn37zJNPPmm2bt1qDhw4YD755BNTp04d07FjR09dQom2YMECY7fbTXx8vPnpp5/MsGHDTFBQkElMTDTGGDNw4EAzfvx4R/9169YZLy8v8/zzz5uff/7ZTJw40VSoUMF8//33nrqEUqmgr8vkyZPN8uXLzf79+822bdtM3759jY+Pj/nxxx89dQmlzpkzZxyfG5LMtGnTzI4dO8yhQ4eMMcaMHz/eDBw40NH/119/NRUrVjSPPPKI+fnnn83MmTNN+fLlzbJlyzx1CSjDCvpZa4wxL774ogkICDALFy40e/fuNY899pjx8fEx+/bt88QleIwr9+5SKmNP3zOm4PctOTnZtGnTxjRv3tzs27fPHDt2zLFcvHjRU5dhCXIx1xT0vk2dOtV4e3ubjz76yOn99ff/FywrCnrvLlWWn75X0Ht3+PBh4+/vb4YPH252795tPv/8c1OtWjXz9NNPF2mcFKWKqZiYGCMpx7Jy5UpHH0lmzpw5jvWsrCzz+OOPm5CQEGO3283NN99sdu/ebX3wpdjJkydNv379TKVKlUxAQIAZPHiw04fDgQMHnF6nw4cPm44dO5rg4GBjt9tNvXr1zCOPPGKSk5M9dAUl38svv2xq1qxpvL29TevWrc3GjRsd2zp16mRiYmKc+n/44YemQYMGxtvb2zRt2tR88cUXFkdcNhTkdRk9erSjb0hIiOnevbvZvn27B6IuvVauXJnrZ0j26xATE2M6deqUY5+WLVsab29vU6dOHafPF8BKBf2szRYXF2dq1KhhKlasaCIjI823335rceSe5+q9+7uyWJQq6H3L699YSebAgQOeuQgLkYu5piD3rVatWrm+vyZOnGh94MVAQd9zf1eWi1LGFPzerV+/3rRp08bY7XZTp04dM2XKlCIvttuMMaboxmEBAAAAAAAAOfH0PQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAJcKqVatks9l0+vTpfO8zadIktWzZsshiKiibzaYlS5Z4OgwAAFDKHTx4UDabTTt37vR0KHlyJbcDUPpQlALgVrNmzZK/v78uXrzoaEtNTVWFChXUuXNnp77Zycj+/fuveNy2bdvq2LFjCgwMdGu8nTt31ujRo916TAAAgKIyaNAg2Ww2x1KlShV17dpV3333naNPeHi4jh07pmbNmnkwUgC4MopSANwqKipKqamp2rp1q6Pt22+/VWhoqDZt2qTz58872leuXKmaNWuqbt26Vzyut7e3QkNDZbPZiiRuAACAkqJr1646duyYjh07phUrVsjLy0s9evRwbC9fvrxCQ0Pl5eXlwSgB4MooSgFwq4YNG6p69epatWqVo23VqlXq1auXIiIitHHjRqf2qKgoSVJWVpbi4uIUEREhX19ftWjRQh999JFT30uHeM+ePVvh4eGqWLGi7rjjDk2bNk1BQUE5YnrnnXdUu3ZtBQYGqm/fvjpz5oykP79pXL16tWbMmOH4tvHgwYM59v/Pf/6jNm3a5Ghv0aKFnnzySUnSli1bdMstt+iqq65SYGCgOnXqpO3bt+d5n3K7np07d+aIYe3aterQoYN8fX0VHh6ukSNHKi0tLc/jAgCA0s9utys0NFShoaFq2bKlxo8fr4SEBJ04cUJSzp/vZWZmasiQIY48q2HDhpoxY4bTMVetWqXWrVvLz89PQUFBateunQ4dOpTr+du2batHH33Uqe3EiROqUKGC1qxZI+nP/Ov666+Xv7+/QkND1b9/fx0/fjzPa8pt2oXp06erdu3aTm1vvvmmGjduLB8fHzVq1EivvvrqlW4XgGKMohQAt4uKitLKlSsd6ytXrlTnzp3VqVMnR/u5c+e0adMmR1EqLi5O8+bN06xZs/Tjjz9qzJgxuueee7R69epcz7Fu3To9+OCDGjVqlHbu3KlbbrlFU6ZMydFv//79WrJkiT7//HN9/vnnWr16taZOnSpJmjFjhiIjI3X//fc7vm0MDw/PcYwBAwZo8+bNTj8z/PHHH/Xdd9+pf//+kqQzZ84oJiZGa9eu1caNG1W/fn11797dUQBzxf79+9W1a1f16dNH3333nT744AOtXbtWw4cPd/mYAACgdElNTdW7776revXqqUqVKrn2ycrKUo0aNbRw4UL99NNPeuKJJ/Sf//xHH374oSTp4sWL6t27tzp16qTvvvtOGzZs0LBhw/IcoT5gwAAtWLBAxhhH2wcffKCwsDB16NBBkpSRkaGnnnpKu3bt0pIlS3Tw4EENGjSoUNf63nvv6YknntCUKVP0888/65lnntHjjz+uuXPnFuq4ADzIAICbzZ492/j5+ZmMjAyTkpJivLy8zPHjx838+fNNx44djTHGrFixwkgyhw4dMufPnzcVK1Y069evdzrOkCFDTL9+/YwxxqxcudJIMqdOnTLGGHP33Xeb2267zan/gAEDTGBgoGN94sSJpmLFiiYlJcXR9sgjj5g2bdo41jt16mRGjRp1xWtq0aKFefLJJx3rEyZMcDrOpTIzM42/v7/57LPPHG2SzOLFi3O9HmOM2bFjh5FkDhw44Lj+YcOGOR3322+/NeXKlTPnzp27YswAAKD0iYmJMeXLlzd+fn7Gz8/PSDLVq1c327Ztc/Q5cOCAkWR27NiR53FiY2NNnz59jDHGnDx50kgyq1atylcMx48fN15eXmbNmjWOtsjISPPoo4/muc+WLVuMJHPmzBljTM5caOLEiaZFixZO+7z44oumVq1ajvW6deua+fPnO/V56qmnTGRkZL7iBlD8MFIKgNt17txZaWlp2rJli7799ls1aNBAVatWVadOnRzzSq1atUp16tRRzZo1tW/fPp09e1a33HKLKlWq5FjmzZuX5yTou3fvVuvWrZ3aLl2XpNq1a8vf39+xXr169csOHc/LgAEDNH/+fEmSMUbvv/++BgwY4NielJSk+++/X/Xr11dgYKACAgKUmpqqw4cPF/hc2Xbt2qX4+HinexIdHa2srCwdOHDA5eMCAICSLSoqSjt37tTOnTu1efNmRUdHq1u3bnn+3E6SZs6cqVatWqlq1aqqVKmS3njjDUeeEhwcrEGDBik6Olo9e/bUjBkzdOzYsTyPVbVqVd1666167733JEkHDhzQhg0bnHKjbdu2qWfPnqpZs6b8/f3VqVMnSXI5N0pLS9P+/fs1ZMgQp9zo6aefztdDcwAUT8x8B8Dt6tWrpxo1amjlypU6deqUIwkJCwtTeHi41q9fr5UrV+qmm26S9Oewc0n64osvdPXVVzsdy263FyqWChUqOK3bbDZlZWUV+Dj9+vXTo48+qu3bt+vcuXNKSEjQ3Xff7dgeExOjkydPasaMGapVq5bsdrsiIyN14cKFXI9Xrtyf3wmYvw17z8jIcOqTmpqqBx54QCNHjsyxf82aNQt8DQAAoHTw8/NTvXr1HOtvvvmmAgMDNXv2bD399NM5+i9YsEDjxo3TCy+8oMjISPn7++u///2vNm3a5OgzZ84cjRw5UsuWLdMHH3ygxx57TF999ZVuvPHGXGMYMGCARo4cqZdfflnz589X8+bN1bx5c0l/FpCio6MVHR2t9957T1WrVtXhw4cVHR192dzo73mR5JwbZeeLs2fPzjHXZ/ny5S93uwAUYxSlABSJqKgorVq1SqdOndIjjzziaO/YsaOWLl2qzZs366GHHpIkNWnSRHa7XYcPH3YUsK6kYcOG2rJli1Pbpev54e3trczMzCv2q1Gjhjp16qT33ntP586d0y233KJq1ao5tq9bt06vvvqqunfvLklKSEjQ77//nufxqlatKkk6duyYKleuLEmOyUizXXfddfrpp5+ckk4AAIBL2Ww2lStXTufOnct1+7p169S2bVv961//crTlNrro2muv1bXXXqsJEyYoMjJS8+fPz7Mo1atXLw0bNkzLli3T/Pnzde+99zq2/fLLLzp58qSmTp3qmK/z709mzk3VqlWVmJgoY4xjLqu/50YhISEKCwvTr7/+6jQiC0DJRlEKQJGIiopSbGysMjIynApNnTp10vDhw3XhwgXHJOf+/v4aN26cxowZo6ysLLVv317Jyclat26dAgICFBMTk+P4I0aMUMeOHTVt2jT17NlT33zzjZYuXZrnhJx5qV27tjZt2qSDBw+qUqVKCg4OdoxiutSAAQM0ceJEXbhwQS+++KLTtvr16zueMpOSkqJHHnlEvr6+eZ63Xr16Cg8P16RJkzRlyhTt2bNHL7zwglOfRx99VDfeeKOGDx+uoUOHys/PTz/99JO++uorvfLKKwW6TgAAUHqkp6crMTFRknTq1Cm98sorSk1NVc+ePXPtX79+fc2bN0/Lly9XRESE3nnnHW3ZskURERGS/vz53RtvvKHbb79dYWFh2r17t/bu3etUaLqUn5+fevfurccff1w///yz+vXr59hWs2ZNeXt76+WXX9aDDz6oH374QU899dRlr6lz5846ceKEnnvuOd11111atmyZli5dqoCAAEefyZMna+TIkQoMDFTXrl2Vnp6urVu36tSpUxo7dmy+7x+A4oM5pQAUiaioKJ07d0716tVTSEiIo71Tp046c+aMGjZsqOrVqzvan3rqKT3++OOKi4tT48aN1bVrV33xxReOZOlS7dq106xZszRt2jS1aNFCy5Yt05gxY+Tj41OgOMeNG6fy5curSZMmjqHlebnrrrt08uRJnT17Vr1793ba9tZbb+nUqVO67rrrNHDgQI0cOdJpJNWlKlSooPfff1+//PKLrrnmGj377LM5httfc801Wr16tfbs2aMOHTro2muv1RNPPKGwsLACXSMAAChdli1bpurVq6t69epq06aNtmzZooULF6pz58659n/ggQd055136u6771abNm108uRJp1FTFStW1C+//KI+ffqoQYMGGjZsmGJjY/XAAw9cNo4BAwZo165d6tChg9PUAlWrVlV8fLwWLlyoJk2aaOrUqXr++ecve6zGjRvr1Vdf1cyZM9WiRQtt3rxZ48aNc+ozdOhQvfnmm5ozZ46aN2+uTp06KT4+Ps98EUDxZzOX/nAXAEqo+++/X7/88ou+/fZbT4cCAAAAALgCfr4HoMR6/vnndcstt8jPz09Lly7V3Llz9eqrr3o6LAAAAABAPjBSCkCJ9c9//lOrVq3SmTNnVKdOHY0YMUIPPvigp8MCAAAAAOQDRSkAAAAAAABYjonOAQAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGC5/wfbIySaTJBvdAAAAABJRU5ErkJggg==\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiLElEQVR4nO3dd3xUVf7/8feEkCGGFIIhZQkQ6SACgmCQqmgoIigWIGpAirIgAuIquwKiQNAFBBFBUCkqorjAWhYUqdI7CihNmkgIAkkIJYTk/P7gx3wdkkDK5E7K6/l43Mc6555753MPk8xnPzn3XJsxxggAAAAAAACwkIe7AwAAAAAAAEDxQ1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCiggunfvrkqVKuX62NKlS7s2oFyaNWuWbDabDh8+nO/vdf2YHT58WDabTePGjcv395ak1157TTabzZL3ul5ycrJ69eqlkJAQ2Ww2DRw40C1x2Gw2vfbaa255bwBA0VQYvlvId6xBvgMUfRSlgBv44osvZLPZtHDhwgz76tatK5vNphUrVmTYV6FCBTVp0sSKEHPkwoULeu2117Ry5cps9V+5cqVsNptjs9vtCg4OVsuWLTVmzBidOnXKLXFZqaDGNmbMGM2aNUt9+/bVxx9/rKeeesrdIRUZBw4c0KOPPqoyZcrolltuUdOmTTP9OQcAZM+1As5ft3LlyqlVq1ZavHixu8Mj31HBjY18J/+Q76Cg8HR3AEBB1rRpU0nSmjVr9PDDDzvak5KStGvXLnl6emrt2rVq1aqVY9+xY8d07NgxdenSJUfvNWPGDKWnp7sm8CxcuHBBI0eOlCS1bNky28cNGDBAd911l9LS0nTq1CmtW7dOI0aM0IQJE/TFF1/o3nvvdfR96qmn1KVLF9nt9nyPy91j9uqrr+qVV17J1/fPyvLly3X33XdrxIgRbnn/ourYsWOKjIxUiRIl9NJLL8nHx0czZ87UAw88oGXLlql58+buDhEACq3XX39dERERMsbo5MmTmjVrltq1a6evv/5aDz74oKPfxYsX5elp/f9NId8h3ykuyHdQkFCUAm4gLCxMERERWrNmjVP7+vXrZYzRY489lmHftdfXClrZVbJkybwFm4+aNWumRx991Klt586deuCBB9S5c2ft2bNHoaGhkqQSJUqoRIkS+RrP+fPn5ePj4/Yx8/T0dEvSLEnx8fGqVauWy8535coVpaeny8vLy2XnLIzGjh2rhIQE7dq1S9WrV5ck9e7dWzVq1NCgQYO0detWN0cIAIVX27Zt1bBhQ8frnj17Kjg4WJ999plTUapUqVLuCI98JwvkO0UP+Q4KEm7fA26iadOm2r59uy5evOhoW7t2rWrXrq22bdtqw4YNTn+9Wrt2rWw2m+655x5H2yeffKIGDRrI29tbgYGB6tKli44dO+b0PpmtKXX69Gk99dRT8vPzU0BAgGJiYrRz507ZbDbNmjUrQ6zHjx9Xp06dVLp0aQUFBWnIkCFKS0uTdHX9gaCgIEnSyJEjHVPUc3t/fN26dTVx4kQlJCTo3XffdbRntsbCli1bFBUVpVtvvVXe3t6KiIjQM888k624rq2XdfDgQbVr106+vr6Kjo7Ocsyuefvtt1WxYkV5e3urRYsW2rVrl9P+li1bZvpXyr+e82axZbbGwpUrV/TGG2+ocuXKstvtqlSpkv75z38qJSXFqV+lSpX04IMPas2aNWrUqJFKlSql2267TXPmzMl8wP+/a7cYHDp0SN9++60jpmvjHR8f70jyS5Uqpbp162r27NlO5/jrWhQTJ050xLpnz54s3zclJUWDBg1SUFCQfH199dBDD+n333/PtO/x48f1zDPPKDg4WHa7XbVr19ZHH32U6XV88cUXGj16tMqXL69SpUrpvvvu04EDB5z67t+/X507d1ZISIhKlSql8uXLq0uXLkpMTHTql52fs5v58ccfVb9+fUeCJkm33HKLHnroIW3btk379+/P0fkAAFkLCAiQt7d3hoLH9fnJkSNH9Pe//13Vq1eXt7e3ypYtq8ceeyzDek6pqakaOXKkqlatqlKlSqls2bJq2rSpli5dmusYyXfId8h3gPzFTCngJpo2baqPP/5YGzdudHypr127Vk2aNFGTJk2UmJioXbt26Y477nDsq1GjhsqWLStJGj16tIYNG6bHH39cvXr10qlTpzR58mQ1b95c27dvV0BAQKbvm56erg4dOmjTpk3q27evatSoof/+97+KiYnJtH9aWpqioqLUuHFjjRs3Tj/88IPGjx+vypUrq2/fvgoKCtLUqVPVt29fPfzww3rkkUckyRF3bjz66KPq2bOnvv/+e40ePTrTPvHx8XrggQcUFBSkV155RQEBATp8+LAWLFggSdmK68qVK4qKilLTpk01btw43XLLLTeMa86cOTp37pz69eunS5cuadKkSbr33nv1888/Kzg4ONvXl5sx69Wrl2bPnq1HH31UL774ojZu3KjY2Fj98ssvGdYmu3Yvf8+ePRUTE6OPPvpI3bt3V4MGDVS7du1Mz1+zZk19/PHHGjRokMqXL68XX3zREevFixfVsmVLHThwQP3791dERITmz5+v7t27KyEhQS+88ILTuWbOnKlLly6pT58+stvtCgwMvOF1ffLJJ+rWrZuaNGmi5cuXq3379hn6nTx5UnfffbdsNpv69++voKAgLV68WD179lRSUlKGBUrHjh0rDw8PDRkyRImJiXrrrbcUHR2tjRs3SpIuX76sqKgopaSk6Pnnn1dISIiOHz+ub775RgkJCfL395eU+5+z66WkpKhMmTIZ2q995rZu3aqqVatm61wAAGeJiYn6888/ZYxRfHy8Jk+erOTkZD355JM3PG7z5s1at26dunTpovLly+vw4cOaOnWqWrZsqT179jh+R7/22muKjY1Vr1691KhRIyUlJWnLli3atm2b7r///lzHTb6TEfkO+Q7gMgbADe3evdtIMm+88YYxxpjU1FTj4+NjZs+ebYwxJjg42EyZMsUYY0xSUpIpUaKE6d27tzHGmMOHD5sSJUqY0aNHO53z559/Np6enk7tMTExpmLFio7X//nPf4wkM3HiREdbWlqauffee40kM3PmTKdjJZnXX3/d6X3q169vGjRo4Hh96tQpI8mMGDEiW9e+YsUKI8nMnz8/yz5169Y1ZcqUcbyeOXOmkWQOHTpkjDFm4cKFRpLZvHlzlue4UVzXru2VV17JdN9fx+zQoUNGkvH29ja///67o33jxo1Gkhk0aJCjrUWLFqZFixY3PeeNYhsxYoT566/RHTt2GEmmV69eTv2GDBliJJnly5c72ipWrGgkmdWrVzva4uPjjd1uNy+++GKG97pexYoVTfv27Z3aJk6caCSZTz75xNF2+fJlExkZaUqXLm2SkpKMMf83Tn5+fiY+Pv6m73Xtuv7+9787tXfr1i3D2PTs2dOEhoaaP//806lvly5djL+/v7lw4YIx5v8+WzVr1jQpKSmOfpMmTTKSzM8//2yMMWb79u03/Qzm5OfsZjp06GACAgIcY3VNZGSkkWTGjRuX7XMBAK66lhtcv9ntdjNr1qwM/a//brn23fFX69evN5LMnDlzHG1169bN8N2YHeQ75Dt/vS7yHfIdWIvb94CbqFmzpsqWLetYK2rnzp06f/684+l6TZo00dq1ayVdXWsqLS3NsZ7UggULlJ6erscff1x//vmnYwsJCVHVqlVv+ISLJUuWqGTJkurdu7ejzcPDQ/369cvymOeee87pdbNmzfTbb7/l7sKzqXTp0jp37lyW+6/9xeabb75Rampqrt+nb9++2e7bqVMn/e1vf3O8btSokRo3bqz//e9/uX7/7Lh2/sGDBzu1X/vr3rfffuvUXqtWLTVr1szxOigoSNWrV8/1v9n//vc/hYSEqGvXro62kiVLasCAAUpOTtaqVauc+nfu3NkxXf9m55WuLgD7V9f/FdAYo//85z/q0KGDjDFOn/moqCglJiZq27ZtTsf06NHDaV2Ha+NxbQyu/WXwu+++04ULFzKNLy8/Z9fr27evEhIS9MQTT2j79u3at2+fBg4cqC1btkiS0228AICcmTJlipYuXaqlS5fqk08+UatWrdSrVy/HbKKseHt7O/47NTVVp0+fVpUqVRQQEOD0vRIQEKDdu3fny61H5Dv/h3yHfAdwJYpSwE3YbDY1adLEsXbU2rVrVa5cOVWpUkWSc1Hq2v9eK0rt379fxhhVrVpVQUFBTtsvv/yi+Pj4LN/3yJEjCg0NzTB1+9r7Xq9UqVIZvnDLlCmjs2fP5u7Csyk5OVm+vr5Z7m/RooU6d+6skSNH6tZbb1XHjh01c+bMDGsO3Iinp6fKly+f7f6ZTTeuVq1ahrUnXO3IkSPy8PDI8G8UEhKigIAAHTlyxKm9QoUKGc6Rl3+zI0eOqGrVqvLwcP7VXrNmTcf+v4qIiMj2eT08PFS5cmWn9r+uQyBJp06dUkJCgqZPn57h896jRw9JyvCZv34Mrk0lvzYGERERGjx4sD744APdeuutioqK0pQpU5zWV8jLz9n12rZtq8mTJ2v16tW68847Vb16dX377beO2zVKly6d7XMBAJw1atRIrVu3VuvWrRUdHa1vv/1WtWrVUv/+/XX58uUsj7t48aKGDx+u8PBw2e123XrrrQoKClJCQoLT98Hrr7+uhIQEVatWTXXq1NFLL72kn376ySWxk+/8H/Id8h3AlVhTCsiGpk2b6uuvv9bPP//sWE/qmiZNmuill17S8ePHtWbNGoWFhem2226TdHVdKJvNpsWLF2f6hBZX/sLP7yfAZCY1NVX79u3T7bffnmUfm82mL7/8Uhs2bNDXX3+t7777Ts8884zGjx+vDRs2ZGsM7HZ7hsQjr2w2m4wxGdqvLQyf13NnR1b/ZpnFlR/++pdnV7i24P+TTz6Z5dpn169PkZ0xGD9+vLp3767//ve/+v777zVgwADFxsZqw4YNKl++vMt/zvr3768ePXrop59+kpeXl+rVq6cPP/xQ0tVkHwDgGh4eHmrVqpUmTZqk/fv3Z7m+0PPPP6+ZM2dq4MCBioyMlL+/v2w2m7p06eL0sJnmzZvr4MGDju+LDz74QG+//bamTZumXr165TpO8p2sz50d5DvkO8CNUJQCsuHazKc1a9Zo7dq1TtN4GzRoILvdrpUrV2rjxo1q166dY1/lypVljFFERESOf7lXrFhRK1as0IULF5xmS13/pI6cyG7ykF1ffvmlLl68qKioqJv2vfvuu3X33Xdr9OjRmjt3rqKjozVv3jz16tXL5XFlNm1/3759Tk+uKVOmTKbTxq//61pOYqtYsaLS09O1f/9+x1/rpKuLYSYkJKhixYrZPlduVKxYUT/99JPS09Odktpff/3VsT+3501PT9fBgwed/lq4d+9ep37XnlSTlpam1q1b5+q9slKnTh3VqVNHr776qtatW6d77rlH06ZN06hRo/L0c5YVHx8fRUZGOl7/8MMP8vb2dnqqJgAg765cuSLp6kykrHz55ZeKiYnR+PHjHW2XLl1SQkJChr6BgYHq0aOHevTooeTkZDVv3lyvvfZanopS5DvOyHfIdwBX4vY9IBsaNmyoUqVK6dNPP9Xx48edZkrZ7XbdeeedmjJlis6fP+8oYEnSI488ohIlSmjkyJEZ/hpkjNHp06ezfM+oqCilpqZqxowZjrb09HRNmTIl19dxrbiVWRKXUzt37tTAgQNVpkyZG65zdfbs2QzXXq9ePUlyTGl3ZVyStGjRIh0/ftzxetOmTdq4caPatm3raKtcubJ+/fVXnTp1ytG2c+dOxy2Y1+QktmsFyYkTJzq1T5gwQZIyfXqLK7Vr105xcXH6/PPPHW1XrlzR5MmTVbp0abVo0SJX5702bu+8845T+/XXWaJECXXu3Fn/+c9/MjySWpLTWGdXUlKS4/+wXFOnTh15eHg4Pj95+TnLjnXr1mnBggXq2bOnY80HAEDepaam6vvvv5eXl5dTceN6JUqUyPD7ffLkyRlm+1z/+7506dKqUqVKjm6hux75TkbkO+Q7gCsxUwrIBi8vL91111368ccfZbfb1aBBA6f9TZo0cfz17q9FqcqVK2vUqFEaOnSoDh8+rE6dOsnX11eHDh3SwoUL1adPHw0ZMiTT9+zUqZMaNWqkF198UQcOHFCNGjX01Vdf6cyZM5JyN+vJ29tbtWrV0ueff65q1aopMDBQt99++w2no0vSjz/+qEuXLiktLU2nT5/W2rVr9dVXX8nf318LFy5USEhIlsfOnj1b7733nh5++GFVrlxZ586d04wZM+Tn5+dIanIbV1aqVKmipk2bqm/fvkpJSdHEiRNVtmxZ/eMf/3D0eeaZZzRhwgRFRUWpZ8+eio+P17Rp01S7dm0lJSXlaszq1q2rmJgYTZ8+XQkJCWrRooU2bdqk2bNnq1OnTmrVqlWurie7+vTpo/fff1/du3fX1q1bValSJX355Zdau3atJk6ceMO1MG6kXr166tq1q9577z0lJiaqSZMmWrZsWaaz9saOHasVK1aocePG6t27t2rVqqUzZ85o27Zt+uGHHxyf3+xavny5+vfvr8cee0zVqlXTlStX9PHHHzsSQilvP2fXO3LkiB5//HE99NBDCgkJ0e7duzVt2jTdcccdGjNmTI5iBwA4W7x4sWM2S3x8vObOnav9+/frlVdekZ+fX5bHPfjgg/r444/l7++vWrVqaf369frhhx9UtmxZp361atVSy5Yt1aBBAwUGBmrLli368ssv1b9//2zFR75DvkO+Q74DN7DsOX9AITd06FAjyTRp0iTDvgULFhhJxtfX11y5ciXD/v/85z+madOmxsfHx/j4+JgaNWqYfv36mb179zr6XP9oXmOuPp63W7duxtfX1/j7+5vu3bubtWvXGklm3rx5Tsf6+PhkeN/rH+FrjDHr1q0zDRo0MF5eXlk++veaa4+xvbaVLFnSBAUFmebNm5vRo0dn+njd6x+RvG3bNtO1a1dToUIFY7fbTbly5cyDDz5otmzZkq24srq2zMbs2qN///3vf5vx48eb8PBwY7fbTbNmzczOnTszHP/JJ5+Y2267zXh5eZl69eqZ7777LtN/h6xiy2x8U1NTzciRI01ERIQpWbKkCQ8PN0OHDjWXLl1y6pfZI46NyfrRzdfL6viTJ0+aHj16mFtvvdV4eXmZOnXqmJkzZzr1+es4ZdfFixfNgAEDTNmyZY2Pj4/p0KGDOXbsWKafoZMnT5p+/fqZ8PBwU7JkSRMSEmLuu+8+M336dEefrB6/fS22azH/9ttv5plnnjGVK1c2pUqVMoGBgaZVq1bmhx9+yBBjdn7ObubMmTOmY8eOJiQkxHh5eZmIiAjz8ssvZ3hkMgAg+67lBn/dSpUqZerVq2emTp1q0tPTnfpf/91y9uxZx3db6dKlTVRUlPn1119NxYoVTUxMjKPfqFGjTKNGjUxAQIDx9vY2NWrUMKNHjzaXL1++YXzkOzeOjXyHfAfITzZjLFphDoBLLFq0SA8//LDWrFnD/d4AAAAAgEKLohRQgF28eNHpiSFpaWl64IEHtGXLFsXFxbn8aSIAAAAAAFiFNaWAAuz555/XxYsXFRkZqZSUFC1YsEDr1q3TmDFjKEgBOXDx4kUlJibesE9gYKC8vLwsiggAAMC1yHdQGDFTCijA5s6dq/Hjx+vAgQO6dOmSqlSpor59+2Z7wU4AV82aNUs9evS4YZ8VK1aoZcuW1gQEAADgYuQ7KIwoSgEAirwTJ05o9+7dN+zToEEDlSlTxqKIAAAAXIt8B4URRSkAAAAAAABYzsPdAQAAAAAAAKD4YaFzSenp6frjjz/k6+srm83m7nAAAEAhYozRuXPnFBYWJg+PovH3PnIjAACQF9nNjyhKSfrjjz8UHh7u7jAAAEAhduzYMZUvX97dYbgEuREAAHCFm+VHFKUk+fr6Sro6WH5+fm6OBgAAFCZJSUkKDw935BNFAbkRAADIi+zmRxSlJMe0dD8/PxIvAACQK0XpNjdyIwAA4Ao3y4+KxsIHAAAAAAAAKFQoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAIAiJi0tTcOGDVNERIS8vb1VuXJlvfHGGzLGuDs0AAAAB093BwAAAADXevPNNzV16lTNnj1btWvX1pYtW9SjRw/5+/trwIAB7g4PAABAEkUpAACAImfdunXq2LGj2rdvL0mqVKmSPvvsM23atMnNkQEAAPwfbt8DAAAoYpo0aaJly5Zp3759kqSdO3dqzZo1atu2rZsjAwAA+D/MlAIAAChiXnnlFSUlJalGjRoqUaKE0tLSNHr0aEVHR2faPyUlRSkpKY7XSUlJVoUKAACKMYpSAAoFmy1vx7O2L4Di5IsvvtCnn36quXPnqnbt2tqxY4cGDhyosLAwxcTEZOgfGxurkSNHuiFSAHkyN48JUjcSJADuZTM8hkVJSUny9/dXYmKi/Pz83B0OgExQlAJQUBXEPCI8PFyvvPKK+vXr52gbNWqUPvnkE/36668Z+mc2Uyo8PLxAXROATFCUAlBAZTc/YqYUgGyhKAQAhceFCxfk4eG8dGiJEiWUnp6eaX+73S673W5FaAAAAA4UpQAAAIqYDh06aPTo0apQoYJq166t7du3a8KECXrmmWfcHRoAAIADRSkAAIAiZvLkyRo2bJj+/ve/Kz4+XmFhYXr22Wc1fPhwd4cGAADgQFEKAACgiPH19dXEiRM1ceJEd4cCAACQJY+bdwEAAAAAAABci6IUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLsdA5UAjYbHk/hzF5PwcAAAAAAK7CTCkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLsdA5UEy4YrH0wiyv189C8QAAAADgWsyUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFjOrUWp1atXq0OHDgoLC5PNZtOiRYuy7Pvcc8/JZrNp4sSJTu1nzpxRdHS0/Pz8FBAQoJ49eyo5OTl/AwcAAAAAAECeuLUodf78edWtW1dTpky5Yb+FCxdqw4YNCgsLy7AvOjpau3fv1tKlS/XNN99o9erV6tOnT36FDAAAAAAAABfwdOebt23bVm3btr1hn+PHj+v555/Xd999p/bt2zvt++WXX7RkyRJt3rxZDRs2lCRNnjxZ7dq107hx4zItYgEAAAAAAMD9CvSaUunp6Xrqqaf00ksvqXbt2hn2r1+/XgEBAY6ClCS1bt1aHh4e2rhxY5bnTUlJUVJSktMGAAAAAAAA6xTootSbb74pT09PDRgwINP9cXFxKleunFObp6enAgMDFRcXl+V5Y2Nj5e/v79jCw8NdGjcAAAAAAABurMAWpbZu3apJkyZp1qxZstlsLj330KFDlZiY6NiOHTvm0vMDAAAAAADgxgpsUerHH39UfHy8KlSoIE9PT3l6eurIkSN68cUXValSJUlSSEiI4uPjnY67cuWKzpw5o5CQkCzPbbfb5efn57QBAAAAAADAOm5d6PxGnnrqKbVu3dqpLSoqSk899ZR69OghSYqMjFRCQoK2bt2qBg0aSJKWL1+u9PR0NW7c2PKYAWTNxRMeAQAAAACFnFuLUsnJyTpw4IDj9aFDh7Rjxw4FBgaqQoUKKlu2rFP/kiVLKiQkRNWrV5ck1axZU23atFHv3r01bdo0paamqn///urSpQtP3gMAAAAAACjA3Hr73pYtW1S/fn3Vr19fkjR48GDVr19fw4cPz/Y5Pv30U9WoUUP33Xef2rVrp6ZNm2r69On5FTIAAAAAAABcwK0zpVq2bCljTLb7Hz58OENbYGCg5s6d68KoAAAAAAAAkN8K7ELnAAAAAAAAKLoK7ELnAFCQ5HWh9hxMCgUAAACAYoGZUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJZjoXMAsAALpQMAAACAM2ZKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAQBFTqVIl2Wy2DFu/fv3cHRoAAIADT98DAAAoYjZv3qy0tDTH6127dun+++/XY4895saoAAAAnFGUAgAAKGKCgoKcXo8dO1aVK1dWixYt3BQRAABARty+BwAAUIRdvnxZn3zyiZ555hnZbDZ3hwMAAODATCkAAIAibNGiRUpISFD37t2z7JOSkqKUlBTH66SkJAsiAwAAxR0zpQAAAIqwDz/8UG3btlVYWFiWfWJjY+Xv7+/YwsPDLYwQAAAUVxSlAAAAiqgjR47ohx9+UK9evW7Yb+jQoUpMTHRsx44dsyhCAABQnHH7HgAAQBE1c+ZMlStXTu3bt79hP7vdLrvdblFUAAAAVzFTCgAAoAhKT0/XzJkzFRMTI09P/g4JAAAKHopSAAAARdAPP/ygo0eP6plnnnF3KAAAAJniz2YAAABF0AMPPCBjjLvDAAAAyBIzpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAs5+nuAAAAN2ez5e14Y1wTBwAAAAC4CjOlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJZza1Fq9erV6tChg8LCwmSz2bRo0SLHvtTUVL388suqU6eOfHx8FBYWpqefflp//PGH0znOnDmj6Oho+fn5KSAgQD179lRycrLFVwIAAAAAAICccGtR6vz586pbt66mTJmSYd+FCxe0bds2DRs2TNu2bdOCBQu0d+9ePfTQQ079oqOjtXv3bi1dulTffPONVq9erT59+lh1CQAAAAAAAMgFT3e+edu2bdW2bdtM9/n7+2vp0qVObe+++64aNWqko0ePqkKFCvrll1+0ZMkSbd68WQ0bNpQkTZ48We3atdO4ceMUFhaW79cAAAAAAACAnCtUa0olJibKZrMpICBAkrR+/XoFBAQ4ClKS1Lp1a3l4eGjjxo1uihIAAAAAAAA349aZUjlx6dIlvfzyy+ratav8/PwkSXFxcSpXrpxTP09PTwUGBiouLi7Lc6WkpCglJcXxOikpKX+CBgAAAAAAQKYKxUyp1NRUPf744zLGaOrUqXk+X2xsrPz9/R1beHi4C6IEAAAAAABAdhX4otS1gtSRI0e0dOlSxywpSQoJCVF8fLxT/ytXrujMmTMKCQnJ8pxDhw5VYmKiYzt27Fi+xQ8AAAAAAICMCvTte9cKUvv379eKFStUtmxZp/2RkZFKSEjQ1q1b1aBBA0nS8uXLlZ6ersaNG2d5XrvdLrvdnq+xAwAAAAAAIGtuLUolJyfrwIEDjteHDh3Sjh07FBgYqNDQUD366KPatm2bvvnmG6WlpTnWiQoMDJSXl5dq1qypNm3aqHfv3po2bZpSU1PVv39/denShSfvAQAAAAAAFGBuLUpt2bJFrVq1crwePHiwJCkmJkavvfaavvrqK0lSvXr1nI5bsWKFWrZsKUn69NNP1b9/f913333y8PBQ586d9c4771gSPwAAAAAAAHLHrUWpli1byhiT5f4b7bsmMDBQc+fOdWVYAAAAAAAAyGcFfqFzAAAAAAAAFD0FeqFzoKiw2dwdAQAAAAAABQszpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAKIKOHz+uJ598UmXLlpW3t7fq1KmjLVu2uDssAAAAB093BwAAAADXOnv2rO655x61atVKixcvVlBQkPbv368yZcq4OzQAAAAHilIAAABFzJtvvqnw8HDNnDnT0RYREeHGiAAAADLi9j0AAIAi5quvvlLDhg312GOPqVy5cqpfv75mzJjh7rAAAACcUJQCAAAoYn777TdNnTpVVatW1Xfffae+fftqwIABmj17dqb9U1JSlJSU5LQBAADkN27fAwAAKGLS09PVsGFDjRkzRpJUv3597dq1S9OmTVNMTEyG/rGxsRo5cqTVYQIAgGKOmVIAAABFTGhoqGrVquXUVrNmTR09ejTT/kOHDlViYqJjO3bsmBVhAgCAYo6ZUgAAAEXMPffco7179zq17du3TxUrVsy0v91ul91utyI0AAAAB2ZKAQAAFDGDBg3Shg0bNGbMGB04cEBz587V9OnT1a9fP3eHBgAA4EBRCgAAoIi56667tHDhQn322We6/fbb9cYbb2jixImKjo52d2gAAAAO3L4HAABQBD344IN68MEH3R0GAABAlpgpBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsJxbi1KrV69Whw4dFBYWJpvNpkWLFjntN8Zo+PDhCg0Nlbe3t1q3bq39+/c79Tlz5oyio6Pl5+engIAA9ezZU8nJyRZeBQAAAAAAAHLKrUWp8+fPq27dupoyZUqm+9966y298847mjZtmjZu3CgfHx9FRUXp0qVLjj7R0dHavXu3li5dqm+++UarV69Wnz59rLoEAAAAAAAA5IKnO9+8bdu2atu2bab7jDGaOHGiXn31VXXs2FGSNGfOHAUHB2vRokXq0qWLfvnlFy1ZskSbN29Ww4YNJUmTJ09Wu3btNG7cOIWFhVl2LQAAAAAAAMi+Arum1KFDhxQXF6fWrVs72vz9/dW4cWOtX79ekrR+/XoFBAQ4ClKS1Lp1a3l4eGjjxo2WxwwAAAAAAIDscetMqRuJi4uTJAUHBzu1BwcHO/bFxcWpXLlyTvs9PT0VGBjo6JOZlJQUpaSkOF4nJSW5KmwAAAAAAABkQ4GdKZWfYmNj5e/v79jCw8PdHRIAAAAAAECxUmCLUiEhIZKkkydPOrWfPHnSsS8kJETx8fFO+69cuaIzZ844+mRm6NChSkxMdGzHjh1zcfQAAAAAAAC4kQJblIqIiFBISIiWLVvmaEtKStLGjRsVGRkpSYqMjFRCQoK2bt3q6LN8+XKlp6ercePGWZ7bbrfLz8/PaQMAAAAAAIB13LqmVHJysg4cOOB4fejQIe3YsUOBgYGqUKGCBg4cqFGjRqlq1aqKiIjQsGHDFBYWpk6dOkmSatasqTZt2qh3796aNm2aUlNT1b9/f3Xp0oUn7wEAAAAAABRgbi1KbdmyRa1atXK8Hjx4sCQpJiZGs2bN0j/+8Q+dP39effr0UUJCgpo2baolS5aoVKlSjmM+/fRT9e/fX/fdd588PDzUuXNnvfPOO5ZfCwAAAAAAALLPZowx7g7C3ZKSkuTv76/ExERu5UO+sNncHQGKO37TA/mnKOYRRfGagCJpbh6TzG4kCADyR3ZziQK7phQAAAAAAACKLopSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAChiXnvtNdlsNqetRo0a7g4LAADAiae7AwAAAIDr1a5dWz/88IPjtacnaR8AAChYyE4AAACKIE9PT4WEhLg7DAAAgCxx+x4AAEARtH//foWFhem2225TdHS0jh49mmXflJQUJSUlOW0AAAD5jZlSAAAARUzjxo01a9YsVa9eXSdOnNDIkSPVrFkz7dq1S76+vhn6x8bGauTIkW6IFIBbzbXl7fhuxjVxACi2bMaYYv+bJCkpSf7+/kpMTJSfn5+7w0ERZMvj9z2QV/ymB/JPYcgjEhISVLFiRU2YMEE9e/bMsD8lJUUpKSmO10lJSQoPDy/Q1wRAeS8q5RVFKQBZyG5+xEwpAACAIi4gIEDVqlXTgQMHMt1vt9tlt9stjgoAABR3rCkFAABQxCUnJ+vgwYMKDQ11dygAAAAOFKUAAACKmCFDhmjVqlU6fPiw1q1bp4cfflglSpRQ165d3R0aAACAQ66KUr/99pur4wAAAIBck2f9/vvv6tq1q6pXr67HH39cZcuW1YYNGxQUFOSCCAEAAFwjV2tKValSRS1atFDPnj316KOPqlSpUq6OCwAAoFhyRZ41b968fIgMAADAtXI1U2rbtm264447NHjwYIWEhOjZZ5/Vpk2bXB0bAABAsUOeBQAAiotcFaXq1aunSZMm6Y8//tBHH32kEydOqGnTprr99ts1YcIEnTp1ytVxAgAAFAvkWQAAoLjI00Lnnp6eeuSRRzR//ny9+eabOnDggIYMGaLw8HA9/fTTOnHihKviBAAAKFbIswAAQFGXp6LUli1b9Pe//12hoaGaMGGChgwZooMHD2rp0qX6448/1LFjR1fFCQAAUKyQZwEAgKIuVwudT5gwQTNnztTevXvVrl07zZkzR+3atZOHx9UaV0REhGbNmqVKlSq5MlYAAIAijzwLAAAUF7kqSk2dOlXPPPOMunfvrtDQ0Ez7lCtXTh9++GGeggMAAChuyLMAAEBxkaui1P79+2/ax8vLSzExMbk5PQAAQLFFngUAAIqLXK0pNXPmTM2fPz9D+/z58zV79uw8BwUAAFBckWcBAIDiIldFqdjYWN16660Z2suVK6cxY8bkOSgAAIDiijwLAAAUF7kqSh09elQREREZ2itWrKijR4/mOSgAAIDiijwLAAAUF7kqSpUrV04//fRThvadO3eqbNmyeQ4KKGhstrxtgLvxGQYKD/IsAABQXOSqKNW1a1cNGDBAK1asUFpamtLS0rR8+XK98MIL6tKli6tjBAAAKDbIswAAQHGRq6fvvfHGGzp8+LDuu+8+eXpePUV6erqefvpp1joAAADIA/IsAABQXNiMMSa3B+/bt087d+6Ut7e36tSpo4oVK7oyNsskJSXJ399fiYmJ8vPzc3c4KIC4fQnFXe6/KYCiL7/yCHfmWeRGQCEx181JajcSBACZy24ukauZUtdUq1ZN1apVy8spAAAAkAnyLAAAUNTlqiiVlpamWbNmadmyZYqPj1d6errT/uXLl7skOAAAgOKGPAsAABQXuSpKvfDCC5o1a5bat2+v22+/XTbubQIAAHAJ8iwAAFBc5KooNW/ePH3xxRdq166dq+MBAAAo1sizAABAceGRm4O8vLxUpUoVV8cCAABQ7JFnAQCA4iJXRakXX3xRkyZNUh4e3AcAAIBMkGcBAIDiIle3761Zs0YrVqzQ4sWLVbt2bZUsWdJp/4IFC1wSHAAAQHFDngUAAIqLXBWlAgIC9PDDD7s6FgAAgGKPPAsAABQXuSpKzZw509VxAAAAQORZAACg+MjVmlKSdOXKFf3www96//33de7cOUnSH3/8oeTkZJcFBwAAUByRZwEAgOIgV0WpI0eOqE6dOurYsaP69eunU6dOSZLefPNNDRkyxGXBpaWladiwYYqIiJC3t7cqV66sN954w2nhT2OMhg8frtDQUHl7e6t169bav3+/y2IAAACwklV5FgAAgLvlqij1wgsvqGHDhjp79qy8vb0d7Q8//LCWLVvmsuDefPNNTZ06Ve+++65++eUXvfnmm3rrrbc0efJkR5+33npL77zzjqZNm6aNGzfKx8dHUVFRunTpksviAAAAsIpVeRYAAIC75WpNqR9//FHr1q2Tl5eXU3ulSpV0/PhxlwQmSevWrVPHjh3Vvn17x/k/++wzbdq0SdLVWVITJ07Uq6++qo4dO0qS5syZo+DgYC1atEhdunRxWSwAAABWsCrPAgAAcLdczZRKT09XWlpahvbff/9dvr6+eQ7qmiZNmmjZsmXat2+fJGnnzp1as2aN2rZtK0k6dOiQ4uLi1Lp1a8cx/v7+aty4sdavX5/leVNSUpSUlOS0AQAAFARW5VkAAADulqui1AMPPKCJEyc6XttsNiUnJ2vEiBFq166dq2LTK6+8oi5duqhGjRoqWbKk6tevr4EDByo6OlqSFBcXJ0kKDg52Oi44ONixLzOxsbHy9/d3bOHh4S6LGQAAIC+syrMAAADcLVdFqfHjx2vt2rWqVauWLl26pG7dujmmlL/55psuC+6LL77Qp59+qrlz52rbtm2aPXu2xo0bp9mzZ+fpvEOHDlViYqJjO3bsmIsiBgAAyBur8iwAAAB3y9WaUuXLl9fOnTs1b948/fTTT0pOTlbPnj0VHR3ttCBnXr300kuO2VKSVKdOHR05ckSxsbGKiYlRSEiIJOnkyZMKDQ11HHfy5EnVq1cvy/Pa7XbZ7XaXxQkAAOAqVuVZAAAA7paropQkeXp66sknn3RlLBlcuHBBHh7Ok7lKlCih9PR0SVJERIRCQkK0bNkyRxEqKSlJGzduVN++ffM1NgAAgPxiRZ4FAADgbrkqSs2ZM+eG+59++ulcBXO9Dh06aPTo0apQoYJq166t7du3a8KECXrmmWckXV1jYeDAgRo1apSqVq2qiIgIDRs2TGFhYerUqZNLYgAAALCSVXkWAACAu9mMMSanB5UpU8bpdWpqqi5cuCAvLy/dcsstOnPmjEuCO3funIYNG6aFCxcqPj5eYWFh6tq1q4YPH+54TLIxRiNGjND06dOVkJCgpk2b6r333lO1atWy/T5JSUny9/dXYmKi/Pz8XBI7ihabzd0RAIVbzr9pgMLD1XmEVXnWjZAbAYXEXDcnqd34ggeQuezmErkqSmVm//796tu3r1566SVFRUW54pSWIfHCzVCUAvKGohSKMivyCKvzLHIjoJCgKAWggMpuLpGrp+9lpmrVqho7dqxeeOEFV50SAAAAIs8CAABFk8uKUtLVRTn/+OMPV54SAAAAIs8CAABFT64WOv/qq6+cXhtjdOLECb377ru65557XBIYAABAcZQfedbYsWM1dOhQvfDCC5o4caILogQAAMi7XBWlrn+ync1mU1BQkO69916NHz/eFXEBAAAUS67OszZv3qz3339fd9xxh4siBAAAcI1cFaXS09NdHQcAAADk2jwrOTlZ0dHRmjFjhkaNGuWy8wIAALiCS9eUAgAAQMHRr18/tW/fXq1bt75hv5SUFCUlJTltAAAA+S1XM6UGDx6c7b4TJkzIzVsAAAAUS67Ks+bNm6dt27Zp8+bNNz1PbGysRo4cme33BQAAcIVcFaW2b9+u7du3KzU1VdWrV5ck7du3TyVKlNCdd97p6Gez2VwTJQAAQDHhijzr2LFjeuGFF7R06VKVKlXqpu85dOhQp2JYUlKSwsPD83AVAAAAN5erolSHDh3k6+ur2bNnq0yZMpKks2fPqkePHmrWrJlefPFFlwYJAABQXLgiz9q6davi4+OdilhpaWlavXq13n33XaWkpKhEiRKOfXa7XXa73fUXAwAAcAM2Y4zJ6UF/+9vf9P3336t27dpO7bt27dIDDzygP/74w2UBWiEpKUn+/v5KTEyUn5+fu8NBAcSkPyBvcv5NAxQers4jXJFnnTt3TkeOHHFq69Gjh2rUqKGXX35Zt99++w2PJzcCCom5bk5Su/EFDyBz2c0lcjVTKikpSadOncrQfurUKZ07dy43pwQAAIBck2f5+vpmKDz5+PiobNmyNy1IAQAAWCVXT997+OGH1aNHDy1YsEC///67fv/9d/3nP/9Rz5499cgjj7g6RiDPbLa8bQAAWIU8CwAAFBe5mik1bdo0DRkyRN26dVNqaurVE3l6qmfPnvr3v//t0gABAACKk/zKs1auXOmiCAEAAFwjV2tKXXP+/HkdPHhQklS5cmX5+Pi4LDArsW5C0cdsJ8C9WFMKRVl+5RHuzLPIjYBCgjWlABRQ2c0lcnX73jUnTpzQiRMnVLVqVfn4+CgP9S0AAAD8BXkWAAAo6nJVlDp9+rTuu+8+VatWTe3atdOJEyckST179szWY4oBAACQOfIsAABQXOSqKDVo0CCVLFlSR48e1S233OJof+KJJ7RkyRKXBQcAAFDckGcBAIDiIlcLnX///ff67rvvVL58eaf2qlWr6siRIy4JDAAAoDgizwIAAMVFrmZKnT9/3ukvd9ecOXNGdrs9z0EBAAAUV+RZAACguMhVUapZs2aaM2eO47XNZlN6erreeusttWrVymXBAQAAFDfkWQAAoLjI1e17b731lu677z5t2bJFly9f1j/+8Q/t3r1bZ86c0dq1a10dIwAAQLFBngUAAIqLXM2Uuv3227Vv3z41bdpUHTt21Pnz5/XII49o+/btqly5sqtjBAAAKDbIswAAQHGR45lSqampatOmjaZNm6Z//etf+RETAABAsUSeBQAAipMcz5QqWbKkfvrpp/yIBQAAoFgjzwIAAMVJrm7fe/LJJ/Xhhx+6OhYAAIBijzwLAAAUF7la6PzKlSv66KOP9MMPP6hBgwby8fFx2j9hwgSXBAcAAFDckGcBAIDiIkdFqd9++02VKlXSrl27dOedd0qS9u3b59THZrO5LjoAAIBigjwLAAAUNzkqSlWtWlUnTpzQihUrJElPPPGE3nnnHQUHB+dLcAAAAMUFeRYAAChucrSmlDHG6fXixYt1/vx5lwYEAABQHJFnAQCA4iZXC51fc33yBAAAANcgzwIAAEVdjopSNpstw1oGrG0AAACQd+RZAACguMnRmlLGGHXv3l12u12SdOnSJT333HMZngqzYMEC10UIAABQDJBnAQCA4iZHRamYmBin108++aRLgwEAACiuyLMAAEBxk6Oi1MyZM/MrDgAAgGKNPAsAABQ3OSpKAe7CkhoAAAAAABQteXr6HgAAAAAAAJAbFKUAAAAAAABgOW7fAwDku7zegmuMa+IAAAAAUHAwUwoAAAAAAACWoygFAAAAAAAAyxX4otTx48f15JNPqmzZsvL29ladOnW0ZcsWx35jjIYPH67Q0FB5e3urdevW2r9/vxsjBgAAAAAAwM0U6KLU2bNndc8996hkyZJavHix9uzZo/Hjx6tMmTKOPm+99ZbeeecdTZs2TRs3bpSPj4+ioqJ06dIlN0YOAAAAAACAGynQC52/+eabCg8P18yZMx1tERERjv82xmjixIl69dVX1bFjR0nSnDlzFBwcrEWLFqlLly6WxwwAAAAAAICbK9Azpb766is1bNhQjz32mMqVK6f69etrxowZjv2HDh1SXFycWrdu7Wjz9/dX48aNtX79eneEDAAAAAAAgGwo0EWp3377TVOnTlXVqlX13XffqW/fvhowYIBmz54tSYqLi5MkBQcHOx0XHBzs2JeZlJQUJSUlOW0AAAAAAACwToG+fS89PV0NGzbUmDFjJEn169fXrl27NG3aNMXExOT6vLGxsRo5cqSrwgQAAAAAAEAOFeiZUqGhoapVq5ZTW82aNXX06FFJUkhIiCTp5MmTTn1Onjzp2JeZoUOHKjEx0bEdO3bMxZEDAAAAAADgRgp0Ueqee+7R3r17ndr27dunihUrSrq66HlISIiWLVvm2J+UlKSNGzcqMjIyy/Pa7Xb5+fk5bQAAAAAAALBOgb59b9CgQWrSpInGjBmjxx9/XJs2bdL06dM1ffp0SZLNZtPAgQM1atQoVa1aVRERERo2bJjCwsLUqVMn9wYPAAAAAACALBXootRdd92lhQsXaujQoXr99dcVERGhiRMnKjo62tHnH//4h86fP68+ffooISFBTZs21ZIlS1SqVCk3Rg4AAAAAAIAbsRljjLuDcLekpCT5+/srMTGRW/kKKJvN3REAcCe+qVCQFcQ8YurUqZo6daoOHz4sSapdu7aGDx+utm3bZuv4gnhNADIx181Jcje+oAFkLru5RIFeUwoAAAA5V758eY0dO1Zbt27Vli1bdO+996pjx47avXu3u0MDAABwKNC37wEAACDnOnTo4PR69OjRmjp1qjZs2KDatWu7KSoAAABnFKUAAACKsLS0NM2fP1/nz5/P8unEKSkpSklJcbxOSkqyKjwAAFCMcfseAABAEfTzzz+rdOnSstvteu6557Rw4ULVqlUr076xsbHy9/d3bOHh4RZHCwAAiiOKUgAAAEVQ9erVtWPHDm3cuFF9+/ZVTEyM9uzZk2nfoUOHKjEx0bEdO3bM4mgBAEBxxO17AAAARZCXl5eqVKkiSWrQoIE2b96sSZMm6f3338/Q1263y263Wx0iAAAo5pgpBQAAUAykp6c7rRsFAADgbsyUAgAAKGKGDh2qtm3bqkKFCjp37pzmzp2rlStX6rvvvnN3aAAAAA4UpQAAAIqY+Ph4Pf300zpx4oT8/f11xx136LvvvtP999/v7tAAAAAcKEoBAAAUMR9++KG7QwAAALgp1pQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACW83R3ACgebDZ3RwAAAAAAAAoSZkoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJbzdHcAAADcjM2W93MYk/dzAAAAAHAdZkoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUKVVFq7NixstlsGjhwoKPt0qVL6tevn8qWLavSpUurc+fOOnnypPuCBAAAAAAAwE0VmqLU5s2b9f777+uOO+5wah80aJC+/vprzZ8/X6tWrdIff/yhRx55xE1RAgAAAAAAIDsKRVEqOTlZ0dHRmjFjhsqUKeNoT0xM1IcffqgJEybo3nvvVYMGDTRz5kytW7dOGzZscGPEAAAAAAAAuJFCUZTq16+f2rdvr9atWzu1b926VampqU7tNWrUUIUKFbR+/fosz5eSkqKkpCSnDQAAAAAAANbxdHcANzNv3jxt27ZNmzdvzrAvLi5OXl5eCggIcGoPDg5WXFxclueMjY3VyJEjXR0qAAAAAAAAsqlAz5Q6duyYXnjhBX366acqVaqUy847dOhQJSYmOrZjx4657NwAAAAAAAC4uQJdlNq6davi4+N15513ytPTU56enlq1apXeeecdeXp6Kjg4WJcvX1ZCQoLTcSdPnlRISEiW57Xb7fLz83PaAAAAiorY2Fjddddd8vX1Vbly5dSpUyft3bvX3WEBAAA4KdBFqfvuu08///yzduzY4dgaNmyo6Ohox3+XLFlSy5Ytcxyzd+9eHT16VJGRkW6MHAAAwH1WrVqlfv36acOGDVq6dKlSU1P1wAMP6Pz58+4ODQAAwKFArynl6+ur22+/3anNx8dHZcuWdbT37NlTgwcPVmBgoPz8/PT8888rMjJSd999tztCBgAAcLslS5Y4vZ41a5bKlSunrVu3qnnz5m6KCgAAwFmBLkplx9tvvy0PDw917txZKSkpioqK0nvvvefusAAAAAqMxMRESVJgYGCm+1NSUpSSkuJ4zZOJAQCAFWzGGOPuINwtKSlJ/v7+SkxMZH2pfGKzuTsCAMUd33bILwU9j0hPT9dDDz2khIQErVmzJtM+r732WqZPJi6o11RkzM1jgtQtj7/Y3P3+hV1BGL+8xuBuxf0zVNwVhJ+hwq4Aj2F286MCvaYUAAAA8qZfv37atWuX5s2bl2UfnkwMAADcodDfvgcAAIDM9e/fX998841Wr16t8uXLZ9nPbrfLbrdbGBkAAABFKQAAgCLHGKPnn39eCxcu1MqVKxUREeHukAAAADKgKAUAAFDE9OvXT3PnztV///tf+fr6Ki4uTpLk7+8vb29vN0cHAABwFWtKAQAAFDFTp05VYmKiWrZsqdDQUMf2+eefuzs0AAAAB2ZKAQAAFDE8XBkAABQGzJQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6n7wEAigWbLW/H8zAzAAAAwLWYKQUAAAAAAADLUZQCAAAAAACA5bh9D9mS19teAAAAAAAA/oqZUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALBcgS5KxcbG6q677pKvr6/KlSunTp06ae/evU59Ll26pH79+qls2bIqXbq0OnfurJMnT7opYgAAAAAAAGRHgS5KrVq1Sv369dOGDRu0dOlSpaam6oEHHtD58+cdfQYNGqSvv/5a8+fP16pVq/THH3/okUcecWPUAAAAAAAAuBlPdwdwI0uWLHF6PWvWLJUrV05bt25V8+bNlZiYqA8//FBz587VvffeK0maOXOmatasqQ0bNujuu+92R9gAAAAAAAC4iQI9U+p6iYmJkqTAwEBJ0tatW5WamqrWrVs7+tSoUUMVKlTQ+vXrszxPSkqKkpKSnDYAAICiYvXq1erQoYPCwsJks9m0aNEid4cEAACQQaEpSqWnp2vgwIG65557dPvtt0uS4uLi5OXlpYCAAKe+wcHBiouLy/JcsbGx8vf3d2zh4eH5GToAAIClzp8/r7p162rKlCnuDgUAACBLBfr2vb/q16+fdu3apTVr1uT5XEOHDtXgwYMdr5OSkihMAQCAIqNt27Zq27atu8MAAAC4oUJRlOrfv7+++eYbrV69WuXLl3e0h4SE6PLly0pISHCaLXXy5EmFhIRkeT673S673Z6fIQMAAAAAAOAGCvTte8YY9e/fXwsXLtTy5csVERHhtL9BgwYqWbKkli1b5mjbu3evjh49qsjISKvDBQAAKJRYbxMAALhDgZ4p1a9fP82dO1f//e9/5evr61gnyt/fX97e3vL391fPnj01ePBgBQYGys/PT88//7wiIyN58h4AAEA2xcbGauTIkda/8Vxb3o7vZlwTB9zD3f/+eX3/vHL3+xcF7v4MuVtxv/6CgH+DPCvQM6WmTp2qxMREtWzZUqGhoY7t888/d/R5++239eCDD6pz585q3ry5QkJCtGDBAjdGDQAAULgMHTpUiYmJju3YsWPuDgkAABQDBXqmlDE3rxqWKlVKU6ZM4ekyAAAAucR6mwAAwB0KdFEKAAAAOZecnKwDBw44Xh86dEg7duxQYGCgKlSo4MbIAAAA/g9FKQAAgCJmy5YtatWqleP14MGDJUkxMTGaNWuWm6ICAABwRlEKAACgiGnZsmW2lkEAAABwpwK90DkAAAAAAACKJopSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMt5ujsAAAAKA5stb8cb45o4AAAAgKKCmVIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlvN0dwCwhs3m7ggAAAAAAAD+DzOlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALMdC5wAAWCCvD5wwxjVxAAAAAAUFM6UAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDlPdweA7LHZ3B0BAMCd3P09YEzeji/s8QMAAMD1mCkFAAAAAAAAy1GUAgAAAAAAgOWKTFFqypQpqlSpkkqVKqXGjRtr06ZN7g7Jic2Wtw0AACCnCnp+BAAAirciUZT6/PPPNXjwYI0YMULbtm1T3bp1FRUVpfj4eHeHBgAA4BbkRwAAoKArEkWpCRMmqHfv3urRo4dq1aqladOm6ZZbbtFHH33k7tAAAADcgvwIAAAUdIW+KHX58mVt3bpVrVu3drR5eHiodevWWr9+vRsjAwAAcA/yIwAAUBh4ujuAvPrzzz+Vlpam4OBgp/bg4GD9+uuvmR6TkpKilJQUx+vExERJUlJSUv4FCgBAIVbYvyLzM/5r+YMxJv/eJIdymh+5LTe6kMfjC/sH093Xz/vD3dz9b8jvEJeEkWuFPX7J/dfg7ve/4amzlx8V+qJUbsTGxmrkyJEZ2sPDw90QDQAABZ+/v7sjyBsr4j937pz8C+lAFdrcqHfhHG+Xcff1F/f3R965+9/Q3e/vboX9+gt7/JL7r8GC979ZflToi1K33nqrSpQooZMnTzq1nzx5UiEhIZkeM3ToUA0ePNjxOj09XWfOnFHZsmVl41F3GSQlJSk8PFzHjh2Tn5+fu8MplBjDvGH88o4xzDvGMG+K8vgZY3Tu3DmFhYW5OxSHnOZHRT03Ksqfv5xgHBiDaxiHqxgHxuAaxuEqV45DdvOjQl+U8vLyUoMGDbRs2TJ16tRJ0tVEatmyZerfv3+mx9jtdtntdqe2gICAfI608PPz8yvWP6CuwBjmDeOXd4xh3jGGeVNUx6+gzZDKaX5UXHKjovr5yynGgTG4hnG4inFgDK5hHK5y1ThkJz8q9EUpSRo8eLBiYmLUsGFDNWrUSBMnTtT58+fVo0cPd4cGAADgFuRHAACgoCsSRaknnnhCp06d0vDhwxUXF6d69eppyZIlGRb3BAAAKC7IjwAAQEFXJIpSktS/f/8sb9dD3tjtdo0YMSLDtH5kH2OYN4xf3jGGeccY5g3j5x7kR1fx+buKcWAMrmEcrmIcGINrGIer3DEONlOQnl8MAAAAAACAYsHD3QEAAAAAAACg+KEoBQAAAAAAAMtRlAIAAAAAAIDlKEohU2fOnFF0dLT8/PwUEBCgnj17Kjk5OVvHGmPUtm1b2Ww2LVq0KH8DLaByOn5nzpzR888/r+rVq8vb21sVKlTQgAEDlJiYaGHU7jVlyhRVqlRJpUqVUuPGjbVp06Yb9p8/f75q1KihUqVKqU6dOvrf//5nUaQFV07GcMaMGWrWrJnKlCmjMmXKqHXr1jcd8+Igp5/Da+bNmyebzaZOnTrlb4AFXE7HLyEhQf369VNoaKjsdruqVavGzzJcJje5zLPPPqvKlSvL29tbQUFB6tixo3799VeLInY98pGrcvNZmD59ulq2bCk/Pz/ZbDYlJCRYE6wLkVvlbAx2796tzp07q1KlSrLZbJo4caJ1geYzcsSrcjIOCxYsUMOGDRUQECAfHx/Vq1dPH3/8sYXR5o8CmesaIBNt2rQxdevWNRs2bDA//vijqVKliunatWu2jp0wYYJp27atkWQWLlyYv4EWUDkdv59//tk88sgj5quvvjIHDhwwy5YtM1WrVjWdO3e2MGr3mTdvnvHy8jIfffSR2b17t+ndu7cJCAgwJ0+ezLT/2rVrTYkSJcxbb71l9uzZY1599VVTsmRJ8/PPP1scecGR0zHs1q2bmTJlitm+fbv55ZdfTPfu3Y2/v7/5/fffLY684MjpGF5z6NAh87e//c00a9bMdOzY0ZpgC6Ccjl9KSopp2LChadeunVmzZo05dOiQWblypdmxY4fFkaOoyk0u8/7775tVq1aZQ4cOma1bt5oOHTqY8PBwc+XKFYuidi3ykaty81l4++23TWxsrImNjTWSzNmzZ60J1kXIrXI+Bps2bTJDhgwxn332mQkJCTFvv/22tQHnE3LEq3I6DitWrDALFiwwe/bsMQcOHDATJ040JUqUMEuWLLE4ctcpqLkuRSlksGfPHiPJbN682dG2ePFiY7PZzPHjx2947Pbt283f/vY3c+LEiWJblMrL+P3VF198Yby8vExqamp+hFmgNGrUyPTr18/xOi0tzYSFhZnY2NhM+z/++OOmffv2Tm2NGzc2zz77bL7GWZDldAyvd+XKFePr62tmz56dXyEWeLkZwytXrpgmTZqYDz74wMTExBTrolROx2/q1KnmtttuM5cvX7YqRBQjrvou3rlzp5FkDhw4kB9h5ivykavyOg4rVqwolEUpcqu85UYVK1YsMkUpcsSr8joOxhhTv3598+qrr+ZHeJYoqLkut+8hg/Xr1ysgIEANGzZ0tLVu3VoeHh7auHFjlsdduHBB3bp105QpUxQSEmJFqAVSbsfveomJifLz85Onp2d+hFlgXL58WVu3blXr1q0dbR4eHmrdurXWr1+f6THr16936i9JUVFRWfYv6nIzhte7cOGCUlNTFRgYmF9hFmi5HcPXX39d5cqVU8+ePa0Is8DKzfh99dVXioyMVL9+/RQcHKzbb79dY8aMUVpamlVhowhzxXfx+fPnNXPmTEVERCg8PDy/Qs035CNXuWocChNyK9fkRkUBOeJVeR0HY4yWLVumvXv3qnnz5vkZar4pyLkuRSlkEBcXp3Llyjm1eXp6KjAwUHFxcVkeN2jQIDVp0kQdO3bM7xALtNyO31/9+eefeuONN9SnT5/8CLFA+fPPP5WWlqbg4GCn9uDg4CzHKy4uLkf9i7rcjOH1Xn75ZYWFhWVISIuL3IzhmjVr9OGHH2rGjBlWhFig5Wb8fvvtN3355ZdKS0vT//73Pw0bNkzjx4/XqFGjrAgZRVxevovfe+89lS5dWqVLl9bixYu1dOlSeXl55We4+YJ85CpXjENhQ27lmtyoKCBHvCq345CYmKjSpUvLy8tL7du31+TJk3X//ffnd7j5oiDnuhSlipFXXnlFNpvthltuF/P86quvtHz58iK1IOD18nP8/iopKUnt27dXrVq19Nprr+U9cOAmxo4dq3nz5mnhwoUqVaqUu8MpFM6dO6ennnpKM2bM0K233urucAql9PR0lStXTtOnT1eDBg30xBNP6F//+pemTZvm7tBQgFnxXRwdHa3t27dr1apVqlatmh5//HFdunTJRVeQd+QjV1k1DkBxVtxzRF9fX+3YsUObN2/W6NGjNXjwYK1cudLdYVnCyly3cM7DRa68+OKL6t69+w373HbbbQoJCVF8fLxT+5UrV3TmzJksb8tbvny5Dh48qICAAKf2zp07q1mzZkXihzc/x++ac+fOqU2bNvL19dXChQtVsmTJvIZd4N16660qUaKETp486dR+8uTJLMcrJCQkR/2LutyM4TXjxo3T2LFj9cMPP+iOO+7IzzALtJyO4cGDB3X48GF16NDB0Zaeni7p6l/g9+7dq8qVK+dv0AVIbj6DoaGhKlmypEqUKOFoq1mzpuLi4nT58uVCOTMF+c+K72J/f3/5+/uratWquvvuu1WmTBktXLhQXbt2zWv4LkE+cpUV41BYkVvlLTcqSsgRr8rtOHh4eKhKlSqSpHr16umXX35RbGysWrZsmZ/h5ouCnOtSlCpGgoKCFBQUdNN+kZGRSkhI0NatW9WgQQNJV4tO6enpaty4cabHvPLKK+rVq5dTW506dfT22287fZALs/wcP+nqXySjoqJkt9v11VdfFZu/Rnh5ealBgwZatmyZ4xGj6enpWrZsmfr375/pMZGRkVq2bJkGDhzoaFu6dKkiIyMtiLjgyc0YStJbb72l0aNH67vvvnNaa6M4yukY1qhRQz///LNT26uvvqpz585p0qRJhXL9mbzIzWfwnnvu0dy5c5Weni4Pj6sTt/ft26fQ0FAKUshSfn8XX89cfSiQUlJSch2zq5GPXGX1Z6EwIbfKfW5U1JAjXuWqz0N6enqB+j7IiQKd67p86XQUCW3atDH169c3GzduNGvWrDFVq1Z1enTu77//bqpXr242btyY5TlUTJ++Z0zOxy8xMdE0btzY1KlTxxw4cMCcOHHCsRXWx1DnxLx584zdbjezZs0ye/bsMX369DEBAQEmLi7OGGPMU089ZV555RVH/7Vr1xpPT08zbtw488svv5gRI0YU+scW51VOx3Ds2LHGy8vLfPnll06ft3PnzrnrEtwup2N4veL+9L2cjt/Ro0eNr6+v6d+/v9m7d6/55ptvTLly5cyoUaPcdQkoYnL6XXzw4EEzZswYs2XLFnPkyBGzdu1a06FDBxMYGHjTx2UXVOQjV+Umrz1x4oTZvn27mTFjhpFkVq9ebbZv325Onz7tjkvIMXKrnI9BSkqK2b59u9m+fbsJDQ01Q4YMMdu3bzf79+931yW4BDniVTkdhzFjxpjvv//eHDx40OzZs8eMGzfOeHp6mhkzZrjrEvKsoOa6FKWQqdOnT5uuXbua0qVLGz8/P9OjRw+nX0SHDh0yksyKFSuyPEdxLkrldPyuPW44s+3QoUPuuQiLTZ482VSoUMF4eXmZRo0amQ0bNjj2tWjRwsTExDj1/+KLL0y1atWMl5eXqV27tvn2228tjrjgyckYVqxYMdPP24gRI6wPvADJ6efwr4p7UcqYnI/funXrTOPGjY3dbje33XabGT16dKH+P74oWHL6XXz8+HHTtm1bU65cOVOyZElTvnx5061bN/Prr7+66QryjnzkqtzktSNGjMh0HGbOnGn9BeQSuVXOxuDa5+D6rUWLFtYH7mLkiFflZBz+9a9/mSpVqphSpUqZMmXKmMjISDNv3jw3RO1aBTHXtRljjOvmXQEAAAAAAAA3x9P3AAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAUGStXrpTNZlNCQkK2j3nttddUr169fIspp2w2mxYtWuTuMAAAQCF2+PBh2Ww27dixw92hZCk3eRuAooeiFADLTZs2Tb6+vrpy5YqjLTk5WSVLllTLli2d+l5LWA4ePHjT8zZp0kQnTpyQv7+/S+Nt2bKlBg4c6NJzAgAA5Eb37t1ls9kcW9myZdWmTRv99NNPjj7h4eE6ceKEbr/9djdGCgA3R1EKgOVatWql5ORkbdmyxdH2448/KiQkRBs3btSlS5cc7StWrFCFChVUuXLlm57Xy8tLISEhstls+RI3AABAQdCmTRudOHFCJ06c0LJly+Tp6akHH3zQsb9EiRIKCQmRp6enG6MEgJujKAXActWrV1doaKhWrlzpaFu5cqU6duyoiIgIbdiwwam9VatWkqT09HTFxsYqIiJC3t7eqlu3rr788kunvtdPA58xY4bCw8N1yy236OGHH9aECRMUEBCQIaaPP/5YlSpVkr+/v7p06aJz585JuvrXyFWrVmnSpEmOv0gePnw4w/H//Oc/1bhx4wztdevW1euvvy5J2rx5s+6//37deuut8vf3V4sWLbRt27Ysxymz69mxY0eGGNasWaNmzZrJ29tb4eHhGjBggM6fP5/leQEAQOFmt9sVEhKikJAQ1atXT6+88oqOHTumU6dOScp4+15aWpp69uzpyKGqV6+uSZMmOZ1z5cqVatSokXx8fBQQEKB77rlHR44cyfT9mzRpopdfftmp7dSpUypZsqRWr14t6Wpu1bBhQ/n6+iokJETdunVTfHx8lteU2ZIKEydOVKVKlZzaPvjgA9WsWVOlSpVSjRo19N57791suAAUYBSlALhFq1attGLFCsfrFStWqGXLlmrRooWj/eLFi9q4caOjKBUbG6s5c+Zo2rRp2r17twYNGqQnn3xSq1atyvQ91q5dq+eee04vvPCCduzYofvvv1+jR4/O0O/gwYNatGiRvvnmG33zzTdatWqVxo4dK0maNGmSIiMj1bt3b8dfJMPDwzOcIzo6Wps2bXK6zXD37t366aef1K1bN0nSuXPnFBMTozVr1mjDhg2qWrWq2rVr5yiA5cbBgwfVpk0bde7cWT/99JM+//xzrVmzRv3798/1OQEAQOGRnJysTz75RFWqVFHZsmUz7ZOenq7y5ctr/vz52rNnj4YPH65//vOf+uKLLyRJV65cUadOndSiRQv99NNPWr9+vfr06ZPl7PPo6GjNmzdPxhhH2+eff66wsDA1a9ZMkpSamqo33nhDO3fu1KJFi3T48GF17949T9f66aefavjw4Ro9erR++eUXjRkzRsOGDdPs2bPzdF4AbmQAwA1mzJhhfHx8TGpqqklKSjKenp4mPj7ezJ071zRv3twYY8yyZcuMJHPkyBFz6dIlc8stt5h169Y5nadnz56ma9euxhhjVqxYYSSZs2fPGmOMeeKJJ0z79u2d+kdHRxt/f3/H6xEjRphbbrnFJCUlOdpeeukl07hxY8frFi1amBdeeOGm11S3bl3z+uuvO14PHTrU6TzXS0tLM76+vubrr792tEkyCxcuzPR6jDFm+/btRpI5dOiQ4/r79OnjdN4ff/zReHh4mIsXL940ZgAAULjExMSYEiVKGB8fH+Pj42MkmdDQULN161ZHn0OHDhlJZvv27Vmep1+/fqZz587GGGNOnz5tJJmVK1dmK4b4+Hjj6elpVq9e7WiLjIw0L7/8cpbHbN682Ugy586dM8ZkzHNGjBhh6tat63TM22+/bSpWrOh4XblyZTN37lynPm+88YaJjIzMVtwACh5mSgFwi5YtW+r8+fPavHmzfvzxR1WrVk1BQUFq0aKFY12plStX6rbbblOFChV04MABXbhwQffff79Kly7t2ObMmZPlIuh79+5Vo0aNnNqufy1JlSpVkq+vr+N1aGjoDaeXZyU6Olpz586VJBlj9Nlnnyk6Otqx/+TJk+rdu7eqVq0qf39/+fn5KTk5WUePHs3xe12zc+dOzZo1y2lMoqKilJ6erkOHDuX6vAAAoOBq1aqVduzYoR07dmjTpk2KiopS27Zts7zdTpKmTJmiBg0aKCgoSKVLl9b06dMdOUhgYKC6d++uqKgodejQQZMmTdKJEyeyPFdQUJAeeOABffrpp5KkQ4cOaf369U55z9atW9WhQwdVqFBBvr6+atGihSTlOu85f/68Dh48qJ49ezrlPaNGjcrWA3EAFEysfAfALapUqaLy5ctrxYoVOnv2rCNRCQsLU3h4uNatW6cVK1bo3nvvlXR1arokffvtt/rb3/7mdC673Z6nWEqWLOn02mazKT09Pcfn6dq1q15++WVt27ZNFy9e1LFjx/TEE0849sfExOj06dOaNGmSKlasKLvdrsjISF2+fDnT83l4XP27gfnL1PjU1FSnPsnJyXr22Wc1YMCADMdXqFAhx9cAAAAKPh8fH1WpUsXx+oMPPpC/v79mzJihUaNGZeg/b948DRkyROPHj1dkZKR8fX3173//Wxs3bnT0mTlzpgYMGKAlS5bo888/16uvvqqlS5fq7rvvzjSG6OhoDRgwQJMnT9bcuXNVp04d1alTR9LVAlJUVJSioqL06aefKigoSEePHlVUVNQN856/5jySc95zLRecMWNGhnU8S5QocaPhAlCAUZQC4DatWrXSypUrdfbsWb300kuO9ubNm2vx4sXatGmT+vbtK0mqVauW7Ha7jh496ihg3Uz16tW1efNmp7brX2eHl5eX0tLSbtqvfPnyatGihT799FNdvHhR999/v8qVK+fYv3btWr333ntq166dJOnYsWP6888/szxfUFCQJOnEiRMqU6aMJDkWLL3mzjvv1J49e5wSUwAAULzYbDZ5eHjo4sWLme5fu3atmjRpor///e+OtsxmF9WvX1/169fX0KFDFRkZqblz52ZZlOrYsaP69OmjJUuWaO7cuXr66acd+3799VedPn1aY8eOdazF+denLmcmKChIcXFxMsY41rL6a94THByssLAw/fbbb04zsgAUbhSlALhNq1at1K9fP6WmpjoVmlq0aKH+/fvr8uXLjkXOfX19NWTIEA0aNEjp6elq2rSpEhMTtXbtWvn5+SkmJibD+Z9//nk1b95cEyZMUIcOHbR8+XItXrw4y0U7s1KpUiVt3LhRhw8fVunSpRUYGOiYxXS96OhojRgxQpcvX9bbb7/ttK9q1aqOJ9EkJSXppZdekre3d5bvW6VKFYWHh+u1117T6NGjtW/fPo0fP96pz8svv6y7775b/fv3V69eveTj46M9e/Zo6dKlevfdd3N0nQAAoHBISUlRXFycJOns2bN69913lZycrA4dOmTav2rVqpozZ46+++47RURE6OOPP9bmzZsVEREh6ertd9OnT9dDDz2ksLAw7d27V/v373cqNF3Px8dHnTp10rBhw/TLL7+oa9eujn0VKlSQl5eXJk+erOeee067du3SG2+8ccNratmypU6dOqW33npLjz76qJYsWaLFixfLz8/P0WfkyJEaMGCA/P391aZNG6WkpGjLli06e/asBg8enO3xA1BwsKYUALdp1aqVLl68qCpVqig4ONjR3qJFC507d07Vq1dXaGioo/2NN97QsGHDFBsbq5o1a6pNmzb69ttvHQnV9e655x5NmzZNEyZMUN26dbVkyRINGjRIpUqVylGcQ4YMUYkSJVSrVi3H9POsPProozp9+rQuXLigTp06Oe378MMPdfbsWd1555166qmnNGDAAKeZVNcrWbKkPvvsM/3666+644479Oabb2aYkn/HHXdo1apV2rdvn5o1a6b69etr+PDhCgsLy9E1AgCAwmPJkiUKDQ1VaGioGjdurM2bN2v+/Plq2bJlpv2fffZZPfLII3riiSfUuHFjnT592mnW1C233KJff/1VnTt3VrVq1dSnTx/169dPzz777A3jiI6O1s6dO9WsWTOnZQOCgoI0a9YszZ8/X7Vq1dLYsWM1bty4G56rZs2aeu+99zRlyhTVrVtXmzZt0pAhQ5z69OrVSx988IFmzpypOnXqqEWLFpo1a1aWuSCAgs9mrr9xFwCKsN69e+vXX3/Vjz/+6O5QAAAAAKBY4/Y9AEXauHHjdP/998vHx0eLFy/W7Nmz9d5777k7LAAAAAAo9pgpBaBIe/zxx7Vy5UqdO3dOt912m55//nk999xz7g4LAAAAAIo9ilIAAAAAAACwHAudAwAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMBy/w8VuzsS1F4VIQAAAABJRU5ErkJggg==\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABktklEQVR4nO3deVxV1f7/8fdB4GAKOAMmDjmbY5YKqahpOOTVskkth9QmzCkb7FuZmuGtnG45pJXaQJamNqqZUznP5pCm5lQBmimIKSqs3x/9OHkEFA6HfRhez8djP+7d66y992dtwPPpc9ZZ22aMMQIAAAAAAAAs5OXpAAAAAAAAAFD4UJQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAtykT58+qly5ssvHFi9e3L0BuWj27Nmy2Ww6cuRIrl/r6nt25MgR2Ww2vfnmm7l+bUl65ZVXZLPZLLnW1ZKSktS/f38FBwfLZrNpyJAhHonDZrPplVde8ci1AQCQ8sd7EfmRNciPgMKHohQKtM8++0w2m00LFy5M91qDBg1ks9m0cuXKdK9VrFhR4eHhVoSYLX///bdeeeUVrVq1Kkv9V61aJZvN5tjsdruCgoLUqlUrvfbaazp58qRH4rJSXo3ttdde0+zZs/XEE0/oww8/1MMPP+zpkAqMsWPH6j//+Y+CgoKum1T+/vvvuv/++1WiRAkFBASoS5cu+vXXX60LFgAKoLQCzpVbuXLl1Lp1ay1evNjT4ZEfKe/GRn6Ue8iPkFd5ezoAIDc1b95ckrRmzRrdfffdjvbExETt3r1b3t7eWrt2rVq3bu147fjx4zp+/LgefPDBbF1r5syZSk1NdU/gmfj77781atQoSVKrVq2yfNygQYN02223KSUlRSdPntS6des0cuRITZgwQZ999pnatGnj6Pvwww/rwQcflN1uz/W4PH3PXnzxRT3//PO5ev3MrFixQs2aNdPIkSM9cv2C7MUXX1RwcLAaNWqkpUuXZtovKSlJrVu3VkJCgl544QX5+Pho4sSJioiI0I4dO1S6dGkLowaAgmf06NGqUqWKjDGKj4/X7Nmz1bFjR3311Ve66667HP3Onz8vb2/r/7OE/Ij8qDAhP0JeRVEKBVr58uVVpUoVrVmzxql9/fr1MsbovvvuS/da2n5aQSurfHx8chZsLmrRooXuvfdep7adO3fqzjvvVLdu3bR3716FhIRIkooUKaIiRYrkajznzp1TsWLFPH7PvL29PZIES9KJEydUp04dt53v8uXLSk1Nla+vr9vOmV8dPnxYlStX1p9//qmyZctm2m/q1Kk6cOCANm3apNtuu02S1KFDB9WtW1fjx4/Xa6+9ZlXIAFAgdejQQbfeeqtjv1+/fgoKCtInn3ziVJTy8/PzRHjkR5kgPyqYyI+QV/H1PRR4zZs31/bt23X+/HlH29q1a3XzzTerQ4cO2rBhg9OnUWvXrpXNZtPtt9/uaPvoo4/UuHFjFS1aVKVKldKDDz6o48ePO10nozWlTp06pYcfflgBAQEqUaKEevfurZ07d8pms2n27NnpYv3999/VtWtXFS9eXGXLltXw4cOVkpIi6Z/1BNLeQEaNGuWYcu7q990bNGigSZMm6cyZM3r77bcd7RmtmbBlyxZFRkaqTJkyKlq0qKpUqaJHHnkkS3GlrZd16NAhdezYUf7+/urZs2em9yzNxIkTValSJRUtWlQRERHavXu30+utWrXK8FPHK895vdgyWjPh8uXLGjNmjKpWrSq73a7KlSvrhRdeUHJyslO/ypUr66677tKaNWvUpEkT+fn56aabbtIHH3yQ8Q3//9K+MnD48GF98803jpjS7veJEyccSbufn58aNGigOXPmOJ3jyrUlJk2a5Ih17969mV43OTlZQ4cOVdmyZeXv76///Oc/+u233zLs+/vvv+uRRx5RUFCQ7Ha7br75Zr3//vsZjuOzzz7T2LFjVaFCBfn5+emOO+7QwYMHnfoeOHBA3bp1U3BwsPz8/FShQgU9+OCDSkhIcOqXlb+zrMjq2m7z58/Xbbfd5ki4JKlWrVq644479Nlnn2X7ugCAaytRooSKFi2aruBxdT5z9OhRPfnkk6pZs6aKFi2q0qVL67777ku3ntOlS5c0atQoVa9eXX5+fipdurSaN2+uZcuWuRwj+RH5EfkR+RGsxUwpFHjNmzfXhx9+qI0bNzrepNeuXavw8HCFh4crISFBu3fvVv369R2v1apVyzE1dezYsXrppZd0//33q3///jp58qTeeusttWzZUtu3b1eJEiUyvG5qaqo6d+6sTZs26YknnlCtWrX0xRdfqHfv3hn2T0lJUWRkpJo2bao333xT33//vcaPH6+qVavqiSeeUNmyZTVt2jQ98cQTuvvuu3XPPfdIkiNuV9x7773q16+fvvvuO40dOzbDPidOnNCdd96psmXL6vnnn1eJEiV05MgRLViwQJKyFNfly5cVGRmp5s2b680339QNN9xwzbg++OADnT17VlFRUbpw4YImT56sNm3aaNeuXQoKCsry+Fy5Z/3799ecOXN077336umnn9bGjRsVHR2tn3/+Od3aZAcPHnTcw969e+v9999Xnz591LhxY918880Znr927dr68MMPNXToUFWoUEFPP/20I9bz58+rVatWOnjwoAYOHKgqVapo3rx56tOnj86cOaPBgwc7nWvWrFm6cOGCHn30UdntdpUqVeqa4/roo4/Uo0cPhYeHa8WKFerUqVO6fvHx8WrWrJlsNpsGDhyosmXLavHixerXr58SExPTLTg6btw4eXl5afjw4UpISNDrr7+unj17auPGjZKkixcvKjIyUsnJyXrqqacUHBys33//XV9//bXOnDmjwMBASa7/nbkqNTVVP/30k+M/Hq7UpEkTfffddzp79qz8/f3del0AKEwSEhL0559/yhijEydO6K233lJSUpIeeuihax63efNmrVu3Tg8++KAqVKigI0eOaNq0aWrVqpX27t3ryCNeeeUVRUdHq3///mrSpIkSExO1ZcsWbdu2Te3atXM5bvKj9MiPyI/Ij5BrDFDA7dmzx0gyY8aMMcYYc+nSJVOsWDEzZ84cY4wxQUFBZsqUKcYYYxITE02RIkXMgAEDjDHGHDlyxBQpUsSMHTvW6Zy7du0y3t7eTu29e/c2lSpVcux//vnnRpKZNGmSoy0lJcW0adPGSDKzZs1yOlaSGT16tNN1GjVqZBo3buzYP3nypJFkRo4cmaWxr1y50kgy8+bNy7RPgwYNTMmSJR37s2bNMpLM4cOHjTHGLFy40EgymzdvzvQc14orbWzPP/98hq9dec8OHz5sJJmiRYua3377zdG+ceNGI8kMHTrU0RYREWEiIiKue85rxTZy5Ehz5T+DO3bsMJJM//79nfoNHz7cSDIrVqxwtFWqVMlIMj/88IOj7cSJE8Zut5unn3463bWuVqlSJdOpUyentkmTJhlJ5qOPPnK0Xbx40YSFhZnixYubxMREY8y/9ykgIMCcOHHiutdKG9eTTz7p1N6jR49096Zfv34mJCTE/Pnnn059H3zwQRMYGGj+/vtvY8y/v1u1a9c2ycnJjn6TJ082ksyuXbuMMcZs3779ur+D2fk7y45r/ezTXrv6b84YY6ZMmWIkmX379rl0XQAo7NJyias3u91uZs+ena7/1f9Wp73XXGn9+vVGkvnggw8cbQ0aNEj3XpoV5EfkR1eOi/wo/WvkR7ASX99DgVe7dm2VLl3asVbUzp07de7cOcfT9cLDw7V27VpJ/6w1lZKS4lhPasGCBUpNTdX999+vP//807EFBwerevXqGT65L82SJUvk4+OjAQMGONq8vLwUFRWV6TGPP/64036LFi1y/UkXxYsX19mzZzN9Pe0TmK+//lqXLl1y+TpPPPFElvt27dpVN954o2O/SZMmatq0qb799luXr58VaecfNmyYU3vap3XffPONU3udOnXUokULx37ZsmVVs2ZNl39m3377rYKDg9W9e3dHm4+PjwYNGqSkpCStXr3aqX+3bt2uuSbAleeV/lnQ9UpXf6pnjNHnn3+uzp07yxjj9DsfGRmphIQEbdu2zemYvn37Oq3TkHY/0u5B2id9S5cu1d9//51hfDn5O3NV2td5M1qwNm1tkyu/8gsAyL4pU6Zo2bJlWrZsmT766CO1bt1a/fv3d8wmykzRokUd///SpUs6deqUqlWrphIlSji9D5UoUUJ79uzRgQMH3B47+dG/yI/IjyTyI+QeilIo8Gw2m8LDwx1rR61du1blypVTtWrVJDkXpdL+N60odeDAARljVL16dZUtW9Zp+/nnn3XixIlMr3v06FGFhISkm4qddt2r+fn5pXsDLVmypE6fPu3awLMoKSnpmlNwIyIi1K1bN40aNUplypRRly5dNGvWrHRrCFyLt7e3KlSokOX+1atXT9dWo0aNdGtJuNvRo0fl5eWV7mcUHBysEiVK6OjRo07tFStWTHeOnPzMjh49qurVq8vLy/mf5tq1aztev1KVKlWyfF4vLy9VrVrVqb1mzZpO+ydPntSZM2c0Y8aMdL/vffv2laR0v/NX34OSJUtKkuMeVKlSRcOGDdO7776rMmXKKDIyUlOmTHFaLyEnf2euSvsPnox+jy9cuODUBwDgmiZNmqht27Zq27atevbsqW+++UZ16tTRwIEDdfHixUyPO3/+vF5++WWFhobKbrerTJkyKlu2rM6cOeP0/jF69GidOXNGNWrUUL169fTMM8/op59+ckvs5Ef/Ij8iP5LIj5B7WFMKhULz5s311VdfadeuXY71pNKEh4frmWee0e+//641a9aofPnyuummmyT9871qm82mxYsXZ/jEleLFi7stxtx+oktGLl26pF9++UV169bNtI/NZtP8+fO1YcMGffXVV1q6dKkeeeQRjR8/Xhs2bMjSPbDb7ekSiZyy2WwyxqRrT1sYPqfnzorMfmYZxZUb3J0UpC34/9BDD2W69tnV601k5R6MHz9effr00RdffKHvvvtOgwYNUnR0tDZs2KAKFSpY+neWplSpUrLb7YqNjU33Wlpb+fLl3X5dACjMvLy81Lp1a02ePFkHDhzIdH2hp556SrNmzdKQIUMUFhamwMBA2Ww2Pfjgg04Pp2nZsqUOHTrkeH959913NXHiRE2fPl39+/d3OU7yo8zPnRXkR+RHQHZQlEKhkDbzac2aNVq7dq3TtNzGjRvLbrdr1apV2rhxozp27Oh4rWrVqjLGqEqVKqpRo0a2rlmpUiWtXLlSf//9t9NsqaufvJEdWU0Gsmr+/Pk6f/68IiMjr9u3WbNmatasmcaOHauYmBj17NlTc+fOVf/+/d0eV0bT8H/55Renp4aULFkyw2ngV39alp3YKlWqpNTUVB04cMDx6Zv0z+KWZ86cUaVKlbJ8LldUqlRJP/30k1JTU52S1H379jled/W8qampOnTokNOnf/v373fql/bkmZSUFLVt29ala2WmXr16qlevnl588UWtW7dOt99+u6ZPn65XX301R39nrvLy8lK9evW0ZcuWdK9t3LhRN910E4t4AkAuuHz5sqR/ZiJlZv78+erdu7fGjx/vaLtw4YLOnDmTrm+pUqXUt29f9e3bV0lJSWrZsqVeeeWVHBWlyI+ckR+RH0nkR8g9fH0PhcKtt94qPz8/ffzxx/r999+dZkrZ7XbdcsstmjJlis6dO+coYEnSPffcoyJFimjUqFHpPt0xxujUqVOZXjMyMlKXLl3SzJkzHW2pqamaMmWKy+NIK25llJRl186dOzVkyBCVLFnymutcnT59Ot3YGzZsKOnfqb3ujEuSFi1apN9//92xv2nTJm3cuFEdOnRwtFWtWlX79u3TyZMnHW07d+50fAUzTXZiSytITpo0yal9woQJkpTh01jcqWPHjoqLi9Onn37qaLt8+bLeeustFS9eXBERES6dN+2+/e9//3Nqv3qcRYoUUbdu3fT555+ne8S0JKd7nVWJiYmO/wBJU69ePXl5eTl+f3Lyd5YT9957rzZv3uyUeO3fv18rVqzQfffdlyvXBIDC7NKlS/ruu+/k6+vrVNy4WpEiRdK9H7z11lvpZvtc/f5QvHhxVatWLVtfobsa+VF65EfkR+RHyE3MlEKh4Ovrq9tuu00//vij7Ha7Gjdu7PR6eHi449O4K4tSVatW1auvvqoRI0boyJEj6tq1q/z9/XX48GEtXLhQjz76qIYPH57hNbt27aomTZro6aef1sGDB1WrVi19+eWX+uuvvyS5NuupaNGiqlOnjj799FPVqFFDpUqVUt26da85vVySfvzxR124cEEpKSk6deqU1q5dqy+//FKBgYFauHChgoODMz12zpw5mjp1qu6++25VrVpVZ8+e1cyZMxUQEOBIUlyNKzPVqlVT8+bN9cQTTyg5OVmTJk1S6dKl9eyzzzr6PPLII5owYYIiIyPVr18/nThxQtOnT9fNN9+sxMREl+5ZgwYN1Lt3b82YMUNnzpxRRESENm3apDlz5qhr165q3bq1S+PJqkcffVTvvPOO+vTpo61bt6py5cqaP3++1q5dq0mTJrn8yVTDhg3VvXt3TZ06VQkJCQoPD9fy5csznLU3btw4rVy5Uk2bNtWAAQNUp04d/fXXX9q2bZu+//57x+9vVq1YsUIDBw7Ufffdpxo1aujy5cv68MMPHQmelLO/s4x8+OGHOnr0qGPh0B9++EGvvvqqJOnhhx92fKL65JNPaubMmerUqZOGDx8uHx8fTZgwQUFBQY7FWwEArlu8eLFjNsuJEycUExOjAwcO6Pnnn1dAQECmx91111368MMPFRgYqDp16mj9+vX6/vvvVbp0aad+derUUatWrdS4cWOVKlVKW7Zs0fz58zVw4MAsxUd+RH5EfkR+hDzAsuf8AR42YsQII8mEh4ene23BggVGkvH39zeXL19O9/rnn39umjdvbooVK2aKFStmatWqZaKiosz+/fsdfa5+1K4x/zxWtUePHsbf398EBgaaPn36mLVr1xpJZu7cuU7HFitWLN11r34krzHGrFu3zjRu3Nj4+vpm+jjXNGmPpU3bfHx8TNmyZU3Lli3N2LFjM3xc7tWPPN62bZvp3r27qVixorHb7aZcuXLmrrvuMlu2bMlSXJmNLaN7lvYo3zfeeMOMHz/ehIaGGrvdblq0aGF27tyZ7viPPvrI3HTTTcbX19c0bNjQLF26NMOfQ2axZXR/L126ZEaNGmWqVKlifHx8TGhoqBkxYoS5cOGCU7+MHllsTOaPYr5aZsfHx8ebvn37mjJlyhhfX19Tr149M2vWLKc+V96nrDp//rwZNGiQKV26tClWrJjp3LmzOX78eIa/Q/Hx8SYqKsqEhoYaHx8fExwcbO644w4zY8YMR5/MHqedFltazL/++qt55JFHTNWqVY2fn58pVaqUad26tfn+++/TxZiVv7OsiIiIyPBR5JLMypUrnfoeP37c3HvvvSYgIMAUL17c3HXXXebAgQPZuh4AwFlaLnHl5ufnZxo2bGimTZtmUlNTnfpf/V50+vRpx3th8eLFTWRkpNm3b5+pVKmS6d27t6Pfq6++apo0aWJKlChhihYtamrVqmXGjh1rLl68eM34yI+uHRv5EfkR+RGsZDPGohXnAEj6Z+r13XffrTVr1uj222/3dDgAAAAAAHgERSkgF50/f97pCSApKSm68847tWXLFsXFxfFIVQAAAABAocWaUkAueuqpp3T+/HmFhYUpOTlZCxYs0Lp16/Taa69RkAKy4fz580pISLhmn1KlSsnX19eiiAAAADyL/AgFATOlgFwUExOj8ePH6+DBg7pw4YKqVaumJ554IssLcAL4x+zZs9W3b99r9lm5cqVatWplTUAAAAAeRn6EgoCiFAAgz4uNjdWePXuu2adx48YqWbKkRREBAAB4FvkRCgKKUgAAAAAAALCcl6cDAAAAAAAAQOFT4Bc6T01N1R9//CF/f3/ZbDZPhwMAAPIBY4zOnj2r8uXLy8urcH+GRy4FAACyK6u5VIEvSv3xxx8KDQ31dBgAACAfOn78uCpUqODpMDyKXAoAALjqerlUgS9K+fv7S/rnRgQEBHg4GgAAkB8kJiYqNDTUkUcUZuRSAAAgu7KaSxX4olTaNPOAgAASKQAAkC18XY1cCgAAuO56uVThXiQBAAAAAAAAHkFRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAORD48aNk81m05AhQ67Zb968eapVq5b8/PxUr149ffvtt9YECAAAcB0UpQAAAPKZzZs365133lH9+vWv2W/dunXq3r27+vXrp+3bt6tr167q2rWrdu/ebVGkAAAAmaMoBQAAkI8kJSWpZ8+emjlzpkqWLHnNvpMnT1b79u31zDPPqHbt2hozZoxuueUWvf322xZFCwAAkDmKUgAAAPlIVFSUOnXqpLZt21637/r169P1i4yM1Pr163MrPAAAgCzz9nQAAAAAyJq5c+dq27Zt2rx5c5b6x8XFKSgoyKktKChIcXFxmR6TnJys5ORkx35iYqJrwQIAAFwHRSmgkLPZcna8Me6JAwBwbcePH9fgwYO1bNky+fn55dp1oqOjNWrUqFw7P5BOTA6TkR4kIwCQX/H1PQAAgHxg69atOnHihG655RZ5e3vL29tbq1ev1v/+9z95e3srJSUl3THBwcGKj493aouPj1dwcHCm1xkxYoQSEhIc2/Hjx90+FgAAAImZUgAAAPnCHXfcoV27djm19e3bV7Vq1dJzzz2nIkWKpDsmLCxMy5cv15AhQxxty5YtU1hYWKbXsdvtstvtbosbAAAgMxSlAAAA8gF/f3/VrVvXqa1YsWIqXbq0o71Xr1668cYbFR0dLUkaPHiwIiIiNH78eHXq1Elz587Vli1bNGPGDMvjBwAAuBpf3wMAACggjh07ptjYWMd+eHi4YmJiNGPGDDVo0EDz58/XokWL0hW3AAAAPMFmTMFepjgxMVGBgYFKSEhQQECAp8MB8hwWOgeA9Mgf/sW9QK5joXMAKHCymj8wUwoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACyXZ4pS48aNk81m05AhQxxtFy5cUFRUlEqXLq3ixYurW7duio+P91yQAAAAAAAAcIs8UZTavHmz3nnnHdWvX9+pfejQofrqq680b948rV69Wn/88YfuueceD0UJAAAAAAAAd/F4USopKUk9e/bUzJkzVbJkSUd7QkKC3nvvPU2YMEFt2rRR48aNNWvWLK1bt04bNmzwYMQAAAAAAADIKY8XpaKiotSpUye1bdvWqX3r1q26dOmSU3utWrVUsWJFrV+/3uowAQAAAAAA4Ebenrz43LlztW3bNm3evDnda3FxcfL19VWJEiWc2oOCghQXF5fpOZOTk5WcnOzYT0xMdFu8AAAAAAAAcA+PzZQ6fvy4Bg8erI8//lh+fn5uO290dLQCAwMdW2hoqNvODQAAAAAAAPfwWFFq69atOnHihG655RZ5e3vL29tbq1ev1v/+9z95e3srKChIFy9e1JkzZ5yOi4+PV3BwcKbnHTFihBISEhzb8ePHc3kkAAAAAAAAyC6PfX3vjjvu0K5du5za+vbtq1q1aum5555TaGiofHx8tHz5cnXr1k2StH//fh07dkxhYWGZntdut8tut+dq7AAAAAAAAMgZjxWl/P39VbduXae2YsWKqXTp0o72fv36adiwYSpVqpQCAgL01FNPKSwsTM2aNfNEyAAAAAAAAHATjy50fj0TJ06Ul5eXunXrpuTkZEVGRmrq1KmeDgsAAAAAAAA5lKeKUqtWrXLa9/Pz05QpUzRlyhTPBAQAAAAAAIBc4bGFzgEAAAAAAFB4UZQCAAAAAACA5ShKAQAA5APTpk1T/fr1FRAQoICAAIWFhWnx4sWZ9p89e7ZsNpvT5ufnZ2HEAAAA15an1pQCAABAxipUqKBx48apevXqMsZozpw56tKli7Zv366bb745w2MCAgK0f/9+x77NZrMqXAAAgOuiKAUAAJAPdO7c2Wl/7NixmjZtmjZs2JBpUcpmsyk4ONiK8AAAALKNr+8BAADkMykpKZo7d67OnTunsLCwTPslJSWpUqVKCg0NVZcuXbRnzx4LowQAALg2ZkoBAADkE7t27VJYWJguXLig4sWLa+HChapTp06GfWvWrKn3339f9evXV0JCgt58802Fh4drz549qlChQqbXSE5OVnJysmM/MTHR7eMAAACQmCkFAACQb9SsWVM7duzQxo0b9cQTT6h3797au3dvhn3DwsLUq1cvNWzYUBEREVqwYIHKli2rd95555rXiI6OVmBgoGMLDQ3NjaEAAABQlAIAAMgvfH19Va1aNTVu3FjR0dFq0KCBJk+enKVjfXx81KhRIx08ePCa/UaMGKGEhATHdvz4cXeEDgAAkA5FKQAAgHwqNTXV6at215KSkqJdu3YpJCTkmv3sdrsCAgKcNgAAgNzAmlIAAAD5wIgRI9ShQwdVrFhRZ8+eVUxMjFatWqWlS5dKknr16qUbb7xR0dHRkqTRo0erWbNmqlatms6cOaM33nhDR48eVf/+/T05DAAAAAeKUgA8ymbL2fHGuCcOAMjrTpw4oV69eik2NlaBgYGqX7++li5dqnbt2kmSjh07Ji+vfyfBnz59WgMGDFBcXJxKliypxo0ba926dZkujA4AAGA1mzEF+z/pEhMTFRgYqISEBKafAxnwdFHI09cHgIyQP/yLe4FcF5PDZKAHyQAA5DVZzR9YUwoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALOft6QAAwJNstpwdb4x74gAAAACAwoaZUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHLeng4AAOA6my1nxxvjnjgAAAAAILuYKQUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACW8/Z0AADyN5vN0xEAAAAAAPIjZkoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAIB8YNq0aapfv74CAgIUEBCgsLAwLV68+JrHzJs3T7Vq1ZKfn5/q1aunb7/91qJoAQAAro+iFAAAQD5QoUIFjRs3Tlu3btWWLVvUpk0bdenSRXv27Mmw/7p169S9e3f169dP27dvV9euXdW1a1ft3r3b4sgBAAAyZjPGGE8HkZsSExMVGBiohIQEBQQEeDocIM/J70/Py+m/YDkdv6f/Bc3v8QN5VX7JH0qVKqU33nhD/fr1S/faAw88oHPnzunrr792tDVr1kwNGzbU9OnTs3yN/HIvkI/F5PDNrAdvZgCQ12Q1f2CmFAAAQD6TkpKiuXPn6ty5cwoLC8uwz/r169W2bVuntsjISK1fv96KEAEAAK7L29MBAAAAIGt27dqlsLAwXbhwQcWLF9fChQtVp06dDPvGxcUpKCjIqS0oKEhxcXHXvEZycrKSk5Md+4mJiTkPHAAAIAMUpQAAAPKJmjVraseOHUpISND8+fPVu3dvrV69OtPClCuio6M1atQot50P+QBfnwMAeAhf3wMAAMgnfH19Va1aNTVu3FjR0dFq0KCBJk+enGHf4OBgxcfHO7XFx8crODj4mtcYMWKEEhISHNvx48fdFj8AAMCVKEoBAADkU6mpqU5ftbtSWFiYli9f7tS2bNmyTNegSmO32xUQEOC0AQAA5Aa+vgcAAJAPjBgxQh06dFDFihV19uxZxcTEaNWqVVq6dKkkqVevXrrxxhsVHR0tSRo8eLAiIiI0fvx4derUSXPnztWWLVs0Y8YMTw4DAADAgaIUAABAPnDixAn16tVLsbGxCgwMVP369bV06VK1a9dOknTs2DF5ef07CT48PFwxMTF68cUX9cILL6h69epatGiR6tat66khAAAAOKEoBQAAkA+8995713x91apV6druu+8+3XfffbkUEQAAQM6wphQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLeXs6AAA5Y7N5OgIAAAAAALKPmVIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACW82hRatq0aapfv74CAgIUEBCgsLAwLV682PH6hQsXFBUVpdKlS6t48eLq1q2b4uPjPRgxAAAAAAAA3MGjRakKFSpo3Lhx2rp1q7Zs2aI2bdqoS5cu2rNnjyRp6NCh+uqrrzRv3jytXr1af/zxh+655x5PhgwAAAAAAAA38PbkxTt37uy0P3bsWE2bNk0bNmxQhQoV9N577ykmJkZt2rSRJM2aNUu1a9fWhg0b1KxZM0+EDAAAAAAAADfIM2tKpaSkaO7cuTp37pzCwsK0detWXbp0SW3btnX0qVWrlipWrKj169dnep7k5GQlJiY6bQAAAAAAAMhbPF6U2rVrl4oXLy673a7HH39cCxcuVJ06dRQXFydfX1+VKFHCqX9QUJDi4uIyPV90dLQCAwMdW2hoaC6PAIAn2Ww52wAAAAAAnuHxolTNmjW1Y8cObdy4UU888YR69+6tvXv3uny+ESNGKCEhwbEdP37cjdECAAAAAADAHTy6ppQk+fr6qlq1apKkxo0ba/PmzZo8ebIeeOABXbx4UWfOnHGaLRUfH6/g4OBMz2e322W323M7bAAAAAAAAOSAx2dKXS01NVXJyclq3LixfHx8tHz5csdr+/fv17FjxxQWFubBCAEAAAAAAJBTHp0pNWLECHXo0EEVK1bU2bNnFRMTo1WrVmnp0qUKDAxUv379NGzYMJUqVUoBAQF66qmnFBYWxpP3AAAAAAAA8jmPFqVOnDihXr16KTY2VoGBgapfv76WLl2qdu3aSZImTpwoLy8vdevWTcnJyYqMjNTUqVM9GTIAAAAAAADcwKNFqffee++ar/v5+WnKlCmaMmWKRREBAAAAAADACnluTSkAAAAAAAAUfBSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAACAfCA6Olq33Xab/P39Va5cOXXt2lX79++/5jGzZ8+WzWZz2vz8/CyKGAAA4NooSgEAAOQDq1evVlRUlDZs2KBly5bp0qVLuvPOO3Xu3LlrHhcQEKDY2FjHdvToUYsiBgAAuDZvTwcAAACA61uyZInT/uzZs1WuXDlt3bpVLVu2zPQ4m82m4ODg3A4PAAAg25gpBQAAkA8lJCRIkkqVKnXNfklJSapUqZJCQ0PVpUsX7dmz55r9k5OTlZiY6LQBAADkBopSAAAA+UxqaqqGDBmi22+/XXXr1s20X82aNfX+++/riy++0EcffaTU1FSFh4frt99+y/SY6OhoBQYGOrbQ0NDcGAIAAABFKQAAgPwmKipKu3fv1ty5c6/ZLywsTL169VLDhg0VERGhBQsWqGzZsnrnnXcyPWbEiBFKSEhwbMePH3d3+AAAAJJYUwoAACBfGThwoL7++mv98MMPqlChQraO9fHxUaNGjXTw4MFM+9jtdtnt9pyGCQAAcF3MlAIAAMgHjDEaOHCgFi5cqBUrVqhKlSrZPkdKSop27dqlkJCQXIgQAAAge5gpBXiYzebpCJATOf35GeOeOAAUfFFRUYqJidEXX3whf39/xcXFSZICAwNVtGhRSVKvXr104403Kjo6WpI0evRoNWvWTNWqVdOZM2f0xhtv6OjRo+rfv7/HxgEAAJDGpZlSv/76q7vjAAAAKLDckTtNmzZNCQkJatWqlUJCQhzbp59+6uhz7NgxxcbGOvZPnz6tAQMGqHbt2urYsaMSExO1bt061alTJ8fxAAAA5JTNmOx/Tu/l5aWIiAj169dP9957r/z8/HIjNrdITExUYGCgEhISFBAQ4OlwgHSYKVW45XSmFDO1gNzh7vwhP+VOVyOXKgRicvhm0iOHbyaevj4AwO2ymj+4NFNq27Ztql+/voYNG6bg4GA99thj2rRpk8vBAgAAFGTkTgAAAOm5VJRq2LChJk+erD/++EPvv/++YmNj1bx5c9WtW1cTJkzQyZMn3R0nAABAvkXuBAAAkF6Onr7n7e2te+65R/PmzdN///tfHTx4UMOHD1doaKh69erltKYBAABAYUfuBAAA8K8cFaW2bNmiJ598UiEhIZowYYKGDx+uQ4cOadmyZfrjjz/UpUsXd8UJAACQ75E7AQAA/MvblYMmTJigWbNmaf/+/erYsaM++OADdezYUV5e/9S4qlSpotmzZ6ty5crujBUAACBfIncCAABIz6Wi1LRp0/TII4+oT58+CgkJybBPuXLl9N577+UoOAAAgIKA3AkAACA9l4pSBw4cuG4fX19f9e7d25XTAwAAFCjkTgAAAOm5tKbUrFmzNG/evHTt8+bN05w5c3IcFAAAQEFC7gQAAJCeS0Wp6OholSlTJl17uXLl9Nprr+U4KAAAgIKE3AkAACA9l4pSx44dU5UqVdK1V6pUSceOHctxUAAAAAUJuRMAAEB6LhWlypUrp59++ild+86dO1W6dOkcBwUAAFCQkDsBAACk51JRqnv37ho0aJBWrlyplJQUpaSkaMWKFRo8eLAefPBBd8cIAACQr5E7AQAApOfS0/fGjBmjI0eO6I477pC39z+nSE1NVa9evVgXAQAA4CrkTgAAAOnZjDHG1YN/+eUX7dy5U0WLFlW9evVUqVIld8bmFomJiQoMDFRCQoICAgI8HQ6Qjs3m6QjgSa7/C/yPnP7+5PT6QEGVW/lDfsidrkYuVQjE5PDNpEcO30w8fX0AgNtlNX9waaZUmho1aqhGjRo5OQUAAEChQe4EAADwL5eKUikpKZo9e7aWL1+uEydOKDU11en1FStWuCU4AACAgoDcCQAAID2XilKDBw/W7Nmz1alTJ9WtW1c2vn8EAACQKXInAACA9FwqSs2dO1efffaZOnbs6O54AAAAChxyJwAAgPS8XDnI19dX1apVc3csAAAABRK5EwAAQHouFaWefvppTZ48WTl4cB8AAEChQe4EAACQnktf31uzZo1WrlypxYsX6+abb5aPj4/T6wsWLHBLcAAAAAUBuRMAAEB6LhWlSpQoobvvvtvdsQAAABRI5E4AAADpuVSUmjVrlrvjAAAAKLDInQAAANJzaU0pSbp8+bK+//57vfPOOzp79qwk6Y8//lBSUpLbggMAACgoyJ0AAACcuTRT6ujRo2rfvr2OHTum5ORktWvXTv7+/vrvf/+r5ORkTZ8+3d1xAnmWzebpCAAAeR25EwAAQHouzZQaPHiwbr31Vp0+fVpFixZ1tN99991avny524IDAAAoCMidAAAA0nNpptSPP/6odevWydfX16m9cuXK+v33390SGAAAQEFB7gQAAJCeSzOlUlNTlZKSkq79t99+k7+/f46DAgAAKEjInQAAANJzqSh15513atKkSY59m82mpKQkjRw5Uh07dnRXbAAAAAUCuRMAAEB6Ln19b/z48YqMjFSdOnV04cIF9ejRQwcOHFCZMmX0ySefuDtGAACAfI3cCQAAID2XilIVKlTQzp07NXfuXP30009KSkpSv3791LNnT6fFOwEAAEDuBAAAkBGXilKS5O3trYceesidsQAAABRY5E4AAADOXCpKffDBB9d8vVevXi4FA3iCzebpCAAABR25EwAAQHouFaUGDx7stH/p0iX9/fff8vX11Q033EBiBQAAcAVyJwAAgPRcevre6dOnnbakpCTt379fzZs3Z7FOAACAq5A7AQAApOdSUSoj1atX17hx49J9EggAAID0yJ0AAEBh57ailPTPAp5//PGHO08JAABQYJE7AQCAwsylNaW+/PJLp31jjGJjY/X222/r9ttvd0tgAAAABYU7cqfo6GgtWLBA+/btU9GiRRUeHq7//ve/qlmz5jWPmzdvnl566SUdOXJE1atX13//+1917NjR5bEAAAC4i0tFqa5duzrt22w2lS1bVm3atNH48ePdERcAAECB4Y7cafXq1YqKitJtt92my5cv64UXXtCdd96pvXv3qlixYhkes27dOnXv3l3R0dG66667FBMTo65du2rbtm2qW7duTocFAACQIzZjjPF0ELkpMTFRgYGBSkhIUEBAgKfDQR5ks3k6AhRmOf0XOKe/vwX7HQBwXX7IH06ePKly5cpp9erVatmyZYZ9HnjgAZ07d05ff/21o61Zs2Zq2LChpk+fnqXr5Id7gRyKyeGbSY8cvpl4+voAALfLav7g1jWlAAAAYI2EhARJUqlSpTLts379erVt29apLTIyUuvXr8/0mOTkZCUmJjptAAAAucGlr+8NGzYsy30nTJjgyiUAAAAKDHfnTqmpqRoyZIhuv/32a34NLy4uTkFBQU5tQUFBiouLy/SY6OhojRo1KsvxAh7HTCsAhVUB+PfPpaLU9u3btX37dl26dMmxuOYvv/yiIkWK6JZbbnH0s/G9KAAAALfnTlFRUdq9e7fWrFnj9lhHjBjhVERLTExUaGio268DAADgUlGqc+fO8vf315w5c1SyZElJ0unTp9W3b1+1aNFCTz/9tFuDBAAAyM/cmTsNHDhQX3/9tX744QdVqFDhmn2Dg4MVHx/v1BYfH6/g4OBMj7Hb7bLb7VmOBwAAwFUurSk1fvx4RUdHO5IqSSpZsqReffVVnr4HAABwFXfkTsYYDRw4UAsXLtSKFStUpUqV6x4TFham5cuXO7UtW7ZMYWFh2RsAAABALnBpplRiYqJOnjyZrv3kyZM6e/ZsjoMCAAAoSNyRO0VFRSkmJkZffPGF/P39HetCBQYGqmjRopKkXr166cYbb1R0dLQkafDgwYqIiND48ePVqVMnzZ07V1u2bNGMGTPcNDIAAADXuTRT6u6771bfvn21YMEC/fbbb/rtt9/0+eefq1+/frrnnnvcHSMAAEC+5o7cadq0aUpISFCrVq0UEhLi2D799FNHn2PHjik2NtaxHx4erpiYGM2YMUMNGjTQ/PnztWjRomsujg4AAGAVl2ZKTZ8+XcOHD1ePHj106dKlf07k7a1+/frpjTfecGuAAAAA+Z07cidjrv+EnFWrVqVru++++3TfffdlK14AAAAr2ExWMpxMnDt3TocOHZIkVa1aVcWKFXNbYO6SmJiowMBAJSQkKCAgwNPhIA/iIZHwJNf/Bf5HTn9/c3p9oKDKrfwhP+ROVyOXKgQ8/UjxnF4/p/LAI9EBwCWe/vf7GrKaP7j09b00sbGxio2NVfXq1VWsWLEsfYIHAABQWJE7AQAA/MulotSpU6d0xx13qEaNGurYsaNj7YJ+/fpl65HGAFDY2Ww52wDkD+ROAAAA6blUlBo6dKh8fHx07Ngx3XDDDY72Bx54QEuWLHFbcAAAAAUBuRMAAEB6Li10/t1332np0qWqUKGCU3v16tV19OhRtwQGAABQUJA7AQAApOfSTKlz5845fcqX5q+//pLdbs9xUAAAAAUJuRMAAEB6LhWlWrRooQ8++MCxb7PZlJqaqtdff12tW7fO8nmio6N12223yd/fX+XKlVPXrl21f/9+pz4XLlxQVFSUSpcureLFi6tbt26Kj493JWwAAACPcFfuBAAAUJC49PW9119/XXfccYe2bNmiixcv6tlnn9WePXv0119/ae3atVk+z+rVqxUVFaXbbrtNly9f1gsvvKA777xTe/fudTwieejQofrmm280b948BQYGauDAgbrnnnuydR0AAABPclfuBAAAUJC4VJSqW7eufvnlF7399tvy9/dXUlKS7rnnHkVFRSkkJCTL57l6Yc/Zs2erXLly2rp1q1q2bKmEhAS99957iomJUZs2bSRJs2bNUu3atbVhwwY1a9bMlfABAAAs5a7cCQAAoCDJdlHq0qVLat++vaZPn67/+7//c2swCQkJkqRSpUpJkrZu3apLly6pbdu2jj61atVSxYoVtX79eopSAAAgz8vN3AkAACA/y3ZRysfHRz/99JPbA0lNTdWQIUN0++23q27dupKkuLg4+fr6qkSJEk59g4KCFBcXl+F5kpOTlZyc7NhPTEx0e6wAAABZlVu5EwAAQH7n0kLnDz30kN577z23BhIVFaXdu3dr7ty5OTpPdHS0AgMDHVtoaKibIgSAgsdmy9kGIGtyI3cCAADI71xaU+ry5ct6//339f3336tx48aORcnTTJgwIVvnGzhwoL7++mv98MMPqlChgqM9ODhYFy9e1JkzZ5xmS8XHxys4ODjDc40YMULDhg1z7CcmJlKYAgAAHuXu3AkAAKAgyFZR6tdff1XlypW1e/du3XLLLZKkX375xamPLRsfnRtj9NRTT2nhwoVatWqVqlSp4vR648aN5ePjo+XLl6tbt26SpP379+vYsWMKCwvL8Jx2u112uz07wwIAAMgV7s6dAAAACpJsFaWqV6+u2NhYrVy5UpL0wAMP6H//+5+CgoJcunhUVJRiYmL0xRdfyN/f37FOVGBgoIoWLarAwED169dPw4YNU6lSpRQQEKCnnnpKYWFhLHIOAADyPHfnTgAAAAVJtopSxhin/cWLF+vcuXMuX3zatGmSpFatWjm1z5o1S3369JEkTZw4UV5eXurWrZuSk5MVGRmpqVOnunxNAAAAq7g7dwIAAChIXFpTKs3ViVZuHO/n56cpU6ZoypQpOboWAACAp+U0dwIAAChIsvX0PZvNlm7dA9ZBAAAAyBi5EwAAQOay/fW9Pn36OBYSv3Dhgh5//PF0T5BZsGCB+yIEAADIp8idAAAAMpetolTv3r2d9h966CG3BgMAQHbkdMIJ36RCbiN3AgAAyFy2ilKzZs3KrTgAAAAKHHInAACAzGVrTSkAAAAAAADAHShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAuMxmy9kGIOt++OEHde7cWeXLl5fNZtOiRYuu2X/VqlWy2Wzptri4OGsCBgAAuA6KUgAAAPnAuXPn1KBBA02ZMiVbx+3fv1+xsbGOrVy5crkUIQAAQPZ4ezoAAAAAXF+HDh3UoUOHbB9Xrlw5lShRwv0BAQAA5BAzpQAAAAqwhg0bKiQkRO3atdPatWuv2z85OVmJiYlOGwAAQG6gKAUAAFAAhYSEaPr06fr888/1+eefKzQ0VK1atdK2bduueVx0dLQCAwMdW2hoqEURAwCAwoav7wEAABRANWvWVM2aNR374eHhOnTokCZOnKgPP/ww0+NGjBihYcOGOfYTExMpTAEAgFxBUQoAAKCQaNKkidasWXPNPna7XXa73aKIAABAYcbX9wAAAAqJHTt2KCQkxNNhAAAASGKmFAAAQL6QlJSkgwcPOvYPHz6sHTt2qFSpUqpYsaJGjBih33//XR988IEkadKkSapSpYpuvvlmXbhwQe+++65WrFih7777zlNDAAAAcEJRCgAAIB/YsmWLWrdu7dhPW/epd+/emj17tmJjY3Xs2DHH6xcvXtTTTz+t33//XTfccIPq16+v77//3ukcAAAAnkRRCgAAIB9o1aqVjDGZvj579myn/WeffVbPPvtsLkcFAADgOtaUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAs5+3pAAAAhZfNlr+vb4x74gAAAAAKI2ZKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAACQD/zwww/q3LmzypcvL5vNpkWLFl33mFWrVumWW26R3W5XtWrVNHv27FyPEwAAIKsoSgEAAOQD586dU4MGDTRlypQs9T98+LA6deqk1q1ba8eOHRoyZIj69++vpUuX5nKkAAAAWePt6QAAAABwfR06dFCHDh2y3H/69OmqUqWKxo8fL0mqXbu21qxZo4kTJyoyMjK3wgQAAMgyZkoBAAAUQOvXr1fbtm2d2iIjI7V+/fprHpecnKzExESnDQAAIDcwUwoAAKAAiouLU1BQkFNbUFCQEhMTdf78eRUtWjTD46KjozVq1CgrQvxXjC1nx/cw7onDU3I6fk/L7/Hnd4X97wdAvsZMKQAAADiMGDFCCQkJju348eOeDgkAABRQzJQCAAAogIKDgxUfH+/UFh8fr4CAgExnSUmS3W6X3W7P7fAAAACYKQUAAFAQhYWFafny5U5ty5YtU1hYmIciAgAAcEZRCgAAIB9ISkrSjh07tGPHDknS4cOHtWPHDh07dkzSP1+769Wrl6P/448/rl9//VXPPvus9u3bp6lTp+qzzz7T0KFDPRE+AABAOh4tSv3www/q3LmzypcvL5vNpkWLFjm9bozRyy+/rJCQEBUtWlRt27bVgQMHPBMsAACAB23ZskWNGjVSo0aNJEnDhg1To0aN9PLLL0uSYmNjHQUqSapSpYq++eYbLVu2TA0aNND48eP17rvvKjIy0iPxAwAAXM2ja0qdO3dODRo00COPPKJ77rkn3euvv/66/ve//2nOnDmqUqWKXnrpJUVGRmrv3r3y8/PzQMQAAACe0apVKxmT+VOyZs+eneEx27dvz8WoAAAAXOfRolSHDh3UoUOHDF8zxmjSpEl68cUX1aVLF0nSBx98oKCgIC1atEgPPviglaECAAAAAADAjfLsmlKHDx9WXFyc2rZt62gLDAxU06ZNtX79+kyPS05OVmJiotMGAAAAAACAvCXPFqXi4uIkSUFBQU7tQUFBjtcyEh0drcDAQMcWGhqaq3ECAAAAAAAg+/JsUcpVI0aMUEJCgmM7fvy4p0MCAAAAAADAVfJsUSo4OFiSFB8f79QeHx/veC0jdrtdAQEBThsAAAAAAADyljxblKpSpYqCg4O1fPlyR1tiYqI2btyosLAwD0YGAAAAAACAnPLo0/eSkpJ08OBBx/7hw4e1Y8cOlSpVShUrVtSQIUP06quvqnr16qpSpYpeeukllS9fXl27dvVc0AAAAAAAAMgxjxaltmzZotatWzv2hw0bJknq3bu3Zs+erWeffVbnzp3To48+qjNnzqh58+ZasmSJ/Pz8PBUyAAAAAAAA3MCjRalWrVrJGJPp6zabTaNHj9bo0aMtjAoAAAAAAAC5Lc+uKQUAAAAAAICCi6IUAAAAAAAALOfRr+8BkmSz5ez4a3wDFAAAAAAA5FHMlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLeXs6ACCnbDZPRwAAAAAAALKLmVIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMBy3p4OAJ5ns3k6AgAAAAAAUNgwUwoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOYpSAAAAAAAAsBxFKQAAAAAAAFiOohQAAAAAAAAsR1EKAAAgH5kyZYoqV64sPz8/NW3aVJs2bcq07+zZs2Wz2Zw2Pz8/C6MFAADIHEUpAACAfOLTTz/VsGHDNHLkSG3btk0NGjRQZGSkTpw4kekxAQEBio2NdWxHjx61MGIAAIDMUZQCAADIJyZMmKABAwaob9++qlOnjqZPn64bbrhB77//fqbH2Gw2BQcHO7agoCALIwYAAMgcRSkAAIB84OLFi9q6davatm3raPPy8lLbtm21fv36TI9LSkpSpUqVFBoaqi5dumjPnj1WhAsAAHBdFKUAAADygT///FMpKSnpZjoFBQUpLi4uw2Nq1qyp999/X1988YU++ugjpaamKjw8XL/99lum10lOTlZiYqLTBgAAkBsoSgEAABRQYWFh6tWrlxo2bKiIiAgtWLBAZcuW1TvvvJPpMdHR0QoMDHRsoaGhFkYMAAAKE4pSAAAA+UCZMmVUpEgRxcfHO7XHx8crODg4S+fw8fFRo0aNdPDgwUz7jBgxQgkJCY7t+PHjOYobAAAgMxSlAAAA8gFfX181btxYy5cvd7SlpqZq+fLlCgsLy9I5UlJStGvXLoWEhGTax263KyAgwGkDAADIDd6eDgAAAABZM2zYMPXu3Vu33nqrmjRpokmTJuncuXPq27evJKlXr1668cYbFR0dLUkaPXq0mjVrpmrVqunMmTN64403dPToUfXv39+TwwAAAJBEUQoAAJfZbDk73hj3xIHC44EHHtDJkyf18ssvKy4uTg0bNtSSJUsci58fO3ZMXl7/ToQ/ffq0BgwYoLi4OJUsWVKNGzfWunXrVKdOHU8NAQAAwMFmTMFOiRMTExUYGKiEhASmn2cip/9RBQBwTcF+B87fyB/+Zcm9iMlhMtIjn/8x5XT8yJnC/vuT38cPFGZ5+O8/q/kDa0oBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLeXs6AOSczebpCAAAAAAAALKHmVIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMBy3p4OoCCw2XJ2vDHuiQMAkL/k9P0jp3L6/sP7HwAAAHKCmVIAAAAAAACwHEUpAAAAAAAAWI6iFAAAAAAAACxHUQoAAAAAAACWoygFAAAAAAAAy1GUAgAAAAAAgOUoSgEAAAAAAMByFKUAAAAAAABgOW9PBwDJZvN0BAAAAAAAANZiphQAAAAAAAAsR1EKAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYztvTAQAAAM+w2fL39Y1xTxwAAADwDGZKAQAAAAAAwHIUpQAAAAAAAGA5ilIAAAAAAACwXL4oSk2ZMkWVK1eWn5+fmjZtqk2bNnk6JAAAAI/Ibl40b9481apVS35+fqpXr56+/fZbiyIFAAC4tjxflPr00081bNgwjRw5Utu2bVODBg0UGRmpEydOeDo0AAAAS2U3L1q3bp26d++ufv36afv27eratau6du2q3bt3Wxw5AABAenm+KDVhwgQNGDBAffv2VZ06dTR9+nTdcMMNev/99z0dGgAAgKWymxdNnjxZ7du31zPPPKPatWtrzJgxuuWWW/T2229bHDkAAEB6eboodfHiRW3dulVt27Z1tHl5ealt27Zav369ByMDAACwlit50fr16536S1JkZCR5FAAAyBO8PR3Atfz5559KSUlRUFCQU3tQUJD27duX4THJyclKTk527CckJEiSEhMTcy9QAABgudx8a0/LG4wxuXeRbHIlL4qLi8uwf1xcXKbX8Ugu9XcOj8/veV5Ox4+cKey/P/l9/EBhlof//rOaS+XpopQroqOjNWrUqHTtoaGhHogGAADklsDA3L/G2bNnFWjFhfKQfJlLDShcPyO4WWH//Sns4wcKMwv+/q+XS+XpolSZMmVUpEgRxcfHO7XHx8crODg4w2NGjBihYcOGOfZTU1P1119/qXTp0rLZbLkar6clJiYqNDRUx48fV0BAgKfDsVRhHTvjZtyFAeMuXOOW8sbYjTE6e/asypcv75HrZ8SVvCg4ODhb/aX8m0vlhd8bTyrs45e4B4y/cI9f4h4w/rw1/qzmUnm6KOXr66vGjRtr+fLl6tq1q6R/EqPly5dr4MCBGR5jt9tlt9ud2kqUKJHLkeYtAQEBeeKX0BMK69gZd+HCuAuXwjpuyfNjz2szpFzJi8LCwrR8+XINGTLE0bZs2TKFhYVlep38nkt5+vfG0wr7+CXuAeMv3OOXuAeMP++MPyu5VJ4uSknSsGHD1Lt3b916661q0qSJJk2apHPnzqlv376eDg0AAMBS18uLevXqpRtvvFHR0dGSpMGDBysiIkLjx49Xp06dNHfuXG3ZskUzZszw5DAAAAAk5YOi1AMPPKCTJ0/q5ZdfVlxcnBo2bKglS5akW7QTAACgoLteXnTs2DF5ef37cOXw8HDFxMToxRdf1AsvvKDq1atr0aJFqlu3rqeGAAAA4JDni1KSNHDgwEynpeNfdrtdI0eOTDflvjAorGNn3Iy7MGDchWvcUuEee1ZcKy9atWpVurb77rtP9913Xy5H5XmF/femsI9f4h4w/sI9fol7wPjz5/htJi896xgAAAAAAACFgtf1uwAAAAAAAADuRVEKAAAAAAAAlqMoBQAAAAAAAMtRlMrn/vrrL/Xs2VMBAQEqUaKE+vXrp6SkpOset379erVp00bFihVTQECAWrZsqfPnz1sQsXu4Om5JMsaoQ4cOstlsWrRoUe4G6mbZHfdff/2lp556SjVr1lTRokVVsWJFDRo0SAkJCRZG7ZopU6aocuXK8vPzU9OmTbVp06Zr9p83b55q1aolPz8/1atXT99++61FkbpXdsY9c+ZMtWjRQiVLllTJkiXVtm3b696nvCq7P+80c+fOlc1mU9euXXM3wFyS3XGfOXNGUVFRCgkJkd1uV40aNfLl73p2xz1p0iTHv2OhoaEaOnSoLly4YFG0yMsK0/tiRlzJh2bMmKFWrVopICBANptNZ86csSZYNyms+UGa7Ix/z5496tatmypXriybzaZJkyZZF2guKax50pWycw8WLFigW2+9VSVKlFCxYsXUsGFDffjhhxZG636FNWdMk53xz549WzabzWnz8/OzMNosMsjX2rdvbxo0aGA2bNhgfvzxR1OtWjXTvXv3ax6zbt06ExAQYKKjo83u3bvNvn37zKeffmouXLhgUdQ558q400yYMMF06NDBSDILFy7M3UDdLLvj3rVrl7nnnnvMl19+aQ4ePGiWL19uqlevbrp162Zh1Nk3d+5c4+vra95//32zZ88eM2DAAFOiRAkTHx+fYf+1a9eaIkWKmNdff93s3bvXvPjii8bHx8fs2rXL4shzJrvj7tGjh5kyZYrZvn27+fnnn02fPn1MYGCg+e233yyOPGeyO+40hw8fNjfeeKNp0aKF6dKlizXBulF2x52cnGxuvfVW07FjR7NmzRpz+PBhs2rVKrNjxw6LI8+Z7I77448/Nna73Xz88cfm8OHDZunSpSYkJMQMHTrU4siRFxWW98XMuJIPTZw40URHR5vo6GgjyZw+fdqaYN2gsOYHabI7/k2bNpnhw4ebTz75xAQHB5uJEydaG7CbFdY86UrZvQcrV640CxYsMHv37jUHDx40kyZNMkWKFDFLliyxOHL3KKw5Y5rsjn/WrFkmICDAxMbGOra4uDiLo74+ilL52N69e40ks3nzZkfb4sWLjc1mM7///numxzVt2tS8+OKLVoSYK1wdtzHGbN++3dx4440mNjY23xWlcjLuK3322WfG19fXXLp0KTfCdIsmTZqYqKgox35KSoopX768iY6OzrD//fffbzp16uTU1rRpU/PYY4/lapzult1xX+3y5cvG39/fzJkzJ7dCzBWujPvy5csmPDzcvPvuu6Z37975MsHI7rinTZtmbrrpJnPx4kWrQswV2R13VFSUadOmjVPbsGHDzO23356rcSLvK0zvixnJ6fhXrlyZ74pShTU/SJOTPKFSpUr5vihVWPOkK+X0HhhjTKNGjfLtfwsW1pwxTXbHP2vWLBMYGGhRdK7j63v52Pr161WiRAndeuutjra2bdvKy8tLGzduzPCYEydOaOPGjSpXrpzCw8MVFBSkiIgIrVmzxqqwc8yVcUvS33//rR49emjKlCkKDg62IlS3cnXcV0tISFBAQIC8vb1zI8wcu3jxorZu3aq2bds62ry8vNS2bVutX78+w2PWr1/v1F+SIiMjM+2fF7ky7qv9/fffunTpkkqVKpVbYbqdq+MePXq0ypUrp379+lkRptu5Mu4vv/xSYWFhioqKUlBQkOrWravXXntNKSkpVoWdY66MOzw8XFu3bnVMT//111/17bffqmPHjpbEjLyrsLwvZsZd488vCmt+kMYdeUJ+VljzpCvl9B4YY7R8+XLt379fLVu2zM1Qc0VhzRnTuDr+pKQkVapUSaGhoerSpYv27NljRbjZQlEqH4uLi1O5cuWc2ry9vVWqVCnFxcVleMyvv/4qSXrllVc0YMAALVmyRLfccovuuOMOHThwINdjdgdXxi1JQ4cOVXh4uLp06ZLbIeYKV8d9pT///FNjxozRo48+mhshusWff/6plJQUBQUFObUHBQVlOs64uLhs9c+LXBn31Z577jmVL18+XQKel7ky7jVr1ui9997TzJkzrQgxV7gy7l9//VXz589XSkqKvv32W7300ksaP368Xn31VStCdgtXxt2jRw+NHj1azZs3l4+Pj6pWrapWrVrphRdesCJk5GGF5X0xM+4Yf35SWPODNO7IE/KzwponXcnVe5CQkKDixYvL19dXnTp10ltvvaV27drldrhuV1hzxjSujL9mzZp6//339cUXX+ijjz5SamqqwsPD9dtvv1kRcpZRlMqDnn/++XQLkl297du3z6Vzp6amSpIee+wx9e3bV40aNdLEiRMdv7CelJvj/vLLL7VixYo8ucBjbo77SomJierUqZPq1KmjV155JeeBI08ZN26c5s6dq4ULF+bNBQzd5OzZs3r44Yc1c+ZMlSlTxtPhWCo1NVXlypXTjBkz1LhxYz3wwAP6v//7P02fPt3ToeWqVatW6bXXXtPUqVO1bds2LViwQN98843GjBnj6dCQSwr7+6JV4wcKk8KSJ2XE399fO3bs0ObNmzV27FgNGzZMq1at8nRYua4w54xpwsLC1KtXLzVs2FARERFasGCBypYtq3feecfToTnJX/OUC4mnn35affr0uWafm266ScHBwTpx4oRT++XLl/XXX39l+vW0kJAQSVKdOnWc2mvXrq1jx465HrQb5Oa4V6xYoUOHDqlEiRJO7d26dVOLFi08+g9zbo47zdmzZ9W+fXv5+/tr4cKF8vHxyWnYuaZMmTIqUqSI4uPjndrj4+MzHWdwcHC2+udFrow7zZtvvqlx48bp+++/V/369XMzTLfL7rgPHTqkI0eOqHPnzo62tGK7t7e39u/fr6pVq+Zu0G7gys87JCREPj4+KlKkiKOtdu3aiouL08WLF+Xr65urMbuDK+N+6aWX9PDDD6t///6SpHr16uncuXN69NFH9X//93/y8uLztYKmsL8vWjH+/Kiw5gdpcpInFASFNU+6kqv3wMvLS9WqVZMkNWzYUD///LOio6PVqlWr3AzX7QprzpjGHf8G+Pj4qFGjRjp48GBuhOgyMrk8qGzZsqpVq9Y1N19fX4WFhenMmTPaunWr49gVK1YoNTVVTZs2zfDclStXVvny5bV//36n9l9++UWVKlXK1XFdT26O+/nnn9dPP/2kHTt2ODZJmjhxombNmmXF8DKVm+OW/vkk+M4775Svr6++/PLLPP/pkK+vrxo3bqzly5c72lJTU7V8+XKFhYVleExYWJhTf0latmxZpv3zIlfGLUmvv/66xowZoyVLljitK5JfZHfctWrV0q5du5z+lv/zn/+odevW2rFjh0JDQ60M32Wu/Lxvv/12HTx40JFQSf/82x0SEpIvClKSa+P++++/0xWe0gpzxpjcCxYeU9jfF3N7/PlVYc0P0riaJxQUhTVPupK7fgdSU1OVnJycGyHmqsKaM6Zxx88/JSVFu3btckxUyTM8vdI6cqZ9+/amUaNGZuPGjWbNmjWmevXqTo8C/u2330zNmjXNxo0bHW0TJ040AQEBZt68eebAgQPmxRdfNH5+fubgwYOeGIJLXBn31ZTPnr5nTPbHnZCQYJo2bWrq1atnDh486PQ40MuXL3tqGNc1d+5cY7fbzezZs83evXvNo48+akqUKOF4hOnDDz9snn/+eUf/tWvXGm9vb/Pmm2+an3/+2YwcOTJfPvI5u+MeN26c8fX1NfPnz3f62Z49e9ZTQ3BJdsd9tfz6JJXsjvvYsWPG39/fDBw40Ozfv998/fXXply5cubVV1/11BBckt1xjxw50vj7+5tPPvnE/Prrr+a7774zVatWNffff7+nhoA8pLC8L2bGlXwoNjbWbN++3cycOdNIMj/88IPZvn27OXXqlCeGkC2FNT9Ik93xJycnm+3bt5vt27ebkJAQM3z4cLN9+3Zz4MABTw0hRwprnnSl7N6D1157zXz33Xfm0KFDZu/evebNN9803t7eZubMmZ4aQo4U1pwxTXbHP2rUKLN06VJz6NAhs3XrVvPggw8aPz8/s2fPHk8NIUMUpfK5U6dOme7du5vixYubgIAA07dvX6d/aA8fPmwkmZUrVzodFx0dbSpUqGBuuOEGExYWZn788UeLI88ZV8d9pfxYlMruuNMe95zRdvjwYc8MIoveeustU7FiRePr62uaNGliNmzY4HgtIiLC9O7d26n/Z599ZmrUqGF8fX3NzTffbL755huLI3aP7Iy7UqVKGf5sR44caX3gOZTdn/eV8nOCkd1xr1u3zjRt2tTY7XZz0003mbFjx+bL/5DOzrgvXbpkXnnlFVO1alXj5+dnQkNDzZNPPpmvHmOP3FOY3hcz4ko+NHLkyAzHP2vWLOsH4ILCmh+kyc74037+V28RERHWB+4mhTVPulJ27sH//d//mWrVqhk/Pz9TsmRJExYWZubOneuBqN2nsOaMabIz/iFDhjj6BgUFmY4dO5pt27Z5IOprsxnD3HcAAAAAAABYizWlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJajKAUAAAAAAADLUZQCAAAAAACA5ShKAQAAAAAAwHIUpQDkeatWrZLNZtOZM2eyfMwrr7yihg0b5lpM2WWz2bRo0SJPhwEAAAqJI0eOyGazaceOHZ4OJVOu5HgAChaKUgDcZvr06fL399fly5cdbUlJSfLx8VGrVq2c+qYlIYcOHbruecPDwxUbG6vAwEC3xtuqVSsNGTLErecEAADIbX369JHNZnNspUuXVvv27fXTTz85+oSGhio2NlZ169b1YKQAcG0UpQC4TevWrZWUlKQtW7Y42n788UcFBwdr48aNunDhgqN95cqVqlixoqpWrXrd8/r6+io4OFg2my1X4gYAAMhv2rdvr9jYWMXGxmr58uXy9vbWXXfd5Xi9SJEiCg4Olre3twejBIBroygFwG1q1qypkJAQrVq1ytG2atUqdenSRVWqVNGGDRuc2lu3bi1JSk1NVXR0tKpUqaKiRYuqQYMGmj9/vlPfq6d2z5w5U6Ghobrhhht09913a8KECSpRokS6mD788ENVrlxZgYGBevDBB3X27FlJ/3zCuHr1ak2ePNnxKeORI0fSHf/CCy+oadOm6dobNGig0aNHS5I2b96sdu3aqUyZMgoMDFRERIS2bduW6X3KaDw7duxIF8OaNWvUokULFS1aVKGhoRo0aJDOnTuX6XkBAEDhYbfbFRwcrODgYDVs2FDPP/+8jh8/rpMnT0pK//W9lJQU9evXz5Fv1axZU5MnT3Y656pVq9SkSRMVK1ZMJUqU0O23366jR49meP3w8HA999xzTm0nT56Uj4+PfvjhB0n/5GG33nqr/P39FRwcrB49eujEiROZjimj5RcmTZqkypUrO7W9++67ql27tvz8/FSrVi1NnTr1ercLQB5FUQqAW7Vu3VorV6507K9cuVKtWrVSRESEo/38+fPauHGjoygVHR2tDz74QNOnT9eePXs0dOhQPfTQQ1q9enWG11i7dq0ef/xxDR48WDt27FC7du00duzYdP0OHTqkRYsW6euvv9bXX3+t1atXa9y4cZKkyZMnKywsTAMGDHB8yhgaGpruHD179tSmTZucvma4Z88e/fTTT+rRo4ck6ezZs+rdu7fWrFmjDRs2qHr16urYsaOjAOaKQ4cOqX379urWrZt++uknffrpp1qzZo0GDhzo8jkBAEDBlJSUpI8++kjVqlVT6dKlM+yTmpqqChUqaN68edq7d69efvllvfDCC/rss88kSZcvX1bXrl0VERGhn376SevXr9ejjz6a6Uz1nj17au7cuTLGONo+/fRTlS9fXi1atJAkXbp0SWPGjNHOnTu1aNEiHTlyRH369MnRWD/++GO9/PLLGjt2rH7++We99tpreumllzRnzpwcnReAhxgAcKOZM2eaYsWKmUuXLpnExETj7e1tTpw4YWJiYkzLli2NMcYsX77cSDJHjx41Fy5cMDfccINZt26d03n69etnunfvbowxZuXKlUaSOX36tDHGmAceeMB06tTJqX/Pnj1NYGCgY3/kyJHmhhtuMImJiY62Z555xjRt2tSxHxERYQYPHnzdMTVo0MCMHj3asT9ixAin81wtJSXF+Pv7m6+++srRJsksXLgww/EYY8z27duNJHP48GHH+B999FGn8/7444/Gy8vLnD9//roxAwCAgqt3796mSJEiplixYqZYsWJGkgkJCTFbt2519Dl8+LCRZLZv357peaKioky3bt2MMcacOnXKSDKrVq3KUgwnTpww3t7e5ocffnC0hYWFmeeeey7TYzZv3mwkmbNnzxpj0udEI0eONA0aNHA6ZuLEiaZSpUqO/apVq5qYmBinPmPGjDFhYWFZihtA3sJMKQBu1apVK507d06bN2/Wjz/+qBo1aqhs2bKKiIhwrCu1atUq3XTTTapYsaIOHjyov//+W+3atVPx4sUd2wcffJDpIuj79+9XkyZNnNqu3pekypUry9/f37EfEhJyzSnjmenZs6diYmIkScYYffLJJ+rZs6fj9fj4eA0YMEDVq1dXYGCgAgIClJSUpGPHjmX7Wml27typ2bNnO92TyMhIpaam6vDhwy6fFwAAFAytW7fWjh07tGPHDm3atEmRkZHq0KFDpl+3k6QpU6aocePGKlu2rIoXL64ZM2Y48pVSpUqpT58+ioyMVOfOnTV58mTFxsZmeq6yZcvqzjvv1McffyxJOnz4sNavX++UI23dulWdO3dWxYoV5e/vr4iICElyOUc6d+6cDh06pH79+jnlSK+++mqWHp4DIO9h1TsAblWtWjVVqFBBK1eu1OnTpx3JR/ny5RUaGqp169Zp5cqVatOmjaR/pptL0jfffKMbb7zR6Vx2uz1Hsfj4+Djt22w2paamZvs83bt313PPPadt27bp/PnzOn78uB544AHH671799apU6c0efJkVapUSXa7XWFhYbp48WKG5/Py+ufzAHPFdPdLly459UlKStJjjz2mQYMGpTu+YsWK2R4DAAAoWIoVK6Zq1ao59t99910FBgZq5syZevXVV9P1nzt3roYPH67x48crLCxM/v7+euONN7Rx40ZHn1mzZmnQoEFasmSJPv30U7344otatmyZmjVrlmEMPXv21KBBg/TWW28pJiZG9erVU7169ST9U0CKjIxUZGSkPv74Y5UtW1bHjh1TZGTkNXOkK/MjyTlHSssbZ86cmW7NzyJFilzrdgHIoyhKAXC71q1ba9WqVTp9+rSeeeYZR3vLli21ePFibdq0SU888YQkqU6dOrLb7Tp27JijgHU9NWvW1ObNm53art7PCl9fX6WkpFy3X4UKFRQREaGPP/5Y58+fV7t27VSuXDnH62vXrtXUqVPVsWNHSdLx48f1559/Znq+smXLSpJiY2NVsmRJSXIsQprmlltu0d69e52STQAAgMzYbDZ5eXnp/PnzGb6+du1ahYeH68knn3S0ZTS7qFGjRmrUqJFGjBihsLAwxcTEZFqU6tKlix599FEtWbJEMTEx6tWrl+O1ffv26dSpUxo3bpxj3c4rn9CckbJlyyouLk7GGMdaVlfmSEFBQSpfvrx+/fVXpxlZAPIvilIA3K5169aKiorSpUuXnApNERERGjhwoC5evOhY5Nzf31/Dhw/X0KFDlZqaqubNmyshIUFr165VQECAevfune78Tz31lFq2bKkJEyaoc+fOWrFihRYvXpzpQpyZqVy5sjZu3KgjR46oePHiKlWqlGMW09V69uypkSNH6uLFi5o4caLTa9WrV3c8XSYxMVHPPPOMihYtmul1q1WrptDQUL3yyisaO3asfvnlF40fP96pz3PPPadmzZpp4MCB6t+/v4oVK6a9e/dq2bJlevvtt7M1TgAAUPAkJycrLi5OknT69Gm9/fbbSkpKUufOnTPsX716dX3wwQdaunSpqlSpog8//FCbN29WlSpVJP3z9bsZM2boP//5j8qXL6/9+/frwIEDToWmqxUrVkxdu3bVSy+9pJ9//lndu3d3vFaxYkX5+vrqrbfe0uOPP67du3drzJgx1xxTq1atdPLkSb3++uu69957tWTJEi1evFgBAQGOPqNGjdKgQYMUGBio9u3bKzk5WVu2bNHp06c1bNiwLN8/AHkDa0oBcLvWrVvr/PnzqlatmoKCghztEREROnv2rGrWrKmQkBBH+5gxY/TSSy8pOjpatWvXVvv27fXNN984kqSr3X777Zo+fbomTJigBg0aaMmSJRo6dKj8/PyyFefw4cNVpEgR1alTxzGlPDP33nuvTp06pb///ltdu3Z1eu29997T6dOndcstt+jhhx/WoEGDnGZSXc3Hx0effPKJ9u3bp/r16+u///1vumn29evX1+rVq/XLL7+oRYsWatSokV5++WWVL18+W2MEAAAF05IlSxQSEqKQkBA1bdpUmzdv1rx589SqVasM+z/22GO655579MADD6hp06Y6deqU06ypG264Qfv27VO3bt1Uo0YNPfroo4qKitJjjz12zTh69uypnTt3qkWLFk5LDJQtW1azZ8/WvHnzVKdOHY0bN05vvvnmNc9Vu3ZtTZ06VVOmTFGDBg20adMmDR8+3KlP//799e6772rWrFmqV6+eIiIiNHv27EzzRgB5m81c/aVdAMiHBgwYoH379unHH3/0dCgAAAAAgCzg63sA8qU333xT7dq1U7FixbR48WLNmTNHU6dO9XRYAAAAAIAsYqYUgHzp/vvv16pVq3T27FnddNNNeuqpp/T44497OiwAAAAAQBZRlAIAAAAAAIDlWOgcAAAAAAAAlqMoBQAAAAAAAMtRlAIAAAAAAIDlKEoBAAAAAADAchSlAAAAAAAAYDmKUgAAAAAAALAcRSkAAAAAAABYjqIUAAAAAAAALEdRCgAAAAAAAJb7fza9G02UFgtTAAAAAElFTkSuQmCC\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABag0lEQVR4nO3deViU9f7/8dcAMqCyuCBoopi7qWh4NFBDTxRpebLtmFqiuZRHcyE75fmWZmZYqekpy7LcKtPqpKdTqZlK5b5vlabmdkxETdlUVPj8/ujnnEZAYYB7GH0+rmuums987nvec8/29sU9920zxhgBAAAAAAAAFvJydwEAAAAAAAC4/hBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAUXUu3dvRUREuLxsxYoVS7YgF82aNUs2m00HDhwo9fu6fJsdOHBANptNEyZMKPX7lqTnn39eNpvNkvu6XGZmpvr166ewsDDZbDYNGzbMLXXYbDY9//zzbrlvAAAu5wnfS/RK1qBXAq5vhFK4Jnz88cey2WxasGBBntsiIyNls9m0YsWKPLfVqlVLMTExVpRYJGfOnNHzzz+v5OTkQs1PTk6WzWZzXOx2u0JDQ9WhQwe99NJLOn78uFvqslJZre2ll17SrFmzNHDgQL3//vt65JFH3F3SNWPcuHH6y1/+otDQ0Cs2krt379bw4cMVExMjPz8/y/6BAQDXk0sBzh8v1apVU8eOHbVo0SJ3l0evpLJbG71S6aFXgicglMI1oV27dpKklStXOo2np6dr586d8vHx0apVq5xuO3z4sA4fPuxYtrCmT5+u3bt3F6/gqzhz5ozGjBlT5KZhyJAhev/99/XOO+/oqaeeUuXKlTV69Gg1btxYy5cvd5r7yCOP6OzZs6pdu3ap1+Xubfbss8/q7NmzpXr/BVm+fLluueUWjR49Wg8//LCioqLcUse16Nlnn9WGDRvUsmXLK85bs2aN/vnPfyojI0ONGze2qDoAuD698MILev/99zVnzhz9/e9/1/Hjx9W5c2d98cUXTvPOnj2rZ5991vL66JXola4n9ErwBD7uLgAoCTVq1FCdOnXyhFJr1qyRMUYPPvhgntsuXS9qKFWuXLniFVuK2rdvrwceeMBpbNu2bbrjjjt0//3368cff1T16tUlSd7e3vL29i7VerKyslShQgW3bzMfHx/5+Ljn4y41NVVNmjQpsfVdvHhRubm58vX1LbF1eqr9+/crIiJCJ06cUEhISIHz/vKXv+j06dMKCAjQhAkTtHXrVuuKBIDrTKdOndSqVSvH9b59+yo0NFQfffSR7r77bse4n5+fO8qjVyoAvdK1iV4JnoA9pXDNaNeunbZs2eL0V55Vq1bppptuUqdOnbR27Vrl5uY63Waz2dS2bVvH2AcffKCoqCj5+/urcuXKeuihh3T48GGn+8nvmFInT57UI488osDAQAUHByshIUHbtm2TzWbTrFmz8tR65MgRde3aVRUrVlRISIhGjBihnJwcSb8fQ+DSl8aYMWMcu5m7+hv3yMhITZ48WadPn9Ybb7zhGM/vOAkbN25UfHy8qlatKn9/f9WpU0ePPvpooeq6dLysffv2qXPnzgoICFDPnj0L3GaXvPbaa6pdu7b8/f0VGxurnTt3Ot3eoUMHdejQIc9yf1zn1WrL7zgJFy9e1NixY1W3bl3Z7XZFREToH//4h7Kzs53mRURE6O6779bKlSvVunVr+fn56cYbb9ScOXPy3+D/36WfCezfv19ffvmlo6ZL2zs1NdXRqPv5+SkyMlKzZ892WscfjycxefJkR60//vhjgfebnZ2t4cOHKyQkRAEBAfrLX/6i//73v/nOPXLkiB599FGFhobKbrfrpptu0owZM/J9HB9//LHGjRunmjVrys/PT7fddpv27t3rNHfPnj26//77FRYWJj8/P9WsWVMPPfSQ0tLSnOYV5n1WGIU9tlvlypUVEBBQ5PUDAIovODhY/v7+eQKPy3ubgwcP6m9/+5saNmwof39/ValSRQ8++GCenxBduHBBY8aMUf369eXn56cqVaqoXbt2Wrp0qcs10ivRK9Er0SvBfdhTCteMdu3a6f3339e6descX8yrVq1STEyMYmJilJaWpp07d6p58+aO2xo1aqQqVapI+v03188995z++te/ql+/fjp+/Lhef/113XrrrdqyZYuCg4Pzvd/c3Fx16dJF69ev18CBA9WoUSP9+9//VkJCQr7zc3JyFB8frzZt2mjChAn65ptvNHHiRNWtW1cDBw5USEiI3nrrLQ0cOFD33nuv7rvvPkly1O2KBx54QH379tXXX3+tcePG5TsnNTVVd9xxh0JCQvTMM88oODhYBw4c0GeffSZJharr4sWLio+PV7t27TRhwgSVL1/+inXNmTNHGRkZGjRokM6dO6cpU6boz3/+s3bs2KHQ0NBCPz5Xtlm/fv00e/ZsPfDAA3ryySe1bt06JSUl6aeffspzbLK9e/c6tmFCQoJmzJih3r17KyoqSjfddFO+62/cuLHef/99DR8+XDVr1tSTTz7pqPXs2bPq0KGD9u7dq8GDB6tOnTr65JNP1Lt3b50+fVpDhw51WtfMmTN17tw5DRgwQHa7XZUrV77i4/rggw/Uo0cPxcTEaPny5brrrrvyzDt27JhuueUW2Ww2DR48WCEhIVq0aJH69u2r9PT0PAcZHT9+vLy8vDRixAilpaXplVdeUc+ePbVu3TpJ0vnz5xUfH6/s7Gw98cQTCgsL05EjR/TFF1/o9OnTCgoKkuT6+wwA4BnS0tJ04sQJGWOUmpqq119/XZmZmXr44YevuNyGDRu0evVqPfTQQ6pZs6YOHDigt956Sx06dNCPP/7o6Cmef/55JSUlqV+/fmrdurXS09O1ceNGbd68WbfffrvLddMr5UWvRK8EWMIA14gffvjBSDJjx441xhhz4cIFU6FCBTN79mxjjDGhoaFm6tSpxhhj0tPTjbe3t+nfv78xxpgDBw4Yb29vM27cOKd17tixw/j4+DiNJyQkmNq1azuu/+tf/zKSzOTJkx1jOTk55s9//rORZGbOnOm0rCTzwgsvON1Py5YtTVRUlOP68ePHjSQzevToQj32FStWGEnmk08+KXBOZGSkqVSpkuP6zJkzjSSzf/9+Y4wxCxYsMJLMhg0bClzHleq69NieeeaZfG/74zbbv3+/kWT8/f3Nf//7X8f4unXrjCQzfPhwx1hsbKyJjY296jqvVNvo0aPNHz/utm7daiSZfv36Oc0bMWKEkWSWL1/uGKtdu7aRZL777jvHWGpqqrHb7ebJJ5/Mc1+Xq127trnrrrucxiZPnmwkmQ8++MAxdv78eRMdHW0qVqxo0tPTjTH/206BgYEmNTX1qvd16XH97W9/cxrv0aNHnm3Tt29fU716dXPixAmnuQ899JAJCgoyZ86cMcb877XVuHFjk52d7Zg3ZcoUI8ns2LHDGGPMli1brvoaLMr7rCiK8n559dVXnV73AICScamvuPxit9vNrFmz8sy//HP70vfOH61Zs8ZIMnPmzHGMRUZG5vleLQx6JXqlPz4ueqWC0SvBavx8D9eMxo0bq0qVKo5jRW3btk1ZWVmOs+vFxMQ4Dna+Zs0a5eTkOI4n9dlnnyk3N1d//etfdeLECcclLCxM9evXz/fMfZcsXrxY5cqVU//+/R1jXl5eGjRoUIHLPP74407X27dvr19++cW1B15IFStWVEZGRoG3X/qryxdffKELFy64fD8DBw4s9NyuXbvqhhtucFxv3bq12rRpo6+++srl+y+MS+tPTEx0Gr/0F7ovv/zSabxJkyZq376943pISIgaNmzo8nP21VdfKSwsTN27d3eMlStXTkOGDFFmZqa+/fZbp/n333//FY8D8Mf1Sr8fxPWPLv9LnjFG//rXv9SlSxcZY5xe8/Hx8UpLS9PmzZudlunTp4/TsRkubY9L2+DSX/eWLFmiM2fO5Ftfcd5nAADPMHXqVC1dulRLly7VBx98oI4dO6pfv36OvYkK4u/v7/j/Cxcu6OTJk6pXr56Cg4OdvpOCg4P1ww8/aM+ePSVeO73S/9Ar0SsBViGUwjXDZrMpJibGceyoVatWqVq1aqpXr54k51Dq0n8vhVJ79uyRMUb169dXSEiI0+Wnn35Sampqgfd78OBBVa9ePc/u15fu93J+fn55vjQrVaqkU6dOufbACykzM/OKvxWPjY3V/fffrzFjxqhq1aq65557NHPmzDzHDbgSHx8f1axZs9Dz69evn2esQYMGpX4K2oMHD8rLyyvPcxQWFqbg4GAdPHjQabxWrVp51lGc5+zgwYOqX7++vLycP4Ivne3k8vuvU6dOodfr5eWlunXrOo03bNjQ6frx48d1+vRpvfPOO3le73369JGkPK/5y7dBpUqVJMmxDerUqaPExES9++67qlq1quLj4zV16lSnYyQU530GAPAMrVu3VlxcnOLi4tSzZ099+eWXatKkiQYPHqzz588XuNzZs2c1atQohYeHy263q2rVqgoJCdHp06edvkteeOEFnT59Wg0aNFCzZs301FNPafv27SVSO73S/9Ar0SsBVuGYUrimtGvXTv/5z3+0Y8cOx/GkLomJidFTTz2lI0eOaOXKlapRo4ZuvPFGSb8fF8pms2nRokX5nmWlYsWKJVZjaZ/FJT8XLlzQzz//rKZNmxY4x2az6dNPP9XatWv1n//8R0uWLNGjjz6qiRMnau3atYXaBna7PU/zUFw2m03GmDzjlw4MX9x1F0ZBz1l+dZWGP/71uCRcOuD/ww8/XOCxzy4/xkRhtsHEiRPVu3dv/fvf/9bXX3+tIUOGKCkpSWvXrlXNmjUtfZ8BAMoGLy8vdezYUVOmTNGePXsKPL7QE088oZkzZ2rYsGGKjo5WUFCQbDabHnroIacT1dx6663at2+f47vm3Xff1WuvvaZp06apX79+LtdJr1TwuguDXoleCXAVoRSuKZf2fFq5cqVWrVrltCtuVFSU7Ha7kpOTtW7dOnXu3NlxW926dWWMUZ06ddSgQYMi3Wft2rW1YsUKnTlzxmlvqcvPtlEUhW0ACuvTTz/V2bNnFR8ff9W5t9xyi2655RaNGzdOc+fOVc+ePTVv3jz169evxOvKb9f7n3/+2elMIZUqVcp31+/L/0JWlNpq166t3Nxc7dmzx/EXN+n3A1qePn1atWvXLvS6XFG7dm1t375dubm5To3prl27HLe7ut7c3Fzt27fP6S9+u3fvdpp36WwzOTk5iouLc+m+CtKsWTM1a9ZMzz77rFavXq22bdtq2rRpevHFF4v1PgMAeK6LFy9K+n1PpIJ8+umnSkhI0MSJEx1j586d0+nTp/PMrVy5svr06aM+ffooMzNTt956q55//vlihVL0Ss7oleiVAKvw8z1cU1q1aiU/Pz99+OGHOnLkiNOeUna7XTfffLOmTp2qrKwsR4AlSffdd5+8vb01ZsyYPH/RMcbo5MmTBd5nfHy8Lly4oOnTpzvGcnNzNXXqVJcfx6VwK79GrKi2bdumYcOGqVKlSlc8ztWpU6fyPPYWLVpIkmO39JKsS5IWLlyoI0eOOK6vX79e69atU6dOnRxjdevW1a5du3T8+HHH2LZt2xw/wbykKLVdCiQnT57sND5p0iRJyvcMLCWpc+fOSklJ0fz58x1jFy9e1Ouvv66KFSsqNjbWpfVe2m7//Oc/ncYvf5ze3t66//779a9//SvPaaUlOW3rwkpPT3f8o+OSZs2aycvLy/H6Kc77DADgmS5cuKCvv/5avr6+TuHG5by9vfN8N7z++ut59va5/LuiYsWKqlevXpF+Qnc5eqW86JXolQCrsKcUrim+vr7605/+pO+//152u11RUVFOt8fExDj+AvfHUKpu3bp68cUXNXLkSB04cEBdu3ZVQECA9u/frwULFmjAgAEaMWJEvvfZtWtXtW7dWk8++aT27t2rRo0a6fPPP9dvv/0mybW9nvz9/dWkSRPNnz9fDRo0UOXKldW0adMr7lIuSd9//73OnTunnJwcnTx5UqtWrdLnn3+uoKAgLViwQGFhYQUuO3v2bL355pu69957VbduXWVkZGj69OkKDAx0NCau1lWQevXqqV27dho4cKCys7M1efJkValSRX//+98dcx599FFNmjRJ8fHx6tu3r1JTUzVt2jTddNNNSk9Pd2mbRUZGKiEhQe+8845Onz6t2NhYrV+/XrNnz1bXrl3VsWNHlx5PYQ0YMEBvv/22evfurU2bNikiIkKffvqpVq1apcmTJ1/xeBZX0qJFC3Xv3l1vvvmm0tLSFBMTo2XLluW719748eO1YsUKtWnTRv3791eTJk3022+/afPmzfrmm28cr9/CWr58uQYPHqwHH3xQDRo00MWLF/X+++87mjqpeO+z/Lz//vs6ePCg42Ch3333nV588UVJ0iOPPOL4K2paWppef/11Sf87ntwbb7yh4OBgBQcHa/DgwUV6rACAgi1atMixN0tqaqrmzp2rPXv26JlnnlFgYGCBy9199916//33FRQUpCZNmmjNmjX65ptvVKVKFad5TZo0UYcOHRQVFaXKlStr48aN+vTTTwv9WU6vRK9Er0SvhDLGsvP8ARYZOXKkkWRiYmLy3PbZZ58ZSSYgIMBcvHgxz+3/+te/TLt27UyFChVMhQoVTKNGjcygQYPM7t27HXMuP72uMb+fZrVHjx4mICDABAUFmd69e5tVq1YZSWbevHlOy1aoUCHP/V5+Gl5jjFm9erWJiooyvr6+Vz2F66VT0V66lCtXzoSEhJhbb73VjBs3Lt9T5F5+muPNmzeb7t27m1q1ahm73W6qVatm7r77brNx48ZC1VXQY8tvm106fe+rr75qJk6caMLDw43dbjft27c327Zty7P8Bx98YG688Ubj6+trWrRoYZYsWZLv81BQbflt3wsXLpgxY8aYOnXqmHLlypnw8HAzcuRIc+7cOad5+Z2m2JiCT798uYKWP3bsmOnTp4+pWrWq8fX1Nc2aNTMzZ850mvPH7VRYZ8+eNUOGDDFVqlQxFSpUMF26dDGHDx/O9zV07NgxM2jQIBMeHm7KlStnwsLCzG233Wbeeecdx5yCTqF9qbZLNf/yyy/m0UcfNXXr1jV+fn6mcuXKpmPHjuabb77JU2Nh3meFERsbm+/pxyWZFStW5Kk1v8vlryEAgGsu9RV/vPj5+ZkWLVqYt956y+Tm5jrNv/x76dSpU47vxYoVK5r4+Hiza9cuU7t2bZOQkOCY9+KLL5rWrVub4OBg4+/vbxo1amTGjRtnzp8/f8X66JWuXBu9Er0SvRLcxWaMRUefA64zCxcu1L333quVK1eqbdu27i4HAAAAAIAyhVAKKAFnz551OutHTk6O7rjjDm3cuFEpKSklfkYQAAAAAAA8HceUAkrAE088obNnzyo6OlrZ2dn67LPPtHr1ar300ksEUkARnD17VmlpaVecU7lyZfn6+lpUEQAAQNlBr4RrDXtKASVg7ty5mjhxovbu3atz586pXr16GjhwIAcFBIpo1qxZ6tOnzxXnrFixQh06dLCmIAAAgDKEXgnXGkIpAECZcfToUf3www9XnBMVFaVKlSpZVBEAAEDZQa+Eaw2hFAAAAAAAACzn5e4CAAAAAAAAcP3x6AOd5+bm6tdff1VAQIBsNpu7ywEAAB7KGKOMjAzVqFFDXl7X79/s6K0AAEBJKGxv5dGh1K+//qrw8HB3lwEAAK4Rhw8fVs2aNd1dhtvQWwEAgJJ0td7Ko0OpgIAASb8/yMDAQDdXAwAAPFV6errCw8MdvcX1it4KAACUhML2Vh4dSl3arTwwMJDGCQAAFNv1/pM1eisAAFCSrtZbXb8HTQAAAAAAAIDbEEoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACzn9lDqyJEjevjhh1WlShX5+/urWbNm2rhxo7vLAgAAcKvvvvtOXbp0UY0aNWSz2bRw4cKrLpOcnKybb75Zdrtd9erV06xZs0q9TgAAAFe5NZQ6deqU2rZtq3LlymnRokX68ccfNXHiRFWqVMmdZQEAALhdVlaWIiMjNXXq1ELN379/v+666y517NhRW7du1bBhw9SvXz8tWbKklCsFAABwjY877/zll19WeHi4Zs6c6RirU6eOGysCAAAoGzp16qROnToVev60adNUp04dTZw4UZLUuHFjrVy5Uq+99pri4+NLq0wAAACXuXVPqc8//1ytWrXSgw8+qGrVqqlly5aaPn26O0sCAADwSGvWrFFcXJzTWHx8vNasWeOmigAAAK7MraHUL7/8orfeekv169fXkiVLNHDgQA0ZMkSzZ8/Od352drbS09OdLgAAAJBSUlIUGhrqNBYaGqr09HSdPXs232XorQAAgDu59ed7ubm5atWqlV566SVJUsuWLbVz505NmzZNCQkJeeYnJSVpzJgxVpcJ4BpgsxVveWNKpg4AKEvc0lvNLeYHsiT14EMZHq647wPeAwCka+KzxK17SlWvXl1NmjRxGmvcuLEOHTqU7/yRI0cqLS3NcTl8+LAVZQIAAJR5YWFhOnbsmNPYsWPHFBgYKH9//3yXobcCAADu5NY9pdq2bavdu3c7jf3888+qXbt2vvPtdrvsdrsVpQEAAHiU6OhoffXVV05jS5cuVXR0dIHL0FsBAAB3cuueUsOHD9fatWv10ksvae/evZo7d67eeecdDRo0yJ1lAQAAuF1mZqa2bt2qrVu3SpL279+vrVu3OvYoHzlypHr16uWY//jjj+uXX37R3//+d+3atUtvvvmmPv74Yw0fPtwd5QMAAFyVW0OpP/3pT1qwYIE++ugjNW3aVGPHjtXkyZPVs2dPd5YFAADgdhs3blTLli3VsmVLSVJiYqJatmypUaNGSZKOHj3qdMiDOnXq6Msvv9TSpUsVGRmpiRMn6t1331V8fLxb6gcAALgamzGee/je9PR0BQUFKS0tTYGBge4uB0AZxoHOAVwJPcXvLNkOHOgcuCYOTgygDCjDnyWF7SncuqcUAAAAAAAArk+EUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHJuDaWef/552Ww2p0ujRo3cWRIAAAAAAAAs4OPuAm666SZ98803jus+Pm4vCQAAAAAAAKXM7QmQj4+PwsLC3F0GAAAAAAAALOT2Y0rt2bNHNWrU0I033qiePXvq0KFD7i4JAAAAAAAApcyte0q1adNGs2bNUsOGDXX06FGNGTNG7du3186dOxUQEJBnfnZ2trKzsx3X09PTrSwXAAAAAAAAJcStoVSnTp0c/9+8eXO1adNGtWvX1scff6y+ffvmmZ+UlKQxY8ZYWSIAAAAAAABKgdt/vvdHwcHBatCggfbu3Zvv7SNHjlRaWprjcvjwYYsrBAAAAAAAQEkoU6FUZmam9u3bp+rVq+d7u91uV2BgoNMFAAAAAAAAnsetodSIESP07bff6sCBA1q9erXuvfdeeXt7q3v37u4sCwAAAAAAAKXMrceU+u9//6vu3bvr5MmTCgkJUbt27bR27VqFhIS4sywAAAAAAACUMreGUvPmzXPn3QMAAAAAAMBNytQxpQAAAAAAAHB9IJQCAAAAAACA5QilAAAAyqipU6cqIiJCfn5+atOmjdavX3/F+ZMnT1bDhg3l7++v8PBwDR8+XOfOnbOoWgAAgKIhlAIAACiD5s+fr8TERI0ePVqbN29WZGSk4uPjlZqamu/8uXPn6plnntHo0aP1008/6b333tP8+fP1j3/8w+LKAQAACodQCgAAoAyaNGmS+vfvrz59+qhJkyaaNm2aypcvrxkzZuQ7f/Xq1Wrbtq169OihiIgI3XHHHerevftV964CAABwF0IpAACAMub8+fPatGmT4uLiHGNeXl6Ki4vTmjVr8l0mJiZGmzZtcoRQv/zyi7766it17tzZkpoBAACKysfdBQAAAMDZiRMnlJOTo9DQUKfx0NBQ7dq1K99levTooRMnTqhdu3YyxujixYt6/PHHr/jzvezsbGVnZzuup6enl8wDAAAAKAT2lAIAALgGJCcn66WXXtKbb76pzZs367PPPtOXX36psWPHFrhMUlKSgoKCHJfw8HALKwYAANc79pQCAAAoY6pWrSpvb28dO3bMafzYsWMKCwvLd5nnnntOjzzyiPr16ydJatasmbKysjRgwAD93//9n7y88v4tcuTIkUpMTHRcT09PJ5gCAACWYU8pAACAMsbX11dRUVFatmyZYyw3N1fLli1TdHR0vsucOXMmT/Dk7e0tSTLG5LuM3W5XYGCg0wUAAMAq7CkFAABQBiUmJiohIUGtWrVS69atNXnyZGVlZalPnz6SpF69eumGG25QUlKSJKlLly6aNGmSWrZsqTZt2mjv3r167rnn1KVLF0c4BQAAUJYQSgEAAJRB3bp10/HjxzVq1CilpKSoRYsWWrx4sePg54cOHXLaM+rZZ5+VzWbTs88+qyNHjigkJERdunTRuHHj3PUQAAAArshmCtqf2wOkp6crKChIaWlp7G4O4IpstuIt77mflAAKg57id5Zsh7nF/ECWpB58KMPDFfd9wHsAgFSmP0sK21NwTCkAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGC5MhNKjR8/XjabTcOGDXN3KQAAAAAAAChlZSKU2rBhg95++201b97c3aUAAAAAAADAAm4PpTIzM9WzZ09Nnz5dlSpVcnc5AAAAAAAAsIDbQ6lBgwbprrvuUlxcnLtLAQAAAAAAgEV83Hnn8+bN0+bNm7Vhw4ZCzc/OzlZ2drbjenp6emmVBgAAAAAAgFLktj2lDh8+rKFDh+rDDz+Un59foZZJSkpSUFCQ4xIeHl7KVQK/s9nce7nesQ0BAAAA4NrjtlBq06ZNSk1N1c033ywfHx/5+Pjo22+/1T//+U/5+PgoJycnzzIjR45UWlqa43L48GE3VA4AAAAAAIDictvP92677Tbt2LHDaaxPnz5q1KiRnn76aXl7e+dZxm63y263W1UiAAAAAAAASonbQqmAgAA1bdrUaaxChQqqUqVKnnEAAAAAAABcW9x+9j0AAAAAAABcf9x69r3LJScnu7sEAAAAAAAAWIA9pQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAlnMplPrll19Kug4AAIBrQkn2SVOnTlVERIT8/PzUpk0brV+//orzT58+rUGDBql69eqy2+1q0KCBvvrqqxKrBwAAoCS5FErVq1dPHTt21AcffKBz586VdE0AAAAeq6T6pPnz5ysxMVGjR4/W5s2bFRkZqfj4eKWmpuY7//z587r99tt14MABffrpp9q9e7emT5+uG264weUaAAAASpNLodTmzZvVvHlzJSYmKiwsTI899thV/3IHAABwPSipPmnSpEnq37+/+vTpoyZNmmjatGkqX768ZsyYke/8GTNm6LffftPChQvVtm1bRUREKDY2VpGRkcV9SAAAAKXCpVCqRYsWmjJlin799VfNmDFDR48eVbt27dS0aVNNmjRJx48fL+k6AQAAPEJJ9Ennz5/Xpk2bFBcX5xjz8vJSXFyc1qxZk+8yn3/+uaKjozVo0CCFhoaqadOmeumll5STk1Nijw0AAKAkFetA5z4+Prrvvvv0ySef6OWXX9bevXs1YsQIhYeHq1evXjp69GhJ1QkAAOBRitMnnThxQjk5OQoNDXUaDw0NVUpKSr7L/PLLL/r000+Vk5Ojr776Ss8995wmTpyoF198scD7yc7OVnp6utMFAADAKsUKpTZu3Ki//e1vql69uiZNmqQRI0Zo3759Wrp0qX799Vfdc889JVUnAACAR7G6T8rNzVW1atX0zjvvKCoqSt26ddP//d//adq0aQUuk5SUpKCgIMclPDy8RGsCAAC4Eh9XFpo0aZJmzpyp3bt3q3PnzpozZ446d+4sL6/fM646depo1qxZioiIKMlaAQAAyryS6JOqVq0qb29vHTt2zGn82LFjCgsLy3eZ6tWrq1y5cvL29naMNW7cWCkpKTp//rx8fX3zLDNy5EglJiY6rqenpxNMAQAAy7i0p9Rbb72lHj166ODBg1q4cKHuvvtuR6N1SbVq1fTee++VSJEAAACeoiT6JF9fX0VFRWnZsmWOsdzcXC1btkzR0dH5LtO2bVvt3btXubm5jrGff/5Z1atXzzeQkiS73a7AwECnCwAAgFVc2lNqz549V53j6+urhIQEV1YPAADgsUqqT0pMTFRCQoJatWql1q1ba/LkycrKylKfPn0kSb169dINN9ygpKQkSdLAgQP1xhtvaOjQoXriiSe0Z88evfTSSxoyZEjxHxQAAEApcCmUmjlzpipWrKgHH3zQafyTTz7RmTNnCKMAAMB1q6T6pG7duun48eMaNWqUUlJS1KJFCy1evNhx8PNDhw457YEVHh6uJUuWaPjw4WrevLluuOEGDR06VE8//XTJPTgAAIASZDPGmKIu1KBBA7399tvq2LGj0/i3336rAQMGaPfu3SVW4JWkp6crKChIaWlp7G6OUmWzuff+i/4uvba4e/tLPAfAta4ke4qy0ie5wpLeam4JfKj34EMZHq647wPeAwCkMv1ZUtiewqVjSh06dEh16tTJM167dm0dOnTIlVUCAABcE+iTAAAACselUKpatWravn17nvFt27apSpUqxS4KAADAU9EnAQAAFI5LoVT37t01ZMgQrVixQjk5OcrJydHy5cs1dOhQPfTQQyVdIwAAgMegTwIAACgclw50PnbsWB04cEC33XabfHx+X0Vubq569eqll156qUQLBAAA8CT0SQAAAIXjUijl6+ur+fPna+zYsdq2bZv8/f3VrFkz1a5du6TrAwAA8Cj0SQAAAIXjUih1SYMGDdSgQYOSqgUAAOCaQZ8EAABwZS6FUjk5OZo1a5aWLVum1NRU5ebmOt2+fPnyEikOAADA09AnAQAAFI5LodTQoUM1a9Ys3XXXXWratKlsNltJ1wUAAOCR6JMAAAAKx6VQat68efr444/VuXPnkq4HAADAo9EnAQAAFI6XKwv5+vqqXr16JV0LAACAx6NPAgAAKByXQqknn3xSU6ZMkTGmpOsBAADwaPRJAAAAhePSz/dWrlypFStWaNGiRbrppptUrlw5p9s/++yzEikOAADA09AnAQAAFI5LoVRwcLDuvffekq4FAADA49EnAQAAFI5LodTMmTNLug4AAIBrAn0SAABA4bh0TClJunjxor755hu9/fbbysjIkCT9+uuvyszMLLHiAAAAPBF9EgAAwNW5tKfUwYMHdeedd+rQoUPKzs7W7bffroCAAL388svKzs7WtGnTSrpOAAAAj0CfBAAAUDgu7Sk1dOhQtWrVSqdOnZK/v79j/N5779WyZctKrDgAAABPQ58EAABQOC7tKfX9999r9erV8vX1dRqPiIjQkSNHSqQwAAAAT0SfBAAAUDgu7SmVm5urnJycPOP//e9/FRAQUOyiAAAAPBV9EgAAQOG4FErdcccdmjx5suO6zWZTZmamRo8erc6dO5dUbQAAAB6HPgkAAKBwXPr53sSJExUfH68mTZro3Llz6tGjh/bs2aOqVavqo48+KukaAQAAPAZ9EgAAQOG4FErVrFlT27Zt07x587R9+3ZlZmaqb9++6tmzp9MBPQEAAK439EkAAACF41IoJUk+Pj56+OGHS7IWAACAawJ9EgAAwNW5FErNmTPnirf36tXLpWIAAAA8HX0SAABA4bgUSg0dOtTp+oULF3TmzBn5+vqqfPnyNFsAAOC6RZ8EAABQOC6dfe/UqVNOl8zMTO3evVvt2rXjAJ4AAOC6Rp8EAABQOC6FUvmpX7++xo8fn+evgwAAANc7+iQAAIC8SiyUkn4/qOevv/5akqsEAAC4JtAnAQAAOHPpmFKff/6503VjjI4ePao33nhDbdu2LfR63nrrLb311ls6cOCAJOmmm27SqFGj1KlTJ1fKAgAAcLuS6pMAAACudS6FUl27dnW6brPZFBISoj//+c+aOHFioddTs2ZNjR8/XvXr15cxRrNnz9Y999yjLVu26KabbnKlNAAAALcqqT4JAADgWudSKJWbm1sid96lSxen6+PGjdNbb72ltWvXEkoBAACPVFJ9EgAAwLXOpVCqNOTk5OiTTz5RVlaWoqOj852TnZ2t7Oxsx/X09HSrygMAAAAAAEAJcimUSkxMLPTcSZMmXfH2HTt2KDo6WufOnVPFihW1YMECNWnSJN+5SUlJGjNmTJFqBa4FNlvxljemZOq4nhX3OSgunkPAc5RknwQAAHAtcymU2rJli7Zs2aILFy6oYcOGkqSff/5Z3t7euvnmmx3zbIX4V1zDhg21detWpaWl6dNPP1VCQoK+/fbbfIOpkSNHOjV66enpCg8Pd+UhAAAAlIqS7JMAAACuZS6FUl26dFFAQIBmz56tSpUqSZJOnTqlPn36qH379nryyScLvS5fX1/Vq1dPkhQVFaUNGzZoypQpevvtt/PMtdvtstvtrpQMAABgiZLskwAAAK5lXq4sNHHiRCUlJTkaLUmqVKmSXnzxxWKfVSY3N9fpuFEAAACepDT7JAAAgGuJS3tKpaen6/jx43nGjx8/royMjEKvZ+TIkerUqZNq1aqljIwMzZ07V8nJyVqyZIkrZQEAALhdSfVJAAAA1zqXQql7771Xffr00cSJE9W6dWtJ0rp16/TUU0/pvvvuK/R6UlNT1atXLx09elRBQUFq3ry5lixZottvv92VsgAAANyupPokAACAa51LodS0adM0YsQI9ejRQxcuXPh9RT4+6tu3r1599dVCr+e9995z5e4BAADKrJLqkwAAAK51NmNcP9F4VlaW9u3bJ0mqW7euKlSoUGKFFUZ6erqCgoKUlpamwMBAS+8b1xdPP0GS6+/yssHTt39J8PTnECjrSqOncHef5ApLequ5JfCh3oMPRXi44r4PeA8AkMr0Z0lhewqXDnR+ydGjR3X06FHVr19fFSpUUDHyLQAAgGsKfRIAAMCVuRRKnTx5UrfddpsaNGigzp076+jRo5Kkvn37cppjAABwXaNPAgAAKByXQqnhw4erXLlyOnTokMqXL+8Y79atmxYvXlxixQEAAHga+iQAAIDCcelA519//bWWLFmimjVrOo3Xr19fBw8eLJHCAAAAPBF9EgAAQOG4tKdUVlaW01/+Lvntt99kt9uLXRQAAICnok8CAAAoHJdCqfbt22vOnDmO6zabTbm5uXrllVfUsWPHEisOAADA09AnAQAAFI5LP9975ZVXdNttt2njxo06f/68/v73v+uHH37Qb7/9plWrVpV0jQAAAB6DPgkAAKBwXNpTqmnTpvr555/Vrl073XPPPcrKytJ9992nLVu2qG7duiVdIwAAgMegTwIAACicIu8pdeHCBd15552aNm2a/u///q80agIAAPBI9EkAAACFV+Q9pcqVK6ft27eXRi0AAAAejT4JAACg8Fz6+d7DDz+s9957r6RrAQAA8Hj0SQAAAIXj0oHOL168qBkzZuibb75RVFSUKlSo4HT7pEmTSqQ4AAAAT0OfBAAAUDhFCqV++eUXRUREaOfOnbr55pslST///LPTHJvNVnLVAQAAeAj6JAAAgKIpUihVv359HT16VCtWrJAkdevWTf/85z8VGhpaKsUBAAB4CvokAACAoinSMaWMMU7XFy1apKysrBItCAAAwBPRJwEAABSNSwc6v+Ty5gsAAAC/o08CAAC4siKFUjabLc+xEDg2AgAAAH0SAABAURXpmFLGGPXu3Vt2u12SdO7cOT3++ON5zirz2WeflVyFAAAAHoA+CQAAoGiKFEolJCQ4XX/44YdLtBgAAABPRZ8EAABQNEUKpWbOnFladQAAAHg0+iQAAICiKdaBzgEAAAAAAABXEEoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAZdTUqVMVEREhPz8/tWnTRuvXry/UcvPmzZPNZlPXrl1Lt0AAAIBiIJQCAAAog+bPn6/ExESNHj1amzdvVmRkpOLj45WamnrF5Q4cOKARI0aoffv2FlUKAADgGkIpAACAMmjSpEnq37+/+vTpoyZNmmjatGkqX768ZsyYUeAyOTk56tmzp8aMGaMbb7zRwmoBAACKjlAKAACgjDl//rw2bdqkuLg4x5iXl5fi4uK0Zs2aApd74YUXVK1aNfXt29eKMgEAAIrFx90FAAAAwNmJEyeUk5Oj0NBQp/HQ0FDt2rUr32VWrlyp9957T1u3bi30/WRnZys7O9txPT093aV6AQAAXMGeUgAAAB4uIyNDjzzyiKZPn66qVasWermkpCQFBQU5LuHh4aVYJQAAgDP2lAIAAChjqlatKm9vbx07dsxp/NixYwoLC8szf9++fTpw4IC6dOniGMvNzZUk+fj4aPfu3apbt26e5UaOHKnExETH9fT0dIIpAABgGUIpAACAMsbX11dRUVFatmyZunbtKun3kGnZsmUaPHhwnvmNGjXSjh07nMaeffZZZWRkaMqUKQUGTXa7XXa7vcTrBwAAKAxCKQAAgDIoMTFRCQkJatWqlVq3bq3JkycrKytLffr0kST16tVLN9xwg5KSkuTn56emTZs6LR8cHCxJecYBAADKCkIpAACAMqhbt246fvy4Ro0apZSUFLVo0UKLFy92HPz80KFD8vLi8KAAAMBzEUoBAACUUYMHD87353qSlJycfMVlZ82aVfIFAQAAlCD+vAYAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsJxbQ6mkpCT96U9/UkBAgKpVq6auXbtq9+7d7iwJAAAAAAAAFnBrKPXtt99q0KBBWrt2rZYuXaoLFy7ojjvuUFZWljvLAgAAAAAAQCnzceedL1682On6rFmzVK1aNW3atEm33nqrm6oCAAAAAABAaXNrKHW5tLQ0SVLlypXzvT07O1vZ2dmO6+np6ZbUBQAAAAAAgJJVZkKp3NxcDRs2TG3btlXTpk3znZOUlKQxY8ZYXJn72WzuvX9jird8cesv7v2j+HgO3c/dz4G77x8AAADAtafMnH1v0KBB2rlzp+bNm1fgnJEjRyotLc1xOXz4sIUVAgAAAAAAoKSUiT2lBg8erC+++ELfffedatasWeA8u90uu91uYWUAAAAAAAAoDW4NpYwxeuKJJ7RgwQIlJyerTp067iwHAAAAAAAAFnFrKDVo0CDNnTtX//73vxUQEKCUlBRJUlBQkPz9/d1ZGgAAAAAAAEqRW48p9dZbbyktLU0dOnRQ9erVHZf58+e7sywAAAAAAACUMrf/fA8AAAAAAADXnzJz9j0AAAAAAABcPwilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAoo6ZOnaqIiAj5+fmpTZs2Wr9+fYFzp0+frvbt26tSpUqqVKmS4uLirjgfAADA3QilAAAAyqD58+crMTFRo0eP1ubNmxUZGan4+HilpqbmOz85OVndu3fXihUrtGbNGoWHh+uOO+7QkSNHLK4cAACgcAilAAAAyqBJkyapf//+6tOnj5o0aaJp06apfPnymjFjRr7zP/zwQ/3tb39TixYt1KhRI7377rvKzc3VsmXLLK4cAACgcAilAAAAypjz589r06ZNiouLc4x5eXkpLi5Oa9asKdQ6zpw5owsXLqhy5cqlVSYAAECx+Li7AAAAADg7ceKEcnJyFBoa6jQeGhqqXbt2FWodTz/9tGrUqOEUbF0uOztb2dnZjuvp6emuFQwAAOAC9pQCAAC4xowfP17z5s3TggUL5OfnV+C8pKQkBQUFOS7h4eEWVgkAAK53hFIAAABlTNWqVeXt7a1jx445jR87dkxhYWFXXHbChAkaP368vv76azVv3vyKc0eOHKm0tDTH5fDhw8WuHQAAoLAIpQAAAMoYX19fRUVFOR2k/NJBy6Ojowtc7pVXXtHYsWO1ePFitWrV6qr3Y7fbFRgY6HQBAACwCseUAgAAKIMSExOVkJCgVq1aqXXr1po8ebKysrLUp08fSVKvXr10ww03KCkpSZL08ssva9SoUZo7d64iIiKUkpIiSapYsaIqVqzotscBAABQEEIpAACAMqhbt246fvy4Ro0apZSUFLVo0UKLFy92HPz80KFD8vL6307vb731ls6fP68HHnjAaT2jR4/W888/b2XpAAAAhUIoBQAAUEYNHjxYgwcPzve25ORkp+sHDhwo/YIAAABKEMeUAgAAAAAAgOUIpQAAAAAAAGA5t4ZS3333nbp06aIaNWrIZrNp4cKF7iwHAAAAAAAAFnFrKJWVlaXIyEhNnTrVnWUAAAAAAADAYm490HmnTp3UqVMnd5YAAAAAAAAAN+CYUgAAAAAAALCcW/eUKqrs7GxlZ2c7rqenp7uxGgAAAAAAALjKo0KppKQkjRkzxtL7tNmKvw5jir+O61lJPAfXO3dvQ3ffP64Nnv464rug+M8h2xAAAODa4lE/3xs5cqTS0tIcl8OHD7u7JAAAAAAAALjAo/aUstvtstvt7i4DAAAAAAAAxeTWUCozM1N79+51XN+/f7+2bt2qypUrq1atWm6sDAAAAAAAAKXJraHUxo0b1bFjR8f1xMRESVJCQoJmzZrlpqoAAAAAAABQ2twaSnXo0EGGo5YCAAAAAABcdzzqQOcAAAAAAAC4NhBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAy5WJUGrq1KmKiIiQn5+f2rRpo/Xr17u7JAAAALcrao/0ySefqFGjRvLz81OzZs301VdfWVQpAABA0bk9lJo/f74SExM1evRobd68WZGRkYqPj1dqaqq7SwMAAHCbovZIq1evVvfu3dW3b19t2bJFXbt2VdeuXbVz506LKwcAACgct4dSkyZNUv/+/dWnTx81adJE06ZNU/ny5TVjxgx3lwYAAOA2Re2RpkyZojvvvFNPPfWUGjdurLFjx+rmm2/WG2+8YXHlAAAAhePWUOr8+fPatGmT4uLiHGNeXl6Ki4vTmjVr3FgZAACA+7jSI61Zs8ZpviTFx8fTUwEAgDLLx513fuLECeXk5Cg0NNRpPDQ0VLt27cozPzs7W9nZ2Y7raWlpkqT09PTSLbSYynh5V+Xp9QNw//vY3fdfFrANiq80t+GlXsIYU3p3UgRF7ZEkKSUlJd/5KSkpBd6PW3qrMyWwDt5Q8HTFfR/wHgAglenPksL2Vm4NpYoqKSlJY8aMyTMeHh7uhmoKLyjI3RUUj6fXD8D972N3339ZwDYoPiu2YUZGhoKuoyfLU3sr9b9+niMgX7wHAJQECz5LrtZbuTWUqlq1qry9vXXs2DGn8WPHjiksLCzP/JEjRyoxMdFxPTc3V7/99puqVKkim81W6vWWFenp6QoPD9fhw4cVGBjo7nKuGWzX0sO2LT1s29LDti09ZXHbGmOUkZGhGjVquLsUSUXvkSQpLCysSPMlz+utyuJrBwXj+fIcPFeehefLc1zPz1Vheyu3hlK+vr6KiorSsmXL1LVrV0m/N0PLli3T4MGD88y32+2y2+1OY8HBwRZUWjYFBgZedy9sK7BdSw/btvSwbUsP27b0lLVtW5b2kCpqjyRJ0dHRWrZsmYYNG+YYW7p0qaKjowu8H0/trcraawdXxvPlOXiuPAvPl+e4Xp+rwvRWbv/5XmJiohISEtSqVSu1bt1akydPVlZWlvr06ePu0gAAANzmaj1Sr169dMMNNygpKUmSNHToUMXGxmrixIm66667NG/ePG3cuFHvvPOOOx8GAABAgdweSnXr1k3Hjx/XqFGjlJKSohYtWmjx4sV5DtQJAABwPblaj3To0CF5ef3vRMoxMTGaO3eunn32Wf3jH/9Q/fr1tXDhQjVt2tRdDwEAAOCK3B5KSdLgwYML3BUdedntdo0ePTrP7vYoHrZr6WHblh62belh25Yetm3hXalHSk5OzjP24IMP6sEHHyzlqtyH145n4fnyHDxXnoXny3PwXF2dzZSVcx8DAAAAAADguuF19SkAAAAAAABAySKUAgAAAAAAgOUIpQAAAAAAAGA5QikPMG7cOMXExKh8+fIKDg4u1DLGGI0aNUrVq1eXv7+/4uLitGfPntIt1AP99ttv6tmzpwIDAxUcHKy+ffsqMzPzist06NBBNpvN6fL4449bVHHZNXXqVEVERMjPz09t2rTR+vXrrzj/k08+UaNGjeTn56dmzZrpq6++sqhSz1OUbTtr1qw8r08/Pz8Lq/UM3333nbp06aIaNWrIZrNp4cKFV10mOTlZN998s+x2u+rVq6dZs2aVep2eqKjbNjk5Oc9r1mazKSUlxZqCUea58l19iTFGnTp1KvT7HMVX1Ofrt99+0xNPPKGGDRvK399ftWrV0pAhQ5SWlmZh1dcHejXPUpTna/r06Wrfvr0qVaqkSpUqKS4u7qrPL0pOUd9bl8ybN082m01du3Yt3QLLOEIpD3D+/Hk9+OCDGjhwYKGXeeWVV/TPf/5T06ZN07p161ShQgXFx8fr3LlzpVip5+nZs6d++OEHLV26VF988YW+++47DRgw4KrL9e/fX0ePHnVcXnnlFQuqLbvmz5+vxMREjR49Wps3b1ZkZKTi4+OVmpqa7/zVq1ere/fu6tu3r7Zs2aKuXbuqa9eu2rlzp8WVl31F3baSFBgY6PT6PHjwoIUVe4asrCxFRkZq6tSphZq/f/9+3XXXXerYsaO2bt2qYcOGqV+/flqyZEkpV+p5irptL9m9e7fT67ZatWqlVCE8javf1ZI0efJk2Wy2Uq4Qf1TU5+vXX3/Vr7/+qgkTJmjnzp2aNWuWFi9erL59+1pY9bWPXs2zFPX5Sk5OVvfu3bVixQqtWbNG4eHhuuOOO3TkyBGLK7/+uNKrS9KBAwc0YsQItW/f3qJKyzADjzFz5kwTFBR01Xm5ubkmLCzMvPrqq46x06dPG7vdbj766KNSrNCz/Pjjj0aS2bBhg2Ns0aJFxmazmSNHjhS4XGxsrBk6dKgFFXqO1q1bm0GDBjmu5+TkmBo1apikpKR85//1r381d911l9NYmzZtzGOPPVaqdXqiom7bwn5O4H8kmQULFlxxzt///ndz0003OY1169bNxMfHl2Jlnq8w23bFihVGkjl16pQlNcGzuPpdbYwxW7ZsMTfccIM5evRooV6LKL7iPF9/9PHHHxtfX19z4cKF0ijzukSv5lmK+nxd7uLFiyYgIMDMnj27tErE/+fKc3Xx4kUTExNj3n33XZOQkGDuueceCyotu9hT6hq0f/9+paSkKC4uzjEWFBSkNm3aaM2aNW6srGxZs2aNgoOD1apVK8dYXFycvLy8tG7duisu++GHH6pq1apq2rSpRo4cqTNnzpR2uWXW+fPntWnTJqfXm5eXl+Li4gp8va1Zs8ZpviTFx8fz+ryMK9tWkjIzM1W7dm2Fh4frnnvu0Q8//GBFudc0XrOlr0WLFqpevbpuv/12rVq1yt3loIxw9bv6zJkz6tGjh6ZOnaqwsDArSoWK11v9UVpamgIDA+Xj41MaZV536NU8i6v93x+dOXNGFy5cUOXKlUurTMj15+qFF15QtWrV2CP0/+OT/hp06TgcoaGhTuOhoaEco+MPUlJS8vw8xMfHR5UrV77idurRo4dq166tGjVqaPv27Xr66ae1e/duffbZZ6Vdcpl04sQJ5eTk5Pt627VrV77LpKSk8PosBFe2bcOGDTVjxgw1b95caWlpmjBhgmJiYvTDDz+oZs2aVpR9TSroNZuenq6zZ8/K39/fTZV5vurVq2vatGlq1aqVsrOz9e6776pDhw5at26dbr75ZneXBzdz9bt6+PDhiomJ0T333FPaJeIPXH2+/ujEiRMaO3ZsoX+iiaujV/Msrjxfl3v66adVo0aNPMEiSpYrz9XKlSv13nvvaevWrRZU6BnYU8pNnnnmmXwP7PrHS2E/dOCstLftgAEDFB8fr2bNmqlnz56aM2eOFixYoH379pXgowBcEx0drV69eqlFixaKjY3VZ599ppCQEL399tvuLg3IV8OGDfXYY48pKipKMTExmjFjhmJiYvTaa6+5uzSUotL8rv7888+1fPlyTZ48uWSLvo5Z1bemp6frrrvuUpMmTfT8888Xv3DgOjR+/HjNmzdPCxYs4GQ3ZUxGRoYeeeQRTZ8+XVWrVnV3OWUGe0q5yZNPPqnevXtfcc6NN97o0rov7aZ+7NgxVa9e3TF+7NgxtWjRwqV1epLCbtuwsLA8B6C7ePGifvvttyLt6t+mTRtJ0t69e1W3bt0i1+vpqlatKm9vbx07dsxp/NixYwVux7CwsCLNv165sm0vV65cObVs2VJ79+4tjRKvGwW9ZgMDA9lLqhS0bt1aK1eudHcZKEWl+V29fPly7du3L88Zi++//361b99eycnJxaj8+mRFb5WRkaE777xTAQEBWrBggcqVK1fcsvH/0at5luL0fxMmTND48eP1zTffqHnz5qVZJlT052rfvn06cOCAunTp4hjLzc2V9Ptepbt3774u/z1JKOUmISEhCgkJKZV116lTR2FhYVq2bJkjhEpPT9e6deuKdAY/T1XYbRsdHa3Tp09r06ZNioqKkvR7I5ubm+sImgrj0q6XfwwArye+vr6KiorSsmXLHKczzc3N1bJlyzR48OB8l4mOjtayZcs0bNgwx9jSpUsVHR1tQcWew5Vte7mcnBzt2LFDnTt3LsVKr33R0dF5ToXNa7b0bN269br9TL1elOZ39TPPPKN+/fo5jTVr1kyvvfaa0z8EUHil3Vulp6crPj5edrtdn3/+OXt3lDB6Nc/iav/3yiuvaNy4cVqyZInTcd1Qeor6XDVq1Eg7duxwGnv22WeVkZGhKVOmKDw83Iqyyx53H2kdV3fw4EGzZcsWM2bMGFOxYkWzZcsWs2XLFpORkeGY07BhQ/PZZ585ro8fP94EBwebf//732b79u3mnnvuMXXq1DFnz551x0Mos+68807TsmVLs27dOrNy5UpTv3590717d8ft//3vf03Dhg3NunXrjDHG7N2717zwwgtm48aNZv/+/ebf//63ufHGG82tt97qrodQJsybN8/Y7XYza9Ys8+OPP5oBAwaY4OBgk5KSYowx5pFHHjHPPPOMY/6qVauMj4+PmTBhgvnpp5/M6NGjTbly5cyOHTvc9RDKrKJu2zFjxpglS5aYffv2mU2bNpmHHnrI+Pn5mR9++MFdD6FMysjIcHyWSjKTJk0yW7ZsMQcPHjTGGPPMM8+YRx55xDH/l19+MeXLlzdPPfWU+emnn8zUqVONt7e3Wbx4sbseQplV1G372muvmYULF5o9e/aYHTt2mKFDhxovLy/zzTffuOshoIwp6nd1fsTZ9yxT1OcrLS3NtGnTxjRr1szs3bvXHD161HG5ePGiux7GNYdezbMU9fkaP3688fX1NZ9++qnTe+iP/15E6Sjqc3U5zr5nDKGUB0hISDCS8lxWrFjhmCPJzJw503E9NzfXPPfccyY0NNTY7XZz2223md27d1tffBl38uRJ0717d1OxYkUTGBho+vTp4/ThvX//fqdtfejQIXPrrbeaypUrG7vdburVq2eeeuopk5aW5qZHUHa8/vrrplatWsbX19e0bt3arF271nFbbGysSUhIcJr/8ccfmwYNGhhfX19z0003mS+//NLiij1HUbbtsGHDHHNDQ0NN586dzebNm91Qddm2YsWKfD9XL23LhIQEExsbm2eZFi1aGF9fX3PjjTc6febif4q6bV9++WVTt25d4+fnZypXrmw6dOhgli9f7p7iUSYV9bs6P4RS1inq81XQZ4Yks3//fvc8iGsUvZpnKcrzVbt27XzfQ6NHj7a+8OtQUd9bf0QoZYzNGGNKe28sAAAAAAAA4I84+x4AAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRSAMiE5OVk2m02nT58u9DLPP/+8WrRoUWo1FZXNZtPChQvdXQYAALiOHThwQDabTVu3bnV3KQVype8DcG0ilAJQJNOmTVNAQIAuXrzoGMvMzFS5cuXUoUMHp7mXGo59+/Zddb0xMTE6evSogoKCSrTeDh06aNiwYSW6TgAAAHfo3bu3bDab41KlShXdeeed2r59u2NOeHi4jh49qqZNm7qxUgAoHEIpAEXSsWNHZWZmauPGjY6x77//XmFhYVq3bp3OnTvnGF+xYoVq1aqlunXrXnW9vr6+CgsLk81mK5W6AQAArgV33nmnjh49qqNHj2rZsmXy8fHR3Xff7bjd29tbYWFh8vHxcWOVAFA4hFIAiqRhw4aqXr26kpOTHWPJycm65557VKdOHa1du9ZpvGPHjpKk3NxcJSUlqU6dOvL391dkZKQ+/fRTp7mX78Y9ffp0hYeHq3z58rr33ns1adIkBQcH56np/fffV0REhIKCgvTQQw8pIyND0u9/Tfz22281ZcoUx18UDxw4kGf5f/zjH2rTpk2e8cjISL3wwguSpA0bNuj2229X1apVFRQUpNjYWG3evLnA7ZTf49m6dWueGlauXKn27dvL399f4eHhGjJkiLKysgpcLwAAuL7Z7XaFhYUpLCxMLVq00DPPPKPDhw/r+PHjkvL+fC8nJ0d9+/Z19GANGzbUlClTnNaZnJys1q1bq0KFCgoODlbbtm118ODBfO8/JiZGTz/9tNPY8ePHVa5cOX333XeSfu/NWrVqpYCAAIWFhalHjx5KTU0t8DHld0iGyZMnKyIiwmns3XffVePGjeXn56dGjRrpzTffvNrmAlDGEUoBKLKOHTtqxYoVjusrVqxQhw4dFBsb6xg/e/as1q1b5wilkpKSNGfOHE2bNk0//PCDhg8frocffljffvttvvexatUqPf744xo6dKi2bt2q22+/XePGjcszb9++fVq4cKG++OILffHFF/r22281fvx4SdKUKVMUHR2t/v37O/6iGB4enmcdPXv21Pr1651+ZvjDDz9o+/bt6tGjhyQpIyNDCQkJWrlypdauXav69eurc+fOjgDMFfv27dOdd96p+++/X9u3b9f8+fO1cuVKDR482OV1AgCA60dmZqY++OAD1atXT1WqVMl3Tm5urmrWrKlPPvlEP/74o0aNGqV//OMf+vjjjyVJFy9eVNeuXRUbG6vt27drzZo1GjBgQIF7r/fs2VPz5s2TMcYxNn/+fNWoUUPt27eXJF24cEFjx47Vtm3btHDhQh04cEC9e/cu1mP98MMPNWrUKI0bN04//fSTXnrpJT333HOaPXt2sdYLwM0MABTR9OnTTYUKFcyFCxdMenq68fHxMampqWbu3Lnm1ltvNcYYs2zZMiPJHDx40Jw7d86UL1/erF692mk9ffv2Nd27dzfGGLNixQojyZw6dcoYY0y3bt3MXXfd5TS/Z8+eJigoyHF99OjRpnz58iY9Pd0x9tRTT5k2bdo4rsfGxpqhQ4de9TFFRkaaF154wXF95MiRTuu5XE5OjgkICDD/+c9/HGOSzIIFC/J9PMYYs2XLFiPJ7N+/3/H4BwwY4LTe77//3nh5eZmzZ89etWYAAHB9SUhIMN7e3qZChQqmQoUKRpKpXr262bRpk2PO/v37jSSzZcuWAtczaNAgc//99xtjjDl58qSRZJKTkwtVQ2pqqvHx8THfffedYyw6Oto8/fTTBS6zYcMGI8lkZGQYY/L2SaNHjzaRkZFOy7z22mumdu3ajut169Y1c+fOdZozduxYEx0dXai6AZRN7CkFoMg6dOigrKwsbdiwQd9//70aNGigkJAQxcbGOo4rlZycrBtvvFG1atXS3r17debMGd1+++2qWLGi4zJnzpwCD4K+e/dutW7d2mns8uuSFBERoYCAAMf16tWrX3H38IL07NlTc+fOlSQZY/TRRx+pZ8+ejtuPHTum/v37q379+goKClJgYKAyMzN16NChIt/XJdu2bdOsWbOctkl8fLxyc3O1f/9+l9cLAACuXR07dtTWrVu1detWrV+/XvHx8erUqVOBP7eTpKlTpyoqKkohISGqWLGi3nnnHUcPU7lyZfXu3Vvx8fHq0qWLpkyZoqNHjxa4rpCQEN1xxx368MMPJUn79+/XmjVrnPqmTZs2qUuXLqpVq5YCAgIUGxsrSS73TVlZWdq3b5/69u3r1De9+OKLhTqhDoCyi6PfASiyevXqqWbNmlqxYoVOnTrlaDRq1Kih8PBwrV69WitWrNCf//xnSb/vWi5JX375pW644Qanddnt9mLVUq5cOafrNptNubm5RV5P9+7d9fTTT2vz5s06e/asDh8+rG7dujluT0hI0MmTJzVlyhTVrl1bdrtd0dHROn/+fL7r8/L6PfM3f9i1/cKFC05zMjMz9dhjj2nIkCF5lq9Vq1aRHwMAALj2VahQQfXq1XNcf/fddxUUFKTp06frxRdfzDN/3rx5GjFihCZOnKjo6GgFBATo1Vdf1bp16xxzZs6cqSFDhmjx4sWaP3++nn32WS1dulS33HJLvjX07NlTQ4YM0euvv665c+eqWbNmatasmaTfA6T4+HjFx8frww8/VEhIiA4dOqT4+Pgr9k1/7Jkk577pUi85ffr0PMcB9fb2vtLmAlDGEUoBcEnHjh2VnJysU6dO6amnnnKM33rrrVq0aJHWr1+vgQMHSpKaNGkiu92uQ4cOOQKsq2nYsKE2bNjgNHb59cLw9fVVTk7OVefVrFlTsbGx+vDDD3X27FndfvvtqlatmuP2VatW6c0331Tnzp0lSYcPH9aJEycKXF9ISIgk6ejRo6pUqZIkOQ44esnNN9+sH3/80amxBAAAKAqbzSYvLy+dPXs239tXrVqlmJgY/e1vf3OM5bd3UcuWLdWyZUuNHDlS0dHRmjt3boGh1D333KMBAwZo8eLFmjt3rnr16uW4bdeuXTp58qTGjx/vOJbnH8/anJ+QkBClpKTIGOM4ltUf+6bQ0FDVqFFDv/zyi9MeWQA8H6EUAJd07NhRgwYN0oULF5yCptjYWA0ePFjnz593HOQ8ICBAI0aM0PDhw5Wbm6t27dopLS1Nq1atUmBgoBISEvKs/4knntCtt96qSZMmqUuXLlq+fLkWLVpU4EE3CxIREaF169bpwIEDqlixoipXruzYi+lyPXv21OjRo3X+/Hm99tprTrfVr1/fcSaZ9PR0PfXUU/L39y/wfuvVq6fw8HA9//zzGjdunH7++WdNnDjRac7TTz+tW265RYMHD1a/fv1UoUIF/fjjj1q6dKneeOONIj1OAABwfcjOzlZKSook6dSpU3rjjTeUmZmpLl265Du/fv36mjNnjpYsWaI6dero/fff14YNG1SnTh1Jv//87p133tFf/vIX1ahRQ7t379aePXucgqbLVahQQV27dtVzzz2nn376Sd27d3fcVqtWLfn6+ur111/X448/rp07d2rs2LFXfEwdOnTQ8ePH9corr+iBBx7Q4sWLtWjRIgUGBjrmjBkzRkOGDFFQUJDuvPNOZWdna+PGjTp16pQSExMLvf0AlC0cUwqASzp27KizZ8+qXr16Cg0NdYzHxsYqIyNDDRs2VPXq1R3jY8eO1XPPPaekpCQ1btxYd955p7788ktHQ3S5tm3batq0aZo0aZIiIyO1ePFiDR8+XH5+fkWqc8SIEfL29laTJk0cu48X5IEHHtDJkyd15swZde3a1em29957T6dOndLNN9+sRx55REOGDHHak+py5cqV00cffaRdu3apefPmevnll/PsUt+8eXN9++23+vnnn9W+fXu1bNlSo0aNUo0aNYr0GAEAwPVj8eLFql69uqpXr642bdpow4YN+uSTT9ShQ4d85z/22GO677771K1bN7Vp00YnT5502muqfPny2rVrl+6//341aNBAAwYM0KBBg/TYY49dsY6ePXtq27Ztat++vdNhB0JCQjRr1ix98sknatKkicaPH68JEyZccV2NGzfWm2++qalTpyoyMlLr16/XiBEjnOb069dP7777rmbOnKlmzZopNjZWs2bNKrCXBOAZbObyH+8CQBnVv39/7dq1S99//727SwEAAAAAFBM/3wNQZk2YMEG33367KlSooEWLFmn27Nl688033V0WAAAAAKAEsKcUgDLrr3/9q5KTk5WRkaEbb7xRTzzxhB5//HF3lwUAAAAAKAGEUgAAAAAAALAcBzoHAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5f4f3t1p83EKKjsAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "for layer in model.layers:\n", " _, biases = layer.get_weights()\n", " plt.figure(figsize=(8, 4))\n", " plt.bar(range(len(biases)), biases, color='purple')\n", " plt.title(f\"Bias Visualization for {layer.name}\")\n", " plt.xlabel(\"Neuron Index\")\n", " plt.ylabel(\"Bias Value\")\n", " plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "BqKDUgTK2r23", "outputId": "a8ae001d-5376-4a70-bab3-82193633382f" }, "execution_count": 42, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAGJCAYAAABsEDD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAfklEQVR4nO3de3zP9f//8ft7Yxtmm9M2c5pTDmGKrJGQaaikUHxWZk4dLEKH+dbHHMpURCSiQuVUilCUSCcr53RAcoholmSb8+z9/P3h5/3pbRubHd57e92ul8v7ctn7+Xq+Xq/H62ns7rnn6/W2GWOMAAAAgGuch6sLAAAAAIoCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRfAVbPZbBo1apSry8jWunXrZLPZtG7dumJXR58+fRQaGlrktbjqvJJ05MgRde/eXRUqVJDNZtPkyZOLvIb9+/fLZrNpzpw5RX5uAMUDwReAw5w5c2Sz2ZxegYGBateunVauXOnS2gYPHiybzabffvstxz7PPPOMbDabtm/fXoSVFS+HDx/WqFGjtG3bNleX4mTo0KH69NNPNWLECL3zzjvq2LGjq0u6ZuzevVs9e/ZU1apVVbp0adWvX19jxozRqVOnXF0aUOyUcHUBAIqfMWPGqGbNmjLG6MiRI5ozZ446d+6s5cuX684773T0O336tEqUKJp/RqKjozV16lTNnz9fI0eOzLbPggUL1LhxYzVp0kR2u12nT5+Wl5dXkdSXF7NmzZLdbi+UYx8+fFijR49WaGiomjZtWmTnvZK1a9fq7rvv1hNPPOGS81+rDh48qBYtWsjf319xcXEqX768kpKSlJCQoM2bN+ujjz5ydYlAsULwBZBFp06d1Lx5c8f7fv36KSgoSAsWLHAKvj4+PkVWU3h4uOrUqaMFCxZkG3yTkpK0b98+jR8/XpLk4eFRpPXlRcmSJS11XklKSUlRQEBAgR3vzJkz8vLykoeHtX9x+c477+j48eP65ptvdP3110uSBg4cKLvdrrffflv//POPypUr5+IqgeLD2v9iAMiVgIAAlSpVKsvs7qVrfH///Xc9+uijqlevnkqVKqUKFSqoR48e2r9/v9N+GRkZGj16tOrWrSsfHx9VqFBBt9xyi1avXn3ZOqKjo7Vz505t2bIly7b58+fLZrOpV69ekrJfW7t7925169ZNwcHB8vHxUdWqVdWzZ0+lpqZKuvwa0Ku91uxcuta2bdu2WZaYXHxdrOXYsWN64okn1LhxY/n6+srPz0+dOnXSDz/84DjOunXrdNNNN0mSYmNjsxwjuzW+J0+e1PDhw1WtWjV5e3urXr16mjBhgowxWa4/Li5OS5cuVaNGjeTt7a3rr79eq1atuuy1Xlw+Y4zRtGnTHDVdtHfvXvXo0UPly5dX6dKldfPNN+vjjz92OsbFP8uFCxfq2WefVZUqVVS6dGmlpaXleN7jx4+rT58+8vf3V0BAgGJiYnT8+PFs++7cuVPdu3dX+fLl5ePjo+bNm2vZsmXZXse3336rYcOGqVKlSipTpozuuece/fXXX059N23apKioKFWsWFGlSpVSzZo11bdvX6c+drtdkydP1vXXXy8fHx8FBQXpoYce0j///HPZ8bzUxTEICgpyaq9cubI8PDyK5W88AFdixhdAFqmpqTp69KiMMUpJSdHUqVN14sQJPfDAA5fdb+PGjVq/fr1jveH+/fs1ffp0tW3bVr/88otKly4tSRo1apQSExPVv39/tWjRQmlpadq0aZO2bNmiDh065Hj86OhojR49WvPnz9eNN97oaM/MzNR7772n1q1bq3r16tnue+7cOUVFRens2bN67LHHFBwcrEOHDmnFihU6fvy4/P398zRGub3W3HjmmWfUv39/p7Z3331Xn376qQIDAyVdCIhLly5Vjx49VLNmTR05ckSvv/662rRpo19++UUhISFq0KCBxowZo5EjR2rgwIFq3bq1JKlly5bZntcYoy5duuiLL75Qv3791LRpU3366ad68skndejQIU2aNMmp/zfffKMPP/xQjz76qMqWLaspU6aoW7duOnDggCpUqJDtOW699Va98847evDBB9WhQwf17t3bse3IkSNq2bKlTp06pcGDB6tChQqaO3euunTposWLF+uee+5xOtbYsWPl5eWlJ554QmfPns0x1BljdPfdd+ubb77Rww8/rAYNGmjJkiWKiYnJ0vfnn39Wq1atVKVKFcXHx6tMmTJ677331LVrV33wwQdZanjsscdUrlw5JSQkaP/+/Zo8ebLi4uK0aNEiSRdmtm+//XZVqlRJ8fHxCggI0P79+/Xhhx86Heehhx7SnDlzFBsbq8GDB2vfvn169dVXtXXrVn377be5np1v27atXnjhBfXr10+jR49WhQoVtH79ek2fPl2DBw9WmTJlcnUcwDIMAPx/s2fPNpKyvLy9vc2cOXOy9JdkEhISHO9PnTqVpU9SUpKRZN5++21HW1hYmLnjjjuuqsabbrrJVK1a1WRmZjraVq1aZSSZ119/3dH2xRdfGEnmiy++MMYYs3XrViPJvP/++zkee9++fUaSmT17dpZtV3utl9ZhjDExMTGmRo0aOdbx7bffmpIlS5q+ffs62s6cOeN0zRfr9fb2NmPGjHG0bdy4McdruPS8S5cuNZLMc88959Sve/fuxmazmd9++83RJsl4eXk5tf3www9Gkpk6dWqO1/Lv/QcNGuTU9vjjjxtJ5uuvv3a0paenm5o1a5rQ0FDH9V4cw1q1amU77pe6eF0vvviio+38+fOmdevWWcamffv2pnHjxubMmTOONrvdblq2bGnq1q3raLv4dyMyMtLY7XZH+9ChQ42np6c5fvy4McaYJUuWGElm48aNOdb39ddfG0lm3rx5Tu0Xv48vbb+SsWPHmlKlSjn9nX3mmWfydAzAKljqACCLadOmafXq1Vq9erXeffddtWvXTv37988ya3WpUqVKOb7OyMjQ33//rTp16iggIMBpeUJAQIB+/vln7d69O8+1PfDAA/rjjz/01VdfOdrmz58vLy8v9ejRI8f9Ls7ofvrppwVyt3turzWvkpOT1b17dzVt2lSvvfaao93b29uxnjUzM1N///23fH19Va9evas+3yeffCJPT08NHjzYqX348OEyxmR5kkdkZKRq167teN+kSRP5+flp7969V33+Fi1a6JZbbnG0+fr6auDAgdq/f79++eUXp/4xMTFO436545YoUUKPPPKIo83T01OPPfaYU79jx45p7dq1uu+++5Senq6jR4/q6NGj+vvvvxUVFaXdu3fr0KFDTvsMHDjQaalG69atlZmZqd9//12SHOuYV6xYoYyMjGzre//99+Xv768OHTo4znn06FE1a9ZMvr6++uKLL654jf8WGhqqW2+9VTNnztQHH3ygvn37aty4cXr11VfzdBzACgi+ALJo0aKFIiMjFRkZqejoaH388cdq2LCh4uLidO7cuRz3O336tEaOHOlYL1qxYkVVqlRJx48fd6yjlS48NeL48eO67rrr1LhxYz355JO5fgRZz5495enpqfnz50u6cJPTkiVL1KlTp8vexFOzZk0NGzZMb7zxhipWrKioqChNmzbNqa68yO215sX58+d13333KTMzUx9++KG8vb0d2+x2uyZNmqS6des6nW/79u1Xfb7ff/9dISEhKlu2rFN7gwYNHNv/LbtlJOXKlcvzutR/n79evXpZ2nM6f82aNXN93MqVK8vX19ep/dJz/fbbbzLG6L///a8qVark9EpISJB0YenCv106Bhe/5y6OQZs2bdStWzeNHj1aFStW1N13363Zs2fr7Nmzjn12796t1NRUBQYGZjnviRMnspzzchYuXKiBAwfqjTfe0IABA3TvvffqzTffVExMjJ5++mn9/fffuT4WYAWs8QVwRR4eHmrXrp1eeeUV7d6923H3+KUee+wxzZ49W48//rgiIiLk7+8vm82mnj17Oj1G69Zbb9WePXv00Ucf6bPPPtMbb7yhSZMmacaMGVnWul4qMDBQHTp00AcffKBp06Zp+fLlSk9PV3R09BWvY+LEierTp4/jvIMHD1ZiYqK+++47Va1a1Wkm798yMzOv+lrz4sknn1RSUpI+//xzVa1a1WnbuHHj9N///ld9+/bV2LFjVb58eXl4eOjxxx8vskeUeXp6ZttuLrkRrrDkZrY3Ly6O2xNPPKGoqKhs+9SpU8fp/ZXGwGazafHixfruu++0fPlyffrpp+rbt68mTpyo7777Tr6+vrLb7QoMDNS8efOyPValSpVyfQ2vvfaabrjhhizfL126dNGcOXO0detWRUZG5vp4wLWO4AsgV86fPy9JOnHiRI59Fi9erJiYGE2cONHRdubMmWzvpi9fvrxiY2MVGxurEydO6NZbb9WoUaOuGHylCze5rVq1SitXrtT8+fPl5+enu+66K1fX0bhxYzVu3FjPPvus1q9fr1atWmnGjBl67rnnHLN3l9Z76cxjXq81NxYuXKjJkydr8uTJatOmTbbna9eund58802n9uPHj6tixYqO9zmF9+zUqFFDn3/+udLT051mfXfu3OnYXphq1KihXbt2ZWnP7/lr1KihNWvW6MSJE06zvpeeq1atWpIuPOatoMPhzTffrJtvvlnPP/+85s+fr+joaC1cuFD9+/dX7dq19fnnn6tVq1b5DvNHjhzJ9jcdF5dZXPx7C+ACljoAuKKMjAx99tln8vLycvwaOjuenp5ZZv+mTp2aZcb00l+/+vr6qk6dOk6/Dr6crl27qnTp0nrttde0cuVK3XvvvVd8Zm9aWlqWENC4cWN5eHg4zuvn56eKFSs6rR+W5LTW9qLcXmtu/PTTT+rfv78eeOABDRkyJNs+2Z3v/fffz7IG9eJd/LkJ4J07d1ZmZmaWtaCTJk2SzWZTp06d8nAVede5c2dt2LBBSUlJjraTJ09q5syZCg0NVcOGDa/6uOfPn9f06dMdbZmZmZo6dapTv8DAQLVt21avv/66/vzzzyzHufQxZbnxzz//ZPlzuvhBIhe/zy4uZxk7dmyW/c+fP5+n/zxdd9112rp1q3799Ven9gULFsjDw0NNmjTJ2wUA1zhmfAFksXLlSsesW0pKiubPn6/du3crPj5efn5+Oe5355136p133pG/v78aNmzo+LX9pY+6atiwodq2batmzZqpfPny2rRpkxYvXqy4uLhc1efr66uuXbs61vnmZpnD2rVrFRcXpx49eui6667T+fPn9c4778jT01PdunVz9Ovfv7/Gjx+v/v37q3nz5vrqq6+yhIq8XGtuxMbGSrqwBOTdd9912tayZUvVqlVLd955p8aMGaPY2Fi1bNlSP/74o+bNm+eYtbyodu3aCggI0IwZM1S2bFmVKVNG4eHh2a6Pveuuu9SuXTs988wz2r9/v8LCwvTZZ5/po48+0uOPP+50I1thiI+P14IFC9SpUycNHjxY5cuX19y5c7Vv3z598MEHV/3hFHfddZdatWql+Ph47d+/Xw0bNtSHH36Y7VroadOm6ZZbblHjxo01YMAA1apVS0eOHFFSUpL++OMPp+ck58bcuXP12muv6Z577lHt2rWVnp6uWbNmyc/PT507d5Z0YR3wQw89pMTERG3btk233367SpYsqd27d+v999/XK6+8ou7du+fqfE8++aRWrlyp1q1bKy4uThUqVNCKFSu0cuVK9e/fXyEhIXmqH7jmue6BEgCKm+weZ+bj42OaNm1qpk+f7vQYJ2OyPuLrn3/+MbGxsaZixYrG19fXREVFmZ07d5oaNWqYmJgYR7/nnnvOtGjRwgQEBJhSpUqZ+vXrm+eff96cO3cu17V+/PHHRpKpXLlylsd8GZP1MWJ79+41ffv2NbVr1zY+Pj6mfPnypl27dubzzz932u/UqVOmX79+xt/f35QtW9bcd999JiUl5aqvNTePM6tRo0a2j5HTvx69debMGTN8+HBTuXJlU6pUKdOqVSuTlJRk2rRpY9q0aeN0DR999JFp2LChKVGihNMxsnuMWnp6uhk6dKgJCQkxJUuWNHXr1jUvvfRStn/Wlz6O7GLt/77enOS0/549e0z37t1NQECA8fHxMS1atDArVqxw6nNxDC/3KLpL/f333+bBBx80fn5+xt/f3zz44IOOR9pd+qi3PXv2mN69e5vg4GBTsmRJU6VKFXPnnXeaxYsXO/pc/Ltx6WPKLv3z3bJli+nVq5epXr268fb2NoGBgebOO+80mzZtylLjzJkzTbNmzUypUqVM2bJlTePGjc1TTz1lDh8+nOvrNMaY77//3nTq1MlR/3XXXWeef/55k5GRkafjAFZgM6aI7koAAAAAXIg1vgAAALAE1vgCAFDMnDhx4rJPUJEuPPYsp8erAcgewRcAgGJmwoQJGj169GX77Nu3T6GhoUVTEHCNYI0vAADFzN69e6/4UdC33HLLFR/jB8AZwRcAAACWwM1tAAAAsATW+F6B3W7X4cOHVbZs2Tx9FCgAAACKhjFG6enpCgkJueyH3xB8r+Dw4cOqVq2aq8sAAADAFRw8eFBVq1bNcTvB9wrKli0r6cJAXu6jWgEAAOAaaWlpqlatmiO35YTgewUXlzf4+fkRfAEAAIqxKy1L5eY2AAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJZA8AUAAIAluF3wnTZtmkJDQ+Xj46Pw8HBt2LDhsv2PHz+uQYMGqXLlyvL29tZ1112nTz75pIiqBQAAQHHhVh9gsWjRIg0bNkwzZsxQeHi4Jk+erKioKO3atUuBgYFZ+p87d04dOnRQYGCgFi9erCpVquj3339XQEBA0RcPAAAAl7IZY4yri8it8PBw3XTTTXr11VclSXa7XdWqVdNjjz2m+Pj4LP1nzJihl156STt37lTJkiVzdY6zZ8/q7NmzjvcXPwIvNTWVT24DAAAohtLS0uTv73/FvOY2Sx3OnTunzZs3KzIy0tHm4eGhyMhIJSUlZbvPsmXLFBERoUGDBikoKEiNGjXSuHHjlJmZmeN5EhMT5e/v73hVq1atwK8FAAAARc9tljocPXpUmZmZCgoKcmoPCgrSzp07s91n7969Wrt2raKjo/XJJ5/ot99+06OPPqqMjAwlJCRku8+IESM0bNgwx/uLM75wH6Nto3PclmCy/3MHAADXPrcJvlfDbrcrMDBQM2fOlKenp5o1a6ZDhw7ppZdeyjH4ent7y9vbu4grBQAAQGFzm+BbsWJFeXp66siRI07tR44cUXBwcLb7VK5cWSVLlpSnp6ejrUGDBkpOTta5c+fk5eVVqDUDAACg+HCbNb5eXl5q1qyZ1qxZ42iz2+1as2aNIiIist2nVatW+u2332S32x1tv/76qypXrkzoBQAAsBi3Cb6SNGzYMM2aNUtz587Vjh079Mgjj+jkyZOKjY2VJPXu3VsjRoxw9H/kkUd07NgxDRkyRL/++qs+/vhjjRs3ToMGDXLVJQAAAMBF3GapgyTdf//9+uuvvzRy5EglJyeradOmWrVqleOGtwMHDsjD439Zvlq1avr00081dOhQNWnSRFWqVNGQIUP09NNPu+oSAAAA4CJu9RxfV8jtc+FQfPBUBwAArOWae44vAAAAkB8EXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJRB8AQAAYAkEXwAAAFgCwRcAAACWQPAFAACAJZRwdQEA4GqjbaNz3JZgEoqwEgBAYWLGFwAAAJbgdsF32rRpCg0NlY+Pj8LDw7Vhw4Zc7bdw4ULZbDZ17dq1cAsEAABAseRWwXfRokUaNmyYEhIStGXLFoWFhSkqKkopKSmX3W///v164okn1Lp16yKqFAAAAMWNWwXfl19+WQMGDFBsbKwaNmyoGTNmqHTp0nrrrbdy3CczM1PR0dEaPXq0atWqVYTVAgAAoDhxm+B77tw5bd68WZGRkY42Dw8PRUZGKikpKcf9xowZo8DAQPXr1y9X5zl79qzS0tKcXgAAAHB/bhN8jx49qszMTAUFBTm1BwUFKTk5Odt9vvnmG7355puaNWtWrs+TmJgof39/x6tatWr5qhsAAADFg9sE37xKT0/Xgw8+qFmzZqlixYq53m/EiBFKTU11vA4ePFiIVQIAAKCouM1zfCtWrChPT08dOXLEqf3IkSMKDg7O0n/Pnj3av3+/7rrrLkeb3W6XJJUoUUK7du1S7dq1s+zn7e0tb2/vAq4eAAAAruY2M75eXl5q1qyZ1qxZ42iz2+1as2aNIiIisvSvX7++fvzxR23bts3x6tKli9q1a6dt27axhAEAAMBi3GbGV5KGDRummJgYNW/eXC1atNDkyZN18uRJxcbGSpJ69+6tKlWqKDExUT4+PmrUqJHT/gEBAZKUpR1AweKT0AAAxZFbBd/7779ff/31l0aOHKnk5GQ1bdpUq1atctzwduDAAXl4uM0kNgAAAIqQWwVfSYqLi1NcXFy229atW3fZfefMmVPwBQEAAMAtMD0KAAAASyD4AgAAwBIIvgAAALAEgi8AAAAsgeALAAAASyD4AgAAwBIIvgAAALAEgi8AAAAsgeALAAAASyD4AgAAwBIIvgAAALAEgi8AAAAsgeALAAAASyD4AgAAwBIIvgAAALAEgi8AAAAsgeALAAAASyjh6gIAALgWjbaNznFbgkkowkoAXMSMLwAAACyBGV8AgKUwEwtYFzO+AAAAsARmfOFWmKkBAABXixlfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCSVcXQBw0Wjb6By3JZiEIqwEAABci9xuxnfatGkKDQ2Vj4+PwsPDtWHDhhz7zpo1S61bt1a5cuVUrlw5RUZGXrY/AAAArl1uFXwXLVqkYcOGKSEhQVu2bFFYWJiioqKUkpKSbf9169apV69e+uKLL5SUlKRq1arp9ttv16FDh4q4cgAAALiaWwXfl19+WQMGDFBsbKwaNmyoGTNmqHTp0nrrrbey7T9v3jw9+uijatq0qerXr6833nhDdrtda9asKeLKAQAA4GpuE3zPnTunzZs3KzIy0tHm4eGhyMhIJSUl5eoYp06dUkZGhsqXL59jn7NnzyotLc3pBQAAAPfnNsH36NGjyszMVFBQkFN7UFCQkpOTc3WMp59+WiEhIU7h+VKJiYny9/d3vKpVq5avugEAAFA8uE3wza/x48dr4cKFWrJkiXx8fHLsN2LECKWmpjpeBw8eLMIqAQAAUFjc5nFmFStWlKenp44cOeLUfuTIEQUHB1923wkTJmj8+PH6/PPP1aRJk8v29fb2lre3d77rBQAAQPHiNjO+Xl5eatasmdONaRdvVIuIiMhxvxdffFFjx47VqlWr1Lx586IoFQAAAMWQ28z4StKwYcMUExOj5s2bq0WLFpo8ebJOnjyp2NhYSVLv3r1VpUoVJSYmSpJeeOEFjRw5UvPnz1doaKhjLbCvr698fX1ddh0AAAAoem4VfO+//3799ddfGjlypJKTk9W0aVOtWrXKccPbgQMH5OHxv0ns6dOn69y5c+revbvTcRISEjRq1KiiLB0AAAAu5lbBV5Li4uIUFxeX7bZ169Y5vd+/f3/hFwQAAAC34DZrfAEAAID8IPgCAADAEgi+AAAAsASCLwAAACyB4AsAAABLIPgCAADAEtzucWYA4AqjbaNz3JZgEoqwEgDA1crXjO+ZM2cKqg4AAACgUOU5+Nrtdo0dO1ZVqlSRr6+v9u7dK0n673//qzfffLPACwQAAAAKQp6XOjz33HOaO3euXnzxRQ0YMMDR3qhRI02ePFn9+vUr0AIBAABwAcuu8ifPM75vv/22Zs6cqejoaHl6ejraw8LCtHPnzgItDgAAACgoeQ6+hw4dUp06dbK02+12ZWRkFEhRAAAAQEHLc/Bt2LChvv766yztixcv1g033FAgRQEAAAAFLc9rfEeOHKmYmBgdOnRIdrtdH374oXbt2qW3335bK1asKIwaAQAAgHzLc/C9++67tXz5co0ZM0ZlypTRyJEjdeONN2r58uXq0KFDYdQIAECxwg1GgHu6qg+waN26tVavXl3QtQAAAACFho8sBgAAgCXkecbXw8NDNpstx+2ZmZn5KggAAAAoDHkOvkuWLHF6n5GRoa1bt2ru3LkaPTrnNU8AAACAK13VzW2X6t69u66//notWrSIT24DAABAsXRVN7dl5+abb9bAgQML6nAAAABugyd9uIcCubnt9OnTmjJliqpUqVIQhwMAAAAKXJ5nfMuVK+d0c5sxRunp6SpdurTefffdAi0OAHB1mH0CgKzyHHwnTZrkFHw9PDxUqVIlhYeHq1y5cgVaHABcDuEOVsD3OVBw8hx8+/TpUwhlAAAAAIUrV8F3+/btuT5gkyZNrroYAABywswngPzKVfBt2rSpbDabjDGX7Wez2fgACwCwkMuFUYlACqB4yVXw3bdvX2HXAQCA5TCLDRStXAXfGjVqFHYdAADgGkCYR3F21R9g8csvv+jAgQM6d+6cU3uXLl3yXRQAAK7C8g3g2pXn4Lt3717dc889+vHHH53W/V58xBlrfAEAAFAc5fmT24YMGaKaNWsqJSVFpUuX1s8//6yvvvpKzZs317p16wqhRAAAACD/8jzjm5SUpLVr16pixYry8PCQh4eHbrnlFiUmJmrw4MHaunVrYdQJAAAA5Eueg29mZqbKli0rSapYsaIOHz6sevXqqUaNGtq1a1eBFwgAuPZxQxSAopDn4NuoUSP98MMPqlmzpsLDw/Xiiy/Ky8tLM2fOVK1atQqjRgAAACDf8rzG99lnn5XdbpckjRkzRvv27VPr1q31ySefaMqUKQVe4KWmTZum0NBQ+fj4KDw8XBs2bLhs//fff1/169eXj4+PGjdurE8++aTQawQAAEDxk+vg27x5c82YMUMRERG69957JUl16tTRzp07dfToUaWkpOi2224rtEIladGiRRo2bJgSEhK0ZcsWhYWFKSoqSikpKdn2X79+vXr16qV+/fpp69at6tq1q7p27aqffvqpUOsEAABA8ZPrpQ5hYWF66qmnNHz4cHXr1k19+/ZV27ZtJUnly5cvrPqcvPzyyxowYIBiY2MlSTNmzNDHH3+st956S/Hx8Vn6v/LKK+rYsaOefPJJSdLYsWO1evVqvfrqq5oxY0aR1AwUhKJa/8g6SwDAtSzXwffNN9/U1KlT9d5772nOnDlq3769atasqb59+yomJkZVqlQpzDp17tw5bd68WSNGjHC0eXh4KDIyUklJSdnuk5SUpGHDhjm1RUVFaenSpTme5+zZszp79qzjfVpaWv4KB5AtwjwKA3/ehYvxhbuzmYufQJFHe/bs0ezZs/XOO+/o8OHDuv3229WvXz/HMoiCdvjwYVWpUkXr169XRESEo/2pp57Sl19+qe+//z7LPl5eXpo7d6569erlaHvttdc0evRoHTlyJNvzjBo1SqNHZ/2LnZqaKj8/vwK4kivLzT8sRdWnKGtxN8XpunPzSVMFVUtxuqbiJj9/n3LTp6C/r4rT9zDyp6i+9wpKYf98yk0fV3z/FsQ1IXtpaWny9/e/Yl7L881tF9WuXVvPPfec9u/frwULFui7775Tjx49rvZwxcaIESOUmprqeB08eNDVJQEAAKAA5PlxZv+2bt06zZ49Wx988IFKlCihAQMGFFRdWVSsWFGenp5ZZmqPHDmi4ODgbPcJDg7OU39J8vb2lre3d/4LBgAAQLGS5+D7xx9/aM6cOZozZ4727t2r1q1b67XXXlOPHj1UqlSpwqhR0oVlC82aNdOaNWvUtWtXSZLdbteaNWsUFxeX7T4RERFas2aNHn/8cUfb6tWrnZZKAABwreNX5MAFuQ6+7733nt566y2tWbNGgYGBiomJUd++fVWnTp3CrM/JsGHDFBMTo+bNm6tFixaaPHmyTp486XjKQ+/evVWlShUlJiZKkoYMGaI2bdpo4sSJuuOOO7Rw4UJt2rRJM2fOLLKaCwv/iAEAAORNroPvAw88oDvuuENLlixR586d5eFx1cuDr9r999+vv/76SyNHjlRycrKaNm2qVatWKSgoSJJ04MABp7patmyp+fPn69lnn9X//d//qW7dulq6dKkaNWpU5LUDAICixSQRLpXr4PvHH38oMDCwMGvJlbi4uByXNqxbty5LW48ePa6Jm+4AAMD/EGpxNXIdfItD6AVw9fghUfgYYwAo3vL1VAcAAIC84j+JcJWiX6gLAAAAuADBFwAAAJaQ56UOBw8elM1mU9WqVSVJGzZs0Pz589WwYUMNHDiwwAsEALgOv5IGcC3J84zvf/7zH33xxReSpOTkZHXo0EEbNmzQM888ozFjxhR4gQAAAEBByHPw/emnn9SiRQtJFz7UolGjRlq/fr3mzZunOXPmFHR9AAAAQIHI81KHjIwMeXt7S5I+//xzdenSRZJUv359/fnnnwVbHfKFX1ECAAD8T56D7/XXX68ZM2bojjvu0OrVqzV27FhJ0uHDh1WhQoUCLxCFi3AMAEDR4Geu6+V5qcMLL7yg119/XW3btlWvXr0UFhYmSVq2bJljCQQAAABQ3OR5xrdt27Y6evSo0tLSVK5cOUf7wIEDVbp06QItDgAAFA1mI2EFV/XJbZ6enk6hV5JCQ0MLoh4AAACCOArFVQXfxYsX67333tOBAwd07tw5p21btmwpkMIAWBs/9AAABS3PwXfKlCl65pln1KdPH3300UeKjY3Vnj17tHHjRg0aNKgwagQA/Av/KQCAq5Pn4Pvaa69p5syZ6tWrl+bMmaOnnnpKtWrV0siRI3Xs2LHCqBFwWwQUAACKjzw/1eHAgQNq2bKlJKlUqVJKT0+XJD344INasGBBwVYHAAAAFJA8B9/g4GDHzG716tX13XffSZL27dsnY0zBVgcAAAAUkDwH39tuu03Lli2TJMXGxmro0KHq0KGD7r//ft1zzz0FXiAAAABQEPK8xnfmzJmy2+2SpEGDBqlChQpav369unTpooceeqjACwRQvLBuGQDgrvIcfD08POTh8b+J4p49e6pnz54FWhQAAABQ0HIVfLdv365GjRrJw8ND27dvv2zfJk2aFEhhAAAAQEHKVfBt2rSpkpOTFRgYqKZNm8pms2V7I5vNZlNmZmaBFwkAAADkV66C7759+1SpUiXH18C/seYTAAC4g1wF3xo1amT7NQAAAOAu8nxz299//60KFSpIkg4ePKhZs2bp9OnT6tKli1q3bl3gBQIAAAAFIdfB98cff9Rdd92lgwcPqm7dulq4cKE6duyokydPysPDQ5MmTdLixYvVtWvXQiwXQHZYbgIAwJXl+gMsnnrqKTVu3FhfffWV2rZtqzvvvFN33HGHUlNT9c8//+ihhx7S+PHjC7NWAAAA4KrlesZ348aNWrt2rZo0aaKwsDDNnDlTjz76qOOZvo899phuvvnmQisUANwdM/MA4Fq5nvE9duyYgoODJUm+vr4qU6aMypUr59herlw5paenF3yFAAAAQAHIdfCVLjyn93LvAQAAgOIqT0916NOnj7y9vSVJZ86c0cMPP6wyZcpIks6ePVvw1QEAAAAFJNfBNyYmxun9Aw88kKVP7969818RAAAAUAhyHXxnz55dmHUAAAAAhSpPa3wBAAAAd5XnT24DAADFC4/KA3LHbWZ8jx07pujoaPn5+SkgIED9+vXTiRMnLtv/scceU7169VSqVClVr15dgwcPVmpqahFWDQAAgOLCbWZ8o6Oj9eeff2r16tXKyMhQbGysBg4cqPnz52fb//Dhwzp8+LAmTJighg0b6vfff9fDDz+sw4cPa/HixUVcPZiNAAAAruYWwXfHjh1atWqVNm7cqObNm0uSpk6dqs6dO2vChAkKCQnJsk+jRo30wQcfON7Xrl1bzz//vB544AGdP39eJUq4xaW7HIEVAABcK9xiqUNSUpICAgIcoVeSIiMj5eHhoe+//z7Xx0lNTZWfn99lQ+/Zs2eVlpbm9AIAAID7c4vgm5ycrMDAQKe2EiVKqHz58kpOTs7VMY4ePaqxY8dq4MCBl+2XmJgof39/x6tatWpXXTcAAACKD5cG3/j4eNlstsu+du7cme/zpKWl6Y477lDDhg01atSoy/YdMWKEUlNTHa+DBw/m+/wAAABwPZcudB0+fLj69Olz2T61atVScHCwUlJSnNrPnz+vY8eOKTg4+LL7p6enq2PHjipbtqyWLFmikiVLXra/t7e342OZAQAAcO1wafCtVKmSKlWqdMV+EREROn78uDZv3qxmzZpJktauXSu73a7w8PAc90tLS1NUVJS8vb21bNky+fj4FFjtAAAAcC9usca3QYMG6tixowYMGKANGzbo22+/VVxcnHr27Ol4osOhQ4dUv359bdiwQdKF0Hv77bfr5MmTevPNN5WWlqbk5GQlJycrMzPTlZcDAAAAF3CbZ3rNmzdPcXFxat++vTw8PNStWzdNmTLFsT0jI0O7du3SqVOnJElbtmxxPPGhTp06Tsfat2+fQkNDi6x2AAAAuJ7bBN/y5cvn+GEVkhQaGipjjON927Ztnd4DAADA2txiqQMAAACQXwRfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWEIJVxeArBJMgqtLAAAAuOYw4wsAAABLIPgCAADAEgi+AAAAsASCLwAAACyB4AsAAABLIPgCAADAEgi+AAAAsASCLwAAACyB4AsAAABLIPgCAADAEgi+AAAAsASCLwAAACyB4AsAAABLIPgCAADAEgi+AAAAsASCLwAAACzBbYLvsWPHFB0dLT8/PwUEBKhfv346ceJErvY1xqhTp06y2WxaunRp4RYKAACAYsltgm90dLR+/vlnrV69WitWrNBXX32lgQMH5mrfyZMny2azFXKFAAAAKM5KuLqA3NixY4dWrVqljRs3qnnz5pKkqVOnqnPnzpowYYJCQkJy3Hfbtm2aOHGiNm3apMqVK1/xXGfPntXZs2cd79PS0vJ/AQAAAHA5t5jxTUpKUkBAgCP0SlJkZKQ8PDz0/fff57jfqVOn9J///EfTpk1TcHBwrs6VmJgof39/x6tatWr5rh8AAACu5xbBNzk5WYGBgU5tJUqUUPny5ZWcnJzjfkOHDlXLli1199135/pcI0aMUGpqquN18ODBq64bAAAAxYdLg298fLxsNttlXzt37ryqYy9btkxr167V5MmT87Sft7e3/Pz8nF4AAABwfy5d4zt8+HD16dPnsn1q1aql4OBgpaSkOLWfP39ex44dy3EJw9q1a7Vnzx4FBAQ4tXfr1k2tW7fWunXr8lE5AAAA3I1Lg2+lSpVUqVKlK/aLiIjQ8ePHtXnzZjVr1kzShWBrt9sVHh6e7T7x8fHq37+/U1vjxo01adIk3XXXXfkvHgAAAG7FLZ7q0KBBA3Xs2FEDBgzQjBkzlJGRobi4OPXs2dPxRIdDhw6pffv2evvtt9WiRQsFBwdnOxtcvXp11axZs6gvAQAAAC7mFje3SdK8efNUv359tW/fXp07d9Ytt9yimTNnOrZnZGRo165dOnXqlAurBAAAQHHlFjO+klS+fHnNnz8/x+2hoaEyxlz2GFfaDgAAgGuX28z4AgAAAPlB8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJZA8AUAAIAlEHwBAABgCQRfAAAAWALBFwAAAJbgNp/cBgAAcC1LMAmuLuGax4wvAAAALIHgCwAAAEsg+AIAAMASCL4AAACwBIIvAAAALIHgCwAAAEsg+AIAAMASCL4AAACwBIIvAAAALIHgCwAAAEsg+AIAAMASCL4AAACwBIIvAAAALIHgCwAAAEsg+AIAAMASCL4AAACwBIIvAAAALIHgCwAAAEsg+AIAAMASCL4AAACwBIIvAAAALIHgCwAAAEsg+AIAAMASCL4AAACwBLcJvseOHVN0dLT8/PwUEBCgfv366cSJE1fcLykpSbfddpvKlCkjPz8/3XrrrTp9+nQRVAwAAIDixG2Cb3R0tH7++WetXr1aK1as0FdffaWBAwdedp+kpCR17NhRt99+uzZs2KCNGzcqLi5OHh5uc9kAAAAoICVcXUBu7NixQ6tWrdLGjRvVvHlzSdLUqVPVuXNnTZgwQSEhIdnuN3ToUA0ePFjx8fGOtnr16hVJzQAAAChe3GLqMykpSQEBAY7QK0mRkZHy8PDQ999/n+0+KSkp+v777xUYGKiWLVsqKChIbdq00TfffHPZc509e1ZpaWlOLwAAALg/twi+ycnJCgwMdGorUaKEypcvr+Tk5Gz32bt3ryRp1KhRGjBggFatWqUbb7xR7du31+7du3M8V2Jiovz9/R2vatWqFdyFAAAAwGVcGnzj4+Nls9ku+9q5c+dVHdtut0uSHnroIcXGxuqGG27QpEmTVK9ePb311ls57jdixAilpqY6XgcPHryq8wMAAKB4ceka3+HDh6tPnz6X7VOrVi0FBwcrJSXFqf38+fM6duyYgoODs92vcuXKkqSGDRs6tTdo0EAHDhzI8Xze3t7y9vbORfUAAABwJy4NvpUqVVKlSpWu2C8iIkLHjx/X5s2b1axZM0nS2rVrZbfbFR4enu0+oaGhCgkJ0a5du5zaf/31V3Xq1Cn/xQMAAMCtuMVTHRo0aKCOHTtqwIABmjFjhjIyMhQXF6eePXs6nuhw6NAhtW/fXm+//bZatGghm82mJ598UgkJCQoLC1PTpk01d+5c7dy5U4sXL3bxFQFA9hJMwjV5LgAoDtwi+ErSvHnzFBcXp/bt28vDw0PdunXTlClTHNszMjK0a9cunTp1ytH2+OOP68yZMxo6dKiOHTumsLAwrV69WrVr13bFJQAAAMCFbMYY4+oiirO0tDT5+/srNTVVfn5+ri4HAAAAl8htXnOLx5kBAAAA+UXwBQAAgCUQfAEAAGAJBF8AAABYAsEXAAAAlkDwBQAAgCUQfAEAAGAJBF8AAABYAsEXAAAAlkDwBQAAgCUQfAEAAGAJBF8AAABYQglXF1DcGWMkSWlpaS6uBAAAANm5mNMu5racEHyvID09XZJUrVo1F1cCAACAy0lPT5e/v3+O223mStHY4ux2uw4fPqyyZcvKZrMV+fnT0tJUrVo1HTx4UH5+fkV+/msd41u4GN/CxxgXLsa3cDG+hc8qY2yMUXp6ukJCQuThkfNKXmZ8r8DDw0NVq1Z1dRny8/O7pr9hXY3xLVyMb+FjjAsX41u4GN/CZ4UxvtxM70Xc3AYAAABLIPgCAADAEgi+xZy3t7cSEhLk7e3t6lKuSYxv4WJ8Cx9jXLgY38LF+BY+xtgZN7cBAADAEpjxBQAAgCUQfAEAAGAJBF8AAABYAsEXAAAAlkDwLcamTZum0NBQ+fj4KDw8XBs2bHB1SW7rq6++0l133aWQkBDZbDYtXbrUabsxRiNHjlTlypVVqlQpRUZGavfu3a4p1g0lJibqpptuUtmyZRUYGKiuXbtq165dTn3OnDmjQYMGqUKFCvL19VW3bt105MgRF1XsXqZPn64mTZo4HkAfERGhlStXOrYztgVr/Pjxstlsevzxxx1tjHH+jBo1SjabzelVv359x3bGN/8OHTqkBx54QBUqVFCpUqXUuHFjbdq0ybGdn3MXEHyLqUWLFmnYsGFKSEjQli1bFBYWpqioKKWkpLi6NLd08uRJhYWFadq0adluf/HFFzVlyhTNmDFD33//vcqUKaOoqCidOXOmiCt1T19++aUGDRqk7777TqtXr1ZGRoZuv/12nTx50tFn6NChWr58ud5//319+eWXOnz4sO69914XVu0+qlatqvHjx2vz5s3atGmTbrvtNt199936+eefJTG2BWnjxo16/fXX1aRJE6d2xjj/rr/+ev3555+O1zfffOPYxvjmzz///KNWrVqpZMmSWrlypX755RdNnDhR5cqVc/Th59z/Z1AstWjRwgwaNMjxPjMz04SEhJjExEQXVnVtkGSWLFnieG+3201wcLB56aWXHG3Hjx833t7eZsGCBS6o0P2lpKQYSebLL780xlwYz5IlS5r333/f0WfHjh1GkklKSnJVmW6tXLly5o033mBsC1B6erqpW7euWb16tWnTpo0ZMmSIMYbv34KQkJBgwsLCst3G+Obf008/bW655ZYct/Nz7n+Y8S2Gzp07p82bNysyMtLR5uHhocjISCUlJbmwsmvTvn37lJyc7DTe/v7+Cg8PZ7yvUmpqqiSpfPnykqTNmzcrIyPDaYzr16+v6tWrM8Z5lJmZqYULF+rkyZOKiIhgbAvQoEGDdMcddziNpcT3b0HZvXu3QkJCVKtWLUVHR+vAgQOSGN+CsGzZMjVv3lw9evRQYGCgbrjhBs2aNcuxnZ9z/0PwLYaOHj2qzMxMBQUFObUHBQUpOTnZRVVduy6OKeNdMOx2ux5//HG1atVKjRo1knRhjL28vBQQEODUlzHOvR9//FG+vr7y9vbWww8/rCVLlqhhw4aMbQFZuHChtmzZosTExCzbGOP8Cw8P15w5c7Rq1SpNnz5d+/btU+vWrZWens74FoC9e/dq+vTpqlu3rj799FM98sgjGjx4sObOnSuJn3P/VsLVBQC4tgwaNEg//fST0/o95F+9evW0bds2paamavHixYqJidGXX37p6rKuCQcPHtSQIUO0evVq+fj4uLqca1KnTp0cXzdp0kTh4eGqUaOG3nvvPZUqVcqFlV0b7Ha7mjdvrnHjxkmSbrjhBv3000+aMWOGYmJiXFxd8cKMbzFUsWJFeXp6Zrmj9ciRIwoODnZRVdeui2PKeOdfXFycVqxYoS+++EJVq1Z1tAcHB+vcuXM6fvy4U3/GOPe8vLxUp04dNWvWTImJiQoLC9Mrr7zC2BaAzZs3KyUlRTfeeKNKlCihEiVK6Msvv9SUKVNUokQJBQUFMcYFLCAgQNddd51+++03vocLQOXKldWwYUOntgYNGjiWk/Bz7n8IvsWQl5eXmjVrpjVr1jja7Ha71qxZo4iICBdWdm2qWbOmgoODncY7LS1N33//PeOdS8YYxcXFacmSJVq7dq1q1qzptL1Zs2YqWbKk0xjv2rVLBw4cYIyvkt1u19mzZxnbAtC+fXv9+OOP2rZtm+PVvHlzRUdHO75mjAvWiRMntGfPHlWuXJnv4QLQqlWrLI+Q/PXXX1WjRg1J/Jxz4uq765C9hQsXGm9vbzNnzhzzyy+/mIEDB5qAgACTnJzs6tLcUnp6utm6davZunWrkWRefvlls3XrVvP7778bY4wZP368CQgIMB999JHZvn27ufvuu03NmjXN6dOnXVy5e3jkkUeMv7+/Wbdunfnzzz8dr1OnTjn6PPzww6Z69epm7dq1ZtOmTSYiIsJERES4sGr3ER8fb7788kuzb98+s337dhMfH29sNpv57LPPjDGMbWH491MdjGGM82v48OFm3bp1Zt++febbb781kZGRpmLFiiYlJcUYw/jm14YNG0yJEiXM888/b3bv3m3mzZtnSpcubd59911HH37OXUDwLcamTp1qqlevbry8vEyLFi3Md9995+qS3NYXX3xhJGV5xcTEGGMuPOrlv//9rwkKCjLe3t6mffv2ZteuXa4t2o1kN7aSzOzZsx19Tp8+bR599FFTrlw5U7p0aXPPPfeYP//803VFu5G+ffuaGjVqGC8vL1OpUiXTvn17R+g1hrEtDJcGX8Y4f+6//35TuXJl4+XlZapUqWLuv/9+89tvvzm2M775t3z5ctOoUSPj7e1t6tevb2bOnOm0nZ9zF9iMMcY1c80AAABA0WGNLwAAACyB4AsAAABLIPgCAADAEgi+AAAAsASCLwAAACyB4AsAAABLIPgCAADAEgi+AAAAsASCLwCg0Kxbt042m03Hjx93dSkAQPAFgPzo06ePbDabxo8f79S+dOlS2Ww2F1VVMEJDQzV58mRXlwEABYbgCwD55OPjoxdeeEH//PNPkZ87IyOjyM8JAO6K4AsA+RQZGang4GAlJiZett8333yj1q1bq1SpUqpWrZoGDx6skydPOrbbbDYtXbrUaZ+AgADNmTNHkrR//37ZbDYtWrRIbdq0kY+Pj+bNmye73a4xY8aoatWq8vb2VtOmTbVq1SrHMS7u9+GHH6pdu3YqXbq0wsLClJSUlKfrtNlseuONN3TPPfeodOnSqlu3rpYtW+bU55NPPtF1112nUqVKqV27dtq/f3+exuHtt9+Wr6+vdu/e7ej/6KOPqn79+jp16lSe6gWASxF8ASCfPD09NW7cOE2dOlV//PFHtn327Nmjjh07qlu3btq+fbsWLVqkb775RnFxcXk+X3x8vIYMGaIdO3YoKipKr7zyiiZOnKgJEyZo+/btioqKUpcuXZzCoyQ988wzeuKJJ7Rt2zZdd9116tWrl86fP5+nc48ePVr33Xeftm/frs6dOys6OlrHjh2TJB08eFD33nuv7rrrLm3btk39+/dXfHx8nsahd+/ejuOeP39eH3/8sd544w3NmzdPpUuXzvNYAYATAwC4ajExMebuu+82xhhz8803m759+xpjjFmyZIn59z+x/fr1MwMHDnTa9+uvvzYeHh7m9OnTxhhjJJklS5Y49fH39zezZ882xhizb98+I8lMnjzZqU9ISIh5/vnnndpuuukm8+ijjzrt98Ybbzi2//zzz0aS2bFjR47XVqNGDTNp0iTHe0nm2Wefdbw/ceKEkWRWrlxpjDFmxIgRpmHDhk7HePrpp40k888//+R6HI4dO2aqVq1qHnnkERMUFJTl2gDgajHjCwAF5IUXXtDcuXO1Y8eOLNt++OEHzZkzR76+vo5XVFSU7Ha79u3bl6fzNG/e3PF1WlqaDh8+rFatWjn1adWqVZY6mjRp4vi6cuXKkqSUlJQ8nfvfxyhTpoz8/Pwcx9ixY4fCw8Od+kdERDi9z804lCtXTm+++aamT5+u2rVrZ5k1BoCrVcLVBQDAteLWW29VVFSURowYoT59+jhtO3HihB566CENHjw4y37Vq1eXdGENrTHGaVt2N6+VKVPmquorWbKk4+uLT5yw2+1XfYyLx8nLMXIzDpL01VdfydPTU3/++adOnjypsmXL5qlOAMgOwRcACtD48ePVtGlT1atXz6n9xhtv1C+//KI6derkuG+lSpX0559/Ot7v3r37ijd0+fn5KSQkRN9++63atGnjaP/222/VokWLq7yKq9OgQYMsN7t99913Tu9zMw7r16/XCy+8oOXLl+vpp59WXFyc5s6dWyg1A7AWljoAQAFq3LixoqOjNWXKFKf2p59+WuvXr1dcXJy2bdum3bt366OPPnK6ue22227Tq6++qq1bt2rTpk16+OGHs8ywZufJJ5/UCy+8oEWLFmnXrl2Kj4/Xtm3bNGTIkAK/vst5+OGHtXv3bj355JPatWuX5s+f73gixUVXGof09HQ9+OCDGjx4sDp16qR58+Zp0aJFWrx4cZFeC4BrE8EXAArYmDFjsvz6v0mTJvryyy/166+/qnXr1rrhhhs0cuRIhYSEOPpMnDhR1apVU+vWrfWf//xHTzzxRK6eZDB48GANGzZMw4cPV+PGjbVq1SotW7ZMdevWLfBru5zq1avrgw8+0NKlSxUWFqYZM2Zo3LhxTn2uNA5DhgxRmTJlHPs1btxY48aN00MPPaRDhw4V6fUAuPbYzKULygAAAIBrEDO+AAAAsASCLwAAACyB4AsAAABLIPgCAADAEgi+AAAAsASCLwAAACyB4AsAAABLIPgCAADAEgi+AAAAsASCLwAAACyB4AsAAABL+H9f6NJWUnjXbAAAAABJRU5ErkJggg==\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAGJCAYAAABsEDD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBkUlEQVR4nO3deVxV1f7/8fcBZZJJBESccEYUoa8kWpl6JVEbzNS0S4k4X8UhstIGUbOwsrLMMhu0QcoytdkyzSzFNM0sU69jjmBqAmKiwv790c9zOzIIChwO+/V8PM7j4Vln7b0/e7uld4u117EYhmEIAAAAqOKc7F0AAAAAUBEIvgAAADAFgi8AAABMgeALAAAAUyD4AgAAwBQIvgAAADAFgi8AAABMgeALAAAAUyD4AgAAwBQIvgCumMVi0ZQpU+xdRqFWr14ti8Wi1atXV7o6Bg0apJCQkAqvxV7HlaSMjAz17dtXtWrVksVi0axZsyq8hv3798tisWjBggUVfmwAlQPBF4DVggULZLFYbF6BgYHq0qWLvvjiC7vWNnbsWFksFu3evbvIPg8//LAsFou2bt1agZVVLkeOHNGUKVO0ZcsWe5di495779WXX36pSZMm6e2331b37t3tXVKVsWnTJnXv3l3e3t7y8vJSt27dKt3fP1BZVLN3AQAqn2nTpqlRo0YyDEMZGRlasGCBevbsqU8++US33HKLtd9ff/2latUq5sdIXFycZs+erdTUVE2ePLnQPu+++67Cw8PVpk0b5efn66+//pKLi0uF1Fcar776qvLz88tl30eOHNHUqVMVEhKiyMjICjvu5axatUq9evXShAkT7HL8qmrz5s264YYbVL9+fSUnJys/P18vvfSSOnXqpA0bNqhFixb2LhGoVAi+AAro0aOHoqKirO+HDBmi2rVr691337UJvm5ubhVWU3R0tJo2bap333230OCblpamffv2acaMGZIkJyenCq2vNKpXr26q40rSsWPH5OvrW2b7O3v2rFxcXOTkZO5fXD766KNyd3dXWlqaatWqJUm6++671bx5cz300EP68MMP7VwhULmY+ycGgBLx9fWVu7t7gdHdS+f4/v777xo1apRatGghd3d31apVS/369dP+/ftttjt//rymTp2qZs2ayc3NTbVq1dINN9ygFStWFFtHXFycduzYoc2bNxf4LDU1VRaLRXfddZekwufW7tq1S3369FFQUJDc3NxUr149DRgwQJmZmZKKnwN6pedamEvn2nbu3LnAFJOLr4u1nDx5UhMmTFB4eLg8PT3l7e2tHj166Oeff7buZ/Xq1br22mslSQkJCQX2Udgc35ycHN13332qX7++XF1d1aJFC82cOVOGYRQ4/8TERC1btkytW7eWq6urWrVqpeXLlxd7rhenzxiGoTlz5lhrumjv3r3q16+f/Pz85OHhofbt2+uzzz6z2cfFv8v33ntPjzzyiOrWrSsPDw9lZWUVedxTp05p0KBB8vHxka+vr+Lj43Xq1KlC++7YsUN9+/aVn5+f3NzcFBUVpY8//rjQ81i7dq2SkpIUEBCgGjVqqHfv3vrjjz9s+v7444+KjY2Vv7+/3N3d1ahRIw0ePNimT35+vmbNmqVWrVrJzc1NtWvX1ogRI/Tnn38Wez0v9d133ykmJsYaeiWpTp066tSpkz799FOdPn26VPsDqjpGfAEUkJmZqePHj8swDB07dkyzZ8/W6dOndffddxe73caNG7Vu3ToNGDBA9erV0/79+/Xyyy+rc+fO+u233+Th4SFJmjJlilJSUjR06FC1a9dOWVlZ+vHHH7V582bddNNNRe4/Li5OU6dOVWpqqv7v//7P2p6Xl6f3339fHTt2VIMGDQrd9ty5c4qNjVVubq7GjBmjoKAgHT58WJ9++qlOnTolHx+fUl2jkp5rSTz88MMaOnSoTds777yjL7/8UoGBgZL+DojLli1Tv3791KhRI2VkZOiVV15Rp06d9Ntvvyk4OFgtW7bUtGnTNHnyZA0fPlwdO3aUJF133XWFHtcwDN1222365ptvNGTIEEVGRurLL7/U/fffr8OHD+u5556z6f/9999ryZIlGjVqlLy8vPTCCy+oT58+OnDggE3w+qcbb7xRb7/9tu655x7ddNNNGjhwoPWzjIwMXXfddTpz5ozGjh2rWrVq6c0339Rtt92mxYsXq3fv3jb7euyxx+Ti4qIJEyYoNze3yGkshmGoV69e+v777zVy5Ei1bNlSS5cuVXx8fIG+27Zt0/XXX6+6detq4sSJqlGjht5//33dfvvt+vDDDwvUMGbMGNWsWVPJycnav3+/Zs2apcTERC1atEjS3yPb3bp1U0BAgCZOnChfX1/t379fS5YssdnPiBEjtGDBAiUkJGjs2LHat2+fXnzxRf30009au3ZtiUfnc3Nz5e7uXqDdw8ND586d06+//qr27duXaF+AKRgA8P/Nnz/fkFTg5erqaixYsKBAf0lGcnKy9f2ZM2cK9ElLSzMkGW+99Za1LSIiwrj55puvqMZrr73WqFevnpGXl2dtW758uSHJeOWVV6xt33zzjSHJ+OabbwzDMIyffvrJkGR88MEHRe573759hiRj/vz5BT670nO9tA7DMIz4+HijYcOGRdaxdu1ao3r16sbgwYOtbWfPnrU554v1urq6GtOmTbO2bdy4schzuPS4y5YtMyQZ06dPt+nXt29fw2KxGLt377a2STJcXFxs2n7++WdDkjF79uwiz+Wf248ePdqmbfz48YYk47vvvrO2ZWdnG40aNTJCQkKs53vxGjZu3LjQ636pi+f11FNPWdsuXLhgdOzYscC16dq1qxEeHm6cPXvW2pafn29cd911RrNmzaxtF/9txMTEGPn5+db2e++913B2djZOnTplGIZhLF261JBkbNy4scj6vvvuO0OSsXDhQpv2i/fxpe3FCQ8PN5o3b25cuHDB2pabm2s0aNDAkGQsXry4xPsCzICpDgAKmDNnjlasWKEVK1bonXfeUZcuXTR06NACo1aX+ufI0/nz53XixAk1bdpUvr6+NtMTfH19tW3bNu3atavUtd199906dOiQ1qxZY21LTU2Vi4uL+vXrV+R2F0d0v/zyS505c6bUx71USc+1tNLT09W3b19FRkbqpZdesra7urpa57Pm5eXpxIkT8vT0VIsWLa74eJ9//rmcnZ01duxYm/b77rtPhmEUWMkjJiZGTZo0sb5v06aNvL29tXfv3is+frt27XTDDTdY2zw9PTV8+HDt379fv/32m03/+Pj4Qkc3C9tvtWrV9J///Mfa5uzsrDFjxtj0O3nypFatWqU777xT2dnZOn78uI4fP64TJ04oNjZWu3bt0uHDh222GT58uM1UjY4dOyovL0+///67JFnnMX/66ac6f/58ofV98MEH8vHx0U033WQ95vHjx9W2bVt5enrqm2++uew5XjRq1Cj997//1ZAhQ/Tbb7/p119/1cCBA3X06FFJfz+ACuB/CL4ACmjXrp1iYmIUExOjuLg4ffbZZwoLC1NiYqLOnTtX5HZ//fWXJk+ebJ0v6u/vr4CAAJ06dco6j1b6e9WIU6dOqXnz5goPD9f9999f4iXIBgwYIGdnZ6Wmpkr6+yGnpUuXqkePHqpZs2aR2zVq1EhJSUl67bXX5O/vr9jYWM2ZM8emrtIo6bmWxoULF3TnnXcqLy9PS5Yskaurq/Wz/Px8Pffcc2rWrJnN8bZu3XrFx/v9998VHBwsLy8vm/aWLVtaP/+nwqaR1KxZs9TzUv95/MJWHSjq+I0aNSrxfuvUqSNPT0+b9kuPtXv3bhmGoUcffVQBAQE2r+TkZEl/T134p0uvwcV77uI16NSpk/r06aOpU6fK399fvXr10vz585Wbm2vdZteuXcrMzFRgYGCB454+fbrAMYszcuRIPfTQQ0pNTVWrVq0UHh6uPXv26IEHHpCkAtcAMDvm+AK4LCcnJ3Xp0kXPP/+8du3apVatWhXab8yYMZo/f77Gjx+vDh06yMfHRxaLRQMGDLBZRuvGG2/Unj179NFHH+mrr77Sa6+9pueee05z584tMNf1UoGBgbrpppv04Ycfas6cOfrkk0+UnZ2tuLi4y57HM888o0GDBlmPO3bsWKWkpGj9+vWqV6+ezUjeP+Xl5V3xuZbG/fffr7S0NH399deqV6+ezWdPPPGEHn30UQ0ePFiPPfaY/Pz85OTkpPHjx1fYEmXOzs6FthuXPAhXXkoy2lsaF6/bhAkTFBsbW2ifpk2b2ry/3DWwWCxavHix1q9fr08++URffvmlBg8erGeeeUbr16+Xp6en8vPzFRgYqIULFxa6r4CAgFKdx+OPP64JEyZo27Zt8vHxUXh4uB566CFJUvPmzUu1L6CqI/gCKJELFy5IUrFPiS9evFjx8fF65plnrG1nz54t9Gl6Pz8/JSQkKCEhQadPn9aNN96oKVOmXDb4Sn8/5LZ8+XJ98cUXSk1Nlbe3t2699dYSnUd4eLjCw8P1yCOPaN26dbr++us1d+5cTZ8+3Tp6d2m9l448lvZcS+K9997TrFmzNGvWLHXq1KnQ43Xp0kWvv/66TfupU6fk7+9vfV9UeC9Mw4YN9fXXXys7O9tm1HfHjh3Wz8tTw4YNtXPnzgLtV3v8hg0bauXKlTp9+rTNiOelx2rcuLGkv5d5i4mJuaJjFaV9+/Zq3769Hn/8caWmpiouLk7vvfeehg4dqiZNmujrr7/W9ddfX2ZhvmbNmjZTRi7+z1NoaGiZ7B+oKpjqAOCyzp8/r6+++kouLi7WX0MXxtnZucDo3+zZswuMmJ44ccLmvaenp5o2bWrz6+Di3H777fLw8NBLL72kL774Qnfcccdl1+zNysqyhveLwsPD5eTkZD2ut7e3/P39beYPS7KZa3tRSc+1JH799VcNHTpUd999t8aNG1don8KO98EHHxSYg1qjRg1JBcN7YXr27Km8vDy9+OKLNu3PPfecLBaLevToUYqzKL2ePXtqw4YNSktLs7bl5ORo3rx5CgkJUVhY2BXv98KFC3r55ZetbXl5eZo9e7ZNv8DAQHXu3FmvvPKKdU7sP126TFlJ/PnnnwX+ni5+kcjF++zidJbHHnuswPYXLly44v95umjRokXauHGjxo8fb/p1joFLMeILoIAvvvjCOup27NgxpaamateuXZo4caK8vb2L3O6WW27R22+/LR8fH4WFhVl/bX/pUldhYWHq3Lmz2rZtKz8/P/34449avHixEhMTS1Sfp6enbr/9dus835JMc1i1apUSExPVr18/NW/eXBcuXNDbb78tZ2dn9enTx9pv6NChmjFjhoYOHaqoqCitWbNG//3vf6/4XEsiISFB0t9TQN555x2bz6677jo1btxYt9xyi6ZNm6aEhARdd911+uWXX7Rw4ULrqOVFTZo0ka+vr+bOnSsvLy/VqFFD0dHRhc6PvfXWW9WlSxc9/PDD2r9/vyIiIvTVV1/po48+0vjx420eZCsPEydO1LvvvqsePXpo7Nix8vPz05tvvql9+/bpww8/vOLQduutt+r666/XxIkTtX//foWFhWnJkiWFzoWeM2eObrjhBoWHh2vYsGFq3LixMjIylJaWpkOHDtmsk1wSb775pl566SX17t1bTZo0UXZ2tl599VV5e3urZ8+ekv6eBzxixAilpKRoy5Yt6tatm6pXr65du3bpgw8+0PPPP6++ffuW6Hhr1qzRtGnT1K1bN9WqVUvr16/X/Pnz1b179yL/JwowNfstKAGgsilsOTM3NzcjMjLSePnll22WcTKMgkt8/fnnn0ZCQoLh7+9veHp6GrGxscaOHTuMhg0bGvHx8dZ+06dPN9q1a2f4+voa7u7uRmhoqPH4448b586dK3Gtn332mSHJqFOnToFlvgyj4DJie/fuNQYPHmw0adLEcHNzM/z8/IwuXboYX3/9tc12Z86cMYYMGWL4+PgYXl5exp133mkcO3bsis+1JMuZNWzYsNBl5PSPpbfOnj1r3HfffUadOnUMd3d34/rrrzfS0tKMTp06GZ06dbI5h48++sgICwszqlWrZrOPwpZRy87ONu69914jODjYqF69utGsWTPj6aefLvTv+tLlyC7W/s/zLUpR2+/Zs8fo27ev4evra7i5uRnt2rUzPv30U5s+F69hcUvRXerEiRPGPffcY3h7exs+Pj7GPffcY13S7tKl3vbs2WMMHDjQCAoKMqpXr27UrVvXuOWWW2yWArv4b+PSZcou/fvdvHmzcddddxkNGjQwXF1djcDAQOOWW24xfvzxxwI1zps3z2jbtq3h7u5ueHl5GeHh4cYDDzxgHDlypMTnuXv3bqNbt26Gv7+/4erqaoSGhhopKSlGbm5uifcBmInFMCroqQQAAADAjpj8AwAAAFNgji8AAJXM6dOni11BRfp72bOillcDUDiCLwAAlczMmTM1derUYvvs27dPISEhFVMQUEUwxxcAgEpm7969l/0q6BtuuOGyy/gBsEXwBQAAgCnwcBsAAABMgTm+l5Gfn68jR47Iy8urVF8FCgAAgIphGIays7MVHBxc7JffEHwv48iRI6pfv769ywAAAMBlHDx4UPXq1Svyc4LvZXh5eUn6+0IW91WtAAAAsI+srCzVr1/fmtuKQvC9jIvTG7y9vQm+AAAAldjlpqXycBsAAABMgeALAAAAUyD4AgAAwBQIvgAAADAFhwu+c+bMUUhIiNzc3BQdHa0NGzaUaLv33ntPFotFt99+e/kWCAAAgErJoYLvokWLlJSUpOTkZG3evFkRERGKjY3VsWPHit1u//79mjBhgjp27FhBlQIAAKCycajg++yzz2rYsGFKSEhQWFiY5s6dKw8PD73xxhtFbpOXl6e4uDhNnTpVjRs3rsBqAQAAUJk4TPA9d+6cNm3apJiYGGubk5OTYmJilJaWVuR206ZNU2BgoIYMGVKi4+Tm5iorK8vmBQAAAMfnMMH3+PHjysvLU+3atW3aa9eurfT09EK3+f777/X666/r1VdfLfFxUlJS5OPjY33xdcUAAABVg8ME39LKzs7WPffco1dffVX+/v4l3m7SpEnKzMy0vg4ePFiOVQIAAKCiOMxXFvv7+8vZ2VkZGRk27RkZGQoKCirQf8+ePdq/f79uvfVWa1t+fr4kqVq1atq5c6eaNGlSYDtXV1e5urqWcfUAAACwN4cJvi4uLmrbtq1WrlxpXZIsPz9fK1euVGJiYoH+oaGh+uWXX2zaHnnkEWVnZ+v5559nCgMAAFXAVMvUK9ou2Ugu40rgCBwm+EpSUlKS4uPjFRUVpXbt2mnWrFnKyclRQkKCJGngwIGqW7euUlJS5ObmptatW9ts7+vrK0kF2gEAAFD1OVTw7d+/v/744w9NnjxZ6enpioyM1PLly60PvB04cEBOTlV22jIAAACugsUwDMPeRVRmWVlZ8vHxUWZmpry9ve1dDgAA+AemOkAqeV5jeBQAAACmQPAFAACAKTjUHF8AQOVzpb9qlvh1M4CKxYgvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATKGavQsAANjPVMvUK9ou2Ugu40oAoPwx4gsAAABTIPgCAADAFBwu+M6ZM0chISFyc3NTdHS0NmzYUGTfJUuWKCoqSr6+vqpRo4YiIyP19ttvV2C1AAAAqCwcKvguWrRISUlJSk5O1ubNmxUREaHY2FgdO3as0P5+fn56+OGHlZaWpq1btyohIUEJCQn68ssvK7hyAAAA2JtDBd9nn31Ww4YNU0JCgsLCwjR37lx5eHjojTfeKLR/586d1bt3b7Vs2VJNmjTRuHHj1KZNG33//fcVXDkAAADszWGC77lz57Rp0ybFxMRY25ycnBQTE6O0tLTLbm8YhlauXKmdO3fqxhtvLLJfbm6usrKybF4AAABwfA4TfI8fP668vDzVrl3bpr127dpKT08vcrvMzEx5enrKxcVFN998s2bPnq2bbrqpyP4pKSny8fGxvurXr19m5wAAAAD7cZjge6W8vLy0ZcsWbdy4UY8//riSkpK0evXqIvtPmjRJmZmZ1tfBgwcrrlgAAACUG4f5Agt/f385OzsrIyPDpj0jI0NBQUFFbufk5KSmTZtKkiIjI7V9+3alpKSoc+fOhfZ3dXWVq6trmdUNAACAysFhRnxdXFzUtm1brVy50tqWn5+vlStXqkOHDiXeT35+vnJzc8ujRAAAAFRiDjPiK0lJSUmKj49XVFSU2rVrp1mzZiknJ0cJCQmSpIEDB6pu3bpKSUmR9Pd83aioKDVp0kS5ubn6/PPP9fbbb+vll1+252kAAADADhwq+Pbv319//PGHJk+erPT0dEVGRmr58uXWB94OHDggJ6f/DWLn5ORo1KhROnTokNzd3RUaGqp33nlH/fv3t9cpAAAAwE4cKvhKUmJiohITEwv97NKH1qZPn67p06dXQFUAAACo7Bxmji8AAABwNQi+AAAAMAWCLwAAAEyB4AsAAABTIPgCAADAFBxuVQcAKK2plqlXtF2ykVzGlQAA7IkRXwAAAJgCwRcAAACmQPAFAACAKTDHF6bEnE8AAMyHEV8AAACYAsEXAAAApkDwBQAAgCkQfAEAAGAKBF8AAACYAsEXAAAApkDwBQAAgCkQfAEAAGAKBF8AAACYAsEXAAAApkDwBQAAgCkQfAEAAGAKBF8AAACYAsEXAAAApkDwBQAAgCkQfAEAAGAKBF8AAACYgsMF3zlz5igkJERubm6Kjo7Whg0biuz76quvqmPHjqpZs6Zq1qypmJiYYvsDAACg6nKo4Lto0SIlJSUpOTlZmzdvVkREhGJjY3Xs2LFC+69evVp33XWXvvnmG6Wlpal+/frq1q2bDh8+XMGVAwAAwN4cKvg+++yzGjZsmBISEhQWFqa5c+fKw8NDb7zxRqH9Fy5cqFGjRikyMlKhoaF67bXXlJ+fr5UrV1Zw5QAAALA3hwm+586d06ZNmxQTE2Ntc3JyUkxMjNLS0kq0jzNnzuj8+fPy8/Mrsk9ubq6ysrJsXgAAAHB8DhN8jx8/rry8PNWuXdumvXbt2kpPTy/RPh588EEFBwfbhOdLpaSkyMfHx/qqX7/+VdUNAACAysFhgu/VmjFjht577z0tXbpUbm5uRfabNGmSMjMzra+DBw9WYJUAAAAoL9XsXUBJ+fv7y9nZWRkZGTbtGRkZCgoKKnbbmTNnasaMGfr666/Vpk2bYvu6urrK1dX1quutDKZapl7RdslGchlXAgAAYH8OM+Lr4uKitm3b2jyYdvFBtQ4dOhS53VNPPaXHHntMy5cvV1RUVEWUCgAAgErIYUZ8JSkpKUnx8fGKiopSu3btNGvWLOXk5CghIUGSNHDgQNWtW1cpKSmSpCeffFKTJ09WamqqQkJCrHOBPT095enpabfzAAAAQMVzqODbv39//fHHH5o8ebLS09MVGRmp5cuXWx94O3DggJyc/jeI/fLLL+vcuXPq27evzX6Sk5M1ZcqUiiwdAAAAduZQwVeSEhMTlZiYWOhnq1evtnm/f//+8i8IAAAADsFh5vgCAAAAV4PgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATOGqgu/Zs2fLqg4AAACgXJU6+Obn5+uxxx5T3bp15enpqb1790qSHn30Ub3++utlXiAAAABQFkodfKdPn64FCxboqaeekouLi7W9devWeu2118q0uMLMmTNHISEhcnNzU3R0tDZs2FBk323btqlPnz4KCQmRxWLRrFmzyr0+AAAAVE6lDr5vvfWW5s2bp7i4ODk7O1vbIyIitGPHjjIt7lKLFi1SUlKSkpOTtXnzZkVERCg2NlbHjh0rtP+ZM2fUuHFjzZgxQ0FBQeVaGwAAACq3Ugffw4cPq2nTpgXa8/Pzdf78+TIpqijPPvushg0bpoSEBIWFhWnu3Lny8PDQG2+8UWj/a6+9Vk8//bQGDBggV1fXcq0NAAAAlVupg29YWJi+++67Au2LFy/WNddcUyZFFebcuXPatGmTYmJirG1OTk6KiYlRWlpamR0nNzdXWVlZNi8AAAA4vmql3WDy5MmKj4/X4cOHlZ+fryVLlmjnzp1666239Omnn5ZHjZKk48ePKy8vT7Vr17Zpr127dplOsUhJSdHUqVPLbH8AAACoHEo94turVy998skn+vrrr1WjRg1NnjxZ27dv1yeffKKbbrqpPGqsUJMmTVJmZqb1dfDgQXuXBAAAgDJQ6hFfSerYsaNWrFhR1rUUy9/fX87OzsrIyLBpz8jIKNMH11xdXZkPDAAAUAU5zDe3ubi4qG3btlq5cqW1LT8/XytXrlSHDh3sWBkAAAAcQalHfJ2cnGSxWIr8PC8v76oKKk5SUpLi4+MVFRWldu3aadasWcrJyVFCQoIkaeDAgapbt65SUlIk/f1A3G+//Wb98+HDh7VlyxZ5enoWujIFAAAAqq5SB9+lS5favD9//rx++uknvfnmm+X+UFj//v31xx9/aPLkyUpPT1dkZKSWL19ufeDtwIEDcnL63yD2kSNHbFaamDlzpmbOnKlOnTpp9erV5VorAMA+plqu7L9FyUZyGVcCoLIpdfDt1atXgba+ffuqVatWWrRokYYMGVImhRUlMTFRiYmJhX52aZgNCQmRYRjlWg8AAAAcQ5nN8W3fvr3N/FsAAACgMimT4PvXX3/phRdeUN26dctidwAAAECZK/VUh5o1a9o83GYYhrKzs+Xh4aF33nmnTIsDAAAAykqpg+9zzz1nE3ydnJwUEBCg6Oho1axZs0yLAwAAAMpKqYPvoEGDyqEMAAAAoHyVKPhu3bq1xDts06bNFRcDAAAAlJcSBd/IyEhZLJbLLg1msVjK9QssAAAAgCtVouC7b9++8q4DAAAAKFclCr4NGzYs7zoAAACAclXqh9su+u2333TgwAGdO3fOpv2222676qIAAACAslbq4Lt371717t1bv/zyi82834tLnDHHFwAAAJVRqb+5bdy4cWrUqJGOHTsmDw8Pbdu2TWvWrFFUVJRWr15dDiUCAAAAV6/UI75paWlatWqV/P395eTkJCcnJ91www1KSUnR2LFj9dNPP5VHnQAAAMBVKfWIb15enry8vCRJ/v7+OnLkiKS/H4DbuXNn2VYHAAAAlJFSj/i2bt1aP//8sxo1aqTo6Gg99dRTcnFx0bx589S4cePyqBEAAAC4aqUOvo888ohycnIkSdOmTdMtt9yijh07qlatWlq0aFGZFwgAAACUhRIH36ioKA0dOlT//ve/5e3tLUlq2rSpduzYoZMnT6pmzZrWlR0AAACAyqbEc3wjIiL0wAMPqE6dOho4cKDNCg5+fn6EXgAAAFRqJQ6+r7/+utLT0zVnzhwdOHBAXbt2VdOmTfXEE0/o8OHD5VkjAAAAcNVKNcfXw8NDgwYN0qBBg7Rnzx7Nnz9fr7zyipKTk9WtWzcNGTJEd9xxR3nVCgAAUC6mWqZe0XbJRnIZV4LyVOrlzC5q0qSJpk+frv379+vdd9/V+vXr1a9fv7KsDQAAACgzpV7V4Z9Wr16t+fPn68MPP1S1atU0bNiwsqoLAACUMUY1YXalDr6HDh3SggULtGDBAu3du1cdO3bUSy+9pH79+snd3b08agQAAACuWomD7/vvv6833nhDK1euVGBgoOLj4zV48GA1bdq0POsDAAAAykSJg+/dd9+tm2++WUuXLlXPnj3l5HTF04MBAEApMEUBKBslDr6HDh1SYGBgedYCAAAAlJsSD9sSegEAAODImK8AAAAAU3C44DtnzhyFhITIzc1N0dHR2rBhQ7H9P/jgA4WGhsrNzU3h4eH6/PPPK6hSAAAAVCZXtY5vRVu0aJGSkpI0d+5cRUdHa9asWYqNjdXOnTsLnYqxbt063XXXXUpJSdEtt9yi1NRU3X777dq8ebNat25thzMAUBo80AMAKEulDr4HDx6UxWJRvXr1JEkbNmxQamqqwsLCNHz48DIv8J+effZZDRs2TAkJCZKkuXPn6rPPPtMbb7yhiRMnFuj//PPPq3v37rr//vslSY899phWrFihF198UXPnzi30GLm5ucrNzbW+z8rKKoczAcoeIREA7OtKfw5L/CyuKBbDMIzSbNCxY0cNHz5c99xzj9LT09WiRQu1atVKu3bt0pgxYzR58uRyKfTcuXPy8PDQ4sWLdfvtt1vb4+PjderUKX300UcFtmnQoIGSkpI0fvx4a1tycrKWLVumn3/+udDjTJkyRVOnFrxxMzMz5e3tfdXnURKVLcCURT1ldU6V6dqU1Q+4ynROZaWq/vDn30L5qmznVJn+visTfvaVP35OlF5WVpZ8fHwum9dKPeL766+/ql27dpL+/lKL1q1ba+3atfrqq680cuTIcgu+x48fV15enmrXrm3TXrt2be3YsaPQbdLT0wvtn56eXuRxJk2apKSkJOv7rKws1a9f/yoqB8zHEX9oAgCqvlIH3/Pnz8vV1VWS9PXXX+u2226TJIWGhuro0aNlW50duLq6Ws8PZYcgBABAxeK/vQWVelWHVq1aae7cufruu++0YsUKde/eXZJ05MgR1apVq8wLvMjf31/Ozs7KyMiwac/IyFBQUFCh2wQFBZWqPwAAAKquUo/4Pvnkk+rdu7eefvppxcfHKyIiQpL08ccfW6dAlAcXFxe1bdtWK1eutM7xzc/P18qVK5WYmFjoNh06dNDKlStt5viuWLFCHTp0KLc6AQBVA6NlQNVT6uDbuXNnHT9+XFlZWapZs6a1ffjw4fLw8CjT4i6VlJSk+Ph4RUVFqV27dpo1a5ZycnKsqzwMHDhQdevWVUpKiiRp3Lhx6tSpk5555hndfPPNeu+99/Tjjz9q3rx55VonAAAAKp8rWsfX2dnZJvRKUkhISFnUU6z+/fvrjz/+0OTJk5Wenq7IyEgtX77c+gDbgQMH5OT0v9kb1113nVJTU/XII4/ooYceUrNmzbRs2TLW8AUAADChKwq+ixcv1vvvv68DBw7o3LlzNp9t3ry5TAorSmJiYpFTG1avXl2grV+/furXr1+51oSKw68eATgSfmYBlUupg+8LL7yghx9+WIMGDdJHH32khIQE7dmzRxs3btTo0aPLo0YAAFDF8D8FsIdSr+rw0ksvad68eZo9e7ZcXFz0wAMPaMWKFRo7dqwyMzPLo0YAAADgqpU6+B44cEDXXXedJMnd3V3Z2dmSpHvuuUfvvvtu2VYHAAAAlJFST3UICgrSyZMn1bBhQzVo0EDr169XRESE9u3bp1J++zEA8es+AAAqSqlHfP/1r3/p448/liQlJCTo3nvv1U033aT+/furd+/eZV4gAAAAUBZKPeI7b9485efnS5JGjx6tWrVqad26dbrttts0YsSIMi8QAAAAKAulDr5OTk42a+UOGDBAAwYMKNOiAAAAgLJWouC7detWtW7dWk5OTtq6dWuxfdu0aVMmhQEAAABlqUTBNzIyUunp6QoMDFRkZKQsFkuhD7JZLBbl5eWVeZEAAADA1SpR8N23b58CAgKsfwYAAAAcTYmCb8OGDQv9MwAAAOAoSv1w24kTJ1SrVi1J0sGDB/Xqq6/qr7/+0m233aaOHTuWeYEAAABAWSjxOr6//PKLQkJCFBgYqNDQUG3ZskXXXnutnnvuOc2bN09dunTRsmXLyrFUAAAA4MqVOPg+8MADCg8P15o1a9S5c2fdcsstuvnmm5WZmak///xTI0aM0IwZM8qzVgAAAOCKlXiqw8aNG7Vq1Sq1adNGERERmjdvnkaNGmVd03fMmDFq3759uRUKAAAAXI0Sj/iePHlSQUFBkiRPT0/VqFFDNWvWtH5es2ZNZWdnl32FAAAAQBko1cNtFoul2PcAAKBqSzaS7V0CcMVKFXwHDRokV1dXSdLZs2c1cuRI1ahRQ5KUm5tb9tUBAAAAZaTEwTc+Pt7m/d13312gz8CBA6++IgCowhgtAwD7KXHwnT9/fnnWAQAAAJSrEj/cBgAAADiyUn9zG4C/8StrAAAcCyO+AAAAMAWCLwAAAEyB4AsAAABTIPgCAADAFAi+AAAAMAWHCb4nT55UXFycvL295evrqyFDhuj06dPFbjNv3jx17txZ3t7eslgsOnXqVMUUCwAAgErHYYJvXFyctm3bphUrVujTTz/VmjVrNHz48GK3OXPmjLp3766HHnqogqoEAABAZeUQ6/hu375dy5cv18aNGxUVFSVJmj17tnr27KmZM2cqODi40O3Gjx8vSVq9enUFVQoAAIDKyiFGfNPS0uTr62sNvZIUExMjJycn/fDDD2V6rNzcXGVlZdm8AAAA4PgcIvimp6crMDDQpq1atWry8/NTenp6mR4rJSVFPj4+1lf9+vXLdP8AAACwD7sG34kTJ8pisRT72rFjR4XWNGnSJGVmZlpfBw8erNDjAwAAoHzYdY7vfffdp0GDBhXbp3HjxgoKCtKxY8ds2i9cuKCTJ08qKCioTGtydXWVq6trme4TAAAA9mfX4BsQEKCAgIDL9uvQoYNOnTqlTZs2qW3btpKkVatWKT8/X9HR0eVdJgAAAKoAh5jj27JlS3Xv3l3Dhg3Thg0btHbtWiUmJmrAgAHWFR0OHz6s0NBQbdiwwbpdenq6tmzZot27d0uSfvnlF23ZskUnT560y3kAAADAfhwi+ErSwoULFRoaqq5du6pnz5664YYbNG/ePOvn58+f186dO3XmzBlr29y5c3XNNddo2LBhkqQbb7xR11xzjT7++OMKrx8AAAD25RDr+EqSn5+fUlNTi/w8JCREhmHYtE2ZMkVTpkwp58oAAADgCBxmxBcAAAC4GgRfAAAAmALBFwAAAKZA8AUAAIApEHwBAABgCgRfAAAAmILDLGcGAPifZCPZ3iUAgMNhxBcAAACmQPAFAACAKRB8AQAAYAoEXwAAAJgCwRcAAACmQPAFAACAKRB8AQAAYAoEXwAAAJgCwRcAAACmQPAFAACAKRB8AQAAYAoEXwAAAJgCwRcAAACmUM3eBQCAo0g2ku1dAgDgKjDiCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUHCb4njx5UnFxcfL29pavr6+GDBmi06dPF9t/zJgxatGihdzd3dWgQQONHTtWmZmZFVg1AAAAKguHWcc3Li5OR48e1YoVK3T+/HklJCRo+PDhSk1NLbT/kSNHdOTIEc2cOVNhYWH6/fffNXLkSB05ckSLFy+u4OoBAJfDOskAyptDBN/t27dr+fLl2rhxo6KioiRJs2fPVs+ePTVz5kwFBwcX2KZ169b68MMPre+bNGmixx9/XHfffbcuXLigatUc4tQBAABQRhxiqkNaWpp8fX2toVeSYmJi5OTkpB9++KHE+8nMzJS3t3exoTc3N1dZWVk2LwAAADg+hwi+6enpCgwMtGmrVq2a/Pz8lJ6eXqJ9HD9+XI899piGDx9ebL+UlBT5+PhYX/Xr17/iugEAAFB52DX4Tpw4URaLpdjXjh07rvo4WVlZuvnmmxUWFqYpU6YU23fSpEnKzMy0vg4ePHjVxwcAAID92XWi63333adBgwYV26dx48YKCgrSsWPHbNovXLigkydPKigoqNjts7Oz1b17d3l5eWnp0qWqXr16sf1dXV3l6upaovoBAADgOOwafAMCAhQQEHDZfh06dNCpU6e0adMmtW3bVpK0atUq5efnKzo6usjtsrKyFBsbK1dXV3388cdyc3Mrs9oBAADgWBxijm/Lli3VvXt3DRs2TBs2bNDatWuVmJioAQMGWFd0OHz4sEJDQ7VhwwZJf4febt26KScnR6+//rqysrKUnp6u9PR05eXl2fN0AAAAYAcOs6bXwoULlZiYqK5du8rJyUl9+vTRCy+8YP38/Pnz2rlzp86cOSNJ2rx5s3XFh6ZNm9rsa9++fQoJCamw2gEAAGB/DhN8/fz8ivyyCkkKCQmRYRjW9507d7Z5DwAAAHNziKkOAAAAwNUi+AIAAMAUCL4AAAAwBYIvAAAATMFhHm4DAAAwg2Qj2d4lVFkEX1wW/wABAEBVwFQHAAAAmALBFwAAAKZA8AUAAIApEHwBAABgCgRfAAAAmALBFwAAAKZA8AUAAIApEHwBAABgCgRfAAAAmALBFwAAAKZA8AUAAIApEHwBAABgCgRfAAAAmALBFwAAAKZA8AUAAIApEHwBAABgCgRfAAAAmALBFwAAAKZA8AUAAIApEHwBAABgCgRfAAAAmILDBN+TJ08qLi5O3t7e8vX11ZAhQ3T69OlitxkxYoSaNGkid3d3BQQEqFevXtqxY0cFVQwAAIDKxGGCb1xcnLZt26YVK1bo008/1Zo1azR8+PBit2nbtq3mz5+v7du368svv5RhGOrWrZvy8vIqqGoAAABUFhbDMAx7F3E527dvV1hYmDZu3KioqChJ0vLly9WzZ08dOnRIwcHBJdrP1q1bFRERod27d6tJkyYl2iYrK0s+Pj7KzMyUt7f3FZ9DaUy1TL2i7ZKN5DKuBAAAoPIraV5ziBHftLQ0+fr6WkOvJMXExMjJyUk//PBDifaRk5Oj+fPnq1GjRqpfv36R/XJzc5WVlWXzAgAAgONziOCbnp6uwMBAm7Zq1arJz89P6enpxW770ksvydPTU56envriiy+0YsUKubi4FNk/JSVFPj4+1ldxIRkAAACOw67Bd+LEibJYLMW+rvZhtLi4OP3000/69ttv1bx5c9155506e/Zskf0nTZqkzMxM6+vgwYNXdXwAAABUDtXsefD77rtPgwYNKrZP48aNFRQUpGPHjtm0X7hwQSdPnlRQUFCx218cuW3WrJnat2+vmjVraunSpbrrrrsK7e/q6ipXV9dSnQcAAAAqP7sG34CAAAUEBFy2X4cOHXTq1Clt2rRJbdu2lSStWrVK+fn5io6OLvHxDMOQYRjKzc294poBAADgmBxijm/Lli3VvXt3DRs2TBs2bNDatWuVmJioAQMGWFd0OHz4sEJDQ7VhwwZJ0t69e5WSkqJNmzbpwIEDWrdunfr16yd3d3f17NnTnqcDAAAAO3CI4CtJCxcuVGhoqLp27aqePXvqhhtu0Lx586yfnz9/Xjt37tSZM2ckSW5ubvruu+/Us2dPNW3aVP3795eXl5fWrVtX4EE5AAAAVH12nepQGn5+fkpNTS3y85CQEP1zSeLg4GB9/vnnFVEaAAAAHIDDjPgCAAAAV4PgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATMFhvrnNTJKNZHuXAAAAUOUw4gsAAABTIPgCAADAFAi+AAAAMAWCLwAAAEyB4AsAAABTIPgCAADAFAi+AAAAMAWCLwAAAEyB4AsAAABTIPgCAADAFAi+AAAAMAWCLwAAAEyhmr0LqOwMw5AkZWVl2bkSAAAAFOZiTruY24pC8L2M7OxsSVL9+vXtXAkAAACKk52dLR8fnyI/txiXi8Yml5+fryNHjsjLy0sWi8WutWRlZal+/fo6ePCgvL297VpLVcU1Ll9c3/LHNS5/XOPyxfUtf1XxGhuGoezsbAUHB8vJqeiZvIz4XoaTk5Pq1atn7zJseHt7V5kbtbLiGpcvrm/54xqXP65x+eL6lr+qdo2LG+m9iIfbAAAAYAoEXwAAAJgCwdeBuLq6Kjk5Wa6urvYupcriGpcvrm/54xqXP65x+eL6lj8zX2MebgMAAIApMOILAAAAUyD4AgAAwBQIvgAAADAFgi8AAABMgeDrQObMmaOQkBC5ubkpOjpaGzZssHdJVcKUKVNksVhsXqGhofYuy6GtWbNGt956q4KDg2WxWLRs2TKbzw3D0OTJk1WnTh25u7srJiZGu3btsk+xDupy13jQoEEF7uvu3bvbp1gHlJKSomuvvVZeXl4KDAzU7bffrp07d9r0OXv2rEaPHq1atWrJ09NTffr0UUZGhp0qdjwlucadO3cucB+PHDnSThU7lpdffllt2rSxfklFhw4d9MUXX1g/N+v9S/B1EIsWLVJSUpKSk5O1efNmRUREKDY2VseOHbN3aVVCq1atdPToUevr+++/t3dJDi0nJ0cRERGaM2dOoZ8/9dRTeuGFFzR37lz98MMPqlGjhmJjY3X27NkKrtRxXe4aS1L37t1t7ut33323Ait0bN9++61Gjx6t9evXa8WKFTp//ry6deumnJwca597771Xn3zyiT744AN9++23OnLkiO644w47Vu1YSnKNJWnYsGE29/FTTz1lp4odS7169TRjxgxt2rRJP/74o/71r3+pV69e2rZtmyQT378GHEK7du2M0aNHW9/n5eUZwcHBRkpKih2rqhqSk5ONiIgIe5dRZUkyli5dan2fn59vBAUFGU8//bS17dSpU4arq6vx7rvv2qFCx3fpNTYMw4iPjzd69epll3qqomPHjhmSjG+//dYwjL/v2erVqxsffPCBtc/27dsNSUZaWpq9ynRol15jwzCMTp06GePGjbNfUVVMzZo1jddee83U9y8jvg7g3Llz2rRpk2JiYqxtTk5OiomJUVpamh0rqzp27dql4OBgNW7cWHFxcTpw4IC9S6qy9u3bp/T0dJv72cfHR9HR0dzPZWz16tUKDAxUixYt9J///EcnTpywd0kOKzMzU5Lk5+cnSdq0aZPOnz9vcx+HhoaqQYMG3MdX6NJrfNHChQvl7++v1q1ba9KkSTpz5ow9ynNoeXl5eu+995STk6MOHTqY+v6tZu8CcHnHjx9XXl6eateubdNeu3Zt7dixw05VVR3R0dFasGCBWrRooaNHj2rq1Knq2LGjfv31V3l5edm7vConPT1dkgq9ny9+hqvXvXt33XHHHWrUqJH27Nmjhx56SD169FBaWpqcnZ3tXZ5Dyc/P1/jx43X99derdevWkv6+j11cXOTr62vTl/v4yhR2jSXp3//+txo2bKjg4GBt3bpVDz74oHbu3KklS5bYsVrH8csvv6hDhw46e/asPD09tXTpUoWFhWnLli2mvX8JvjC9Hj16WP/cpk0bRUdHq2HDhnr//fc1ZMgQO1YGXLkBAwZY/xweHq42bdqoSZMmWr16tbp27WrHyhzP6NGj9euvvzL3vxwVdY2HDx9u/XN4eLjq1Kmjrl27as+ePWrSpElFl+lwWrRooS1btigzM1OLFy9WfHy8vv32W3uXZVdMdXAA/v7+cnZ2LvC0ZUZGhoKCguxUVdXl6+ur5s2ba/fu3fYupUq6eM9yP1esxo0by9/fn/u6lBITE/Xpp5/qm2++Ub169aztQUFBOnfunE6dOmXTn/u49Iq6xoWJjo6WJO7jEnJxcVHTpk3Vtm1bpaSkKCIiQs8//7yp71+CrwNwcXFR27ZttXLlSmtbfn6+Vq5cqQ4dOtixsqrp9OnT2rNnj+rUqWPvUqqkRo0aKSgoyOZ+zsrK0g8//MD9XI4OHTqkEydOcF+XkGEYSkxM1NKlS7Vq1So1atTI5vO2bduqevXqNvfxzp07deDAAe7jErrcNS7Mli1bJIn7+Arl5+crNzfX1PcvUx0cRFJSkuLj4xUVFaV27dpp1qxZysnJUUJCgr1Lc3gTJkzQrbfeqoYNG+rIkSNKTk6Ws7Oz7rrrLnuX5rBOnz5tMyKzb98+bdmyRX5+fmrQoIHGjx+v6dOnq1mzZmrUqJEeffRRBQcH6/bbb7df0Q6muGvs5+enqVOnqk+fPgoKCtKePXv0wAMPqGnTpoqNjbVj1Y5j9OjRSk1N1UcffSQvLy/rvEcfHx+5u7vLx8dHQ4YMUVJSkvz8/OTt7a0xY8aoQ4cOat++vZ2rdwyXu8Z79uxRamqqevbsqVq1amnr1q269957deONN6pNmzZ2rr7ymzRpknr06KEGDRooOztbqampWr16tb788ktz37/2XlYCJTd79myjQYMGhouLi9GuXTtj/fr19i6pSujfv79Rp04dw8XFxahbt67Rv39/Y/fu3fYuy6F98803hqQCr/j4eMMw/l7S7NFHHzVq165tuLq6Gl27djV27txp36IdTHHX+MyZM0a3bt2MgIAAo3r16kbDhg2NYcOGGenp6fYu22EUdm0lGfPnz7f2+euvv4xRo0YZNWvWNDw8PIzevXsbR48etV/RDuZy1/jAgQPGjTfeaPj5+Rmurq5G06ZNjfvvv9/IzMy0b+EOYvDgwUbDhg0NFxcXIyAgwOjatavx1VdfWT836/1rMQzDqMigDQAAANgDc3wBAABgCgRfAAAAmALBFwAAAKZA8AUAAIApEHwBAABgCgRfAAAAmALBFwAAAKZA8AUAAIApEHwBAOVm9erVslgsOnXqlL1LAQCCLwBcjUGDBslisWjGjBk27cuWLZPFYrFTVWUjJCREs2bNsncZAFBmCL4AcJXc3Nz05JNP6s8//6zwY58/f77CjwkAjorgCwBXKSYmRkFBQUpJSSm23/fff6+OHTvK3d1d9evX19ixY5WTk2P93GKxaNmyZTbb+Pr6asGCBZKk/fv3y2KxaNGiRerUqZPc3Ny0cOFC5efna9q0aapXr55cXV0VGRmp5cuXW/dxcbslS5aoS5cu8vDwUEREhNLS0kp1nhaLRa+99pp69+4tDw8PNWvWTB9//LFNn88//1zNmzeXu7u7unTpov3795fqOrz11lvy9PTUrl27rP1HjRql0NBQnTlzplT1AsClCL4AcJWcnZ31xBNPaPbs2Tp06FChffbs2aPu3burT58+2rp1qxYtWqTvv/9eiYmJpT7exIkTNW7cOG3fvl2xsbF6/vnn9cwzz2jmzJnaunWrYmNjddttt9mER0l6+OGHNWHCBG3ZskXNmzfXXXfdpQsXLpTq2FOnTtWdd96prVu3qmfPnoqLi9PJkyclSQcPHtQdd9yhW2+9VVu2bNHQoUM1ceLEUl2HgQMHWvd74cIFffbZZ3rttde0cOFCeXh4lPpaAYANAwBwxeLj441evXoZhmEY7du3NwYPHmwYhmEsXbrU+OeP2CFDhhjDhw+32fa7774znJycjL/++sswDMOQZCxdutSmj4+PjzF//nzDMAxj3759hiRj1qxZNn2Cg4ONxx9/3Kbt2muvNUaNGmWz3WuvvWb9fNu2bYYkY/v27UWeW8OGDY3nnnvO+l6S8cgjj1jfnz592pBkfPHFF4ZhGMakSZOMsLAwm308+OCDhiTjzz//LPF1OHnypFGvXj3jP//5j1G7du0C5wYAV4oRXwAoI08++aTefPNNbd++vcBnP//8sxYsWCBPT0/rKzY2Vvn5+dq3b1+pjhMVFWX9c1ZWlo4cOaLrr7/eps/1119foI42bdpY/1ynTh1J0rFjx0p17H/uo0aNGvL29rbuY/v27YqOjrbp36FDB5v3JbkONWvW1Ouvv66XX35ZTZo0KTBqDABXqpq9CwCAquLGG29UbGysJk2apEGDBtl8dvr0aY0YMUJjx44tsF2DBg0k/T2H1jAMm88Ke3itRo0aV1Rf9erVrX++uOJEfn7+Fe/j4n5Ks4+SXAdJWrNmjZydnXX06FHl5OTIy8urVHUCQGEIvgBQhmbMmKHIyEi1aNHCpv3//u//9Ntvv6lp06ZFbhsQEKCjR49a3+/ateuyD3R5e3srODhYa9euVadOnazta9euVbt27a7wLK5My5YtCzzstn79epv3JbkO69at05NPPqlPPvlEDz74oBITE/Xmm2+WS80AzIWpDgBQhsLDwxUXF6cXXnjBpv3BBx/UunXrlJiYqC1btmjXrl366KOPbB5u+9e//qUXX3xRP/30k3788UeNHDmywAhrYe6//349+eSTWrRokXbu3KmJEydqy5YtGjduXJmfX3FGjhypXbt26f7779fOnTuVmppqXZHiostdh+zsbN1zzz0aO3asevTooYULF2rRokVavHhxhZ4LgKqJ4AsAZWzatGkFfv3fpk0bffvtt/rvf/+rjh076pprrtHkyZMVHBxs7fPMM8+ofv366tixo/79739rwoQJJVrJYOzYsUpKStJ9992n8PBwLV++XB9//LGaNWtW5udWnAYNGujDDz/UsmXLFBERoblz5+qJJ56w6XO56zBu3DjVqFHDul14eLieeOIJjRgxQocPH67Q8wFQ9ViMSyeUAQAAAFUQI74AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFMg+AIAAMAUCL4AAAAwBYIvAAAATIHgCwAAAFP4f42ec/RZyIr7AAAAAElFTkSuQmCC\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAGJCAYAAACEkIXWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCDElEQVR4nO3deVxV1f7/8fcBZVAERATECadSE8VESM3UbxROmQ2mXVLEobpFapQ3vZWklWhZUWaaTTZoWaaWVppRNomRAzmkZjlrQGYCYk6c/fvDH+d2ZBD0wDm4X8/HYz8ennXW3uuzN3B6t1h7YzEMwxAAAABgEm7OLgAAAACoSgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAOVisVj02GOPObuMEq1evVoWi0WrV692uTqGDx+usLCwKq/FWeNKUnZ2tm699VbVq1dPFotFqampVV7Dnj17ZLFYNG/evCofG4DrIwADJjVv3jxZLBa7LSgoSL169dJnn33m1NrGjBkji8WiX3/9tdQ+Dz/8sCwWizZt2lSFlbmWQ4cO6bHHHlNmZqazS7Fz//33a+XKlZo4caLefvtt9e7d29klXRKOHTum5ORk9e7dWwEBAecN+Nu2bVPv3r3l4+OjgIAADR06VH/88UfVFQy4sBrOLgCAc02ZMkXNmjWTYRjKzs7WvHnz1LdvXy1btkz9+/e39fv7779Vo0bVfGTExcVp5syZWrBggSZNmlRin3fffVfh4eFq3769rFar/v77b3l4eFRJfRXxyiuvyGq1VsqxDx06pMmTJyssLEwRERFVNu75fPnll7rxxhv14IMPOmX8S9Xhw4c1ZcoUNWnSRB06dCjzNx4HDhzQNddcIz8/P02dOlXHjh3TjBkztHnzZmVkZLjkzwpQlQjAgMn16dNHkZGRttcjR45UcHCw3n33XbsA7OXlVWU1RUdHq2XLlnr33XdLDMDp6enavXu3pk2bJklyc3Or0voqombNmqYaV5JycnLk7+/vsOOdOHFCHh4ecnMz9y8tGzRooN9//10hISFat26dOnfuXGrfqVOnqqCgQOvXr1eTJk0kSVFRUbruuus0b9483XnnnVVVNuCSzP1pAqAYf39/eXt7F5vtPXcN8N69e3XPPffo8ssvl7e3t+rVq6dBgwZpz549dvudPn1akydPVqtWreTl5aV69erp6quv1qpVq8qsIy4uTtu3b9eGDRuKvbdgwQJZLBbdfvvtkkpee7tz507dcsstCgkJkZeXlxo1aqQhQ4YoNzdXUtlrRC/0XEty7lrcnj17Flt6UrQV1XLkyBE9+OCDCg8Pl4+Pj3x9fdWnTx/99NNPtuOsXr3aFoASEhKKHaOkNcAFBQV64IEH1LhxY3l6euryyy/XjBkzZBhGsfNPTEzU0qVL1a5dO3l6euqKK67QihUryjzXomU1hmFo1qxZtpqK7Nq1S4MGDVJAQIBq1aqlq666Sp988ondMYq+lu+9954eeeQRNWzYULVq1VJeXl6p4x49elTDhw+Xn5+f/P39FR8fr6NHj5bYd/v27br11lsVEBAgLy8vRUZG6uOPPy7xPL7//nslJSWpfv36ql27tm666aZiSwjWrVun2NhYBQYGytvbW82aNdOIESPs+litVqWmpuqKK66Ql5eXgoODddddd+mvv/4q83qey9PTUyEhIeXq++GHH6p///628CtJMTExuuyyy/T+++9XaFzgUsQMMGByubm5Onz4sAzDUE5OjmbOnKljx47pjjvuKHO/H3/8UWvWrNGQIUPUqFEj7dmzR7Nnz1bPnj31888/q1atWpKkxx57TCkpKRo1apSioqKUl5endevWacOGDbruuutKPX5cXJwmT56sBQsW6Morr7S1FxYW6v3331f37t3t/uP+T6dOnVJsbKxOnjyp++67TyEhITp48KCWL1+uo0ePys/Pr0LXqLznWh4PP/ywRo0aZdf2zjvvaOXKlQoKCpJ0NiguXbpUgwYNUrNmzZSdna2XX35ZPXr00M8//6zQ0FC1adNGU6ZM0aRJk3TnnXeqe/fukqSuXbuWOK5hGBowYIC++uorjRw5UhEREVq5cqXGjx+vgwcP6rnnnrPr/91332nx4sW65557VKdOHb3wwgu65ZZbtG/fPtWrV6/EMa655hq9/fbbGjp0qK677joNGzbM9l52dra6du2q48ePa8yYMapXr57efPNNDRgwQIsWLdJNN91kd6zHH39cHh4eevDBB3Xy5MlSf2VvGIZuvPFGfffdd7r77rvVpk0bLVmyRPHx8cX6bt26Vd26dVPDhg01YcIE1a5dW++//74GDhyoDz/8sFgN9913n+rWravk5GTt2bNHqampSkxM1MKFCyWdnem+/vrrVb9+fU2YMEH+/v7as2ePFi9ebHecu+66S/PmzVNCQoLGjBmj3bt368UXX9TGjRv1/fffO3y2/uDBg8rJybH7zU6RqKgoffrppw4dD6iWDACm9MYbbxiSim2enp7GvHnzivWXZCQnJ9teHz9+vFif9PR0Q5Lx1ltv2do6dOhg9OvX74Jq7Ny5s9GoUSOjsLDQ1rZixQpDkvHyyy/b2r766itDkvHVV18ZhmEYGzduNCQZH3zwQanH3r17tyHJeOONN4q9d6Hnem4dhmEY8fHxRtOmTUut4/vvvzdq1qxpjBgxwtZ24sQJu3MuqtfT09OYMmWKre3HH38s9RzOHXfp0qWGJOOJJ56w63frrbcaFovF+PXXX21tkgwPDw+7tp9++smQZMycObPUc/nn/vfee69d27hx4wxJxrfffmtry8/PN5o1a2aEhYXZzrfoGjZv3rzE636uovN66qmnbG1nzpwxunfvXuzaXHvttUZ4eLhx4sQJW5vVajW6du1qtGrVytZW9LMRExNjWK1WW/v9999vuLu7G0ePHjUMwzCWLFliSDJ+/PHHUuv79ttvDUnG/Pnz7dqLvo/PbS+vsr72Re/983uzyPjx4w1JdtcAMCOWQAAmN2vWLK1atUqrVq3SO++8o169emnUqFHFZrHO5e3tbfv36dOn9eeff6ply5by9/e3W7bg7++vrVu3aufOnRWu7Y477tCBAwf0zTff2NoWLFggDw8PDRo0qNT9imZ4V65cqePHj1d43HOV91wrKisrS7feeqsiIiL00ksv2do9PT1t610LCwv1559/ysfHR5dffvkFj/fpp5/K3d1dY8aMsWt/4IEHZBhGsSd/xMTEqEWLFrbX7du3l6+vr3bt2nXB40dFRenqq6+2tfn4+OjOO+/Unj179PPPP9v1j4+Pt7vuZR23Ro0a+ve//21rc3d313333WfX78iRI/ryyy912223KT8/X4cPH9bhw4f1559/KjY2Vjt37tTBgwft9rnzzjvtlnB0795dhYWF2rt3ryTZ1jkvX75cp0+fLrG+Dz74QH5+frruuutsYx4+fFidOnWSj4+Pvvrqq/OeY0X9/fffks5+H52raK18UR/ArAjAgMlFRUUpJiZGMTExiouL0yeffKK2bdsqMTFRp06dKnW/v//+W5MmTbKtJw0MDFT9+vV19OhR2zpb6exTJo4eParLLrtM4eHhGj9+fLkfXTZkyBC5u7trwYIFks7eDLVkyRL16dNHdevWLXW/Zs2aKSkpSa+++qoCAwMVGxurWbNm2dVVEeU914o4c+aMbrvtNhUWFmrx4sV2YcVqteq5555Tq1at7MbbtGnTBY+3d+9ehYaGqk6dOnbtbdq0sb3/TyUtL6lbt26F163+c/zLL7+8WHtp4zdr1qzcx23QoIF8fHzs2s8d69dff5VhGHr00UdVv359uy05OVnS2SUN/3TuNSj6niu6Bj169NAtt9yiyZMnKzAwUDfeeKPeeOMNnTx50rbPzp07lZubq6CgoGLjHjt2rNiYjlD0Pw7/rKPIiRMn7PoAZsUaYAB23Nzc1KtXLz3//PPauXOnrrjiihL73XfffXrjjTc0btw4denSRX5+frJYLBoyZIjd47euueYa/fbbb/roo4/0+eef69VXX9Vzzz2nOXPmFFsLe66goCBdd911+vDDDzVr1iwtW7ZM+fn5iouLO+95PPPMMxo+fLht3DFjxiglJUVr165Vo0aN7Gb2/qmwsPCCz7Uixo8fr/T0dH3xxRdq1KiR3XtTp07Vo48+qhEjRujxxx9XQECA3NzcNG7cuCp7tJm7u3uJ7cY5N8xVFkcHtKLr9uCDDyo2NrbEPi1btrR7fb5rYLFYtGjRIq1du1bLli3TypUrNWLECD3zzDNau3atfHx8ZLVaFRQUpPnz55d4rPr161/oKZWqQYMGkqTff/+92Hu///67AgICSpwdBsyEAAygmDNnzkg6++D90ixatEjx8fF65plnbG0nTpwo8e77gIAAJSQkKCEhQceOHdM111yjxx577LwBWDp7M9yKFSv02WefacGCBfL19dUNN9xQrvMIDw9XeHi4HnnkEa1Zs0bdunXTnDlz9MQTT9hm886t99yZyIqea3m89957Sk1NVWpqqnr06FHieL169dJrr71m13706FEFBgbaXpcW4kvStGlTffHFF8rPz7ebBd6+fbvt/crUtGlT7dixo1j7xY7ftGlTpaWl6dixY3azwOeO1bx5c0lnHw8XExNzQWOV5qqrrtJVV12lJ598UgsWLFBcXJzee+89jRo1Si1atNAXX3yhbt26Vdmsa8OGDVW/fn2tW7eu2HsZGRnFnhkNmBFLIADYOX36tD7//HN5eHjYfj1dEnd392KzgTNnziw2g/rnn3/avfbx8VHLli1L/PVsSQYOHKhatWrppZde0meffaabb775vM/8zcvLs4X4IuHh4XJzc7ON6+vrq8DAQLv1xZLs1uIWKe+5lseWLVs0atQo3XHHHRo7dmyJfUoa74MPPii2RrV27dqSiof4kvTt21eFhYV68cUX7dqfe+45WSwW9enTpwJnUXF9+/ZVRkaG0tPTbW0FBQWaO3euwsLC1LZt2ws+7pkzZzR79mxbW2FhoWbOnGnXLygoSD179tTLL79c4szohfyFtL/++qvY16koXBZ9nxUtc3n88ceL7X/mzJkL/p+o87nlllu0fPly7d+/39aWlpamX375pcz184BZMAMMmNxnn31mm4XLycnRggULtHPnTk2YMEG+vr6l7te/f3+9/fbb8vPzU9u2bW2/zj/3EVlt27ZVz5491alTJwUEBGjdunVatGiREhMTy1Wfj4+PBg4caFsHXJ7lD19++aUSExM1aNAgXXbZZTpz5ozefvttubu765ZbbrH1GzVqlKZNm6ZRo0YpMjJS33zzjX755ZcLPtfySEhIkHR2acg777xj917Xrl3VvHlz9e/fX1OmTFFCQoK6du2qzZs3a/78+bZZzCItWrSQv7+/5syZozp16qh27dqKjo4ucf3sDTfcoF69eunhhx/Wnj171KFDB33++ef66KOPNG7cOLsb3irDhAkT9O6776pPnz4aM2aMAgIC9Oabb2r37t368MMPL/iPXNxwww3q1q2bJkyYoD179qht27ZavHhxiWulZ82apauvvlrh4eEaPXq0mjdvruzsbKWnp+vAgQN2z1kujzfffFMvvfSSbrrpJrVo0UL5+fl65ZVX5Ovrq759+0o6u074rrvuUkpKijIzM3X99derZs2a2rlzpz744AM9//zzuvXWW8s95osvvqijR4/q0KFDkqRly5bpwIEDks4u1Sm6AfS///2vPvjgA/Xq1Utjx47VsWPH9PTTTys8PNz2PQiYmvMeQAHAmUp6DJqXl5cRERFhzJ492+7xT4ZR/NFgf/31l5GQkGAEBgYaPj4+RmxsrLF9+3ajadOmRnx8vK3fE088YURFRRn+/v6Gt7e30bp1a+PJJ580Tp06Ve5aP/nkE0OS0aBBg2KPBzOM4o8f27VrlzFixAijRYsWhpeXlxEQEGD06tXL+OKLL+z2O378uDFy5EjDz8/PqFOnjnHbbbcZOTk5F3yu5XkMWtOmTUt8/Jz+8UirEydOGA888IDRoEEDw9vb2+jWrZuRnp5u9OjRw+jRo4fdOXz00UdG27ZtjRo1atgdo6THr+Xn5xv333+/ERoaatSsWdNo1aqV8fTTT5f4tT73MWZFtf/zfEtT2v6//fabceuttxr+/v6Gl5eXERUVZSxfvtyuT9E1LOsRduf6888/jaFDhxq+vr6Gn5+fMXToUNuj8M59TNhvv/1mDBs2zAgJCTFq1qxpNGzY0Ojfv7+xaNEiW5+in41zH2927td3w4YNxu233240adLE8PT0NIKCgoz+/fsb69atK1bj3LlzjU6dOhne3t5GnTp1jPDwcOM///mPcejQoXKfp2GU/f2ze/duu75btmwxrr/+eqNWrVqGv7+/ERcXZ2RlZVVoPOBSZTGMKrqjAQAAAHABrAEGAACAqbAGGAAAJzp27FiZT1yRzj4urbTHsgGoOAIwAABONGPGDE2ePLnMPrt371ZYWFjVFASYAGuAAQBwol27dp33T0xfffXV5338H4DyIwADAADAVLgJDgAAAKbCGuDzsFqtOnTokOrUqVOhPzsKAACAqmEYhvLz8xUaGlquP6xDAD6PQ4cOqXHjxs4uAwAAAOexf/9+NWrU6Lz9CMDnUadOHUlnL2hZfxYWAAAAzpGXl6fGjRvbctv5EIDPo2jZg6+vLwEYAADAhZV3uSo3wQEAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATKWGswsAADOabJlcpeMlG8lVOh4AuDJmgAEAAGAqBGAAAACYSrULwLNmzVJYWJi8vLwUHR2tjIyMUvvOmzdPFovFbvPy8qrCagEAAOBqqlUAXrhwoZKSkpScnKwNGzaoQ4cOio2NVU5OTqn7+Pr66vfff7dte/furcKKAQAA4Gqq1U1wzz77rEaPHq2EhARJ0pw5c/TJJ5/o9ddf14QJE0rcx2KxKCQkpNxjnDx5UidPnrS9zsvLu7iiLwHcrAMAAC4l1WYG+NSpU1q/fr1iYmJsbW5uboqJiVF6enqp+x07dkxNmzZV48aNdeONN2rr1q1ljpOSkiI/Pz/b1rhxY4edAwAAAJyv2gTgw4cPq7CwUMHBwXbtwcHBysrKKnGfyy+/XK+//ro++ugjvfPOO7JareratasOHDhQ6jgTJ05Ubm6ubdu/f79DzwMAAADOVa2WQFRUly5d1KVLF9vrrl27qk2bNnr55Zf1+OOPl7iPp6enPD09q6pEAAAAVLFqMwMcGBgod3d3ZWdn27VnZ2eXe41vzZo11bFjR/3666+VUSIAAACqgWoTgD08PNSpUyelpaXZ2qxWq9LS0uxmectSWFiozZs3q0GDBpVVJgAAAFxctVoCkZSUpPj4eEVGRioqKkqpqakqKCiwPRVi2LBhatiwoVJSUiRJU6ZM0VVXXaWWLVvq6NGjevrpp7V3716NGjXKmacBAAAAJ6pWAXjw4MH6448/NGnSJGVlZSkiIkIrVqyw3Ri3b98+ubn9b1L7r7/+0ujRo5WVlaW6deuqU6dOWrNmjdq2beusUwAAAICTWQzDMJxdhCvLy8uTn5+fcnNz5evr6+xynILnAAOOx88VADhORfNatVkDDAAAADgCARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmUu0C8KxZsxQWFiYvLy9FR0crIyOjXPu99957slgsGjhwYOUWCAAAAJdWrQLwwoULlZSUpOTkZG3YsEEdOnRQbGyscnJyytxvz549evDBB9W9e/cqqhQAAACuqloF4GeffVajR49WQkKC2rZtqzlz5qhWrVp6/fXXS92nsLBQcXFxmjx5spo3b16F1QIAAMAVVZsAfOrUKa1fv14xMTG2Njc3N8XExCg9Pb3U/aZMmaKgoCCNHDmyXOOcPHlSeXl5dhsAAAAuHdUmAB8+fFiFhYUKDg62aw8ODlZWVlaJ+3z33Xd67bXX9Morr5R7nJSUFPn5+dm2xo0bX1TdAAAAcC3VJgBXVH5+voYOHapXXnlFgYGB5d5v4sSJys3NtW379++vxCoBAABQ1Wo4u4DyCgwMlLu7u7Kzs+3as7OzFRISUqz/b7/9pj179uiGG26wtVmtVklSjRo1tGPHDrVo0aLYfp6envL09HRw9QAAAHAV1WYG2MPDQ506dVJaWpqtzWq1Ki0tTV26dCnWv3Xr1tq8ebMyMzNt24ABA9SrVy9lZmaytAEAAMCkqs0MsCQlJSUpPj5ekZGRioqKUmpqqgoKCpSQkCBJGjZsmBo2bKiUlBR5eXmpXbt2dvv7+/tLUrF2AAAAmEe1CsCDBw/WH3/8oUmTJikrK0sRERFasWKF7ca4ffv2yc2t2kxqAwAAwAmqVQCWpMTERCUmJpb43urVq8vcd968eY4vCAAAANUK06UAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFOpdgF41qxZCgsLk5eXl6Kjo5WRkVFq38WLFysyMlL+/v6qXbu2IiIi9Pbbb1dhtQAAAHA11SoAL1y4UElJSUpOTtaGDRvUoUMHxcbGKicnp8T+AQEBevjhh5Wenq5NmzYpISFBCQkJWrlyZRVXDgAAAFdRrQLws88+q9GjRyshIUFt27bVnDlzVKtWLb3++usl9u/Zs6duuukmtWnTRi1atNDYsWPVvn17fffdd6WOcfLkSeXl5dltAAAAuHRUmwB86tQprV+/XjExMbY2Nzc3xcTEKD09/bz7G4ahtLQ07dixQ9dcc02p/VJSUuTn52fbGjdu7JD6AQAA4BqqTQA+fPiwCgsLFRwcbNceHBysrKysUvfLzc2Vj4+PPDw81K9fP82cOVPXXXddqf0nTpyo3Nxc27Z//36HnQMAAACcr4azC6hsderUUWZmpo4dO6a0tDQlJSWpefPm6tmzZ4n9PT095enpWbVFAgAAoMpUmwAcGBgod3d3ZWdn27VnZ2crJCSk1P3c3NzUsmVLSVJERIS2bdumlJSUUgMwAAAALm3VZgmEh4eHOnXqpLS0NFub1WpVWlqaunTpUu7jWK1WnTx5sjJKBAAAQDVQbWaAJSkpKUnx8fGKjIxUVFSUUlNTVVBQoISEBEnSsGHD1LBhQ6WkpEg6e0NbZGSkWrRooZMnT+rTTz/V22+/rdmzZzvzNAAAAOBE1SoADx48WH/88YcmTZqkrKwsRUREaMWKFbYb4/bt2yc3t/9NahcUFOiee+7RgQMH5O3trdatW+udd97R4MGDnXUKAAAAcDKLYRiGs4twZXl5efLz81Nubq58fX2dXY5TTLZMrtLxko3kKh0PcAZ+rgDAcSqa16rNGmAAAADAEQjAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVAjAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVAjAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVAjAAAAAMBUCMAAAAEyFAAwAAABTuagAfOLECUfVAQAAAFSJCgdgq9Wqxx9/XA0bNpSPj4927dolSXr00Uf12muvObxAAAAAwJEqHICfeOIJzZs3T0899ZQ8PDxs7e3atdOrr77q0OIAAAAAR6twAH7rrbc0d+5cxcXFyd3d3dbeoUMHbd++3aHFAQAAAI5W4QB88OBBtWzZsli71WrV6dOnHVIUAAAAUFkqHIDbtm2rb7/9tlj7okWL1LFjR4cUBQAAAFSWGhXdYdKkSYqPj9fBgwdltVq1ePFi7dixQ2+99ZaWL19eGTUCAAAADlPhGeAbb7xRy5Yt0xdffKHatWtr0qRJ2rZtm5YtW6brrruuMmoEAAAAHKbCM8CS1L17d61atcrRtQAAAACVjr8EBwAAAFOpcAB2c3OTu7t7qVtlmzVrlsLCwuTl5aXo6GhlZGSU2veVV15R9+7dVbduXdWtW1cxMTFl9gcAAMClr8JLIJYsWWL3+vTp09q4caPefPNNTZ482WGFlWThwoVKSkrSnDlzFB0drdTUVMXGxmrHjh0KCgoq1n/16tW6/fbb1bVrV3l5eWn69Om6/vrrtXXrVjVs2LBSawUAAIBrshiGYTjiQAsWLNDChQv10UcfOeJwJYqOjlbnzp314osvSjr77OHGjRvrvvvu04QJE867f2FhoerWrasXX3xRw4YNK9eYeXl58vPzU25urnx9fS+q/upqsqVy/8fmXMlGcpWOBzgDP1cA4DgVzWsOWwN81VVXKS0tzVGHK+bUqVNav369YmJibG1ubm6KiYlRenp6uY5x/PhxnT59WgEBAaX2OXnypPLy8uw2AAAAXDocEoD//vtvvfDCC5W6rODw4cMqLCxUcHCwXXtwcLCysrLKdYyHHnpIoaGhdiH6XCkpKfLz87NtjRs3vqi6AQAA4FoqvAa4bt26slgstteGYSg/P1+1atXSO++849DiHGnatGl67733tHr1anl5eZXab+LEiUpKSrK9zsvLIwQDAABcQiocgJ977jm7AOzm5qb69esrOjpadevWdWhx/xQYGCh3d3dlZ2fbtWdnZyskJKTMfWfMmKFp06bpiy++UPv27cvs6+npKU9Pz4uuFwAAAK6pwgF4+PDhlVDG+Xl4eKhTp05KS0vTwIEDJZ29CS4tLU2JiYml7vfUU0/pySef1MqVKxUZGVlF1QIAAMBVlSsAb9q0qdwHPN8M68VISkpSfHy8IiMjFRUVpdTUVBUUFCghIUGSNGzYMDVs2FApKSmSpOnTp2vSpElasGCBwsLCbGuFfXx85OPjU2l1AgAAwHWVKwBHRETIYrHofE9Ms1gsKiwsdEhhJRk8eLD++OMPTZo0SVlZWYqIiNCKFStsN8bt27dPbm7/u69v9uzZOnXqlG699Va74yQnJ+uxxx6rtDoBAADgusoVgHfv3l3ZdZRbYmJiqUseVq9ebfd6z549lV8QAAAAqpVyBeCmTZtWdh0AAABAlajwTXBFfv75Z+3bt0+nTp2yax8wYMBFFwUAAABUlgoH4F27dummm27S5s2b7dYFFz0arTLXAAMAAAAXq8J/CW7s2LFq1qyZcnJyVKtWLW3dulXffPONIiMji63BBQAAAFxNhWeA09PT9eWXXyowMFBubm5yc3PT1VdfrZSUFI0ZM0YbN26sjDoBAAAAh6jwDHBhYaHq1Kkj6exfZzt06JCkszfK7dixw7HVAQAAAA5W4Rngdu3a6aefflKzZs0UHR2tp556Sh4eHpo7d66aN29eGTUCAAAADlPhAPzII4+ooKBAkjRlyhT1799f3bt3V7169bRw4UKHFwgAAAA4UrkDcGRkpEaNGqV//etf8vX1lSS1bNlS27dv15EjR1S3bl3bkyAAAAAAV1XuNcAdOnTQf/7zHzVo0EDDhg2ze+JDQEAA4RcAAADVQrkD8GuvvaasrCzNmjVL+/bt07XXXquWLVtq6tSpOnjwYGXWCAAAADhMhZ4CUatWLQ0fPlyrV6/WL7/8oiFDhujll19WWFiY+vXrp8WLF1dWnQAAAIBDVPgxaEVatGihJ554Qnv27NG7776rtWvXatCgQY6sDQAAAHC4Cj8F4p9Wr16tN954Qx9++KFq1Kih0aNHO6ouAAAAoFJUOAAfOHBA8+bN07x587Rr1y51795dL730kgYNGiRvb+/KqBEAAABwmHIH4Pfff1+vv/660tLSFBQUpPj4eI0YMUItW7aszPoAAAAAhyp3AL7jjjvUr18/LVmyRH379pWb2wUvHwYAAACcptwB+MCBAwoKCqrMWgAAAIBKV+5pXMIvAAAALgWsYwAAAICpEIABAABgKgRgAAAAmEqFA/D+/ft14MAB2+uMjAyNGzdOc+fOdWhhAAAAQGWocAD+17/+pa+++kqSlJWVpeuuu04ZGRl6+OGHNWXKFIcXCAAAADhShQPwli1bFBUVJensH8do166d1qxZo/nz52vevHmOrg8AAABwqAoH4NOnT8vT01OS9MUXX2jAgAGSpNatW+v33393bHUAAACAg1U4AF9xxRWaM2eOvv32W61atUq9e/eWJB06dEj16tVzeIEAAACAI1U4AE+fPl0vv/yyevbsqdtvv10dOnSQJH388ce2pRGVadasWQoLC5OXl5eio6OVkZFRat+tW7fqlltuUVhYmCwWi1JTUyu9PgAAALi2cv8p5CI9e/bU4cOHlZeXp7p169ra77zzTtWqVcuhxZ1r4cKFSkpK0pw5cxQdHa3U1FTFxsZqx44dJf6luuPHj6t58+YaNGiQ7r///kqtDQAAANXDBT0H2N3d3S78SlJYWFil/7nkZ599VqNHj1ZCQoLatm2rOXPmqFatWnr99ddL7N+5c2c9/fTTGjJkiG3d8vmcPHlSeXl5dhsAAAAuHRWeAZakRYsW6f3339e+fft06tQpu/c2bNjgkMLOderUKa1fv14TJ060tbm5uSkmJkbp6ekOGyclJUWTJ0922PEAwNVNtlT9Z16ykVzlYwJAkQrPAL/wwgtKSEhQcHCwNm7cqKioKNWrV0+7du1Snz59KqNGSdLhw4dVWFio4OBgu/bg4GBlZWU5bJyJEycqNzfXtu3fv99hxwYAAIDzVTgAv/TSS5o7d65mzpwpDw8P/ec//9GqVas0ZswY5ebmVkaNVcrT01O+vr52GwAAAC4dFQ7A+/btU9euXSVJ3t7eys/PlyQNHTpU7777rmOr+4fAwEC5u7srOzvbrj07O1shISGVNi4AAAAuLRUOwCEhITpy5IgkqUmTJlq7dq0kaffu3TIMw7HV/YOHh4c6deqktLQ0W5vValVaWpq6dOlSaeMCAADg0lLhm+D+7//+Tx9//LE6duyohIQE3X///Vq0aJHWrVunm2++uTJqtElKSlJ8fLwiIyMVFRWl1NRUFRQUKCEhQZI0bNgwNWzYUCkpKZLO3jj3888/2/598OBBZWZmysfHRy1btqzUWgEAAOCaKhyA586dK6vVKkm69957Va9ePa1Zs0YDBgzQXXfd5fAC/2nw4MH6448/NGnSJGVlZSkiIkIrVqyw3Ri3b98+ubn9b1L70KFD6tixo+31jBkzNGPGDPXo0UOrV6+u1FoBAADgmiocgN3c3OxC5pAhQzRkyBCHFlWWxMREJSYmlvjeuaE2LCysUpdlAAAAoPopVwDetGmT2rVrJzc3N23atKnMvu3bt3dIYQAAAEBlKFcAjoiIUFZWloKCghQRESGLxVLizKrFYlFhYaHDiwQAAAAcpVwBePfu3apfv77t3wAAAEB1Va4A3LRp0xL/DQAAAFQ3Fb4J7s8//1S9evUkSfv379crr7yiv//+WwMGDFD37t0dXiAAAADgSOX+QxibN29WWFiYgoKC1Lp1a2VmZqpz58567rnnNHfuXPXq1UtLly6txFIBAACAi1fuAPyf//xH4eHh+uabb9SzZ0/1799f/fr1U25urv766y/dddddmjZtWmXWCgAAAFy0ci+B+PHHH/Xll1+qffv26tChg+bOnat77rnH9kzg++67T1dddVWlFQoAAAA4QrlngI8cOaKQkBBJko+Pj2rXrq26deva3q9bt67y8/MdXyEAAADgQOUOwNLZ5/yW9RoAAABwdRV6CsTw4cPl6ekpSTpx4oTuvvtu1a5dW5J08uRJx1cHAAAAOFi5A3B8fLzd6zvuuKNYn2HDhl18RQAAAEAlKncAfuONNyqzDgAAAKBKVGgNMAAAAFDdEYABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpVLsAPGvWLIWFhcnLy0vR0dHKyMgos/8HH3yg1q1by8vLS+Hh4fr000+rqFIAAAC4omoVgBcuXKikpCQlJydrw4YN6tChg2JjY5WTk1Ni/zVr1uj222/XyJEjtXHjRg0cOFADBw7Uli1bqrhyAAAAuIpqFYCfffZZjR49WgkJCWrbtq3mzJmjWrVq6fXXXy+x//PPP6/evXtr/PjxatOmjR5//HFdeeWVevHFF6u4cgAAALiKahOAT506pfXr1ysmJsbW5ubmppiYGKWnp5e4T3p6ul1/SYqNjS21vySdPHlSeXl5dhsAAAAuHTWcXUB5HT58WIWFhQoODrZrDw4O1vbt20vcJysrq8T+WVlZpY6TkpKiyZMnX3zBF2GyperHTzaSL+i9quZq18bs9bhSLVL1qseVfq5cqRbJ9b5WrvRz5Wr4WpX9tXKlelzta+Vs1SYAV5WJEycqKSnJ9jovL0+NGzd2YkUAAAAXx5XDqDNUmwAcGBgod3d3ZWdn27VnZ2crJCSkxH1CQkIq1F+SPD095enpefEFAybHhy0uFN87ACpbtVkD7OHhoU6dOiktLc3WZrValZaWpi5dupS4T5cuXez6S9KqVatK7Q8AAIBLX7WZAZakpKQkxcfHKzIyUlFRUUpNTVVBQYESEhIkScOGDVPDhg2VkpIiSRo7dqx69OihZ555Rv369dN7772ndevWae7cuc48DQBOwKwiAKBItQrAgwcP1h9//KFJkyYpKytLERERWrFihe1Gt3379snN7X+T2l27dtWCBQv0yCOP6L///a9atWqlpUuXql27ds46BQAAADhZtQrAkpSYmKjExMQS31u9enWxtkGDBmnQoEGVXBUAAACqi2qzBhgAAABwhGo3A2wGrFUEAACoPMwAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFR4CgQAAEAl4KlOrosZYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqdRwdgEAALiyZCPZ2SUAcDACMHAR+A8jAADVDwEYuIQQyAEAOD/WAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFPhJjhUK9zkBQAALla1mQE+cuSI4uLi5OvrK39/f40cOVLHjh0rc5+5c+eqZ8+e8vX1lcVi0dGjR6umWAAAALisahOA4+LitHXrVq1atUrLly/XN998ozvvvLPMfY4fP67evXvrv//9bxVVCQAAAFdXLZZAbNu2TStWrNCPP/6oyMhISdLMmTPVt29fzZgxQ6GhoSXuN27cOEnS6tWrq6hSAAAAuLpqMQOcnp4uf39/W/iVpJiYGLm5uemHH35w6FgnT55UXl6e3QYAAIBLR7UIwFlZWQoKCrJrq1GjhgICApSVleXQsVJSUuTn52fbGjdu7NDjAwAAwLmcGoAnTJggi8VS5rZ9+/YqrWnixInKzc21bfv376/S8QEAAFC5nLoG+IEHHtDw4cPL7NO8eXOFhIQoJyfHrv3MmTM6cuSIQkJCHFqTp6enPD09HXpMAAAuRTyaEtWVUwNw/fr1Vb9+/fP269Kli44ePar169erU6dOkqQvv/xSVqtV0dHRlV0mAAAALiHVYg1wmzZt1Lt3b40ePVoZGRn6/vvvlZiYqCFDhtieAHHw4EG1bt1aGRkZtv2ysrKUmZmpX3/9VZK0efNmZWZm6siRI045DwAAADhftQjAkjR//ny1bt1a1157rfr27aurr75ac+fOtb1/+vRp7dixQ8ePH7e1zZkzRx07dtTo0aMlSddcc406duyojz/+uMrrBwAAgGuwGIZhOLsIV5aXlyc/Pz/l5ubK19fX2eUAAIBSTLZMrtLxWAPtOiqa16rNDDAAAADgCARgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmEq1CcBHjhxRXFycfH195e/vr5EjR+rYsWNl9r/vvvt0+eWXy9vbW02aNNGYMWOUm5tbhVUDAADA1VSbABwXF6etW7dq1apVWr58ub755hvdeeedpfY/dOiQDh06pBkzZmjLli2aN2+eVqxYoZEjR1Zh1QAAAHA1FsMwDGcXcT7btm1T27Zt9eOPPyoyMlKStGLFCvXt21cHDhxQaGhouY7zwQcf6I477lBBQYFq1KhRrn3y8vLk5+en3Nxc+fr6XvA5AACAyjXZMrlKx0s2kqt0PJSuonmtWswAp6eny9/f3xZ+JSkmJkZubm764Ycfyn2cootSVvg9efKk8vLy7DYAAABcOqpFAM7KylJQUJBdW40aNRQQEKCsrKxyHePw4cN6/PHHy1w2IUkpKSny8/OzbY0bN77gugEAAOB6nBqAJ0yYIIvFUua2ffv2ix4nLy9P/fr1U9u2bfXYY4+V2XfixInKzc21bfv377/o8QEAAOA6yrcQtpI88MADGj58eJl9mjdvrpCQEOXk5Ni1nzlzRkeOHFFISEiZ++fn56t3796qU6eOlixZopo1a5bZ39PTU56enuWqHwAAANWPUwNw/fr1Vb9+/fP269Kli44ePar169erU6dOkqQvv/xSVqtV0dHRpe6Xl5en2NhYeXp66uOPP5aXl5fDagcAAED1VC3WALdp00a9e/fW6NGjlZGRoe+//16JiYkaMmSI7QkQBw8eVOvWrZWRkSHpbPi9/vrrVVBQoNdee015eXnKyspSVlaWCgsLnXk6AAAAcCKnzgBXxPz585WYmKhrr71Wbm5uuuWWW/TCCy/Y3j99+rR27Nih48ePS5I2bNhge0JEy5Yt7Y61e/duhYWFVVntAAAAcB3VJgAHBARowYIFpb4fFhamfz7SuGfPnqoGjzgGAABAFasWSyAAAAAARyEAAwAAwFQIwAAAADAVAjAAAABMpdrcBAcAAFCWZCPZ2SWgmmAGGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmEoNZxfg6gzDkCTl5eU5uRIAAACUpCinFeW28yEAn0d+fr4kqXHjxk6uBAAAAGXJz8+Xn5/feftZjPJGZZOyWq06dOiQ6tSpI4vF4uxySpWXl6fGjRtr//798vX1dXY5LofrUzquTem4NmXj+pSOa1M6rk3ZuD6lK+vaGIah/Px8hYaGys3t/Ct8mQE+Dzc3NzVq1MjZZZSbr68vPzBl4PqUjmtTOq5N2bg+pePalI5rUzauT+lKuzblmfktwk1wAAAAMBUCMAAAAEyFAHyJ8PT0VHJysjw9PZ1dikvi+pSOa1M6rk3ZuD6l49qUjmtTNq5P6Rx5bbgJDgAAAKbCDDAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAvAlYtasWQoLC5OXl5eio6OVkZHh7JKcLiUlRZ07d1adOnUUFBSkgQMHaseOHc4uyyVNmzZNFotF48aNc3YpLuPgwYO64447VK9ePXl7eys8PFzr1q1zdllOV1hYqEcffVTNmjWTt7e3WrRooccff1xmvZ/6m2++0Q033KDQ0FBZLBYtXbrU7n3DMDRp0iQ1aNBA3t7eiomJ0c6dO51TbBUr69qcPn1aDz30kMLDw1W7dm2FhoZq2LBhOnTokPMKrmLn+975p7vvvlsWi0WpqalVVp8zlefabNu2TQMGDJCfn59q166tzp07a9++feUegwB8CVi4cKGSkpKUnJysDRs2qEOHDoqNjVVOTo6zS3Oqr7/+Wvfee6/Wrl2rVatW6fTp07r++utVUFDg7NJcyo8//qiXX35Z7du3d3YpLuOvv/5St27dVLNmTX322Wf6+eef9cwzz6hu3brOLs3ppk+frtmzZ+vFF1/Utm3bNH36dD311FOaOXOms0tzioKCAnXo0EGzZs0q8f2nnnpKL7zwgubMmaMffvhBtWvXVmxsrE6cOFHFlVa9sq7N8ePHtWHDBj366KPasGGDFi9erB07dmjAgAFOqNQ5zve9U2TJkiVau3atQkNDq6gy5zvftfntt9909dVXq3Xr1lq9erU2bdqkRx99VF5eXuUfxEC1FxUVZdx7772214WFhUZoaKiRkpLixKpcT05OjiHJ+Prrr51disvIz883WrVqZaxatcro0aOHMXbsWGeX5BIeeugh4+qrr3Z2GS6pX79+xogRI+zabr75ZiMuLs5JFbkOScaSJUtsr61WqxESEmI8/fTTtrajR48anp6exrvvvuuECp3n3GtTkoyMDEOSsXfv3qopyoWUdn0OHDhgNGzY0NiyZYvRtGlT47nnnqvy2pytpGszePBg44477rio4zIDXM2dOnVK69evV0xMjK3Nzc1NMTExSk9Pd2Jlric3N1eSFBAQ4ORKXMe9996rfv362X3/QPr4448VGRmpQYMGKSgoSB07dtQrr7zi7LJcQteuXZWWlqZffvlFkvTTTz/pu+++U58+fZxcmevZvXu3srKy7H6+/Pz8FB0dzedzCXJzc2WxWOTv7+/sUlyC1WrV0KFDNX78eF1xxRXOLsdlWK1WffLJJ7rssssUGxuroKAgRUdHl7mEpCQE4Gru8OHDKiwsVHBwsF17cHCwsrKynFSV67FarRo3bpy6deumdu3aObscl/Dee+9pw4YNSklJcXYpLmfXrl2aPXu2WrVqpZUrV+rf//63xowZozfffNPZpTndhAkTNGTIELVu3Vo1a9ZUx44dNW7cOMXFxTm7NJdT9BnM5/P5nThxQg899JBuv/12+fr6OrsclzB9+nTVqFFDY8aMcXYpLiUnJ0fHjh3TtGnT1Lt3b33++ee66aabdPPNN+vrr78u93FqVGKNgMu49957tWXLFn333XfOLsUl7N+/X2PHjtWqVasqtmbKJKxWqyIjIzV16lRJUseOHbVlyxbNmTNH8fHxTq7Oud5//33Nnz9fCxYs0BVXXKHMzEyNGzdOoaGhpr82uDCnT5/WbbfdJsMwNHv2bGeX4xLWr1+v559/Xhs2bJDFYnF2OS7FarVKkm688Ubdf//9kqSIiAitWbNGc+bMUY8ePcp1HGaAq7nAwEC5u7srOzvbrj07O1shISFOqsq1JCYmavny5frqq6/UqFEjZ5fjEtavX6+cnBxdeeWVqlGjhmrUqKGvv/5aL7zwgmrUqKHCwkJnl+hUDRo0UNu2be3a2rRpU6E7jC9V48ePt80Ch4eHa+jQobr//vv5TUIJij6D+XwuXVH43bt3r1atWsXs7//37bffKicnR02aNLF9Ru/du1cPPPCAwsLCnF2eUwUGBqpGjRoX/RlNAK7mPDw81KlTJ6WlpdnarFar0tLS1KVLFydW5nyGYSgxMVFLlizRl19+qWbNmjm7JJdx7bXXavPmzcrMzLRtkZGRiouLU2Zmptzd3Z1dolN169at2CPzfvnlFzVt2tRJFbmO48ePy83N/j8d7u7utlkZ/E+zZs0UEhJi9/mcl5enH374wfSfz9L/wu/OnTv1xRdfqF69es4uyWUMHTpUmzZtsvuMDg0N1fjx47Vy5Upnl+dUHh4e6ty580V/RrME4hKQlJSk+Ph4RUZGKioqSqmpqSooKFBCQoKzS3Oqe++9VwsWLNBHH32kOnXq2Nbc+fn5ydvb28nVOVedOnWKrYWuXbu26tWrxxppSffff7+6du2qqVOn6rbbblNGRobmzp2ruXPnOrs0p7vhhhv05JNPqkmTJrriiiu0ceNGPfvssxoxYoSzS3OKY8eO6ddff7W93r17tzIzMxUQEKAmTZpo3LhxeuKJJ9SqVSs1a9ZMjz76qEJDQzVw4EDnFV1Fyro2DRo00K233qoNGzZo+fLlKiwstH1GBwQEyMPDw1llV5nzfe+c+z8ENWvWVEhIiC6//PKqLrXKne/ajB8/XoMHD9Y111yjXr16acWKFVq2bJlWr15d/kEu6hkScBkzZ840mjRpYnh4eBhRUVHG2rVrnV2S00kqcXvjjTecXZpL4jFo9pYtW2a0a9fO8PT0NFq3bm3MnTvX2SW5hLy8PGPs2LFGkyZNDC8vL6N58+bGww8/bJw8edLZpTnFV199VeLnTHx8vGEYZx+F9uijjxrBwcGGp6ence211xo7duxwbtFVpKxrs3v37lI/o7/66itnl14lzve9cy4zPQatPNfmtddeM1q2bGl4eXkZHTp0MJYuXVqhMSyGYdI/3wMAAABTYg0wAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAKDSrF69WhaLRUePHnV2KQBgQwAGgIswfPhwWSwWTZs2za596dKlslgsTqrKMcLCwpSamursMgDA4QjAAHCRvLy8NH36dP31119VPvbp06erfEwAqO4IwABwkWJiYhQSEqKUlJQy+3333Xfq3r27vL291bhxY40ZM0YFBQW29y0Wi5YuXWq3j7+/v+bNmydJ2rNnjywWixYuXKgePXrIy8tL8+fPl9Vq1ZQpU9SoUSN5enoqIiJCK1assB2jaL/FixerV69eqlWrljp06KD09PQKnafFYtGrr76qm266SbVq1VKrVq308ccf2/X59NNPddlll8nb21u9evXSnj17KnQd3nrrLfn4+Gjnzp22/vfcc49at26t48ePV6heACgNARgALpK7u7umTp2qmTNn6sCBAyX2+e2339S7d2/dcsst2rRpkxYuXKjvvvtOiYmJFR5vwoQJGjt2rLZt26bY2Fg9//zzeuaZZzRjxgxt2rRJsbGxGjBggF2IlKSHH35YDz74oDIzM3XZZZfp9ttv15kzZyo09uTJk3Xbbbdp06ZN6tu3r+Li4nTkyBFJ0v79+3XzzTfrhhtuUGZmpkaNGqUJEyZU6DoMGzbMdtwzZ87ok08+0auvvqr58+erVq1aFb5WAFAiAwBwweLj440bb7zRMAzDuOqqq4wRI0YYhmEYS5YsMf75ETty5EjjzjvvtNv322+/Ndzc3Iy///7bMAzDkGQsWbLEro+fn5/xxhtvGIZhGLt37zYkGampqXZ9QkNDjSeffNKurXPnzsY999xjt9+rr75qe3/r1q2GJGPbtm2lnlvTpk2N5557zvZakvHII4/YXh87dsyQZHz22WeGYRjGxIkTjbZt29od46GHHjIkGX/99Ve5r8ORI0eMRo0aGf/+97+N4ODgYucGABeLGWAAcJDp06frzTff1LZt24q999NPP2nevHny8fGxbbGxsbJardq9e3eFxomMjLT9Oy8vT4cOHVK3bt3s+nTr1q1YHe3bt7f9u0GDBpKknJycCo39z2PUrl1bvr6+tmNs27ZN0dHRdv27dOli97o816Fu3bp67bXXNHv2bLVo0aLYLDIAXKwazi4AAC4V11xzjWJjYzVx4kQNHz7c7r1jx47prrvu0pgxY4rt16RJE0ln19gahmH3Xkk3udWuXfuC6qtZs6bt30VPqLBarRd8jKLjVOQY5bkOkvTNN9/I3d1dv//+uwoKClSnTp0K1QkAZSEAA4ADTZs2TREREbr88svt2q+88kr9/PPPatmyZan71q9fX7///rvt9c6dO89745evr69CQ0P1/fffq0ePHrb277//XlFRURd4FhemTZs2xW6KW7t2rd3r8lyHNWvWaPr06Vq2bJkeeughJSYm6s0336yUmgGYE0sgAMCBwsPDFRcXpxdeeMGu/aGHHtKaNWuUmJiozMxM7dy5Ux999JHdTXD/93//pxdffFEbN27UunXrdPfddxebcS3J+PHjNX36dC1cuFA7duzQhAkTlJmZqbFjxzr8/Mpy9913a+fOnRo/frx27NihBQsW2J5gUeR81yE/P19Dhw7VmDFj1KdPH82fP18LFy7UokWLqvRcAFzaCMAA4GBTpkwptiygffv2+vrrr/XLL7+oe/fu6tixoyZNmqTQ0FBbn2eeeUaNGzdW9+7d9a9//UsPPvhguZ58MGbMGCUlJemBBx5QeHi4VqxYoY8//litWrVy+LmVpUmTJvrwww+1dOlSdejQQXPmzNHUqVPt+pzvOowdO1a1a9e27RceHq6pU6fqrrvu0sGDB6v0fABcuizGuQvOAAAAgEsYM8AAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFP5f748ejtAQDEzAAAAAElFTkSuQmCC\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAGJCAYAAABrUu7oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6fElEQVR4nO3deVyVZf7/8fcBZVEEREQ0UdzSTIRGE5dInTDSTG3S0lBxS1tQy6zwWyMuTWZTo5NaZjXSImVZWlnRuI6pmHuaqWOKuYVmJqCWC1y/PxzPryOL5+Bh8349H4/zeHiuc133/bnP7fG8vbnuC5sxxggAAACwEI+yLgAAAAAobYRgAAAAWA4hGAAAAJZDCAYAAIDlEIIBAABgOYRgAAAAWA4hGAAAAJZDCAYAAIDlEIIBAABgOYRgAE6x2WyaMGFCWZdRoJUrV8pms2nlypXlro5BgwYpPDy81Gspq/1K0tGjR9W7d2/VqFFDNptN06dPL/Ua9u/fL5vNppSUlFLfN4CKgRAMWFRKSopsNpvDIyQkRJ07d9aXX35ZprWNGjVKNptNP/zwQ6F9nn76adlsNm3btq0UKytfjhw5ogkTJmjr1q1lXYqDxx57TF999ZXGjRund955R3fccUdZl3RNOHXqlJKTk3XHHXcoKCioyJC/fv16Pfzww2rVqpUqV64sm81WusUCFUClsi4AQNmaNGmSGjRoIGOMjh49qpSUFHXr1k2fffaZunfvbu/322+/qVKl0vknIz4+XjNmzFBqaqrGjx9fYJ/33ntPERERatmypfLy8vTbb7/Jy8urVOpzxeuvv668vLwS2faRI0c0ceJEhYeHKyoqqtT2eyXLly9Xz549NXbs2DLZ/7Xq+PHjmjRpkurVq6fIyMgif/LxxRdf6I033lDLli3VsGFD/fe//y29QoEKgivBgMV17dpV/fv314ABAzR27Fh9/fXXqly5st577z2Hfj4+PqUWgqOjo9W4ceN8NVySnp6ujIwMxcfHS5I8PDzk4+MjD4/y909a5cqV5e3tbZn9StKxY8cUGBjotu39/vvvZRboy5PatWvrp59+0o8//qi///3vRfZ96KGHlJWVpY0bN6pLly6lVCFQsZS/bwwAZSowMFC+vr75Au/lc4J//PFHPfzww2ratKl8fX1Vo0YN9enTR/v373cYd/78eU2cOFFNmjSRj4+PatSooVtuuUVLliwpso74+Hjt2rVLmzdvzvdaamqqbDab+vXrJ6ngubh79uzRPffco9DQUPn4+Khu3brq27evsrKyJBU9Z7S4x1qQy+fmdurUKd80lEuPS7WcOHFCY8eOVUREhPz8/OTv76+uXbvq22+/tW9n5cqVuvnmmyVJgwcPzreNguYEnz59Wo8//rjCwsLk7e2tpk2b6sUXX5QxJt/xJyYmatGiRWrRooW8vb114403Ki0trchjvTTFxhijWbNm2Wu6ZN++ferTp4+CgoJUpUoVtW3bVp9//rnDNi6dy/fff1/PPPOMrrvuOlWpUkXZ2dmF7vfkyZMaNGiQAgICFBgYqISEBJ08ebLAvrt27VLv3r0VFBQkHx8ftW7dWp9++mmBx7FmzRqNGTNGNWvWVNWqVXX33Xfr559/dui7ceNGxcXFKTg4WL6+vmrQoIGGDBni0CcvL0/Tp0/XjTfeKB8fH9WqVUsjRozQr7/+WuT7eTlvb2+FhoY61bdWrVry9fV1afuA1TAdArC4rKwsHT9+XMYYHTt2TDNmzNCpU6fUv3//Isdt2LBBa9euVd++fVW3bl3t379fr776qjp16qTvv/9eVapUkSRNmDBBU6ZM0bBhw9SmTRtlZ2dr48aN2rx5c5FXqOLj4zVx4kSlpqbqT3/6k709NzdXH3zwgWJiYlSvXr0Cx547d05xcXE6e/asRo4cqdDQUB0+fFiLFy/WyZMnFRAQ4NJ75OyxOuPpp5/WsGHDHNreffddffXVVwoJCZF0MSwuWrRIffr0UYMGDXT06FG99tpr6tixo77//nvVqVNHN9xwgyZNmqTx48dr+PDhiomJkSS1b9++wP0aY9SjRw+tWLFCQ4cOVVRUlL766is98cQTOnz4sKZNm+bQf/Xq1fr444/18MMPq1q1anr55Zd1zz336MCBA6pRo0aB+7j11lv1zjvvaMCAAerSpYsGDhxof+3o0aNq3769zpw5o1GjRqlGjRp666231KNHDy1YsEB33323w7YmT54sLy8vjR07VmfPni10qosxRj179tTq1av14IMP6oYbbtDChQuVkJCQr++OHTvUoUMHXXfddUpKSlLVqlX1wQcfqFevXvroo4/y1TBy5EhVr15dycnJ2r9/v6ZPn67ExETNnz9f0sUr3rfffrtq1qyppKQkBQYGav/+/fr4448dtjNixAilpKRo8ODBGjVqlDIyMjRz5kxt2bJFa9asUeXKlQs8NgAlzACwpLlz5xpJ+R7e3t4mJSUlX39JJjk52f78zJkz+fqkp6cbSebtt9+2t0VGRpo777yzWDXefPPNpm7duiY3N9felpaWZiSZ1157zd62YsUKI8msWLHCGGPMli1bjCTz4YcfFrrtjIwMI8nMnTs332vFPdbL6zDGmISEBFO/fv1C61izZo2pXLmyGTJkiL3t999/dzjmS/V6e3ubSZMm2ds2bNhQ6DFcvt9FixYZSebZZ5916Ne7d29js9nMDz/8YG+TZLy8vBzavv32WyPJzJgxo9Bj+eP4Rx55xKHt0UcfNZLM119/bW/LyckxDRo0MOHh4fbjvfQeNmzYsMD3/XKXjuuFF16wt124cMHExMTke29uu+02ExERYX7//Xd7W15enmnfvr1p0qSJve3SZyM2Ntbk5eXZ2x977DHj6elpTp48aYwxZuHChUaS2bBhQ6H1ff3110aSmTdvnkP7pb/Hl7c7q6hzf7lHHnnE8HUP5Md0CMDiZs2apSVLlmjJkiV699131blzZw0bNizf1azL/fFHrefPn9cvv/yixo0bKzAw0GEKQ2BgoHbs2KE9e/a4XFv//v116NAhrVq1yt6WmpoqLy8v9enTp9Bxl670fvXVVzpz5ozL+72cs8fqqszMTPXu3VtRUVF65ZVX7O3e3t72+c25ubn65Zdf5Ofnp6ZNmxZ7f1988YU8PT01atQoh/bHH39cxph8K4LExsaqUaNG9uctW7aUv7+/9u3bV+z9t2nTRrfccou9zc/PT8OHD9f+/fv1/fffO/RPSEhw6sf5X3zxhSpVqqSHHnrI3ubp6amRI0c69Dtx4oSWL1+ue++9Vzk5OTp+/LiOHz+uX375RXFxcdqzZ48OHz7sMGb48OEO0zliYmKUm5urH3/8UZLs854XL16s8+fPF1jfhx9+qICAAHXp0sW+z+PHj6tVq1by8/PTihUrrniMAEoGIRiwuDZt2ig2NlaxsbGKj4/X559/rubNmysxMVHnzp0rdNxvv/2m8ePH2+eXBgcHq2bNmjp58qR93q10cfWJkydP6vrrr1dERISeeOIJp5c169u3rzw9PZWamirp4g1SCxcuVNeuXVW9evVCxzVo0EBjxozRG2+8oeDgYMXFxWnWrFkOdbnC2WN1xYULF3TvvfcqNzdXH3/8scNNbHl5eZo2bZqaNGnisL9t27YVe38//vij6tSpo2rVqjm033DDDfbX/6igqSbVq1d3eR7rH/fftGnTfO2F7b9BgwZOb7d27dry8/NzaL98Xz/88IOMMfrrX/+qmjVrOjySk5MlXZze8EeXvweX/s5deg86duyoe+65RxMnTlRwcLB69uypuXPn6uzZs/Yxe/bsUVZWlkJCQvLt99SpU/n2CaD0MCcYgAMPDw917txZ//znP7Vnzx7deOONBfYbOXKk5s6dq0cffVTt2rVTQECAbDab+vbt63An/6233qq9e/fqk08+0b///W+98cYbmjZtmmbPnp1vbuzlQkJC1KVLF3300UeaNWuWPvvsM+Xk5NhXhSjKSy+9pEGDBtn3O2rUKE2ZMkXr1q1T3bp1C103NTc3t9jH6oonnnhC6enpWrp0qerWrevw2nPPPae//vWvGjJkiCZPnqygoCB5eHjo0UcfLbVVEjw9PQtsN5fdRFdS3H1T16X3bezYsYqLiyuwT+PGjR2eX+k9sNlsWrBggdatW6fPPvtMX331lYYMGaKXXnpJ69atk5+fn/Ly8hQSEqJ58+YVuK2aNWsW95AAXCVCMIB8Lly4IOni4vyFWbBggRISEvTSSy/Z237//fcC78oPCgrS4MGDNXjwYJ06dUq33nqrJkyYcMUQLF28QS4tLU1ffvmlUlNT5e/vr7vuusup44iIiFBERISeeeYZrV27Vh06dNDs2bP17LPP2q/qXV7v5VckXT1WZ7z//vuaPn26pk+fro4dOxa4v86dO+vNN990aD958qSCg4Ptz135BQj169fX0qVLlZOT43A1eNeuXfbXS1L9+vW1e/fufO1Xu//69etr2bJlOnXqlMPV4Mv31bBhQ0kXl46LjY0t1r4K07ZtW7Vt21Z/+9vflJqaqvj4eL3//vsaNmyYGjVqpKVLl6pDhw6s1gCUM0yHAODg/Pnz+ve//y0vLy/7j6oL4unpme+q4IwZM/JdSf3ll18cnvv5+alx48YOPzIuSq9evVSlShW98sor+vLLL/WXv/xFPj4+RY7Jzs62B/lLIiIi5OHhYd+vv7+/goODHeYbS3KYm3uJs8fqjO+++07Dhg1T//79NXr06AL7FLS/Dz/8MN+c1apVq0rKH+QL0q1bN+Xm5mrmzJkO7dOmTZPNZlPXrl1dOArXdevWTevXr1d6erq97fTp05ozZ47Cw8PVvHnzYm/3woULevXVV+1tubm5mjFjhkO/kJAQderUSa+99pp++umnfNu5fOkzZ/z666/5ztOlX1py6e/ZpSkvkydPzjf+woULxf6PFICrx5VgwOK+/PJL+9W4Y8eOKTU1VXv27FFSUpL8/f0LHde9e3e98847CggIUPPmze0/2r98+azmzZurU6dOatWqlYKCgrRx40YtWLBAiYmJTtXn5+enXr162ecFOzMVYvny5UpMTFSfPn10/fXX68KFC3rnnXfk6empe+65x95v2LBhev755zVs2DC1bt1aq1atKvA3azl7rM4YPHiwpIvTRN59912H19q3b6+GDRuqe/fumjRpkgYPHqz27dtr+/btmjdvnv1q5iWNGjVSYGCgZs+erWrVqqlq1aqKjo4ucD7tXXfdpc6dO+vpp5/W/v37FRkZqX//+9/65JNP9OijjzrcBFcSkpKS9N5776lr164aNWqUgoKC9NZbbykjI0MfffRRsX/RyV133aUOHTooKSlJ+/fvV/PmzfXxxx8XOHd61qxZuuWWWxQREaEHHnhADRs21NGjR5Wenq5Dhw45rMPsjLfeekuvvPKK7r77bjVq1Eg5OTl6/fXX5e/vr27dukm6OG94xIgRmjJlirZu3arbb79dlStX1p49e/Thhx/qn//8p3r37u30PmfOnKmTJ0/qyJEjkqTPPvtMhw4dknRx2s6lm0J//PFHvfPOO5IurmUsSc8++6yki1fPBwwY4NKxAteksluYAkBZKmiJNB8fHxMVFWVeffVVh6WhjMm/bNivv/5qBg8ebIKDg42fn5+Ji4szu3btMvXr1zcJCQn2fs8++6xp06aNCQwMNL6+vqZZs2bmb3/7mzl37pzTtX7++edGkqldu3a+pcOMyb802b59+8yQIUNMo0aNjI+PjwkKCjKdO3c2S5cudRh35swZM3ToUBMQEGCqVatm7r33XnPs2LFiH6szS6TVr1+/wKXp9Iflrn7//Xfz+OOPm9q1axtfX1/ToUMHk56ebjp27Gg6duzocAyffPKJad68ualUqZLDNgpami0nJ8c89thjpk6dOqZy5cqmSZMm5u9//3uB5/ryJc4u1f7H4y1MYeP37t1revfubQIDA42Pj49p06aNWbx4sUOfS+9hUcvbXe6XX34xAwYMMP7+/iYgIMAMGDDAvkze5UuI7d271wwcONCEhoaaypUrm+uuu850797dLFiwwN7n0mfj8qXPLj+/mzdvNv369TP16tUz3t7eJiQkxHTv3t1s3LgxX41z5swxrVq1Mr6+vqZatWomIiLCPPnkk+bIkSNOH6cxRf/9ycjIyFdrQY/L/w4BVmUzppTucgAAAADKCeYEAwAAwHKYEwwAQBk6depUkSuxSBeXUitsyTYAxUMIBgCgDL344ouaOHFikX0yMjIUHh5eOgUBFsGcYAAAytC+ffuu+Ouob7nllisuDQjANYRgAAAAWA43xgEAAMBymBN8BXl5eTpy5IiqVavm0q8oBQAAQOkwxignJ0d16tRx+pfvEIKv4MiRIwoLCyvrMgAAAHAFBw8eVN26dZ3qSwi+gmrVqkm6+KYW9StkAQAAUDays7MVFhZmz23OIARfwaUpEP7+/oRgAACAcsyVqavcGAcAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsJxKZV0A8ptom1jWJcDikk1yWZcAAECJ4kowAAAALIcQDAAAAMshBAMAAMByCMEAAACwHEIwAAAALIcQDAAAAMshBAMAAMByCMEAAACwHEIwAAAALIcQDAAAAMshBAMAAMByCMEAAACwHEIwAAAALIcQDAAAAMshBAMAAMByCMEAAACwHEIwAAAALKfCheBZs2YpPDxcPj4+io6O1vr1650a9/7778tms6lXr14lWyAAAADKvQoVgufPn68xY8YoOTlZmzdvVmRkpOLi4nTs2LEix+3fv19jx45VTExMKVUKAACA8qxCheB//OMfeuCBBzR48GA1b95cs2fPVpUqVfSvf/2r0DG5ubmKj4/XxIkT1bBhw1KsFgAAAOVVhQnB586d06ZNmxQbG2tv8/DwUGxsrNLT0wsdN2nSJIWEhGjo0KFO7efs2bPKzs52eAAAAODaUmFC8PHjx5Wbm6tatWo5tNeqVUuZmZkFjlm9erXefPNNvf76607vZ8qUKQoICLA/wsLCrqpuAAAAlD8VJgS7KicnRwMGDNDrr7+u4OBgp8eNGzdOWVlZ9sfBgwdLsEoAAACUhUplXYCzgoOD5enpqaNHjzq0Hz16VKGhofn67927V/v379ddd91lb8vLy5MkVapUSbt371ajRo3yjfP29pa3t7ebqwcAAEB5UmGuBHt5ealVq1ZatmyZvS0vL0/Lli1Tu3bt8vVv1qyZtm/frq1bt9ofPXr0UOfOnbV161amOQAAAFhYhbkSLEljxoxRQkKCWrdurTZt2mj69Ok6ffq0Bg8eLEkaOHCgrrvuOk2ZMkU+Pj5q0aKFw/jAwEBJytcOAAAAa6lQIfi+++7Tzz//rPHjxyszM1NRUVFKS0uz3yx34MABeXhUmIvbAAAAKCM2Y4wp6yLKs+zsbAUEBCgrK0v+/v6lss+Jtomlsh+gMMkmuaxLAADAacXJa1w2BQAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYToULwbNmzVJ4eLh8fHwUHR2t9evXF9r39ddfV0xMjKpXr67q1asrNja2yP4AAACwhgoVgufPn68xY8YoOTlZmzdvVmRkpOLi4nTs2LEC+69cuVL9+vXTihUrlJ6errCwMN1+++06fPhwKVcOAACA8sRmjDFlXYSzoqOjdfPNN2vmzJmSpLy8PIWFhWnkyJFKSkq64vjc3FxVr15dM2fO1MCBA53aZ3Z2tgICApSVlSV/f/+rqt9ZE20TS2U/QGGSTXJZlwAAgNOKk9cqzJXgc+fOadOmTYqNjbW3eXh4KDY2Vunp6U5t48yZMzp//ryCgoIK7XP27FllZ2c7PAAAAHBtqTAh+Pjx48rNzVWtWrUc2mvVqqXMzEyntvHUU0+pTp06DkH6clOmTFFAQID9ERYWdlV1AwAAoPypMCH4aj3//PN6//33tXDhQvn4+BTab9y4ccrKyrI/Dh48WIpVAgAAoDRUKusCnBUcHCxPT08dPXrUof3o0aMKDQ0tcuyLL76o559/XkuXLlXLli2L7Ovt7S1vb++rrhcAAADlV4W5Euzl5aVWrVpp2bJl9ra8vDwtW7ZM7dq1K3TcCy+8oMmTJystLU2tW7cujVIBAABQzlWYK8GSNGbMGCUkJKh169Zq06aNpk+frtOnT2vw4MGSpIEDB+q6667TlClTJElTp07V+PHjlZqaqvDwcPvcYT8/P/n5+ZXZcQAAAKBsVagQfN999+nnn3/W+PHjlZmZqaioKKWlpdlvljtw4IA8PP7/xe1XX31V586dU+/evR22k5ycrAkTJpRm6QAAAChHKtQ6wWWBdYJhRawTDACoSK7pdYIBAAAAdyEEAwAAwHIIwQAAALAcQjAAAAAshxAMAAAAyyEEAwAAwHIIwQAAALAcQjAAAAAshxAMAAAAyyEEAwAAwHIIwQAAALAcQjAAAAAshxAMAAAAyyEEAwAAwHKuKgT//vvv7qoDAAAAKDUuh+C8vDxNnjxZ1113nfz8/LRv3z5J0l//+le9+eabbi8QAAAAcDeXQ/Czzz6rlJQUvfDCC/Ly8rK3t2jRQm+88YZbiwMAAABKgssh+O2339acOXMUHx8vT09Pe3tkZKR27drl1uIAAACAkuByCD58+LAaN26crz0vL0/nz593S1EAAABASXI5BDdv3lxff/11vvYFCxbopptucktRAAAAQEmq5OqA8ePHKyEhQYcPH1ZeXp4+/vhj7d69W2+//bYWL15cEjUCAAAAbuXyleCePXvqs88+09KlS1W1alWNHz9eO3fu1GeffaYuXbqURI0AAACAW7l8JViSYmJitGTJEnfXAgAAAJQKfmMcAAAALMflK8EeHh6y2WyFvp6bm3tVBQEAAAAlzeUQvHDhQofn58+f15YtW/TWW29p4sSJbisMAAAAKCkuh+CePXvma+vdu7duvPFGzZ8/X0OHDnVLYQAAAEBJcduc4LZt22rZsmXu2hwAAABQYtwSgn/77Te9/PLLuu6669yxOQAAAKBEuTwdonr16g43xhljlJOToypVqujdd991a3EAAABASXA5BE+bNs0hBHt4eKhmzZqKjo5W9erV3VocAAAAUBJcDsGDBg0qgTIAAACA0uNUCN62bZvTG2zZsmWxiwEAAABKg1MhOCoqSjabTcaYIvvZbDZ+WQYAAADKPadCcEZGRknXAQAAAJQap0Jw/fr1S7oOAAAAoNS4fGPcJd9//70OHDigc+fOObT36NHjqosCAAAASpLLIXjfvn26++67tX37dod5wpeWTWNOMAAAAMo7l39j3OjRo9WgQQMdO3ZMVapU0Y4dO7Rq1Sq1bt1aK1euLIESAQAAAPdy+Upwenq6li9fruDgYHl4eMjDw0O33HKLpkyZolGjRmnLli0lUScAAADgNi5fCc7NzVW1atUkScHBwTpy5IikizfP7d69273VAQAAACXA5SvBLVq00LfffqsGDRooOjpaL7zwgry8vDRnzhw1bNiwJGoEAAAA3MrlEPzMM8/o9OnTkqRJkyape/fuiomJUY0aNTR//ny3FwgAAAC4m9MhuHXr1ho2bJjuv/9++fv7S5IaN26sXbt26cSJE6pevbp9hQgAAACgPHN6TnBkZKSefPJJ1a5dWwMHDnRYCSIoKIgADAAAgArD6RD85ptvKjMzU7NmzdKBAwd02223qXHjxnruued0+PDhkqwRAAAAcCuXVoeoUqWKBg0apJUrV+q///2v+vbtq9dee03h4eG688479fHHH5dUnQAAAIDbuLxE2iWNGjXSs88+q/379+u9997TunXr1KdPH3fWBgAAAJQIl1eH+KOVK1dq7ty5+uijj1SpUiU98MAD7qoLAAAAKDEuh+BDhw4pJSVFKSkp2rdvn2JiYvTKK6+oT58+8vX1LYkaAQAAALdyOgR/8MEH+te//qVly5YpJCRECQkJGjJkiBo3blyS9QEAAABu5/Sc4P79+8vX11cLFy7UwYMH9dxzz5VJAJ41a5bCw8Pl4+Oj6OhorV+/vsj+H374oZo1ayYfHx9FREToiy++KKVKAQAAUF45HYIPHTqkhQsXqnv37vLwKPb9dFdl/vz5GjNmjJKTk7V582ZFRkYqLi5Ox44dK7D/2rVr1a9fPw0dOlRbtmxRr1691KtXL3333XelXDkAAADKE5sxxpR1Ec6Kjo7WzTffrJkzZ0qS8vLyFBYWppEjRyopKSlf//vuu0+nT5/W4sWL7W1t27ZVVFSUZs+e7dQ+s7OzFRAQoKysLPtvyitpE20TS2U/QGGSTXJZlwAAgNOKk9fK5pJuMZw7d06bNm1SbGysvc3Dw0OxsbFKT08vcEx6erpDf0mKi4srtL8knT17VtnZ2Q4PAAAAXFuuaom00nT8+HHl5uaqVq1aDu21atXSrl27ChyTmZlZYP/MzMxC9zNlyhRNnFi2V2K5CgcUjZ+WoKxVhH+n+ZygrJX3z0mFuRJcWsaNG6esrCz74+DBg2VdEgAAANzM5SvBBw8elM1mU926dSVJ69evV2pqqpo3b67hw4e7vcBLgoOD5enpqaNHjzq0Hz16VKGhoQWOCQ0Ndam/JHl7e8vb2/vqCwYAAEC55fKV4Pvvv18rVqyQdHG6QZcuXbR+/Xo9/fTTmjRpktsLvMTLy0utWrXSsmXL7G15eXlatmyZ2rVrV+CYdu3aOfSXpCVLlhTaHwAAANbgcgj+7rvv1KZNG0kXf4FGixYttHbtWs2bN08pKSnurs/BmDFj9Prrr+utt97Szp079dBDD+n06dMaPHiwJGngwIEaN26cvf/o0aOVlpaml156Sbt27dKECRO0ceNGJSYmlmidAAAAKN9cng5x/vx5+3SBpUuXqkePHpKkZs2a6aeffnJvdZe577779PPPP2v8+PHKzMxUVFSU0tLS7De/HThwwGEN4/bt2ys1NVXPPPOM/u///k9NmjTRokWL1KJFixKtEwAAAOWbyyH4xhtv1OzZs3XnnXdqyZIlmjx5siTpyJEjqlGjhtsLvFxiYmKhV3JXrlyZr61Pnz7q06dPCVcFAACAisTl6RBTp07Va6+9pk6dOqlfv36KjIyUJH366af2aRIAAABAeebyleBOnTrp+PHjys7OVvXq1e3tw4cPV5UqVdxaHAAAAFASivXLMjw9PR0CsCSFh4e7ox4AAACgxBUrBC9YsEAffPCBDhw4oHPnzjm8tnnzZrcUBgAAAJQUl+cEv/zyyxo8eLBq1aqlLVu2qE2bNqpRo4b27dunrl27lkSNAAAAgFu5HIJfeeUVzZkzRzNmzJCXl5eefPJJLVmyRKNGjVJWVlZJ1AgAAAC4lcvTIQ4cOKD27dtLknx9fZWTkyNJGjBggNq2bauZM2e6t0IAuEyySS7rEgAAFZzLV4JDQ0N14sQJSVK9evW0bt06SVJGRoaMMe6tDgAAACgBLofgP//5z/r0008lSYMHD9Zjjz2mLl266L777tPdd9/t9gIBAAAAd3N5OsScOXOUl5cnSXrkkUdUo0YNrV27Vj169NCIESPcXiAAAADgbi6HYA8PD3l4/P8LyH379lXfvn3dWhQAAABQkpwKwdu2bVOLFi3k4eGhbdu2Fdm3ZcuWbikMAAAAKClOheCoqChlZmYqJCREUVFRstlsBd4EZ7PZlJub6/YiAQAAAHdyKgRnZGSoZs2a9j8DAAAAFZlTIbh+/foF/hkAAACoiFy+Me6XX35RjRo1JEkHDx7U66+/rt9++009evRQTEyM2wsEAAAA3M3pdYK3b9+u8PBwhYSEqFmzZtq6datuvvlmTZs2TXPmzFHnzp21aNGiEiwVAAAAcA+nQ/CTTz6piIgIrVq1Sp06dVL37t115513KisrS7/++qtGjBih559/viRrBQAAANzC6ekQGzZs0PLly9WyZUtFRkZqzpw5evjhh+1rBo8cOVJt27YtsUIBAAAAd3H6SvCJEycUGhoqSfLz81PVqlVVvXp1++vVq1dXTk6O+ysEAAAA3MzpECxdXAe4qOcAAABAReDS6hCDBg2St7e3JOn333/Xgw8+qKpVq0qSzp496/7qAAAAgBLgdAhOSEhweN6/f/98fQYOHHj1FQEAAAAlzOkQPHfu3JKsAwAAACg1Ls0JBgAAAK4FhGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOVUmBB84sQJxcfHy9/fX4GBgRo6dKhOnTpVZP+RI0eqadOm8vX1Vb169TRq1ChlZWWVYtUAAAAojypMCI6Pj9eOHTu0ZMkSLV68WKtWrdLw4cML7X/kyBEdOXJEL774or777julpKQoLS1NQ4cOLcWqAQAAUB7ZjDGmrIu4kp07d6p58+basGGDWrduLUlKS0tTt27ddOjQIdWpU8ep7Xz44Yfq37+/Tp8+rUqVKhXY5+zZszp79qz9eXZ2tsLCwpSVlSV/f/+rPxgAAErBRNvEsi4BFpdskkttX9nZ2QoICHApr1WIK8Hp6ekKDAy0B2BJio2NlYeHh7755hunt3PpjSksAEvSlClTFBAQYH+EhYVdVe0AAAAofypECM7MzFRISIhDW6VKlRQUFKTMzEyntnH8+HFNnjy5yCkUkjRu3DhlZWXZHwcPHix23QAAACifyjQEJyUlyWazFfnYtWvXVe8nOztbd955p5o3b64JEyYU2dfb21v+/v4ODwAAAFxbCp8XUAoef/xxDRo0qMg+DRs2VGhoqI4dO+bQfuHCBZ04cUKhoaFFjs/JydEdd9yhatWqaeHChapcufLVlg0AAIAKrkxDcM2aNVWzZs0r9mvXrp1OnjypTZs2qVWrVpKk5cuXKy8vT9HR0YWOy87OVlxcnLy9vfXpp5/Kx8fHbbUDAACg4qoQc4JvuOEG3XHHHXrggQe0fv16rVmzRomJierbt699ZYjDhw+rWbNmWr9+vaSLAfj222/X6dOn9eabbyo7O1uZmZnKzMxUbm5uWR4OAAAAyliZXgl2xbx585SYmKjbbrtNHh4euueee/Tyyy/bXz9//rx2796tM2fOSJI2b95sXzmicePGDtvKyMhQeHh4qdUOAACA8qXChOCgoCClpqYW+np4eLj+uORxp06dVAGWQAYAAEAZqBDTIQAAAAB3IgQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsBxCMAAAACyHEAwAAADLIQQDAADAcgjBAAAAsJwKE4JPnDih+Ph4+fv7KzAwUEOHDtWpU6ecGmuMUdeuXWWz2bRo0aKSLRQAAADlXoUJwfHx8dqxY4eWLFmixYsXa9WqVRo+fLhTY6dPny6bzVbCFQIAAKCiqFTWBThj586dSktL04YNG9S6dWtJ0owZM9StWze9+OKLqlOnTqFjt27dqpdeekkbN25U7dq1S6tkAAAAlGMV4kpwenq6AgMD7QFYkmJjY+Xh4aFvvvmm0HFnzpzR/fffr1mzZik0NNSpfZ09e1bZ2dkODwAAAFxbKkQIzszMVEhIiENbpUqVFBQUpMzMzELHPfbYY2rfvr169uzp9L6mTJmigIAA+yMsLKzYdQMAAKB8KtMQnJSUJJvNVuRj165dxdr2p59+quXLl2v69OkujRs3bpyysrLsj4MHDxZr/wAAACi/ynRO8OOPP65BgwYV2adhw4YKDQ3VsWPHHNovXLigEydOFDrNYfny5dq7d68CAwMd2u+55x7FxMRo5cqVBY7z9vaWt7e3s4cAAACACqhMQ3DNmjVVs2bNK/Zr166dTp48qU2bNqlVq1aSLobcvLw8RUdHFzgmKSlJw4YNc2iLiIjQtGnTdNddd1198QAAAKiwKsTqEDfccIPuuOMOPfDAA5o9e7bOnz+vxMRE9e3b174yxOHDh3Xbbbfp7bffVps2bRQaGlrgVeJ69eqpQYMGpX0IAAAAKEcqxI1xkjRv3jw1a9ZMt912m7p166ZbbrlFc+bMsb9+/vx57d69W2fOnCnDKgEAAFARVIgrwZIUFBSk1NTUQl8PDw+XMabIbVzpdQAAAFhDhbkSDAAAALgLIRgAAACWU2GmQwAAAOclm+SyLgEo17gSDAAAAMshBAMAAMByCMEAAACwHEIwAAAALIcQDAAAAMshBAMAAMByCMEAAACwHEIwAAAALIcQDAAAAMshBAMAAMByCMEAAACwHEIwAAAALKdSWRdQ3hljJEnZ2dllXAkAAAAKcimnXcptziAEX0FOTo4kKSwsrIwrAQAAQFFycnIUEBDgVF+bcSUyW1BeXp6OHDmiatWqyWaz5Xs9OztbYWFhOnjwoPz9/cugQvwR56P84ZyUP5yT8oXzUf5wTsqfK50TY4xycnJUp04deXg4N9uXK8FX4OHhobp1616xn7+/Px+UcoTzUf5wTsofzkn5wvkofzgn5U9R58TZK8CXcGMcAAAALIcQDAAAAMshBF8lb29vJScny9vbu6xLgTgf5RHnpPzhnJQvnI/yh3NS/pTEOeHGOAAAAFgOV4IBAABgOYRgAAAAWA4hGAAAAJZDCAYAAIDlEIKL4cSJE4qPj5e/v78CAwM1dOhQnTp1qsgxnTp1ks1mc3g8+OCDpVTxtWXWrFkKDw+Xj4+PoqOjtX79+iL7f/jhh2rWrJl8fHwUERGhL774opQqtQ5XzklKSkq+z4KPj08pVnttW7Vqle666y7VqVNHNptNixYtuuKYlStX6k9/+pO8vb3VuHFjpaSklHidVuLqOVm5cmW+z4jNZlNmZmbpFHyNmzJlim6++WZVq1ZNISEh6tWrl3bv3n3FcXyXlJzinBN3fJcQgoshPj5eO3bs0JIlS7R48WKtWrVKw4cPv+K4Bx54QD/99JP98cILL5RCtdeW+fPna8yYMUpOTtbmzZsVGRmpuLg4HTt2rMD+a9euVb9+/TR06FBt2bJFvXr1Uq9evfTdd9+VcuXXLlfPiXTxN/788bPw448/lmLF17bTp08rMjJSs2bNcqp/RkaG7rzzTnXu3Flbt27Vo48+qmHDhumrr74q4Uqtw9Vzcsnu3bsdPichISElVKG1/Oc//9EjjzyidevWacmSJTp//rxuv/12nT59utAxfJeUrOKcE8kN3yUGLvn++++NJLNhwwZ725dffmlsNps5fPhwoeM6duxoRo8eXQoVXtvatGljHnnkEfvz3NxcU6dOHTNlypQC+997773mzjvvdGiLjo42I0aMKNE6rcTVczJ37lwTEBBQStVZmySzcOHCIvs8+eST5sYbb3Rou++++0xcXFwJVmZdzpyTFStWGEnm119/LZWarO7YsWNGkvnPf/5TaB++S0qXM+fEHd8lXAl2UXp6ugIDA9W6dWt7W2xsrDw8PPTNN98UOXbevHkKDg5WixYtNG7cOJ05c6aky72mnDt3Tps2bVJsbKy9zcPDQ7GxsUpPTy9wTHp6ukN/SYqLiyu0P1xTnHMiSadOnVL9+vUVFhamnj17aseOHaVRLgrAZ6T8ioqKUu3atdWlSxetWbOmrMu5ZmVlZUmSgoKCCu3D56R0OXNOpKv/LiEEuygzMzPfj6QqVaqkoKCgIudr3X///Xr33Xe1YsUKjRs3Tu+884769+9f0uVeU44fP67c3FzVqlXLob1WrVqFvveZmZku9YdrinNOmjZtqn/961/65JNP9O677yovL0/t27fXoUOHSqNkXKawz0h2drZ+++23MqrK2mrXrq3Zs2fro48+0kcffaSwsDB16tRJmzdvLuvSrjl5eXl69NFH1aFDB7Vo0aLQfnyXlB5nz4k7vksquaPga0FSUpKmTp1aZJ+dO3cWe/t/nDMcERGh2rVr67bbbtPevXvVqFGjYm8XqGjatWundu3a2Z+3b99eN9xwg1577TVNnjy5DCsDyoemTZuqadOm9uft27fX3r17NW3aNL3zzjtlWNm155FHHtF3332n1atXl3Up+B9nz4k7vksIwf/z+OOPa9CgQUX2adiwoUJDQ/Pd8HPhwgWdOHFCoaGhTu8vOjpakvTDDz8Qgp0UHBwsT09PHT161KH96NGjhb73oaGhLvWHa4pzTi5XuXJl3XTTTfrhhx9KokRcQWGfEX9/f/n6+pZRVbhcmzZtCGpulpiYaL+5vW7dukX25bukdLhyTi5XnO8SpkP8T82aNdWsWbMiH15eXmrXrp1OnjypTZs22ccuX75ceXl59mDrjK1bt0q6+GMvOMfLy0utWrXSsmXL7G15eXlatmyZw/8G/6hdu3YO/SVpyZIlhfaHa4pzTi6Xm5ur7du381koI3xGKoatW7fyGXETY4wSExO1cOFCLV++XA0aNLjiGD4nJas45+Ryxfouuarb6izqjjvuMDfddJP55ptvzOrVq02TJk1Mv3797K8fOnTING3a1HzzzTfGGGN++OEHM2nSJLNx40aTkZFhPvnkE9OwYUNz6623ltUhVFjvv/++8fb2NikpKeb77783w4cPN4GBgSYzM9MYY8yAAQNMUlKSvf+aNWtMpUqVzIsvvmh27txpkpOTTeXKlc327dvL6hCuOa6ek4kTJ5qvvvrK7N2712zatMn07dvX+Pj4mB07dpTVIVxTcnJyzJYtW8yWLVuMJPOPf/zDbNmyxfz444/GGGOSkpLMgAED7P337dtnqlSpYp544gmzc+dOM2vWLOPp6WnS0tLK6hCuOa6ek2nTpplFixaZPXv2mO3bt5vRo0cbDw8Ps3Tp0rI6hGvKQw89ZAICAszKlSvNTz/9ZH+cOXPG3ofvktJVnHPiju8SQnAx/PLLL6Zfv37Gz8/P+Pv7m8GDB5ucnBz76xkZGUaSWbFihTHGmAMHDphbb73VBAUFGW9vb9O4cWPzxBNPmKysrDI6goptxowZpl69esbLy8u0adPGrFu3zv5ax44dTUJCgkP/Dz74wFx//fXGy8vL3Hjjjebzzz8v5Yqvfa6ck0cffdTet1atWqZbt25m8+bNZVD1tenS8lqXPy6dg4SEBNOxY8d8Y6KiooyXl5dp2LChmTt3bqnXfS1z9ZxMnTrVNGrUyPj4+JigoCDTqVMns3z58rIp/hpU0LmQ5PD3nu+S0lWcc+KO7xLb/3YOAAAAWAZzggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAAGA5hGAAAABYDiEYAAAAlkMIBgAAgOUQggEAJWblypWy2Ww6efJkWZcCAA4IwQBwFQYNGiSbzabnn3/eoX3RokWy2WxlVJV7hIeHa/r06WVdBgCUCEIwAFwlHx8fTZ06Vb/++mup7/v8+fOlvk8AuBYQggHgKsXGxio0NFRTpkwpst/q1asVExMjX19fhYWFadSoUTp9+rT9dZvNpkWLFjmMCQwMVEpKiiRp//79stlsmj9/vjp27CgfHx/NmzdPeXl5mjRpkurWrStvb29FRUUpLS3Nvo1L4z7++GN17txZVapUUWRkpNLT0106TpvNpjfeeEN33323qlSpoiZNmujTTz916PPFF1/o+uuvl6+vrzp37qz9+/e79D68/fbb8vPz0549e+z9H374YTVr1kxnzpxxqV4AKAohGACukqenp5577jnNmDFDhw4dKrDP3r17dccdd+iee+7Rtm3bNH/+fK1evVqJiYku7y8pKUmjR4/Wzp07FRcXp3/+85966aWX9OKLL2rbtm2Ki4tTjx49HIKkJD399NMaO3astm7dquuvv179+vXThQsXXNr3xIkTde+992rbtm3q1q2b4uPjdeLECUnSwYMH9Ze//EV33XWXtm7dqmHDhikpKcml92HgwIH27V64cEGff/653njjDc2bN09VqlRx+b0CgEIZAECxJSQkmJ49expjjGnbtq0ZMmSIMcaYhQsXmj/+Ezt06FAzfPhwh7Fff/218fDwML/99psxxhhJZuHChQ59AgICzNy5c40xxmRkZBhJZvr06Q596tSpY/72t785tN18883m4Ycfdhj3xhtv2F/fsWOHkWR27txZ6LHVr1/fTJs2zf5cknnmmWfsz0+dOmUkmS+//NIYY8y4ceNM8+bNHbbx1FNPGUnm119/dfp9OHHihKlbt6556KGHTK1atfIdGwC4A1eCAcBNpk6dqrfeeks7d+7M99q3336rlJQU+fn52R9xcXHKy8tTRkaGS/tp3bq1/c/Z2dk6cuSIOnTo4NCnQ4cO+epo2bKl/c+1a9eWJB07dsylff9xG1WrVpW/v799Gzt37lR0dLRD/3bt2jk8d+Z9qF69ut588029+uqratSoUb6ryQDgDpXKugAAuFbceuutiouL07hx4zRo0CCH106dOqURI0Zo1KhR+cbVq1dP0sU5t8YYh9cKuvGtatWqxaqvcuXK9j9fWrkiLy+v2Nu4tB1XtuHM+yBJq1atkqenp3766SedPn1a1apVc6lOALgSQjAAuNHzzz+vqKgoNW3a1KH9T3/6k77//ns1bty40LE1a9bUTz/9ZH++Z8+eK94M5u/vrzp16mjNmjXq2LGjvX3NmjVq06ZNMY+ieG644YZ8N8qtW7fO4bkz78PatWs1depUffbZZ3rqqaeUmJiot956q0RqBmBdTIcAADeKiIhQfHy8Xn75ZYf2p556SmvXrlViYqK2bt2qPXv26JNPPnG4Me7Pf/6zZs6cqS1btmjjxo168MEH8115LcgTTzyhqVOnav78+dq9e7eSkpK0detWjR492u3HV5QHH3xQe/bs0RNPPKHdu3crNTXVvrLFJVd6H3JycjRgwACNGjVKXbt21bx58zR//nwtWLCgVI8FwLWPEAwAbjZp0qR8UwRatmyp//znP/rvf/+rmJgY3XTTTRo/frzq1Klj7/PSSy8pLCxMMTExuv/++zV27FinVkQYNWqUxowZo8cff1wRERFKS0vTp59+qiZNmrj92IpSr149ffTRR1q0aJEiIyM1e/ZsPffccw59rvQ+jB49WlWrVrWPi4iI0HPPPacRI0bo8OHDpXo8AK5tNnP5BDQAAADgGseVYAAAAFgOIRgAAACWQwgGAACA5RCCAQAAYDmEYAAAAFgOIRgAAACWQwgGAACA5RCCAQAAYDmEYAAAAFgOIRgAAACWQwgGAACA5fw/0cjsWdudH5IAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "import shap\n", "\n", "explainer = shap.KernelExplainer(model.predict, trainInput)\n", "shap_values = explainer.shap_values(testInput[:15], nsamples=100)\n", "shap.summary_plot(shap_values, testInput[:15])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "1ac8b6867a03405bbe92c8a56f83f912", "5628c745156844a6ad31eb4d0d4669fa", "4494669a6be543a3827209a9d55c9db7", "cb449887166648bd973efb00936c45e1", "84046ed9d8014017a89c0ad1f28434f5", "6eff48683d4542fe97fac020bdf6006d", "c298e88cc80c45429afc9b14c89c7ac0", "c57166a607a94d9e951585e5c36796ad", "78390cf43aa34c43b8dce2f1aa9f1c66", "c4d658864ba64f7cac15febd68e56c09", "301d8236713443d98ee401300ebf9274" ] }, "id": "MXYGnreY2-XJ", "outputId": "80a506c8-8ed7-4949-8c70-2ab3f3f07d43" }, "execution_count": 43, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "WARNING:shap:Using 457 background data samples could cause slower run times. Consider using shap.sample(data, K) or shap.kmeans(data, K) to summarize the background as K samples.\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ " 0%| | 0/15 [00:00" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAKoCAYAAAAibBasAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMB0lEQVR4nO3dd3wUdf7H8ffsZnfTEyChS+9NUJoNUSkWRBHrSVXv9DzPU7Hr3alnV/TOciiegGA5DwT19ETBgr1E5YeKSpMeQkJIT7bO749IYNnQvtlkSfJ6Ph48dL475TO738y+d+Y7u5Zt27YAAAAMOGJdAAAAqL8IEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBopGZM2eOLMtSfHy8tmzZEvH48OHD1adPnxhUhsZiVx/c9S8+Pl7dunXTVVddpZycnFiXhwZsV9/LysoKay8sLNTgwYMVHx+vxYsXx6i6+osg0Uh5vV7df//9sS4Djdhdd92lefPm6YknntCxxx6rGTNm6JhjjlFZWVmsS0MjUlRUpFGjRmnFihVatGiRTj311FiXVO8QJBqp/v3765lnntHWrVtjXQoaqdNOO00TJkzQZZddpjlz5uiaa67RL7/8otdeey3WpaGRKC4u1ujRo7V8+XK98sorOu2002JdUr1EkGikbr31VgWDQc5K4LBx8sknS5J++eWXGFeCxqCkpESnnnqqvvnmG73yyis644wzYl1SvUWQaKQ6duyoSZMmcVYCh421a9dKkpo1axbjStDQlZaW6rTTTtNXX32l+fPna8yYMbEuqV4jSDRit912mwKBgB544IFYl4JGqLCwUHl5edq8ebNefvll3XXXXUpISOCgjlo3efJkffHFF5o/f77Gjh0b63LqPYJEI9apUydNnDhRM2fOVHZ2dqzLQSMzYsQIZWZm6ogjjtCFF16o5ORkLVq0SG3atIl1aWjgcnJyFB8fryOOOCLWpTQIBIlG7vbbb1cgEGCsBOrck08+qSVLluj999/XypUrtW7dOo0ePTrWZaERePrpp+V2u3Xqqafq559/jnU59R5BopHr1KmTJkyYwFkJ1LnBgwdrxIgRGj58uHr27CmHg8MR6kavXr30v//9T+Xl5Ro5cqQ2bdoU65LqNf5yUXVWgrESABqLwYMH69VXX9X27ds1cuRI5ebmxrqkeosgAXXu3FkTJkzQ008/rW3btsW6HACoE6eccopeeuklrVmzRqeeeqqKiopiXVK9RJCApMo7OPx+P9cLATQq48aN0zPPPKNvvvlGY8eOVUVFRaxLqncIEpAkdenSRRMmTIh1GQBQ56ZOnaqHH35Yy5Yt03nnnadAIBDrkuoVy7ZtO9ZFAACA+okzEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADAWF+sCEDt+v1+zZ8+WVPmFLC6XK8YVoTGh/yFW6HvRxRkJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMYIEgAAwBhBAgAAGCNIAAAAYwQJAABgjCABAACMESQAAIAxggQAADBGkAAAAMbiYl1AQ1byda5y562WI96p5pf2UELXtFiX1KCtXO3Vh1+WKTnRodHDkpTZjO59uAsEndqU21Yzni9Uv54JGjY4UQ6HpbLykJZ8VKpN2X716xGvEwYnyLKsWJeLhiK/RP0Wb1bKjgopY7l0zqBYV1SvWbZt27EuoiEqeHuTfjxjsRSsfHodyS71/fwsJfZuGuPKdvP7/Zo9e7YkaerUqXK5XDGuyNxHX5bp4Zk7tKs3pyQ79Pe/tCBMHMa8Xp9+e+NPKihpUtU2+sQkXTGhiW64O0drNvir2seckqzf/aZJdasBDold6lVowJ9lrc6parPuOkfWn8+KYVX1G5c2asmWB/+vKkRIUqjEr+zHvo9hRQ3b/DeLtGckLi4JafGyktgVhAP6fpUvLERI0pKPSvXxl2VhIUKSFn9QopLSUF2Wh4bqla/CQoQk2Q/9T7YvEKOC6j+CRC0J5Hsj2oI7fTGopHEoKYt8kynmjeewVlIaeTI0FJLyC4IR7YGgVO7l9UQU5JdGtpV6JX9kv8PBIUjUkoyLOke0Nbswsg3RMWxw4kG14fDRv5dbLmd4uO7S3qURxycpMSF8PESPLm5lNuUyFaJg3NGyPXv1pTMHyEryxKaeBoC/zFrS+vojFSoPavusn+WId6rVNX3V7JyOsS6rwbp4XJpsSR9+UaakBEvjT09Vn+7xsS4L+5GY4NCQHl/px4095Lcz1Kd7vC67MF0pyU7dcW2mnltQqM3ZfvXr4dGlFzI+AtFhtc9Q6NWrtePKmUrJ88ozbpCcf58Q67LqNQZbNmINabAl6h/6H2KFvhddXNoAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGDjlIZGVlaeDAgRo4cKAWLVpU7TwDBw7UNddcU9PaAADAYa5GZyRmzpypioqKaNUCAADqGeMg0atXL+Xm5uqll16KZj31U3G5VFoZqAJ55bIDod2PFZZK5V5Jkh0Iys4rCVs0VFghu8xX+fjOUtlef93UXI+VFgUUDNiSpPKyoHze3c93aVlIecUhbSsOaWNBSIGQrfxyW76gHatyD2t2UbnsMu+hLeMLKLSjLLI9r0R2ILi7ocInFZSGz2Pb8ueWyw7ZUplXrvKA5LOVs9WrUl9Ihd7dr1Nema3c0pC8gf2/dt7yoPJyvAqFeI1xYPnltvK2e+VYJ2lbSNtLbZV6QyrZUiK7uEwV3pCKN5XKDoYOuC5UijNdcMSIEbJtW88995zGjRun9PT0KJZVT5R5pcv+Kf3nE9kOhwpT2mlD/hGKa5WitvcMVNqrb0r/zZLiXQqcMkS+r/KknGJZ/VrL/dSFKn3wY/le+0lyOxWfaSlh8y+yUhOk28fKuuH0WO/dYScv26t/T9+oTavLFJ/sVFKbRG3a4FVcnKVBJ6Xrp2KHln/vVcCSfklJ1E/NkuVwOxRyWEr3SHcd59Afj2JYkCTZxeWyp/5LWvS15I6TfcVJsqZfJMux/+enfMYXKrt9iez8csUNPUIpL5wvq6xC3gnzZP/fFqlFitzTz1bcul+kB1+VSiqkkUdKz/9JRasrtHbqMlWsLlDn5DXK9G7Q6f7W2uropL/+b6WeH9ZP/jinTmxraVt+UD9tCUghW/Fx0l9Pcevm4e6wWoJBW3PvX6+fviySLcmZ4NRF17VTv8GptffEod7aXGTrwlf8OnnOW7ru4w90USioYiVr072PasaQzrrjo3+rxE7Rand/OX0OVaQnqPPM4co4r0usSz/sGR9VLcvSVVddpZKSEs2aNSuaNdUfd8+XXvpICoZk+QNKz1+nZtqqQHap/Jc+I73+lWTbCpUH5XtjnZRTLEmyV2xV8Rmz5Xv1R8m2JW9AFZv98ilRKiqXfePLspf9FOOdO/y8/GhliJCkwnJp43qvbFvy+23998MyLf++8pN1nC11LSpTqwqfQg5LklTgla5+L6Qvs/nUKkn27a9Ir2RJIVuq8Et/f0ea8/F+lwl8u1WlV74uO7+8cvrzTSqe8oq8F8ypDBGSlFMs36TnFfrL/MoQIUlL/k/2H57RqvFLVLG6UC20Sc1L1qrUn6xt6qwlfbto1slHyRcXJ1uWPtgs/ZRdGSIkqSIg3fK2T++uCYTV8/HrufrpyyJJkiUpVB7U3Ic2qrwsKGBvv33Dr6bvrNDNH74rdygoS1KqStTKW6rTv1mrtzv21Sb1ktNX+bYYX1CuTRe/rUBueWwLrwdq9PFsyJAhGjJkiBYsWKDs7Oxo1VR/vL08oilV+ZX/tXdUtYXkUeWhbrfgTl/Esn7FV/2/vXhFdGpsIMpLg9r48+7T6cG9PjlXOJ0Ry2RWc8r+7fUECUnS299HNB2oz/neWRPRFvxoneyV28IbQ/avfX4Pb30rf07lATldeZKkIjWVJH3SvV3kxqq5nLF4VXhA+O7Twsjl/CGt+THysgsaN9u29c46WyPWrIp4LEXFSipxanmzLmHHYEly+EMq+WBzXZVZb9X4PO8f//hH+f1+zZgxIxr1RF1+fr683t1vKCUlJSouLq6a9vl82rFjR9gye4eivae3bdsm27alTi0itudVwq//3d0hLUV+QrIi3/fk0O5PXEUZ8ZXbqMX92L59e9h0rT5XNdyGJ96h5PTdV+IcdvgbTVw118fLXJFPcud0s/0wdbg+p9421Zz+79x8v9sIHZESsYjVKlVKjY9s36vP2x1bSHGVYbpCiZIkjyqDxRE7qgkEDiuiqX1aKGw/Mtt6IuaxLUuZLXZfAolW/9vfdF1sw1R93d9ob8OyLLVLCWp9k6bam09uyelXuq+o2mO1u3PaYbMfsdrGgVi2bR/SR7SsrCxdccUV+tOf/qSJEydKkm6//Xa98847euGFF9S1a1cNHDhQxx9/vP7+978fUjH1zncbpBP/LO2sHEDpl1urdbT8ilfz4clq9dWSqkGY3qQ2CpbuPjha156ismeWyy6pPDPhUECp2i6HQtLAjrI+vFVWgjtym1Hk9/s1e/ZsSdLUqVPlcrlqdXs19fV7+Zr/+CbZISloWfLFuxT6dTyUp5lbv4TcCvyaxUrinPq4bVP5452SVfm8H9dGevc8pzxxkW9SjY2d9Yvsk++Xin+9/NAhQ9Znf5bVMn3fy/iDKhw5W4Flv1Q2OCwlzz1Xzp1F8v9xQdV8ztN7yb3xJ1nfb6xs8Lik127Wxo8C2nLPt3KrQn30uVzyaY2OUnZihiZddY42ZlZu2+2QfMV+qWL3QX1Aa4c+ujxBSe7dr11+jk+PXP2z/BWVncCW1OOEprrk+iNq/Pyg4Vn0U1C/nVesd596TF3zK8+KhWRpg9rq9aNb6Q/f/U/lvhbapk5Vy7jGdVWvhafGquR6w3iw5Z5+//vf691339Xjjz+uxx57LBqrrB/6tpdWPSEt/FxyxynQtYsyv8pXfK+mSh55hJRztrToCyklQe6zByv08S8K/ZQj58nd5OjXRp6bTpF30Q+yktxyH9VC1ns/SK3SpbEDZLmj8tI0KEef3FRHdEvUqm+L1bS5W226JmpFVok88Q4dOThFJeW2ln5Rpq9zpZ/k0lkeSyd1suS3LLVLtXRmZ0tx1XzSbYysgR2lNQ9JC7OkJI90zkBZSZGf8MOWcTmVtnSqfG/+rNCGArlP7SZntwxJkvPELgq++7McPVrIMaqHLH9QevULKbdIGjtIapepdqOlJme2V8lnOaroNkbO7HXKWfqBVjvdujuwSau6xKtV+0SN62opv8yh//wQ1PaikIZ3dGhcrzi59wqATVu4ddusXlr2aq62Z/s0YHi6+g5koCWqN66HU0den6aFw69X1swP1f/9r7UtJUlfXTZKLTs20+ZPk9SkmUvFTTsrtLpI3Ue3VPMx1Vx2Q4SonJGQpOnTp+ull17SU089pSuuuKJxnJGo5+rbGQk0LPQ/xAp9L7qidi/cpZdeqqSkpMZ1RgIAgEYuakEiPT1dEydO1MqVK6O1SgAAcJiL6rfzTJgwQRkZGdFcJQAAOIwd8oi+gQMHKisrq9rH4uPjtXjx4hoXBQAA6ge+LxgAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAgEalojykvI2ttXVVR636vizW5dR7BAkAQKPh94X02J2btXVVZ+VtbKsZ923V0td3xLqseo0gAQBoNJZ/UazsTb6wtrcX5SkYsGNUUf1HkAAANBrFhYGItoqykAIECWMECQBAo9F3YIqczvC2nkcmyRPP26EpnjkAQKOR2dKtKde0kiepVJYjqCMHJ2niH1rHuqx6LS7WBQAAUJf6HJWk7sd8I0maMnWqXC7eCmuCMxIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABiLi3UBAADUpXK/rU/KOmtHIFk9N9s6oWOsK6rfOCMBAGg0vAFbJ88Lam7BsXqzpJ+GPRfUE18EYl1WvUaQAAA0Got+DOrr7PC2v37gVyBox6agBoAgAQBoNLYURwaG/HKpnJMSxggSAIBGY0w3p5xWeNspHR1K8VjVL4ADIkgAABqN7hkOzRvnUIazWJZCOq2zpbnj3LEuq17jrg0AQKNybk+Hij9/VbYtXXLhVLlcnI2oCc5IAAAaJYv8EBUECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAYqrCjtOyzdLmar5xEKgtnryQ4n+2tGx1QJuK6Hs1QZAAEDPf+dvqpuILNfIVSx1mBvWXj4OxLgmNQM61H2vA7T4NeKRc7kHzdM6NG3XzB/Q9UwQJADERCEnzKo5XhSq/VTBoS3/73NaKXD4dovaUfLBZO5/8Ttav3axJWYX+vHCZHvg8qKzsUGyLq6cIEgBiYlOxVGgnRrR/mU2QQO0p/zInoq1jboGSvT59tY2+Z4IgASAm2iZLqVZZRPuglnzdIGpPwqDmEW3rM9JU4nFrIH3PCEECQEy4nNLE+E/kkV+S5LCkW4dYOrI5B3PUnuSTjlD6Fb1l/9rNChM8+tv44bphiFODWvGWaIIf7QIQM/1cm/Rg3EvqPmKiembGqV0qIQK1r+Vjw/Re29Wy8hxqeekEzT8iQe3T6HumCBIAYireCujkduIXGFGnvJkOKVM6qbuLvldDnMcBAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjHH7JwCgUVn4XUC3rztNrrJ4zZ6WL5clnTEkQdeclyIPt4IeMs5IAAAajVW5QV38klfBikQdEQjJDkg+v7To43L9682SWJdXLxEkAACNxhsr/QqGpCbByF/6XLbcG4OK6j+CBACg0WiVUvm257MiL2FkpPGWaIJnDQDQaJzTz6UBbRzKcTrl26PdFSddcnpyzOqqzxhsCQBoNDxxlt6/PF5/fHKZtlek6rhuPdQ61akRR8erfQveEk3wrAEAGpVEt6Xj03+RJE0df5RcLleMK6rfuLQBAACMESQAAIAxggQAADBmPEYiKytLV1xxRVhbQkKC2rdvrzPOOEPnn3++nE5njQsEAACHrxoPthw9erSOO+442bat3NxcvfHGG5o+fbrWrVun2267LRo1AgCAw1SNg0SPHj10+umnV02fe+65Ou+88/Tqq6/qiiuuULNmzWq6CQAAcJiK+u2fycnJ6tu3r9577z1t2bKFINHQzXpXmv+p1DxNmjZW6teh6qHgjznyPvShQluL5Dq7t9yXD5FVzbfJmQpsL1PuA1+rYkWeEo9vrczrj5Ijad+3cW2Zu1bZ/1kvdzOPOlzTU6kDwvtmfkFQ8xcXa8NWv/p28+icUSnyuGPwAz4/bJQefk3K3imdM1T67Ugpis9bdexQSL6nvpD/tR/kaJsmzw0nytmj+SGvJ+QLasc/lqvknY1yd0tX1nlH6V/5ybJtKc6yVeaXRne0NKWPpYe/kl4oGKv4nQ698fst2pIcrzVpSXIHQuqXFNI9Y+NVVC4t/rJCyQkOXXByonp34Da9hij4c668Dy1TaFOBXGf2kvvKobIcNRzC99nP0j/ekEoqpEnDpfOPq3pobYH07I5T9EsoQ3f+I6D+rW3ddqJLx7apXz/Y9dNar157t0RlFbZOOSZRwwYlxqSOqAcJ27a1efNmSVJ6enq0V4/DyT0LpNtf3D298HPp/x6ROrVUaEuhSo6dIbugXJIUeHuVQhsLlHDvqVHZtB0Mad3wV+T9cackqWTpJpV9vk0d3zqr2vl/efh7/XzzN1XTOYs26tisMUrqlipJ8gds3fhQrrZuD0iSlv/o1ZoNPv35DxlRqfegbcqTjr1VKiqrnH57ubQlX7rzwlrdbMUti+V9cFnVtH/RD0r54To5WqUe0nq2/PZdFcz9qXJi6SYlvrBO7974G5W7XZJtSyFpyXpb07MsZZdZkiNDaiblexIULPSpqNyWZOm9AqfGPFuuLl5/1bo/WF6hZ29sqq5tCRMNSSinWCXH/lN2fmWfD7yzWqH1+Up4eIz5Sr9eK534Z8lf+fesN7+WisulS0cov9zWsc/b2ulqXzX71q3SkpcD+uSiOA1qVT/CxJoNPt34cK4Cv+7iV99VqKw8pFOH1f23c9b4ro2KigoVFBRo586dWr16te655x6tWrVKffv2Vbt27aJRIw5XT74VPl1SIT33gSTJ98K3VSFiF++Tn0Zt0yXvba4KEVVtizfIt66w2vk3zPg5bDpYFtDmOWuqpr/5oaIqROzy2fIK5eWHt9W6uR/sDhG77P08R5lt2/LO+Dy8bWe5fC8uP6T1BAu8Kngh/HluWViqk76v/OIfWZb06zE6e69d3OFyq2CvLwXa4YqTd48zMb6A9Pqn4X0K9Z/vpeVVIWIX71NfyK7mR7UO2sx3doeIXX79O5q/ytbOYORbnz9kaeaKGmyzji3+qLQqROzyxvulMamlxkHi6aef1ogRIzRy5EhddNFFev311zVs2DA9/PDD0aivxvLz8+X17v5Ft5KSEhUXF1dN+3w+7dixI2yZ7Ozs/U5v27ZNtm3X+21s3749bPqQt1HNH3pxYdGvj9kRjyloR28/9nGQsfexjZA/cn47sLttx46dEY9LUqia3TgU0XhOQ3sdEGujb9iBYGTxezw/B7ON/B07pGqeL2fI/OC89+rKyirCpg+Hv6O62IaperG/1Rwr7GCwZtuo5u/IX+Hd10NVvHv8HRyWz9Ue09X9WQVDUTzGHgLL3nMvD8Gu2z/HjRunESNGyLIsJSQkqF27dkpLSzNZJeqY3+/X7NmzJUlTp0499K+J/fOL0t0Ldk/Hu6Xl06XubRTasFNFvR+RSnf/LI7n2uOV8MiZ0Shdtj+oVT3mybeuqKotaXgbdXp/fLXzr7l7hdbcsbxq2nI7dOxXY5TSO12S5PPb+u3t25Sbv/tAcnRvj/52TWZU6j1o67ZJfa+Vyvb4OeMbzpYenFSrmy370+vyPfbJ7oZkt1JXTpPjiPRDWs/GC95S4X9WV03vSE7QmJsuVmm8u+rShiQ1S7K0Y49MkF5WoeBOn4pdu6+2NvEH1G2PSxtOh/SvG5qqZ3subTQkoS2FKuo5XSre3efdfzhGiU+cbb7Sz36WTrgtPDU8fpl01enaXmqr89N+lYTCP0c7ZGvZhXE6vm39uLTx01qvrn8wNyxQXHFhusaeUveXNmo8RqJdu3YaMmRINGpBfXPnhVLTFGnBr4MtbxondW8jSXK0b6LkZZfLe9/7lYMtz+otz7QTorZpy+VUxw/Ga/tdX6piRZ6Sjm+t5n8evM/5O9/WV650V9Vgy47TeleFCElyuyw9eEOmXnyjqGqw5UVnHNr4gKjo1FL64C7p/kW/DrYcIl0bnfC1PwnTz5CjVYr8r6+Uo02aPLeedMghQpLazh4hd7d0lSzZKE/XdH133kAdXeaWbUtOy1K5r3Kw5W/7W7r/86Dmf1ukpAKpz7YibUmK14+JLsWFQurpCeqe0+NV7I3/dbClpd+ckkSIaIAcbdKU/OEV8t77nkKbCuU6s6c8N5xYs5Ue011663bp0Tek0gpp4onSZSMlSc2TLH14kaUpc7Zqg91UTlecemVa+vNwV70JEZLUo7NHf/tThl5dWqKyipBOGZoYk/ERUhTOSPzpT3/SxIkTo10X6kCNz0gANUD/Q6zQ96KLr8gGAADGCBIAAMAYQQIAABgzHmw5cOBAZWVlRbMWAABQz3BGAgAAGCNIAAAAY1H/rQ0AAA5nIV9QiVkOFW9P1BPK1RFDM3VW7zi5nPXneyQOJwQJAECjEfKH9M2p7ynjM7cyFFDojaV6bGR/PXlWZy39XaKcDsLEoeLSBgCg0dj++iYVfpZXNe2QNOXjlfpwTUD/+6mOf6SvgSBIAAAajfL1JRFt6eU+xfsDWr+zhr/S10gRJAAAjUbGqW2qfs5+l+/aNFNFvEundedqvwmCBACg0Ujpna6eTw+R/9ff5PuuTTPNO/dozb0gQV0yeEs0QfwCADQqrSd20tu+ZbL80m8vGalpCS45GGRpjPgFAGh8HJLtkZLcFiGihggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJADElKNQKvomX6FAKNaloBEpDCVofbCZVuWGtCI7GOty6jW+RwJAzKS/EqeU9536KvS24o9I1IBXTlLaUc1iXRYauNs+kR4uPl92YUD3/d0ryav+rR16c2qiWqfx+fpQ8YwBiIn897cp9d04WaHKe/grNpXph8s/i3FVaOg+3mzroSxLdnlI8u0+E7F8a0g3veWNYWX1F0ECQEwUfp4X0Vb0bb6CFZxmRu35bOuvP8zlj7yU9tkGfv3TBEECQEwk92sS0ZbUI03OeGcMqkFjcWTzX/8nLvLtr39r+p4JggSAmMg4rbVKB+4++xCX6lKvxwbHsCI0BiPbW5rY05YS4sLCxBHplu491RPDyuovBlsCiAnLYWnHJX4VjQpo9FEj1fzk1opLdce6LDRwlmXp2VFSx42vKjcxWaeffJJczjid1Nkpdxy/uWGCIAEgpvxtbWWe0UZxLlesS0Ej0sa5U22cOzW6q1MuF2+FNcGlDQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAYQQIAABgjSAAAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMBYXKwLANAwBL7dIu/DHyq0vUTu8X3lvnyILMuKdVkAahlBAkCNBdftUPEJT0mlPklSYOkahXKKlfDXkTGuDEBt49IGgBrzPfd1VYjYxTvj8xhVA6AuESQA1JxdTVuoukYADQ1BAkCNuScdJSW4wto8lw+JUTUA6hJjJADUmLNLhlKWXa6Kh5bJzimR69y+8vzhmFiXBaAOECQAREXcoCOU/J8JsS4DQB3j0gYAADBGkAAAAMa4tNFAbCyydd37IX28xVa/TEsXNPfpy4+KVVAc0olHJ+iycalyu/hyIACN28bP8/Teo6tUtKmjtqal6YSV+coYkKZHx7jVtRmfrU0QJBqIMxcFtSK38v+XbLD1wVqnjt0ckNOWXnm3VKGQdNWFabEtEgBiqGBTqf57zTcKBWx5JHXM3SlXIKR3g510anGaVl3pltPBB65DRfxqAH7Is6tCxC7+OId2Jrqrpt/7qryOqwKAw8vad3MUCoR/v0nrnYVK9/q1NTeoL7bw3ScmCBINQJpHqi5DxwV3/1EkJ5KyATRunhRXRFvA6VRQUsCylB5f9zU1BASJBqBtiqWJvcKDQjOfX2kV/qrpi05NqeuyAOCw0nV0S6W0Ck8Lq1tmamtyvE7vGadembwlmmCMRAMx61SHTmpnVw22POsIl977NFmFJZWDLQf08MS6RACIKU+ySxfMPUZZL/2iD9/doDVpzVQ6sKOuHZyoSwY4Y11evUWQaCCcDktT+lia0mdXi0NTz0qNZUkAcNhJaOLW0N920o9xy5Sp9Zo6tZ9cLt4Ka4LzOAAAwBgxDEB0lfsk21bAJzlTXLKcDqmkXHLFSZ7IwW4A6jeCBIDoCIakP82R/cx7ki+oImVoW8t+atWuSE2yPpPiXdLVZ0j3XixZ3EUENBRc2gAQHTPekZ58R5YvIEu2mipXTbet0oYvXfKFXFKZV7p/ofTSR7GuFEAUESQARMdb/xfRlKqdkhwqVtPdjf/7pu5qAlDrCBIAoqNjZkSTV5X37Lu1xzerdmpRVxUBqAMECQDRcf0YqVWTqsmAnMrREUp15itZBZWNHVtIV50Wm/oA1AoGWwKIjg7NpZUPSwu+kG9dgQo9LdRqYBulHpki69UvpJQEafxQKTkh1pUCiCKCBIDoSU+SLjtZbklhFzquOj1GBQGobVzaAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDHjIJGVlaWBAwdq3rx5EY99/fXXOvHEEzV69GitXr26RgUCAIDDV9TPSHz00Ue6+uqrlZaWpmeffVZdu3aN9iYAAMBhIqpBYvHixbr++uvVpk0bPfvss2rbtm00Vw8AAA4zUfuK7AULFuiBBx5Qr1699NhjjyktLS1aq8ZBWrktqAXfBxRwWDo/tEWZ/81SRTBJrl5HaGeTZPkS3CpNSlDm9h3q4C+UhneMynZ/+rlCOTl+9e4Vr4wMV9hja9eU6uc31ql7qk+dL+orJbj3u65Cr60319pKdEmDm4a04mefmjdxakAPtyzLikq9iA6/L6Tvvi1VKCj1PSpJirP04Ec+bc4PaZxVpI6JQTlCIcmWCts0UV6ppaN7eZTZxBm2nlDIoaysMslyakD/RMXH193QrYLioL783qv0FIcG9vLI4aCPxdR3G6Uv10gDO0tHto/qqgNLf1Zo/ucqt136zm6trWXt9U2bllr2b69Obu1X+2RpaL94JSfsu/95A7b+t85WRUAa09lSiof+IkUpSMyePVtPPvmkBg0apOnTpysxMTEaq8UhuO/dCt36XkCKd+nGj15TnyUvSZJyE5pqYbez5IurfAOvcLu0vk0r9d20XRdcvlCtL83U1v5JRtu0bVuPP7FdX35VJklyOKTf/TZTxx+XLEmaNSdbL3xmS2omSZrwwquaOvtkqV1Gtetbsd3WSf8OKL+icjrJH9CAzYVyh2wd3dOj+/7YVE4nf7iHg535fj38103akRuQJCWlOfVsm5YqtOIkOfSvUKomfvmDhq7fKkmqcMXpg77dVZ6SoFsvbaITj6784S6vz63/WzFIH3+aL0lKS3Pq9ltbqVUrV7XbjaZvf/bq9ifyVeGzJUm9O7v00DUZ8rgPnz62vtBWh7TDp55adcd86c5Xdk/fcpZ070VRWXXpmJmKf3Op3ArILelIV5LWdzhN8ascem9HE92WnKiW/oA6xBdq+rUZ6nxEZP/LKbV1wosBrd5ZOZ2ZKH1wYZx6ZTSS12c/ahz9FyxYoCeffFLDhw/XP/7xD0JEDOSWhPTXJRWSJ07NSot013vzqx77vPXgqhAhSfE+v5oWFml5hy5an9pMR87PM97uDysrqkKEJIVC0osv7lAgYGt7flAvfRoKm//FTsco9/6397m+2z8KVoUISSp1xWlzWuUbztc/evXx8op9LIm69s7rO6tChCT9HHD9GiIqhRwOLezfTcFfzyLF+wPqvXGrAkFpxvxChUKVb96bN3dQRcXuY0ZhYVCLXttZJ/vw9IKiqhAhST+s9WvpF2X7WaLu3ftZMNYl1I2t+dLdi8LbHnhd2pBb41X7P1iruDc/lVO7+2uKv1QD8r5Telm5umTnqrPXr9Vul4pLbc16raja9TyaFaoKEZKUWybd8UkjeX0OoMZBIi+v8o2obdu2crv3f9o6FvLz8+X1equmS0pKVFxcXDXt8/m0Y8eOsGWys7P3O71t2zbZ9u4DUKy3sXZHSH7bIVmWOhbkyhPc/QezMz5de/P4/JKk3NR0JecF5PCHjPZj61Z/xLqLikMqKQlqc05Aob0uRYQcTm1YW7zPbfyUb2tvZe7dp8E3ZFfuVyxeD1Ox7hu1tY0tm8rD5i/wRH6CK473qGSP9tSyyiCYuzOkcq+t7du3q6w88mzYrn5V2/uxMTugvf2yxXtYvR4/5keUeEjqS//b8fkPUjD8g4dCtrQqu8bbCP24XU75tLd0b6EkKbW8QvG2Le+vl7U2bgtUu40fciNDw3c54cfAw/FvtS6OfzW+tDFlyhR98803ev7552Xbtq699tqarjKqmjZtGjadnJwcNu12u9WsWbOwtlatWu13umXLlofVNo5s7VQTj62dtq0VLdopNzFFmWWVHadt8VYVxoePVylNiJdl2+q4PVt5nTwKuRxG+9G7V7z21qaNS+npceoR71CiFVCZvbuLJfoq1Pu4lvJ4PNVu4+R2Dq3eGX4waVK++w91QI/KoBqL18NUrPtGbW2jd78Urfph98GqdWnk2aJWhSVKq9h9AM9JT5EkdWvnUlKCQ+7mzZWe9r127gy/1NWrZ0Kd7MeAHm59/p037PGjeyWqWbPwfh3L1+PkdjU7bV5f+l+zUYOk1ASpaI+AmuSRhnSp8TbiTu4inxIVp/A+uiWp8vHtaSkqcjiU+utZsgHdPdVuY2RHp95YF358GtU5/MPz4fi3WhfHvxqfkYiPj9ejjz6qwYMH64UXXtD06dNrukocogSXpX9fnKim8svniNNF5/1RW1KaSJIGbflGGUUFkiRb0s7UZJUneHR21idq3j5RX01ubrzdNm3cmjSxmeLjKw92LVvE6feXZ0qSEuMdumVqupoEKw8MTcuKdKvvKyXcePo+13fvMIdGtK9cl9OSugW8alVUIY/L0iVnpahvF88+l0XdOvn0dA08NkWWJVmWNKy3W4OaBqRfPxlllpRp8hffVc2/vVmafmjXWu1axemmqelV7W1ab1RmZrZ2nbwa0D9B485OV124+jdp6t6h8oyJK066cHSyjukXGY5j6aYhjeQ7A5PjpRf/KLVMr5xunia98EcpteaXyp3dM2U9Okm+uFTZqjwOrk1pr28zemtNy0ytbJmhDe44da/w6agebl06LrXa9fy+v0OTelvaNR731I6W7jq+kbw+B2DZe54TOQRZWVm64oor9Kc//UkTJ05URUWFrrvuOn355Ze66KKLNG3atGjXigMIBG2t3RGUbTnUKTWkwIotCqWlyO2Jky/BLYfLUqnPUqozqLiScoXapGj27NmSpKlTp8rlMhvg5vWGVFgUVGZGXMSdFYGgre2rdqp5ukNxrdIPan1bi2154qRmCZa25QWUmuxQYh2O5MfBKy4KKBSS0tIrzzxtKAhqW7HUJyEgq/Jqm0IBW44UtwpKQmqVsfsMld/vr+p/48+dJKcjTunpUbuR7KDl5AeUlODY72h91BF/QNq0Q2rbTHJHty/YZT6Fvt8iu0miduSG9OKy91QY79KwsWfpqOZx8gcUcUdRdfLKbPlDUqtkBlnuErVXKj4+Xo888oimTZuml156SbZt6/rrr4/W6nEQ4pyWujff9ZI65B60+/apXSfgqvJ9RoJC/sgxDiY8HoeaZ1Z/EI5zWmrds2m1j+1L65Tdf6AtM+r+jQUHLyU1/PVpn+5U+3RJijwgJ+wnDKamOOVyxea1btGUPnbYcMVJnVrUyqqtRLecgytveW/awa+k70uVJOmEdg65XAcOELtkJBIg9hbVCL4rTAwdOlT//ve/9eCDD0Zz9QAA4DAT9XN5Ho9H06dP1zHHHKP//Oc/euCBB2R49QQAABzmjM/pDRw4UFlZWdU+5vF49PjjjxsXBQAA6gdGFwEAAGMECQAAYIwgAQAAjBEkAACAMYIEAAAwRpAAAADGCBIAAMAY3w0LICq+yrb1xLchlfqlyX0sndmZzylAY0CQAFBj3+bYOv7fQfmCldOvrLY173RpQi/CBNDQ8VcOoMae+r9QVYjY5bFvQrEpBkCdIkgAqLG9Q8S+2gA0PAQJADU2pY9De/+48iV9ObwAjQFjJADU2IlHWHp9nEOPfm2r1G9rUi+HrhxAkAAaA4IEgKgY09mhMZ1jXQWAusZHBgAAYIwgAQAAjHFpAwDQ6AQCTq3f0EU33bJNLZq7NH58urp0jo91WfUSQQIA0OisWt1beTtaSApo+/aAVq+p0MMPtlV6Om+Lh4pLGwCARqW8PKS8Hc3D2ioqbGV9XRajiuo3ggQAoFFxOi05HJHfvOrx7P1tKDgYBAkAQKPidltq3WpTWFtmZpwGDUqKUUX1GxeDAACNTscOq5WUWKL0JoPUsqVbo0amKd7DZ2sTBAkAQKNjWVKLFtmaOrWZXC5XrMup14hfAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGAsLtYF1CbbtlVcXBzrMg5bfr9f5eXlkqSioiK5XK4YV3T4SklJkWVZh7QM/W//6H8Hj/4XXfS9Q3Og/mfZtm3XYT11qqioSGlpabEuAw1AYWGhUlNTD2kZ+h+ihf6HWDpQ/2vQQaK2EnlJSYnOOOMMvfnmm0pOTo76+usS+3JwDpdPhA3p9ZIa1v7Q/+qXhrQvUmz7X4O+tGFZ1iGn+IPhcDjkdDqVmppa7zsg+1J7aqP/HW77WFMNaX8Ot32h/+1fQ9oXKbb7w2BLAABgjCABAACMESQMuN1u/fa3v5Xb7Y51KTXGvtQvDW0fG9L+NKR92ZeGtI8NaV+k2O5Pgx5sCQAAahdnJAAAgDGCBAAAMNagb/+Mpg8//FAzZszQhg0b1LJlS02ZMkVjx47d7zJbt26tdp4+ffpozpw5tVTpbuvXr9eDDz6oFStWKCkpSaeffrquvPLKA36Lm23beu655zR//nwVFBSoW7duuu6669S3b99ar3lfTPflzDPPVHZ2dkT7J598Io/HU1vlRhV9L7Z9T6L/0f849u0PQeIgLF++XDfccIPOOussTZs2TV999ZX+9re/KTExUSNGjDjg8n/4wx80cODAqunExMTaLFdS5bfaXXHFFWrXrp0eeughbd++XY8++qgqKip000037XfZ5557Tk8//bSuuuoqde3aVfPnz9dVV12lF154QW3btq312vdWk32RpFNOOUUTJkwIa6svA6zoe7HtexL9j/7Hse+AbBzQH/7wB3vq1Klhbbfeeqt97rnn7ne5LVu22EcffbS9ZMmS2iyvWrNmzbKPP/54u6CgoKrtlVdesQcPHmxv3759n8tVVFTYw4YNs5944omqNp/PZ48ZM8a+7777arXmfTHdF9u27TFjxtj3339/bZdYa+h7se17tk3/o/9x7DsQxkgcgM/nU1ZWVkT6HjVqlH755Rdt3bo1RpXt36effqrBgweHfdf+yJEjFQqF9Pnnn+9zuRUrVqi0tDRsf10ul0466SR98skntVrzvpjuS31H34t935Pof/Q/jn0HQpA4gM2bNysQCKhDhw5h7R07dpRUef3qQO6//34NHjxYI0eO1N13363CwsJaqDTc+vXrI2pOSUlRRkbGfmve9Vh1+7tt2zZVVFREt9CDYLovuyxevFjHHHOMTjjhBF199dVas2ZN7RQaZfS9SrHsexL9j/7Hse9AGCNxAEVFRZIqX7w97foO+12PV8ftduvcc8/V0KFDlZKSou+//16zZs3SypUrNXfuXMXF1d7TX1RUFFGzVLkf+6u5qKhIbrc7YjBOSkpK1Y8AxcfHR73e/THdF0kaNmyY+vTpo5YtW2rLli2aNWuWLr300phecz9Y9L3dy8Wq7+2qi/63G/2v7tSXvtcog0RJSYny8vIOOF+bNm1qtJ2MjAzdfPPNVdNHH320OnfurGuuuUbvv/++Ro4cWaP148BuuOGGqv8fMGCAhg4dqvHjx+v5558Pe23qCn2vcaH/VaL/1b267HuNMkgsXbpUd9999wHnW7BgQVX6LikpCXtsVxo81F/XO+6445SQkKAff/yxVv+YUlNTI2qWpOLi4v3WnJqaKp/PJ6/XG5bMi4uLZVlWtem4tpnuS3UyMjLUv39//fjjj9Eq75DQ9+pX39tVF/1vN/pf3akvfa9RBomzzz5bZ5999kHN6/P5FBcXp/Xr1+uYY46pat/X9bTDRYcOHSKuoe36NLK/mnc9tmHDBnXr1q2qff369WrZsmVMTi2b7svhiL7XYb/LSYdX39tVF/2P/sexb98YbHkAbrdbAwcO1LvvvhvWvmTJEnXs2FGtW7c+pPV99NFHKi8vV69evaJZZoRjjz1WX375pYqLi6vali5dKofDoaFDh+5zuX79+ikpKUlLly6tagsEAnr//fd13HHH1WrN+2K6L9XJzc3V8uXLa/35jwb6Xuz7nkT/o/9x7DuQRnlG4lBddtlluvzyy3X//fdrxIgR+vrrr7V48WLdd999YfMNGTJEZ5xxhv7yl79Ikh599FE5HA716dNHKSkp+uGHHzRnzhz16tVLw4cPr9Wax48fr5dfflnTpk3TJZdcou3bt+sf//iHzjnnHGVmZlbN9/vf/17Z2dl69dVXJUkej0dTp07VzJkz1aRJE3Xp0kXz589XYWFhxBeb1BXTfVm8eLE+/vhjHXfcccrMzNTmzZs1Z84cOZ3OmO3LoaLvxbbvSfQ/+h/HvgMhSByE/v3768EHH9SMGTP02muvqWXLlrr99tsj7q8OBoMKhUJV0x07dtSCBQu0cOFCVVRUqHnz5ho7dqwuv/zyWh21LFVeW5sxY4YeeughTZs2TUlJSTr77LN15ZVXRtQcDAbD2iZPnizbtvX8889r586d6tatmx5//PGYjTI33Zc2bdooNzdX06dPV3FxsVJSUjRo0CBdfvnlNR5MVlfoe7HtexL9j/7Hse9A+BlxAABgjDESAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSQD02Z84cWZalDz74INalHFY++OADWZalOXPmxLqUqGvI+4b6iSCBRmPdunX63e9+px49eigxMVFNmjRRz549NXnyZL3//vth83bo0EF9+vTZ57qmTJkiy7KUl5dX7eM//vijLMuSZVn66KOP9rmeXfPs+hcfH6+uXbvquuuuU35+vtmOHqI77rij6jv665Ply5frjjvuiPh1RAB1i9/aQKOQlZWlE088US6XS5MmTVLv3r1VXl6u1atX65133lFKSopOOumkqG3v2WefVUpKihISEjRr1iydcMIJ+5y3f//+mjZtmiQpPz9f//vf//Too49qyZIl+vrrr+V2u/e57MSJE3XhhRfud54DufPOOzV58uSD/nnpw8Xy5ct15513avjw4RE/qTxs2DCVl5fL5XLFpjigESFIoFG48847VVZWpuXLl+vII4+MeHzbtm1R25bf79e8efN03nnnKS0tTTNnztRjjz2mlJSUaudv06ZN2C/yXX311TrzzDP1xhtv6LXXXtN55523z205nU45nc6o1R5tu34wqK45HA7Fx8fX+XaBxohLG2gUVq9erWbNmlUbIiSpZcuWUdvWf//7X23fvl2TJ0/WlClTVFpaqpdffvmQ1jF69GhJ0po1a/Y7X3VjJHa1vffee3r44YfVuXNneTwedevWTc8991zVfOvXr5dlWZKk5557LuwSy56WLl2qUaNGKT09XfHx8erXr5+eeuqpiFo6dOig4cOH69tvv9Xo0aOVlpamfv36SaoMFLfffruGDBmijIwMeTwedenSRTfffLPKysoi1mXbtp555hkNGTJEycnJSk5OVt++fat+pvqOO+7Q1KlTJUknnXRSVd1TpkyRtO9xBKWlpbrllluqnpOWLVtq0qRJ2rBhQ9h8ey4/e/Zs9e7dWx6PR+3bt9eDDz6439dEkgoKChQfH69zzjmn2sdvueUWWZal5cuXS5K2bt2qadOmqX///mrSpIni4+PVq1cvPfDAAxG/UFmd/Y2Vqe6MjVR5lm7cuHFVr0f37t11zz33KBAIHHB7wJ44I4FGoXPnzvr555+1cOHCfR7c9xYMBvc5BsLr9e5zuWeffVYdO3bUCSecIMuyNGDAAM2aNUuXXXbZQde7evVqSVJGRsZBL7O3W2+9VeXl5br88svl8Xg0Y8YMTZkyRV26dNFxxx2nzMxMzZs3TxMnTtQJJ5yg3/3udxHrmDlzpq644goNHTpUt912m5KSkrRkyRL9/ve/19q1a/XQQw+Fzb9x40adfPLJOu+88zR+/HiVlJRIkrZs2aJ//etfGj9+vH7zm98oLi5Oy5Yt04MPPqhvv/1Wb7/9dth6Jk6cqBdeeEFDhgzRbbfdpvT0dP30009asGCB7rrrLp1zzjnKzs7WzJkzdeutt6pnz56SKl/nffH7/Ro9erQ++eQTnXvuuZo2bZpWr16tGTNm6J133lFWVlbEz0U/9dRTysnJ0aWXXqr09HQ9//zzuummm9S2bVv95je/2ee20tPTNXbsWL322mvKz89X06ZNqx4LhUJ64YUX1K9fP/Xv31+StGLFCi1cuFDjxo1T586d5ff7tXjxYt18881at26dnn766X1uy8Sbb76pc845R126dNG0adPUtGlTffbZZ/rLX/6i5cuXa/78+VHdHho4G2gEPv30U9vlctmS7K5du9pTp061//nPf9orV66sdv727dvbkg74Lzc3N2y5LVu22E6n0/7rX/9a1fb3v//dllTttiTZo0aNsnNzc+3c3Fx71apV9iOPPGK7XC47LS3NzsnJ2e9+zZ4925Zkv//++xFt/fv3t71eb1X75s2bbbfbbV944YURNUyePDli3Vu3brU9Ho990UUXRTx29dVX2w6Hw167dm3Ec/bMM89EzO/1em2fzxfRfvvtt9uS7C+++KKq7eWXX7Yl2RMmTLCDwWDY/HtOV7fvu7z//vu2JHv27NlVbTNnzrQl2TfccEPYvG+88UbV9vZevlWrVnZBQUFVe2lpqZ2RkWEPHTo0Ypt727XeJ598Mqx96dKltiR7+vTpVW1lZWV2KBSKWMeECRNsh8Nhb926db/7tr/n4sQTT7Tbt29fNV1eXm63aNHCPuGEE2y/3x827yOPPLLP9QD7wqUNNArHHHOMvv76a02ePFmFhYWaPXu2rrzySvXq1UvDhg3TunXrIpbp0KGDlixZUu2/UaNGVbudOXPmKBQKadKkSVVtF198sVwul2bNmlXtMu+8844yMzOVmZmpbt266brrrlOvXr30zjvvqHnz5sb7fOWVV4YNwmzTpo26detWdbbjQBYsWCCv16tLL71UeXl5Yf/OPPNMhUIhLV26NGyZpk2bVl1y2JPb7a4a+BgIBLRz507l5eVpxIgRkqQvvviiat4XXnhBkvTwww/L4Qg/RO09fSgWLVokh8OhW265Jaz9jDPOUP/+/fXaa68pFAqFPTZ16lSlpaVVTScmJmro0KEH9RyOHj1aLVq00Ny5c8Pa586dq7i4OF188cVVbQkJCVWXlHw+n/Lz85WXl6fRo0crFAopKyvrkPd3X5YsWaKcnBxNnTpVBQUFYa/r6aefLqmyTwIHi0sbaDT69u1bdc18w4YNWrZsmf71r3/po48+0llnnRVxh0RSUlLVG93enn/++Yg227Y1a9Ys9evXT6FQKGx8w3HHHad58+bpvvvuU1xc+J/dkCFDdPfdd0tS1XX4du3a1XR31alTp4i2Zs2aRYwH2Jcff/xRkvb5HEhSTk5O2HTnzp33Ofjzn//8p5566in98MMPEW/YO3furPr/1atXq1WrVmrRosVB1XmwfvnlF7Vu3VpNmjSJeKx3795avny58vLywsLbvp7DHTt2HHB7u8LCI488olWrVqlbt24qLS3VwoULNWrUqLD9CwQCuv/++zV37lytWbNGtm2HrWvP56emdr2ul1xyyT7n2ft1BfaHIIFGqX379po0aVLV+IBPPvlEX375pY4//njjdS5btkxr166VJHXt2rXaed54442I2ywzMjL2+2Ztal9v6Hu/Se3Lrvnmzp2rVq1aVTvP3m+0iYmJ1c73yCOPaNq0aRo1apSuvvpqtW7dWm63W1u2bNGUKVMigsXhoqZ3xEyaNEmPPPKI5s6dq7vvvlsLFy5USUmJJk+eHDbfddddp8cff1wXXHCBbrvtNjVv3lwul0vffPONbrrppgM+P3sPkN3T3oMnd72uDz30UNUYjb21bt36IPYOqESQQKNmWZaGDBmiTz75RFu2bKnRumbNmiWPx6O5c+dWewr+8ssv17PPPltvvq9hVxiKRtCZN2+eOnTooLfeeivsuVm8eHHEvN26ddNrr72mnJyc/Z6V2N+bZ3U6deqkxYsXq6CgQOnp6WGPrVy5UqmpqTUa3FqdI488UkceeaSef/55/e1vf9PcuXOrBmLuad68eRo2bJj+/e9/h7Uf6K6dXXYN5qzuS8x++eWXsO/T2PW67u+MG3AoGCOBRmHJkiXV3tZWXl5edT24V69exusvLCzUggULNGrUKJ1//vk699xzI/6NHTtWb731lrKzs423UxuSk5OrfQM6//zz5fF49Ne//lXl5eURjxcWFu737pU9OZ1OWZYVdjZk1+n8ve0aO3DjjTdGfBLfc/nk5GRJ1b95Vufss89WKBSK2OZbb72lb7/9VmPHjq3RGIx9mTx5sjZs2KAXX3xR7733ni644IKI77hwOp0RZ4pKS0v16KOPHtQ2unXrJkkRY1Zeeuklbd26Naxt9OjRat68ue6///5qn7vy8nIVFxcf1HYBiTMSaCSuvfZa7dixQ2PHjlXfvn2VmJioTZs26cUXX9SqVas0adIk9e3b13j9L730ksrLyzV+/Ph9zjN+/HjNmTNHzz33nG6++WbjbUXb0KFDtXTpUj3wwANq166dLMvShRdeqLZt22rGjBm67LLL1LNnT02cOFHt27dXbm6uvvvuO7366qtauXJltd9RsLdzzz1Xt9xyi0477TSdc845Kioq0osvvljtN0+ed955uuCCCzR37lytXr1aY8eOVZMmTbRq1Sq9/fbb+v777yVJgwYNksPh0D333KOdO3cqKSlJHTt21JAhQ6qtYcqUKXruuef0wAMPaP369Ro2bJjWrFmjf/7zn2rRooXuvffeGj2P+3LxxRfrxhtv1JVXXqlQKBRxWUOqfH6efvppXXDBBRoxYoRycnI0a9YsNWvW7KC20b17d40YMUJPP/20bNtW//79tXz5ci1atEhdunSR3++vmjcpKUlz587V2Wefre7du+uSSy5Rly5dVFBQoJ9++kkLFy7UokWLNHz48Gg9BWjoYna/CFCH3n77bfvKK6+0+/XrZzdr1sx2Op1206ZN7eHDh9vPPvtsxG2G7du3t3v37r3P9U2ePDns9s+BAwfacXFxdn5+/j6XqaiosFNSUuxu3bpVtUmyzzjjDOP92t/tnwdzK6Bt2/aqVavskSNH2ikpKVW3te7p448/ts8++2w7MzPTdrlcdqtWrezhw4fbDz/8sF1eXl41X/v27e0TTzyx2joDgYB977332p07d7bdbrfdrl07+4YbbrBXrlxpSwq7Xda2K2/zfOKJJ+wBAwbYCQkJdnJyst23b1/7jjvuCJtvzpw5ds+ePatu7d11G2t1t0jatm2XlJTYN998s92xY0fb5XLZmZmZ9oQJE+z169eHzbev5W1792t/KMaMGVN163F1SktL7euvv95u166d7fF47C5dutj33Xdf1a2ie9axr9qys7Ptc889105JSbGTkpLsU0891V65cmW1r7lt2/Z3331nX3zxxXbr1q1tl8tlN2/e3D7mmGPsu+66y96xY8ch7R8aN8u2D3LkFQAAwF4YIwEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADAGEECAAAYI0gAAABjBAkAAGCMIAEAAIwRJAAAgDGCBAAAMEaQAAAAxggSAADA2P8DvBGGN2lf4pEAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "from keras.models import load_model\n", "\n", "def get_model(path):\n", " pretrained_model = load_model(path)\n", " return pretrained_model" ], "metadata": { "id": "RRAi3J4B3LAV" }, "execution_count": 45, "outputs": [] }, { "cell_type": "code", "source": [ "!pip install keras_tuner" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_o58EFgR4E2M", "outputId": "d5fb345c-a833-47f0-a83f-6cd792bd5ee8" }, "execution_count": 47, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting keras_tuner\n", " Downloading keras_tuner-1.4.7-py3-none-any.whl.metadata (5.4 kB)\n", "Requirement already satisfied: keras in /usr/local/lib/python3.10/dist-packages (from keras_tuner) (3.5.0)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from keras_tuner) (24.2)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from keras_tuner) (2.32.3)\n", "Collecting kt-legacy (from keras_tuner)\n", " Downloading kt_legacy-1.0.5-py3-none-any.whl.metadata (221 bytes)\n", "Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from keras->keras_tuner) (1.4.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from keras->keras_tuner) (1.26.4)\n", "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from keras->keras_tuner) (13.9.4)\n", "Requirement already satisfied: namex in /usr/local/lib/python3.10/dist-packages (from keras->keras_tuner) (0.0.8)\n", "Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from keras->keras_tuner) (3.12.1)\n", "Requirement already satisfied: optree in /usr/local/lib/python3.10/dist-packages (from keras->keras_tuner) (0.13.1)\n", "Requirement already satisfied: ml-dtypes in /usr/local/lib/python3.10/dist-packages (from keras->keras_tuner) (0.4.1)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->keras_tuner) (3.4.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->keras_tuner) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->keras_tuner) (2.2.3)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->keras_tuner) (2024.12.14)\n", "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from optree->keras->keras_tuner) (4.12.2)\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras->keras_tuner) (3.0.0)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras->keras_tuner) (2.18.0)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->keras->keras_tuner) (0.1.2)\n", "Downloading keras_tuner-1.4.7-py3-none-any.whl (129 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.1/129.1 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading kt_legacy-1.0.5-py3-none-any.whl (9.6 kB)\n", "Installing collected packages: kt-legacy, keras_tuner\n", "Successfully installed keras_tuner-1.4.7 kt-legacy-1.0.5\n" ] } ] }, { "cell_type": "code", "source": [ "from keras_tuner import HyperParameters\n", "import tensorflow as tf\n", "import os\n", "\n", "# Use the correct path where the model was saved\n", "# You may need to adjust this path based on where you saved your model previously\n", "path = 'model.h5' # Update this if necessary\n", "\n", "# Removing the check for the model as it has already been saved in a previous cell.\n", "# if not os.path.exists(path):\n", "# raise ValueError(f\"Model file not fount at {path}. Please make sure to save the model before attempting to load it.\")\n", "\n", "\n", "def model_with_hp(hp):\n", " fine_tuned_model = get_model(path)\n", "\n", " fine_tuned_model.compile(\n", " optimizer=tf.keras.optimizers.Adam(learning_rate=hp.Float('learning_rate', 1e-4, 2e-2, sampling='LOG')),\n", " loss='sparse_categorical_crossentropy',\n", " metrics=['accuracy']\n", " )\n", "\n", " return fine_tuned_model" ], "metadata": { "id": "T77QPEln3ck-" }, "execution_count": 54, "outputs": [] }, { "cell_type": "code", "source": [ "from keras_tuner import Hyperband\n", "\n", "tuner = Hyperband(\n", " model_with_hp,\n", " objective='val_accuracy',\n", " max_epochs=10,\n", " factor=3,\n", " directory='tuner_result',\n", " project_name='hyperparameter_tuning'\n", ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "mCNlXFkH4DQ_", "outputId": "ae703a4e-9fc5-4a83-de01-15e39644d6ec" }, "execution_count": 55, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n" ] } ] }, { "cell_type": "code", "source": [ "tuner.search(trainInput, trainTarget, epochs=5, validation_data=(validationInput, validationTarget), batch_size=32)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "H9LGiZzt5XL9", "outputId": "12ed2512-ede7-4b1c-9963-22a96c089bc4" }, "execution_count": 56, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Trial 30 Complete [00h 00m 04s]\n", "val_accuracy: 0.95652174949646\n", "\n", "Best val_accuracy So Far: 0.95652174949646\n", "Total elapsed time: 00h 01m 51s\n" ] } ] }, { "cell_type": "code", "source": [ "tuner.results_summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "qDC_Fz0Z6O16", "outputId": "0c6e079b-7186-4aaa-d0d6-ec82348f9e93" }, "execution_count": 57, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Results summary\n", "Results in tuner_result/hyperparameter_tuning\n", "Showing 10 best trials\n", "Objective(name=\"val_accuracy\", direction=\"max\")\n", "\n", "Trial 0019 summary\n", "Hyperparameters:\n", "learning_rate: 0.012925360866291275\n", "tuner/epochs: 4\n", "tuner/initial_epoch: 0\n", "tuner/bracket: 1\n", "tuner/round: 0\n", "Score: 0.95652174949646\n", "\n", "Trial 0029 summary\n", "Hyperparameters:\n", "learning_rate: 0.002808057731484277\n", "tuner/epochs: 10\n", "tuner/initial_epoch: 0\n", "tuner/bracket: 0\n", "tuner/round: 0\n", "Score: 0.95652174949646\n", "\n", "Trial 0000 summary\n", "Hyperparameters:\n", "learning_rate: 0.0007158000302516951\n", "tuner/epochs: 2\n", "tuner/initial_epoch: 0\n", "tuner/bracket: 2\n", "tuner/round: 0\n", "Score: 0.947826087474823\n", "\n", "Trial 0003 summary\n", "Hyperparameters:\n", "learning_rate: 0.00019071538372142778\n", "tuner/epochs: 2\n", "tuner/initial_epoch: 0\n", "tuner/bracket: 2\n", "tuner/round: 0\n", "Score: 0.947826087474823\n", "\n", "Trial 0004 summary\n", "Hyperparameters:\n", "learning_rate: 0.00028192428464246446\n", "tuner/epochs: 2\n", "tuner/initial_epoch: 0\n", "tuner/bracket: 2\n", "tuner/round: 0\n", "Score: 0.947826087474823\n", "\n", "Trial 0012 summary\n", "Hyperparameters:\n", "learning_rate: 0.0007158000302516951\n", "tuner/epochs: 4\n", "tuner/initial_epoch: 2\n", "tuner/bracket: 2\n", "tuner/round: 1\n", "tuner/trial_id: 0000\n", "Score: 0.947826087474823\n", "\n", "Trial 0013 summary\n", "Hyperparameters:\n", "learning_rate: 0.00019071538372142778\n", "tuner/epochs: 4\n", "tuner/initial_epoch: 2\n", "tuner/bracket: 2\n", "tuner/round: 1\n", "tuner/trial_id: 0003\n", "Score: 0.947826087474823\n", "\n", "Trial 0014 summary\n", "Hyperparameters:\n", "learning_rate: 0.00028192428464246446\n", "tuner/epochs: 4\n", "tuner/initial_epoch: 2\n", "tuner/bracket: 2\n", "tuner/round: 1\n", "tuner/trial_id: 0004\n", "Score: 0.947826087474823\n", "\n", "Trial 0016 summary\n", "Hyperparameters:\n", "learning_rate: 0.0007158000302516951\n", "tuner/epochs: 10\n", "tuner/initial_epoch: 4\n", "tuner/bracket: 2\n", "tuner/round: 2\n", "tuner/trial_id: 0012\n", "Score: 0.947826087474823\n", "\n", "Trial 0017 summary\n", "Hyperparameters:\n", "learning_rate: 0.00019071538372142778\n", "tuner/epochs: 10\n", "tuner/initial_epoch: 4\n", "tuner/bracket: 2\n", "tuner/round: 2\n", "tuner/trial_id: 0013\n", "Score: 0.947826087474823\n" ] } ] }, { "cell_type": "code", "source": [ "best_model = tuner.get_best_models(num_models=1)[0]\n", "\n", "test_loss, test_acc = best_model.evaluate(testInput, testTarget)\n", "print(f\"Test Accuracy: {test_acc}\")\n", "\n", "best_hyperparameters = tuner.get_best_hyperparameters()[0]\n", "print(f\"Best Hyperparameters:\", best_hyperparameters.values)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "a2Eajqhc6sj_", "outputId": "f39116f3-4c2f-45f9-858a-22b36e0daded" }, "execution_count": 58, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n", "/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py:713: UserWarning: Skipping variable loading for optimizer 'adam', because it has 2 variables whereas the saved optimizer has 18 variables. \n", " saveable.load_own_variables(weights_store.get(inner_path))\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1m5/5\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8927 - loss: 0.3543 \n", "Test Accuracy: 0.8888888955116272\n", "Best Hyperparameters: {'learning_rate': 0.012925360866291275, 'tuner/epochs': 4, 'tuner/initial_epoch': 0, 'tuner/bracket': 1, 'tuner/round': 0}\n" ] } ] } ] }