Upload 2 files
Browse files- _908_electricity_demands.ipynb +474 -0
- electricity.csv +0 -0
_908_electricity_demands.ipynb
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"metadata": {
|
21 |
+
"id": "qmBKOQx4783m"
|
22 |
+
},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"import pandas as pd\n",
|
26 |
+
"from sklearn.model_selection import train_test_split\n",
|
27 |
+
"from sklearn.ensemble import RandomForestClassifier\n",
|
28 |
+
"from sklearn.metrics import accuracy_score, classification_report"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"source": [
|
34 |
+
"file_path = \"/content/electricity.csv\"\n",
|
35 |
+
"data = pd.read_csv(file_path)"
|
36 |
+
],
|
37 |
+
"metadata": {
|
38 |
+
"id": "uPLyiFpw-Mq3"
|
39 |
+
},
|
40 |
+
"execution_count": 2,
|
41 |
+
"outputs": []
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"source": [
|
46 |
+
"data.info()"
|
47 |
+
],
|
48 |
+
"metadata": {
|
49 |
+
"colab": {
|
50 |
+
"base_uri": "https://localhost:8080/"
|
51 |
+
},
|
52 |
+
"id": "oL-xXlvy-ZLl",
|
53 |
+
"outputId": "dda52986-4081-490e-bbe7-f114103ef28a"
|
54 |
+
},
|
55 |
+
"execution_count": 3,
|
56 |
+
"outputs": [
|
57 |
+
{
|
58 |
+
"output_type": "stream",
|
59 |
+
"name": "stdout",
|
60 |
+
"text": [
|
61 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
62 |
+
"RangeIndex: 45312 entries, 0 to 45311\n",
|
63 |
+
"Data columns (total 9 columns):\n",
|
64 |
+
" # Column Non-Null Count Dtype \n",
|
65 |
+
"--- ------ -------------- ----- \n",
|
66 |
+
" 0 date 45312 non-null float64\n",
|
67 |
+
" 1 day 45312 non-null object \n",
|
68 |
+
" 2 period 45312 non-null float64\n",
|
69 |
+
" 3 nswprice 45312 non-null float64\n",
|
70 |
+
" 4 nswdemand 45312 non-null float64\n",
|
71 |
+
" 5 vicprice 45312 non-null float64\n",
|
72 |
+
" 6 vicdemand 45312 non-null float64\n",
|
73 |
+
" 7 transfer 45312 non-null float64\n",
|
74 |
+
" 8 class 45312 non-null object \n",
|
75 |
+
"dtypes: float64(7), object(2)\n",
|
76 |
+
"memory usage: 3.1+ MB\n"
|
77 |
+
]
|
78 |
+
}
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"source": [
|
84 |
+
"data.head(), data.tail()"
|
85 |
+
],
|
86 |
+
"metadata": {
|
87 |
+
"colab": {
|
88 |
+
"base_uri": "https://localhost:8080/"
|
89 |
+
},
|
90 |
+
"id": "-91jmy1g-lL9",
|
91 |
+
"outputId": "885c6254-53cd-473c-a77e-5abfc6b43ddf"
|
92 |
+
},
|
93 |
+
"execution_count": 4,
|
94 |
+
"outputs": [
|
95 |
+
{
|
96 |
+
"output_type": "execute_result",
|
97 |
+
"data": {
|
98 |
+
"text/plain": [
|
99 |
+
"( date day period nswprice nswdemand vicprice vicdemand transfer \\\n",
|
100 |
+
" 0 0.0 b'2' 0.000000 0.056443 0.439155 0.003467 0.422915 0.414912 \n",
|
101 |
+
" 1 0.0 b'2' 0.021277 0.051699 0.415055 0.003467 0.422915 0.414912 \n",
|
102 |
+
" 2 0.0 b'2' 0.042553 0.051489 0.385004 0.003467 0.422915 0.414912 \n",
|
103 |
+
" 3 0.0 b'2' 0.063830 0.045485 0.314639 0.003467 0.422915 0.414912 \n",
|
104 |
+
" 4 0.0 b'2' 0.085106 0.042482 0.251116 0.003467 0.422915 0.414912 \n",
|
105 |
+
" \n",
|
106 |
+
" class \n",
|
107 |
+
" 0 b'UP' \n",
|
108 |
+
" 1 b'UP' \n",
|
109 |
+
" 2 b'UP' \n",
|
110 |
+
" 3 b'UP' \n",
|
111 |
+
" 4 b'DOWN' ,\n",
|
112 |
+
" date day period nswprice nswdemand vicprice vicdemand \\\n",
|
113 |
+
" 45307 0.9158 b'7' 0.914894 0.044224 0.340672 0.003033 0.255049 \n",
|
114 |
+
" 45308 0.9158 b'7' 0.936170 0.044884 0.355549 0.003072 0.241326 \n",
|
115 |
+
" 45309 0.9158 b'7' 0.957447 0.043593 0.340970 0.002983 0.247799 \n",
|
116 |
+
" 45310 0.9158 b'7' 0.978723 0.066651 0.329366 0.004630 0.345417 \n",
|
117 |
+
" 45311 0.9158 b'7' 1.000000 0.050679 0.288753 0.003542 0.355256 \n",
|
118 |
+
" \n",
|
119 |
+
" transfer class \n",
|
120 |
+
" 45307 0.405263 b'DOWN' \n",
|
121 |
+
" 45308 0.420614 b'DOWN' \n",
|
122 |
+
" 45309 0.362281 b'DOWN' \n",
|
123 |
+
" 45310 0.206579 b'UP' \n",
|
124 |
+
" 45311 0.231140 b'DOWN' )"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
"metadata": {},
|
128 |
+
"execution_count": 4
|
129 |
+
}
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"source": [
|
135 |
+
"data = data.drop(columns=['date'])"
|
136 |
+
],
|
137 |
+
"metadata": {
|
138 |
+
"id": "T1FZym90-oI8"
|
139 |
+
},
|
140 |
+
"execution_count": 5,
|
141 |
+
"outputs": []
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"source": [
|
146 |
+
"data = pd.get_dummies(data, columns=['day'], prefix='day')"
|
147 |
+
],
|
148 |
+
"metadata": {
|
149 |
+
"id": "4J2DpzhT-tBC"
|
150 |
+
},
|
151 |
+
"execution_count": 6,
|
152 |
+
"outputs": []
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"source": [
|
157 |
+
"X = data.drop(columns=['class'])\n",
|
158 |
+
"y = data['class']"
|
159 |
+
],
|
160 |
+
"metadata": {
|
161 |
+
"id": "NrgeoBNd-xLy"
|
162 |
+
},
|
163 |
+
"execution_count": 7,
|
164 |
+
"outputs": []
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"source": [
|
169 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
170 |
+
"le = LabelEncoder()\n",
|
171 |
+
"y_encoded = le.fit_transform(y)"
|
172 |
+
],
|
173 |
+
"metadata": {
|
174 |
+
"id": "LEfwdL5Z-1ki"
|
175 |
+
},
|
176 |
+
"execution_count": 8,
|
177 |
+
"outputs": []
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"source": [
|
182 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42, stratify=y_encoded)"
|
183 |
+
],
|
184 |
+
"metadata": {
|
185 |
+
"id": "n1rbHlbz_Isl"
|
186 |
+
},
|
187 |
+
"execution_count": 9,
|
188 |
+
"outputs": []
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"source": [
|
193 |
+
"model = RandomForestClassifier(n_estimators=100, random_state=42)\n",
|
194 |
+
"model.fit(X_train, y_train)"
|
195 |
+
],
|
196 |
+
"metadata": {
|
197 |
+
"colab": {
|
198 |
+
"base_uri": "https://localhost:8080/"
|
199 |
+
},
|
200 |
+
"id": "OwUeKsVD_bPM",
|
201 |
+
"outputId": "38350735-dfc7-496f-ea69-00ee207bade7"
|
202 |
+
},
|
203 |
+
"execution_count": 10,
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"output_type": "execute_result",
|
207 |
+
"data": {
|
208 |
+
"text/plain": [
|
209 |
+
"RandomForestClassifier(random_state=42)"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
"metadata": {},
|
213 |
+
"execution_count": 10
|
214 |
+
}
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"source": [
|
220 |
+
"y_pred = model.predict(X_test)"
|
221 |
+
],
|
222 |
+
"metadata": {
|
223 |
+
"id": "2SLxRDDd_iFH"
|
224 |
+
},
|
225 |
+
"execution_count": 11,
|
226 |
+
"outputs": []
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "code",
|
230 |
+
"source": [
|
231 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
232 |
+
"print(f\"Model Accuracy: {accuracy:.2f}\")\n",
|
233 |
+
"\n",
|
234 |
+
"print(\"Classification Report:\")\n",
|
235 |
+
"print(classification_report(y_test, y_pred, target_names=le.classes_))"
|
236 |
+
],
|
237 |
+
"metadata": {
|
238 |
+
"colab": {
|
239 |
+
"base_uri": "https://localhost:8080/"
|
240 |
+
},
|
241 |
+
"id": "MMUwJ1x__kw6",
|
242 |
+
"outputId": "038415e4-74ee-49bb-bea9-2fc5649bcb57"
|
243 |
+
},
|
244 |
+
"execution_count": 12,
|
245 |
+
"outputs": [
|
246 |
+
{
|
247 |
+
"output_type": "stream",
|
248 |
+
"name": "stdout",
|
249 |
+
"text": [
|
250 |
+
"Model Accuracy: 0.85\n",
|
251 |
+
"Classification Report:\n",
|
252 |
+
" precision recall f1-score support\n",
|
253 |
+
"\n",
|
254 |
+
" b'DOWN' 0.86 0.89 0.88 5215\n",
|
255 |
+
" b'UP' 0.85 0.80 0.82 3848\n",
|
256 |
+
"\n",
|
257 |
+
" accuracy 0.85 9063\n",
|
258 |
+
" macro avg 0.85 0.85 0.85 9063\n",
|
259 |
+
"weighted avg 0.85 0.85 0.85 9063\n",
|
260 |
+
"\n"
|
261 |
+
]
|
262 |
+
}
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"source": [
|
268 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
269 |
+
"print(f\"Model Accuracy on Test Set: {accuracy:.2f}\")\n",
|
270 |
+
"print(\"Classification Report:\")\n",
|
271 |
+
"print(classification_report(y_test, y_pred, target_names=le.classes_))"
|
272 |
+
],
|
273 |
+
"metadata": {
|
274 |
+
"colab": {
|
275 |
+
"base_uri": "https://localhost:8080/"
|
276 |
+
},
|
277 |
+
"id": "H414Ttnf_1zh",
|
278 |
+
"outputId": "1958ff35-21cb-4367-f99c-e9ff752f99ef"
|
279 |
+
},
|
280 |
+
"execution_count": 13,
|
281 |
+
"outputs": [
|
282 |
+
{
|
283 |
+
"output_type": "stream",
|
284 |
+
"name": "stdout",
|
285 |
+
"text": [
|
286 |
+
"Model Accuracy on Test Set: 0.85\n",
|
287 |
+
"Classification Report:\n",
|
288 |
+
" precision recall f1-score support\n",
|
289 |
+
"\n",
|
290 |
+
" b'DOWN' 0.86 0.89 0.88 5215\n",
|
291 |
+
" b'UP' 0.85 0.80 0.82 3848\n",
|
292 |
+
"\n",
|
293 |
+
" accuracy 0.85 9063\n",
|
294 |
+
" macro avg 0.85 0.85 0.85 9063\n",
|
295 |
+
"weighted avg 0.85 0.85 0.85 9063\n",
|
296 |
+
"\n"
|
297 |
+
]
|
298 |
+
}
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"source": [
|
304 |
+
"from xgboost import XGBClassifier\n",
|
305 |
+
"from sklearn.linear_model import LogisticRegression"
|
306 |
+
],
|
307 |
+
"metadata": {
|
308 |
+
"id": "5hpdaFd8AG_I"
|
309 |
+
},
|
310 |
+
"execution_count": 14,
|
311 |
+
"outputs": []
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "code",
|
315 |
+
"source": [
|
316 |
+
"!pip install scikit-learn==1.0.2\n",
|
317 |
+
"!pip install xgboost --upgrade\n",
|
318 |
+
"\n",
|
319 |
+
"model = XGBClassifier(n_estimators=500, random_state=42)\n",
|
320 |
+
"model.fit(X_train, y_train)"
|
321 |
+
],
|
322 |
+
"metadata": {
|
323 |
+
"colab": {
|
324 |
+
"base_uri": "https://localhost:8080/"
|
325 |
+
},
|
326 |
+
"id": "9RyBCF_sAMti",
|
327 |
+
"outputId": "072aa23a-7b25-4b6a-e00b-4b053fe16f32"
|
328 |
+
},
|
329 |
+
"execution_count": 15,
|
330 |
+
"outputs": [
|
331 |
+
{
|
332 |
+
"output_type": "stream",
|
333 |
+
"name": "stdout",
|
334 |
+
"text": [
|
335 |
+
"Requirement already satisfied: scikit-learn==1.0.2 in /usr/local/lib/python3.10/dist-packages (1.0.2)\n",
|
336 |
+
"Requirement already satisfied: numpy>=1.14.6 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.0.2) (1.26.4)\n",
|
337 |
+
"Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.0.2) (1.13.1)\n",
|
338 |
+
"Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.0.2) (1.4.2)\n",
|
339 |
+
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.0.2) (3.5.0)\n",
|
340 |
+
"Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (2.1.3)\n",
|
341 |
+
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.26.4)\n",
|
342 |
+
"Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.10/dist-packages (from xgboost) (2.23.4)\n",
|
343 |
+
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.13.1)\n"
|
344 |
+
]
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"output_type": "execute_result",
|
348 |
+
"data": {
|
349 |
+
"text/plain": [
|
350 |
+
"XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
|
351 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
352 |
+
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
|
353 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
354 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
355 |
+
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
|
356 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
357 |
+
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
|
358 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
359 |
+
" multi_strategy=None, n_estimators=500, n_jobs=None,\n",
|
360 |
+
" num_parallel_tree=None, random_state=42, ...)"
|
361 |
+
]
|
362 |
+
},
|
363 |
+
"metadata": {},
|
364 |
+
"execution_count": 15
|
365 |
+
}
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "code",
|
370 |
+
"source": [
|
371 |
+
"y_pred = model.predict(X_test)\n",
|
372 |
+
"\n",
|
373 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
374 |
+
"print(f\"Model Accuracy: {accuracy:.2f}\")\n",
|
375 |
+
"\n",
|
376 |
+
"print(\"Classification Report:\")\n",
|
377 |
+
"print(classification_report(y_test, y_pred, target_names=le.classes_))"
|
378 |
+
],
|
379 |
+
"metadata": {
|
380 |
+
"colab": {
|
381 |
+
"base_uri": "https://localhost:8080/"
|
382 |
+
},
|
383 |
+
"id": "80phZNiEAVZ5",
|
384 |
+
"outputId": "65e22213-91f5-4c27-c1a0-b4eaf04db020"
|
385 |
+
},
|
386 |
+
"execution_count": 16,
|
387 |
+
"outputs": [
|
388 |
+
{
|
389 |
+
"output_type": "stream",
|
390 |
+
"name": "stdout",
|
391 |
+
"text": [
|
392 |
+
"Model Accuracy: 0.84\n",
|
393 |
+
"Classification Report:\n",
|
394 |
+
" precision recall f1-score support\n",
|
395 |
+
"\n",
|
396 |
+
" b'DOWN' 0.86 0.88 0.87 5215\n",
|
397 |
+
" b'UP' 0.83 0.80 0.81 3848\n",
|
398 |
+
"\n",
|
399 |
+
" accuracy 0.84 9063\n",
|
400 |
+
" macro avg 0.84 0.84 0.84 9063\n",
|
401 |
+
"weighted avg 0.84 0.84 0.84 9063\n",
|
402 |
+
"\n"
|
403 |
+
]
|
404 |
+
}
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"cell_type": "code",
|
409 |
+
"source": [
|
410 |
+
"model = LogisticRegression(penalty='l2', C=1.0, solver='liblinear', random_state=42) # Changed penalty to 'l2'\n",
|
411 |
+
"model.fit(X_train, y_train)"
|
412 |
+
],
|
413 |
+
"metadata": {
|
414 |
+
"colab": {
|
415 |
+
"base_uri": "https://localhost:8080/"
|
416 |
+
},
|
417 |
+
"id": "7TazBj_1AlgB",
|
418 |
+
"outputId": "bedb4784-c6fb-4dab-9d72-a041073daa2c"
|
419 |
+
},
|
420 |
+
"execution_count": 17,
|
421 |
+
"outputs": [
|
422 |
+
{
|
423 |
+
"output_type": "execute_result",
|
424 |
+
"data": {
|
425 |
+
"text/plain": [
|
426 |
+
"LogisticRegression(random_state=42, solver='liblinear')"
|
427 |
+
]
|
428 |
+
},
|
429 |
+
"metadata": {},
|
430 |
+
"execution_count": 17
|
431 |
+
}
|
432 |
+
]
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"cell_type": "code",
|
436 |
+
"source": [
|
437 |
+
"y_pred = model.predict(X_test)\n",
|
438 |
+
"\n",
|
439 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
440 |
+
"print(f\"Model Accuracy: {accuracy:.2f}\")\n",
|
441 |
+
"\n",
|
442 |
+
"print(\"Classificatoin Report:\")\n",
|
443 |
+
"print(classification_report(y_test, y_pred, target_names=le.classes_))"
|
444 |
+
],
|
445 |
+
"metadata": {
|
446 |
+
"colab": {
|
447 |
+
"base_uri": "https://localhost:8080/"
|
448 |
+
},
|
449 |
+
"id": "fA57l0S0A4hB",
|
450 |
+
"outputId": "1814a73e-5f7d-44ef-e5d6-5d0763f5f2a9"
|
451 |
+
},
|
452 |
+
"execution_count": 18,
|
453 |
+
"outputs": [
|
454 |
+
{
|
455 |
+
"output_type": "stream",
|
456 |
+
"name": "stdout",
|
457 |
+
"text": [
|
458 |
+
"Model Accuracy: 0.76\n",
|
459 |
+
"Classificatoin Report:\n",
|
460 |
+
" precision recall f1-score support\n",
|
461 |
+
"\n",
|
462 |
+
" b'DOWN' 0.75 0.87 0.81 5215\n",
|
463 |
+
" b'UP' 0.78 0.61 0.68 3848\n",
|
464 |
+
"\n",
|
465 |
+
" accuracy 0.76 9063\n",
|
466 |
+
" macro avg 0.76 0.74 0.75 9063\n",
|
467 |
+
"weighted avg 0.76 0.76 0.75 9063\n",
|
468 |
+
"\n"
|
469 |
+
]
|
470 |
+
}
|
471 |
+
]
|
472 |
+
}
|
473 |
+
]
|
474 |
+
}
|
electricity.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|