# -*- coding: utf-8 -*- """bayburtanalysis.159 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1i3xf37d6YszBy480hNM0EGmK3u-RtMJB """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.arima.model import ARIMA import prophet from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.ensemble import RandomForestRegressor from textblob import TextBlob import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer nltk.download('vader_lexicon') import plotly.express as px import plotly.graph_objs as go import plotly.figure_factory as ff import warnings warnings.filterwarnings('ignore') print("Very well you may continue") big_tech_companies = pd.read_csv('big_tech_companies.csv') big_tech_stock_prices = pd.read_csv('big_tech_stock_prices.csv') print("Big Tech Companies Dataset:") print(big_tech_companies.head()) print("\nBig Tech Stock Prices Dataset:") print(big_tech_stock_prices.head()) print("\nBig Tech Companies Dataset Info:") print(big_tech_companies.info()) print("\nBig Tech Stock Prices Dataset Info:") print(big_tech_stock_prices.info()) print("\nBig Tech Companies Dataset Description:") print(big_tech_companies.describe()) print("\nBig Tech Stock Prices Dataset Description:") print(big_tech_stock_prices.describe()) print("\nUnique Companies in Big Tech Companies Dataset:") print(big_tech_companies['company'].nunique()) print("\nUnique Stock Symbols in Big Tech Stock Prices Dataset:") print(big_tech_stock_prices['stock_symbol'].nunique()) print("\nMissing Values in Big Tech Companies Dataset:") print(big_tech_companies.isnull().sum()) print("\nMissing Values in Big Tech Stock Prices Dataset:") print(big_tech_stock_prices.isnull().sum()) print("\nStock Symbol Counts in Big Tech Stock Prices Dataset:") print(big_tech_stock_prices['stock_symbol'].value_counts()) big_tech_stock_prices['date'] = pd.to_datetime(big_tech_stock_prices['date']) plt.figure(figsize=(14, 7)) sns.lineplot(data=big_tech_stock_prices, x='date', y='close', hue='stock_symbol') plt.title('Stock Prices Over Time') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend(title='Stock Symbol') plt.show() plt.figure(figsize=(14, 7)) sns.lineplot(data=big_tech_stock_prices, x='date', y ='volume', hue='stock_symbol') plt.title('Trading Volume Over Time') plt.xlabel('Data') plt.ylabel('Volume') plt.legend(title='Stock Symbol') plt.show() plt.figure(figsize=(14,7)) sns.boxplot(data=big_tech_stock_prices, x='stock_symbol', y='close') plt.title('Distribution of Closing Prices by Stock Symbol') plt.xlabel('Stock Symbol') plt.ylabel('Close Price') plt.show() apple_stock = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == 'AAPL'] apple_stock.set_index('date', inplace=True) decompostiion = seasonal_decompose(apple_stock['close'], model='multiplicative', period=365) fig = decompostiion.plot() fig.set_size_inches(14, 10) plt.show() plt.figure(figsize=(14, 7)) apple_stock['close'].plot() plt.title('Apple Closing Prices') plt.xlabel('Date') plt.ylabel('Close Price') plt.show() apple_stock['rolling_mean'] = apple_stock['close'].rolling(window=30).mean() plt.figure(figsize=(14, 7)) apple_stock[['close', 'rolling_mean']].plot() plt.title('Apple Closing Prices and 30-Day Moving Average') plt.xlabel('Date') plt.ylabel('Close Price') plt.show() pivot_table = big_tech_stock_prices.pivot(index='date', columns='stock_symbol', values='close') correlation_matrix = pivot_table.corr() plt.figure(figsize=(12, 8)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5) plt.title('Correlation Matrix of Stock Closing Prices') plt.show() big_tech_stock_prices_2020 = big_tech_stock_prices [(big_tech_stock_prices['date'] >= '2020-01-01') & (big_tech_stock_prices['date'] <= '2020-12-31')] plt.figure(figsize=(14, 7)) sns.lineplot(data=big_tech_stock_prices_2020, x='date', y='close', hue='stock_symbol') plt.title('Stock Prices During 2020') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend(title='Stock Symbol') plt.show() big_tech_stock_prices['year'] = big_tech_stock_prices['date'].dt.year yearly_avg_prices = big_tech_stock_prices.groupby(['year', 'stock_symbol']).mean().reset_index() plt.figure(figsize=(14, 7)) sns.lineplot(data=yearly_avg_prices, x='year', y='close', hue='stock_symbol') plt.title('Yearly Average Closing Prices') plt.xlabel('Year') plt.ylabel('Average Close Price') plt.legend(title='Stock Symbol') plt.show() big_tech_stock_prices['price_change'] = big_tech_stock_prices.groupby('stock_symbol')['close'].pct_change() plt.figure(figsize=(14, 10)) sns.histplot(big_tech_stock_prices['price_change']. dropna(), bins=100, kde=True) plt.title('Histogram of Daily Price Changes for All Stocks') plt.xlabel('Daily Price Change') plt.ylabel('Frequency') plt.show() unique_symbols = big_tech_stock_prices['stock_symbol'].unique() for symbol in unique_symbols: plt.figure(figsize=(14, 7)) sns.histplot(big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol]['price_change'].dropna(), bins=100, kde=True) plt.title(f'Histogram of Daily Price Changes for {symbol}') plt.xlabel('Daily Price Change') plt.ylabel('Frequency') plt.show() volatility = big_tech_stock_prices.groupby('stock_symbol')['price_change'].std().reset_index() volatility.columns = ['stock_symbol', 'volatility'] plt.figure(figsize=(14, 7)) sns.barplot(data=volatility, x='stock_symbol', y='volatility') plt.title('Stock Price Volatility') plt.xlabel('Stock Symbol') plt.ylabel('Volatility(Standard Deviation of Daily Price Changes)') plt.show() yearly_price_change = big_tech_stock_prices.groupby(['year', 'stock_symbol'])['close'].mean().pct_change().reset_index() yearly_price_change = yearly_price_change.dropna() plt.figure(figsize=(14, 7)) sns.lineplot(data=yearly_price_change, x='year', y='close', hue='stock_symbol', marker='o') plt.title('Yearly Percentage Change in Average Closing Prices') plt.xlabel('Year') plt.ylabel('Percentage Change in Average Close Price') plt.legend(title='Stock Symbol') plt.show() model = ARIMA(apple_stock['close'], order=(5, 1, 0)) model_fit = model.fit() print(model_fit.summary()) plt.figure(figsize=(14, 7)) plt.plot(apple_stock['close'], label='Original') plt.plot(model_fit.fittedvalues, color='red', label='Fitted Values') plt.title('ARIMA Model Fit') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend() plt.show() forecast = model_fit.get_forecast(steps=30) forecast_index = pd.date_range(start=apple_stock.index[-1], periods=30, freq='D') forecast_mean = forecast.predicted_mean forecast_conf_int = forecast.conf_int() plt.figure(figsize=(14, 7)) plt.plot(apple_stock['close'], label='Original') plt.plot(forecast_index, forecast_mean, color='red', label='Forecast') plt.fill_between(forecast_index, forecast_conf_int.iloc[:, 0], forecast_conf_int.iloc[:, 1], color='pink', alpha=0.3) plt.title('ARIMA Model Forecast') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend() plt.show() unique_symbols = big_tech_stock_prices['stock_symbol'].unique() for symbol in unique_symbols: stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol] stock_data.set_index('date', inplace=True) print(f"\n### {symbol} ###") model = ARIMA(stock_data['close'], order=(5, 1, 0)) model_fit = model.fit() print(model_fit.summary()) plt.figure(figsize=(14, 7)) plt.plot(stock_data['close'], label='Original') plt.plot(model_fit.fittedvalues, color='red', label='Fitted Values') plt.title(f'{symbol} ARIMA Model Fit') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend() plt.show() forecast = model_fit.get_forecast(steps=30) forecast_index = pd.date_range(start=stock_data.index[-1], periods=30, freq='D') forecast_mean = forecast.predicted_mean forecast_conf_int = forecast.conf_int() plt.figure(figsize=(14, 7)) plt.plot(stock_data['close'], label='Original') plt.plot(forecast_index, forecast_mean, color='red', label='Forecast') plt.fill_between(forecast_index, forecast_conf_int.iloc[:, 0], forecast_conf_int.iloc[:, 1], color='pink', alpha=0.3) plt.title(f'{symbol} ARIMA Model Forecast') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend() plt.show() big_tech_stock_prices['daily_return'] = big_tech_stock_prices.groupby('stock_symbol')['close'].pct_change() mean_returns = big_tech_stock_prices.groupby('stock_symbol')['daily_return'].mean() volatilties = big_tech_stock_prices.groupby('stock_symbol')['daily_return'].std() risk_return_df = pd.DataFrame({'mean_return': mean_returns, 'volatility': volatilties}) print(risk_return_df) mean_returns = big_tech_stock_prices.groupby('stock_symbol')['daily_return'].mean() cov_matrix = big_tech_stock_prices.pivot_table(index='date', columns='stock_symbol', values='daily_return').cov() num_portfolios = 10000 results = np.zeros((4, num_portfolios)) weights_record = [] np.random.seed(42) for i in range(num_portfolios): weights = np.random.random(len(mean_returns)) weights /= np.sum(weights) weights_record.append(weights) portfolio_return = np.dot(weights, mean_returns) portfolio_stddev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) results[0, i] = portfolio_return results[1, i] = portfolio_stddev results[2, i] = results[0, i] / results[1, i] results_frame = pd.DataFrame(results.T, columns=['Return', 'Risk', 'Sharpe Ratio', 'Index']) max_sharpe_idx = results_frame['Sharpe Ratio'].idxmax() max_sharpe_portfolio = results_frame.iloc[max_sharpe_idx] max_sharpe_weights = weights_record[int(max_sharpe_portfolio[3])] min_risk_idx = results_frame['Risk'].idxmin() min_risk_portfolio = results_frame.iloc[min_risk_idx] min_risk_weights = weights_record[int(min_risk_portfolio[3])] plt.figure(figsize=(10, 6)) plt.scatter(results_frame['Risk'], results_frame['Return'], c=results_frame['Sharpe Ratio'], cmap='viridis') plt.colorbar(label='Sharpe Ratio') plt.scatter(max_sharpe_portfolio[1], max_sharpe_portfolio[0], marker='*', color='r', s=200, label='Max Sharpe Ratio') plt.scatter(min_risk_portfolio[1], min_risk_portfolio[0], marker='*', color='b', s=200, label= 'Min Risk') plt.title('Portfolio Optimization based on Efficient Frontier') plt.xlabel('Risk (Standard Deviation)') plt.ylabel('Return') plt.legend() plt.show print("Maximum Sharpe Ratio Portfolio Allocation\n") print("Return:", max_sharpe_portfolio[0]) print("Risk:", max_sharpe_portfolio[1]) print("Sharpe Ratio:", max_sharpe_portfolio[2]) print("\nWeights:\n") for i, txt in enumerate(mean_returns.index): print(f"{txt}: {max_sharpe_weights[i]}") print("\nMinimum Risk Portfolio Allocation\n") print("Return:", min_risk_portfolio[0]) print("Risk:", min_risk_portfolio[1]) print("\nWeights:\n") for i, txt in enumerate(mean_returns.index): print(f"{txt}: {min_risk_weights[i]}") big_tech_stock_price = pd.read_csv('big_tech_stock_prices.csv') macro_data = pd.read_csv('DATA.csv') print(macro_data.columns) macro_data = macro_data.rename(columns={ 'UNRATE(%)': 'unemployment_rate', 'CPIALLITEMS': 'cpi', 'INFLATION(%)': 'inflation_rate', 'MORTGAGE INT. MONTHLY AVG(%)': 'mortgage_interest_rate', 'CORP. BOND YIELD(%)': 'corporate_bond_yield' }) macro_data['DATE'] = pd.to_datetime(macro_data['DATE']) macro_data.rename(columns={'DATE': 'date'}, inplace=True) big_tech_stock_price['date'] = pd.to_datetime(big_tech_stock_price['date']) merged_data = pd.merge(big_tech_stock_prices, macro_data, on='date', how='inner') print(merged_data.head()) print(merged_data.columns) correlation_matrix = merged_data[['close', 'unemployment_rate', 'cpi', 'inflation_rate', 'mortgage_interest_rate', 'corporate_bond_yield']].corr() print(correlation_matrix) plt.figure(figsize=(10, 6)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5) plt.title('Correlation Matrix of Stock Prices and Macro-Economic Indicators') plt.show() plt.figure(figsize=(14, 7)) sns.lineplot(data=merged_data, x='date', y='close', hue='stock_symbol') plt.title('Stock Prices Over Time') plt.xlabel('Date') plt.ylabel('Close Price') plt.show() X = merged_data[['unemployment_rate', 'cpi', 'inflation_rate', 'mortgage_interest_rate', 'corporate_bond_yield']] y = merged_data['close'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) r2_score = model.score(X_test, y_test) print(f"R^2 Score: {r2_score}") coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient']) print(coefficients) for symbol in unique_symbols: stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol] stock_data.set_index('date', inplace=True) stock_data['z_score'] = (stock_data['close'] - stock_data['close'].mean()) / stock_data['close'].std() stock_data['anomaly'] = np.where(stock_data['z_score'].abs() > 3, True, False) plt.figure(figsize=(14, 7)) plt.plot(stock_data.index, stock_data['close'], label='Close Price') plt.scatter(stock_data[stock_data['anomaly']]. index, stock_data[stock_data['anomaly']]['close'], color='red', label='Anomaly') plt.title(f'{symbol} Stock Price with Anomalies') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend() plt.show() anomalies = stock_data[stock_data['anomaly']] print(f"Anomalies for {symbol}:") print(anomalies[['close', 'z_score']]) print("\n") pip install arch from arch import arch_model for symbol in unique_symbols: stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol] stock_data.set_index('date', inplace=True) stock_data['return'] = stock_data['close'].pct_change().dropna() model = arch_model(stock_data['return'].dropna(), vol='Garch', p=1, q=1) model_fit = model.fit(disp='off') print(f"Summary for {symbol}:") print(model_fit.summary()) volatility = model_fit.conditional_volatility plt.figure(figsize=(14, 7)) plt.plot(volatility) plt.title(f'{symbol} Stock Volatility') plt.xlabel('Date') plt.ylabel('Volatility') plt.show() forecast_horizon = 30 forecast = model_fit.forecast(horizon=forecast_horizon) forecast_volatility = np.sqrt(forecast.variance.values[-1, :]) plt.figure(figsize=(14, 7)) plt.plot(range(1, forecast_horizon+1), forecast_volatility) plt.title(f'{symbol} Forecasted Volatility for Next 30 Days') plt.xlabel('Days') plt.ylabel('Volatility') plt.show() for symbol in unique_symbols: stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol] stock_data.set_index('date', inplace=True) stock_data['SMA50'] = stock_data['close'].rolling(window=50).mean() stock_data['SMA200'] = stock_data['close'].rolling(window=200).mean() stock_data['Signal'] = 0.0 stock_data['Signal'][50:] = np.where(stock_data['SMA50'][50:] > stock_data['SMA200'][50:], 1.0, 0.0) stock_data['Position'] = stock_data['Signal'].diff() for symbol in unique_symbols: stock_data = big_tech_stock_prices[big_tech_stock_prices['stock_symbol'] == symbol] stock_data.set_index('date', inplace=True) stock_data['SMA50'] = stock_data['close'].rolling(window=50).mean() stock_data['SMA200'] = stock_data['close'].rolling(window=200).mean() stock_data['Signal'] = 0.0 stock_data['Signal'][50:] = np.where(stock_data['SMA50'][50:] > stock_data['SMA200'][50:], 1.0, 0.0) stock_data['Position'] = stock_data['Signal'].diff() # The following lines were incorrectly indented plt.figure(figsize=(14, 7)) plt.plot(stock_data['close'], label='Close Price') plt.plot(stock_data['SMA50'], label='50-day SMA', alpha=0.7) plt.plot(stock_data['SMA200'], label='200-day SMA', alpha=0.7) plt.plot(stock_data[stock_data['Position'] == 1].index, stock_data['SMA50'][stock_data['Position'] == 1], '^', markersize=10, color='g', lw=0, label='Buy Signal') plt.plot(stock_data[stock_data['Position'] == -1].index, stock_data['SMA50'][stock_data['Position'] == -1], 'v', markersize=10, color='r', lw=0, label='Sell Signal') plt.title(f'{symbol} - SMA Crossover Strategy') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend() plt.show() X = merged_data[['unemployment_rate', 'cpi', 'inflation_rate', 'mortgage_interest_rate', 'corporate_bond_yield']] y = merged_data['close'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestRegressor() model.fit(X_train, y_train) !pip install shap import shap explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X_test) shap.summary_plot(shap_values, X_test)