Upload 1046_159.py
Browse files- 1046_159.py +227 -0
1046_159.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""1046.159
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1uxVrUlNk5jB6t_CKcD_4ZvpDnJfiKqyu
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import time
|
14 |
+
import seaborn as sns
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
|
19 |
+
data = pd.read_csv('/content/Credit_Data.csv')
|
20 |
+
|
21 |
+
data.head()
|
22 |
+
|
23 |
+
data.drop('ID',axis=1,inplace=True)
|
24 |
+
|
25 |
+
data.shape
|
26 |
+
|
27 |
+
def get_summary(df):
|
28 |
+
df_desc = pd.DataFrame(df.describe(include='all').transpose())
|
29 |
+
df_summary = pd.DataFrame({
|
30 |
+
'dtype': df.dtypes,
|
31 |
+
'#missing': df.isnull().sum().values,
|
32 |
+
'#duplicates': df.duplicated().sum(),
|
33 |
+
'#unique': df.nunique().values,
|
34 |
+
'min': df_desc['min'].values,
|
35 |
+
'max': df_desc['max'].values,
|
36 |
+
'avg': df_desc['mean'].values,
|
37 |
+
'std dev': df_desc['std'].values,
|
38 |
+
})
|
39 |
+
return df_summary
|
40 |
+
|
41 |
+
get_summary(data).style.background_gradient()
|
42 |
+
|
43 |
+
target_col = 'Balance'
|
44 |
+
feature = data.drop('Balance', axis=1).columns
|
45 |
+
|
46 |
+
fig, ax = plt.subplots(2, 5, figsize=(20, 10))
|
47 |
+
axes = ax.flatten()
|
48 |
+
|
49 |
+
for i, col in enumerate(data[feature].columns):
|
50 |
+
sns.scatterplot(data=data, x=col, y='Balance', hue='Gender', ax=axes[i])
|
51 |
+
|
52 |
+
fig.suptitle('Interactions between Target Column and Features')
|
53 |
+
plt.tight_layout()
|
54 |
+
plt.show()
|
55 |
+
|
56 |
+
fig, ax = plt.subplots(2, 6, figsize=(20, 10))
|
57 |
+
axes = ax.flatten()
|
58 |
+
|
59 |
+
for i, col in enumerate(data.columns):
|
60 |
+
sns.histplot(data=data, x=col, hue='Gender', ax=axes[i])
|
61 |
+
|
62 |
+
fig.suptitle("Gender-Based Distribution of Financial and Demographic Features in the Dataset")
|
63 |
+
plt.tight_layout()
|
64 |
+
|
65 |
+
for ax in axes:
|
66 |
+
if not ax.has_data():
|
67 |
+
fig.delaxes(ax)
|
68 |
+
|
69 |
+
plt.show()
|
70 |
+
|
71 |
+
sns.pairplot(data, kind='scatter', diag_kind='hist', hue='Gender', palette='colorblind')
|
72 |
+
|
73 |
+
numeric_columns = data.select_dtypes(include='number').columns
|
74 |
+
|
75 |
+
fig, ax = plt.subplots(len(numeric_columns), 2, figsize=(12, len(numeric_columns)*2))
|
76 |
+
ax = ax.flatten()
|
77 |
+
|
78 |
+
for i, col in enumerate(numeric_columns):
|
79 |
+
sns.boxplot(data=data, x=col, width=0.6, ax=ax[2*i])
|
80 |
+
sns.violinplot(data=data, x=col, ax=ax[2*i + 1])
|
81 |
+
|
82 |
+
plt.tight_layout()
|
83 |
+
plt.show()
|
84 |
+
|
85 |
+
corr = data.select_dtypes(exclude='object').corr(method='spearman')
|
86 |
+
mask = np.triu(np.ones_like(corr))
|
87 |
+
|
88 |
+
sns.heatmap(corr, annot=True, mask=mask, cmap='YlGnBu',cbar=True)
|
89 |
+
plt.title('Correlation Matrix',fontdict={'color': 'blue', 'fontsize': 12})
|
90 |
+
|
91 |
+
from sklearn.preprocessing import OneHotEncoder
|
92 |
+
|
93 |
+
cat_columns = data.select_dtypes(include='O').columns.to_list()
|
94 |
+
|
95 |
+
dummie_df = pd.get_dummies(data=data[cat_columns], drop_first=True).astype('int8')
|
96 |
+
|
97 |
+
df = data.join(dummie_df)
|
98 |
+
df.drop(cat_columns,axis=1,inplace=True)
|
99 |
+
|
100 |
+
df.head()
|
101 |
+
|
102 |
+
from imblearn.over_sampling import SMOTE
|
103 |
+
from collections import Counter
|
104 |
+
|
105 |
+
X_train = df.drop('Student_Yes',axis=1)
|
106 |
+
y_train = df['Student_Yes']
|
107 |
+
|
108 |
+
sm = SMOTE(sampling_strategy='minority',random_state=14, k_neighbors=5, n_jobs=-1)
|
109 |
+
sm_X_train, sm_Y_train = sm.fit_resample(X_train,y_train)
|
110 |
+
|
111 |
+
print('Before sampling class distribution', Counter(y_train))
|
112 |
+
print('\nAfter sampling class distribution', Counter(sm_Y_train))
|
113 |
+
|
114 |
+
sm_df = pd.concat([sm_X_train,sm_Y_train],axis=1)
|
115 |
+
sm_df.head()
|
116 |
+
|
117 |
+
get_summary(sm_df).style.background_gradient()
|
118 |
+
|
119 |
+
!pip install ydata_profiling
|
120 |
+
|
121 |
+
from ydata_profiling import ProfileReport
|
122 |
+
|
123 |
+
profile_report = ProfileReport(
|
124 |
+
sm_df,
|
125 |
+
sort=None,
|
126 |
+
progress_bar=False,
|
127 |
+
html = {'style': {'full_width': True}},
|
128 |
+
correlations={
|
129 |
+
"auto": {"calculate": True},
|
130 |
+
"pearson": {"calculate": False},
|
131 |
+
"spearman": {"calculate": False},
|
132 |
+
"kendall": {"calculate": False},
|
133 |
+
"phi_k": {"calculate": True},
|
134 |
+
"cramers": {"calculate": True},
|
135 |
+
},
|
136 |
+
explorative=True,
|
137 |
+
title="Profiling Report"
|
138 |
+
)
|
139 |
+
|
140 |
+
profile_report.to_file('output.html')
|
141 |
+
|
142 |
+
from sklearn.linear_model import LinearRegression
|
143 |
+
from sklearn.model_selection import train_test_split, cross_val_score
|
144 |
+
from sklearn.preprocessing import StandardScaler
|
145 |
+
from sklearn import metrics
|
146 |
+
|
147 |
+
X = sm_df.drop('Balance',axis=1)
|
148 |
+
y = sm_df.Balance
|
149 |
+
|
150 |
+
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
|
151 |
+
|
152 |
+
scaler = StandardScaler()
|
153 |
+
train_x = scaler.fit_transform(train_x)
|
154 |
+
valid_x = scaler.transform(valid_x)
|
155 |
+
|
156 |
+
lm = LinearRegression()
|
157 |
+
history = lm.fit(train_x, train_y)
|
158 |
+
pred = lm.predict(valid_x)
|
159 |
+
r2 = metrics.r2_score(valid_y,pred)
|
160 |
+
|
161 |
+
print('r2_score',r2)
|
162 |
+
|
163 |
+
lm_df = pd.DataFrame(history.coef_.T, index= X.columns, columns=['coef_'])
|
164 |
+
|
165 |
+
lm_df.loc['intercept_'] = lm.intercept_
|
166 |
+
|
167 |
+
lm_df.sort_values(by='coef_')
|
168 |
+
|
169 |
+
plt.barh(y= lm_df.index, width='coef_', data=lm_df)
|
170 |
+
plt.show()
|
171 |
+
|
172 |
+
from sklearn.model_selection import train_test_split, cross_val_score, KFold
|
173 |
+
from sklearn.preprocessing import StandardScaler
|
174 |
+
from sklearn.preprocessing import PolynomialFeatures
|
175 |
+
from sklearn import metrics
|
176 |
+
|
177 |
+
X = sm_df.drop('Balance',axis=1)
|
178 |
+
y = sm_df.Balance
|
179 |
+
|
180 |
+
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
|
181 |
+
|
182 |
+
X_trainv, X_valid, Y_trainv, Y_valid = train_test_split(train_x, train_y, test_size=0.2, random_state=16518, shuffle=True)
|
183 |
+
|
184 |
+
train_x.shape, valid_x.shape
|
185 |
+
|
186 |
+
X_trainv.shape, X_valid.shape
|
187 |
+
|
188 |
+
def create_polynomial_regression_model(degree):
|
189 |
+
"Create a polynomial regression model for the given degree"
|
190 |
+
|
191 |
+
poly_features = PolynomialFeatures(degree=degree, include_bias=False)
|
192 |
+
|
193 |
+
X_train_poly = poly_features.fit_transform(X_trainv)
|
194 |
+
|
195 |
+
poly_model = LinearRegression()
|
196 |
+
poly_model.fit(X_train_poly, Y_trainv)
|
197 |
+
|
198 |
+
y_train_predicted = poly_model.predict(X_train_poly)
|
199 |
+
|
200 |
+
y_valid_predict = poly_model.predict(poly_features.fit_transform(X_valid))
|
201 |
+
|
202 |
+
mse_train = metrics.mean_squared_error(Y_trainv, y_train_predicted)
|
203 |
+
|
204 |
+
mse_valid = metrics.mean_squared_error(Y_valid, y_valid_predict)
|
205 |
+
|
206 |
+
return (mse_train, mse_valid,degree)
|
207 |
+
|
208 |
+
a=[]
|
209 |
+
for i in range(1,8):
|
210 |
+
a.append(create_polynomial_regression_model(i))
|
211 |
+
df = pd.DataFrame(a,columns=['Train Error', 'Validation Error', 'Degree'])
|
212 |
+
df.sort_values(by='Validation Error')
|
213 |
+
|
214 |
+
scaler = StandardScaler()
|
215 |
+
train_x = scaler.fit_transform(train_x)
|
216 |
+
valid_x = scaler.transform(valid_x)
|
217 |
+
|
218 |
+
polynomial_features = PolynomialFeatures(degree=2, include_bias=False)
|
219 |
+
train_x_poly = polynomial_features.fit_transform(train_x)
|
220 |
+
valid_x_poly = polynomial_features.fit_transform(valid_x)
|
221 |
+
|
222 |
+
polymodel = LinearRegression()
|
223 |
+
polymodel.fit(train_x_poly, train_y)
|
224 |
+
pred = polymodel.predict(valid_x_poly)
|
225 |
+
r2 = metrics.r2_score(valid_y,pred)
|
226 |
+
|
227 |
+
print('r2_score:', r2)
|