import pandas as pd import numpy as np import matplotlib.pyplot as plt import time import seaborn as sns import warnings warnings.filterwarnings('ignore') data = pd.read_csv('/content/Credit_Data.csv') data.head() data.drop('ID',axis=1,inplace=True) data.shape def get_summary(df): df_desc = pd.DataFrame(df.describe(include='all').transpose()) df_summary = pd.DataFrame({ 'dtype': df.dtypes, '#missing': df.isnull().sum().values, '#duplicates': df.duplicated().sum(), '#unique': df.nunique().values, 'min': df_desc['min'].values, 'max': df_desc['max'].values, 'avg': df_desc['mean'].values, 'std dev': df_desc['std'].values, }) return df_summary get_summary(data).style.background_gradient() target_col = 'Balance' feature = data.drop('Balance', axis=1).columns fig, ax = plt.subplots(2, 5, figsize=(20, 10)) axes = ax.flatten() for i, col in enumerate(data[feature].columns): sns.scatterplot(data=data, x=col, y='Balance', hue='Gender', ax=axes[i]) fig.suptitle('Interactions between Target Column and Features') plt.tight_layout() plt.show() fig, ax = plt.subplots(2, 6, figsize=(20, 10)) axes = ax.flatten() for i, col in enumerate(data.columns): sns.histplot(data=data, x=col, hue='Gender', ax=axes[i]) fig.suptitle("Gender-Based Distribution of Financial and Demographic Features in the Dataset") plt.tight_layout() for ax in axes: if not ax.has_data(): fig.delaxes(ax) plt.show() sns.pairplot(data, kind='scatter', diag_kind='hist', hue='Gender', palette='colorblind') numeric_columns = data.select_dtypes(include='number').columns fig, ax = plt.subplots(len(numeric_columns), 2, figsize=(12, len(numeric_columns)*2)) ax = ax.flatten() for i, col in enumerate(numeric_columns): sns.boxplot(data=data, x=col, width=0.6, ax=ax[2*i]) sns.violinplot(data=data, x=col, ax=ax[2*i + 1]) plt.tight_layout() plt.show() corr = data.select_dtypes(exclude='object').corr(method='spearman') mask = np.triu(np.ones_like(corr)) sns.heatmap(corr, annot=True, mask=mask, cmap='YlGnBu',cbar=True) plt.title('Correlation Matrix',fontdict={'color': 'blue', 'fontsize': 12}) from sklearn.preprocessing import OneHotEncoder cat_columns = data.select_dtypes(include='O').columns.to_list() dummie_df = pd.get_dummies(data=data[cat_columns], drop_first=True).astype('int8') df = data.join(dummie_df) df.drop(cat_columns,axis=1,inplace=True) df.head() from imblearn.over_sampling import SMOTE from collections import Counter X_train = df.drop('Student_Yes',axis=1) y_train = df['Student_Yes'] sm = SMOTE(sampling_strategy='minority',random_state=14, k_neighbors=5, n_jobs=-1) sm_X_train, sm_Y_train = sm.fit_resample(X_train,y_train) print('Before sampling class distribution', Counter(y_train)) print('\nAfter sampling class distribution', Counter(sm_Y_train)) sm_df = pd.concat([sm_X_train,sm_Y_train],axis=1) sm_df.head() get_summary(sm_df).style.background_gradient() !pip install ydata_profiling from ydata_profiling import ProfileReport profile_report = ProfileReport( sm_df, sort=None, progress_bar=False, html = {'style': {'full_width': True}}, correlations={ "auto": {"calculate": True}, "pearson": {"calculate": False}, "spearman": {"calculate": False}, "kendall": {"calculate": False}, "phi_k": {"calculate": True}, "cramers": {"calculate": True}, }, explorative=True, title="Profiling Report" ) profile_report.to_file('output.html') from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split, cross_val_score from sklearn.preprocessing import StandardScaler from sklearn import metrics X = sm_df.drop('Balance',axis=1) y = sm_df.Balance train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True) scaler = StandardScaler() train_x = scaler.fit_transform(train_x) valid_x = scaler.transform(valid_x) lm = LinearRegression() history = lm.fit(train_x, train_y) pred = lm.predict(valid_x) r2 = metrics.r2_score(valid_y,pred) print('r2_score',r2) lm_df = pd.DataFrame(history.coef_.T, index= X.columns, columns=['coef_']) lm_df.loc['intercept_'] = lm.intercept_ lm_df.sort_values(by='coef_') plt.barh(y= lm_df.index, width='coef_', data=lm_df) plt.show() from sklearn.model_selection import train_test_split, cross_val_score, KFold from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures from sklearn import metrics X = sm_df.drop('Balance',axis=1) y = sm_df.Balance train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True) X_trainv, X_valid, Y_trainv, Y_valid = train_test_split(train_x, train_y, test_size=0.2, random_state=16518, shuffle=True) train_x.shape, valid_x.shape X_trainv.shape, X_valid.shape def create_polynomial_regression_model(degree): "Create a polynomial regression model for the given degree" poly_features = PolynomialFeatures(degree=degree, include_bias=False) X_train_poly = poly_features.fit_transform(X_trainv) poly_model = LinearRegression() poly_model.fit(X_train_poly, Y_trainv) y_train_predicted = poly_model.predict(X_train_poly) y_valid_predict = poly_model.predict(poly_features.fit_transform(X_valid)) mse_train = metrics.mean_squared_error(Y_trainv, y_train_predicted) mse_valid = metrics.mean_squared_error(Y_valid, y_valid_predict) return (mse_train, mse_valid,degree) a=[] for i in range(1,8): a.append(create_polynomial_regression_model(i)) df = pd.DataFrame(a,columns=['Train Error', 'Validation Error', 'Degree']) df.sort_values(by='Validation Error') scaler = StandardScaler() train_x = scaler.fit_transform(train_x) valid_x = scaler.transform(valid_x) polynomial_features = PolynomialFeatures(degree=2, include_bias=False) train_x_poly = polynomial_features.fit_transform(train_x) valid_x_poly = polynomial_features.fit_transform(valid_x) polymodel = LinearRegression() polymodel.fit(train_x_poly, train_y) pred = polymodel.predict(valid_x_poly) r2 = metrics.r2_score(valid_y,pred) print('r2_score:', r2)