# -*- coding: utf-8 -*- """eda.363 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1LWUvpKSaZSgOHW-h4GzL9_0NM3RRIxTx """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv("/content/World-happiness-report-updated_2024.csv", encoding='latin-1') df.head(5) df.describe() df.info() df.isnull().sum() numeric_cols = df.select_dtypes(include=np.number).columns df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].mean()) df2024 = pd.read_csv("/content/World-happiness-report-2024.csv", encoding='latin-1') df2024.head(5) df2024.describe() df2024.info() df2024.isnull().sum() numeric_cols = df2024.select_dtypes(include=np.number).columns df2024[numeric_cols] = df2024[numeric_cols].fillna(df2024[numeric_cols].mean()) df2024['Country name'].unique() sns.countplot(x = 'Regional indicator', data = df2024) plt.xticks(rotation = 60) plt.show() list_features = ['Social support', 'Freedom to make life choices', 'Generosity', 'Perceptions of corruption'] sns.boxplot(data=df2024.loc[:,list_features],orient='h',palette = 'Set3') plt.show() list_features = ['Ladder score', 'Log GDP per capita'] sns.boxplot(data=df2024.loc[:,list_features],orient='h',palette = 'Set3') plt.show() df2024_happiest_unhappiest = df2024[(df2024.loc[:,'Ladder score']>7.4) | (df2024.loc[:,'Ladder score']<3.5)] sns.barplot(x = 'Ladder score', y= 'Country name', data = df2024_happiest_unhappiest, palette = 'coolwarm') plt.title('Happiest and Unhappiest Countries in 2024') plt.show() plt.figure(figsize=(15,8)) sns.kdeplot(x=df2024['Ladder score'], hue = df2024['Regional indicator'], fill = True, linewidth = 2) plt.axvline(df2024['Ladder score'].mean(),c= 'black') plt.title('Ladder Score Distribution by Regional Indicator') plt.show() import plotly.express as px fig = px.choropleth(df.sort_values('year'), locations='Country name', color='Life Ladder', locationmode = 'country names', animation_frame = 'year') fig.update_layout(title = 'Life Ladder Comparison by Countires') df2024_generosity = df2024[(df2024.loc[:,'Generosity']>0.6)|(df2024.loc[:,'Generosity']<0.05)] sns.barplot(x = 'Generosity', y = 'Country name', data = df2024_generosity, palette= 'coolwarm') plt.title('Most Generous and Most Ungenerous Countries in 2024') plt.show() fig = px.choropleth(df.sort_values('year'), locations = 'Country name', color = 'Generosity', locationmode = 'country names', animation_frame = 'year') fig.update_layout(title = 'Generosity Comparison by Countries') fig.show() sns.swarmplot(x = "Regional indicator", y = "Generosity", data = df2024, palette="Set1") plt.xticks(rotation = 90) plt.title("Generous Distribution by Regional Indicator in 2021") plt.show() non_numeric_columns = df.select_dtypes(exclude=['float64', 'int64']).columns df_numeric = df.drop(columns=non_numeric_columns) correlation_matrix = df_numeric.corr() sns.heatmap(correlation_matrix, annot = True, fmt ='.2f', linewidth = .7) plt.title('Relationship Between Features') plt.show() sns.clustermap(correlation_matrix, center = 0, cmap = 'vlag', dendrogram_ratio = (0.1,0.2), annot = True, linewidth = .7, figsize=(10,10)) plt.show()