Upload stringleveldigits_159.py
Browse files- stringleveldigits_159.py +101 -0
stringleveldigits_159.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""stringleveldigits.159
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1PYxiyOc2syUh3LwBeNHT7Ks2uQcfVk_n
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
import os
|
14 |
+
|
15 |
+
for dirnam, _, filenames in os.walk('financial_risk_assessment.csv'):
|
16 |
+
for filename in filenames:
|
17 |
+
print(os.path.join(dirname, filename))
|
18 |
+
|
19 |
+
import pandas as pd
|
20 |
+
import numpy as np
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import seaborn as sns
|
23 |
+
from sklearn.model_selection import train_test_split
|
24 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
25 |
+
from sklearn.compose import ColumnTransformer
|
26 |
+
from sklearn.pipeline import Pipeline
|
27 |
+
from sklearn.impute import SimpleImputer
|
28 |
+
from sklearn.ensemble import RandomForestClassifier
|
29 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
30 |
+
|
31 |
+
sns.set(style="whitegrid")
|
32 |
+
|
33 |
+
df = pd.read_csv('financial_risk_assessment.csv')
|
34 |
+
|
35 |
+
df.head()
|
36 |
+
|
37 |
+
df.info()
|
38 |
+
|
39 |
+
df.describe(include=[np.number])
|
40 |
+
|
41 |
+
df.describe(include=[object])
|
42 |
+
|
43 |
+
df.isnull().sum()
|
44 |
+
|
45 |
+
plt.figure(figsize=(8,6))
|
46 |
+
sns.countplot(x='Risk Rating', data=df)
|
47 |
+
plt.title('Distribution of Risk Ratings')
|
48 |
+
plt.show()
|
49 |
+
|
50 |
+
num_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job',
|
51 |
+
'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults']
|
52 |
+
df[num_features].hist(figsize=(15,12), bins=30, edgecolor='black')
|
53 |
+
plt.suptitle('Histograms of Numerical Features')
|
54 |
+
plt.show()
|
55 |
+
|
56 |
+
plt.figure(figsize=(15,10))
|
57 |
+
for i, feature in enumerate(num_features):
|
58 |
+
plt.subplot(3, 3, i+1)
|
59 |
+
sns.boxplot(x='Risk Rating', y=feature, data=df)
|
60 |
+
plt.title(f'Boxplot of {feature}')
|
61 |
+
plt.tight_layout()
|
62 |
+
plt.show()
|
63 |
+
|
64 |
+
plt.figure(figsize=(12,10))
|
65 |
+
correlation_matrix = df[num_features].corr()
|
66 |
+
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', vmin=-1, vmax=1)
|
67 |
+
plt.title('Correlation Heatmap')
|
68 |
+
plt.show()
|
69 |
+
|
70 |
+
for column in['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country']:
|
71 |
+
print('f{column} unique values:')
|
72 |
+
print(df[column].value_counts())
|
73 |
+
print()
|
74 |
+
|
75 |
+
X = df.drop('Risk Rating', axis=1)
|
76 |
+
y = df['Risk Rating']
|
77 |
+
|
78 |
+
numeric_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job', 'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults', 'Marital Status Change']
|
79 |
+
categorical_features = ['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country']
|
80 |
+
|
81 |
+
numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])
|
82 |
+
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))])
|
83 |
+
preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features),('cat', categorical_transformer, categorical_features)])
|
84 |
+
|
85 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
86 |
+
model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=100, random_state=42))])
|
87 |
+
|
88 |
+
model.fit(X_train, y_train)
|
89 |
+
|
90 |
+
y_pred = model.predict(X_test)
|
91 |
+
|
92 |
+
print("Classification Report:")
|
93 |
+
print(classification_report(y_test, y_pred))
|
94 |
+
|
95 |
+
conf_matrix = confusion_matrix(y_test, y_pred)
|
96 |
+
plt.figure(figsize=(10,7))
|
97 |
+
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Low', 'Medium', 'High'], yticklabels=['Low','Medium', 'High'])
|
98 |
+
plt.xlabel('Predicted')
|
99 |
+
plt.ylabel('Actual')
|
100 |
+
plt.title('Confusion Matrix')
|
101 |
+
plt.show()
|