# -*- coding: utf-8 -*- """stringleveldigits.159 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1PYxiyOc2syUh3LwBeNHT7Ks2uQcfVk_n """ import numpy as np import pandas as pd import os for dirnam, _, filenames in os.walk('financial_risk_assessment.csv'): for filename in filenames: print(os.path.join(dirname, filename)) import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix sns.set(style="whitegrid") df = pd.read_csv('financial_risk_assessment.csv') df.head() df.info() df.describe(include=[np.number]) df.describe(include=[object]) df.isnull().sum() plt.figure(figsize=(8,6)) sns.countplot(x='Risk Rating', data=df) plt.title('Distribution of Risk Ratings') plt.show() num_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job', 'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults'] df[num_features].hist(figsize=(15,12), bins=30, edgecolor='black') plt.suptitle('Histograms of Numerical Features') plt.show() plt.figure(figsize=(15,10)) for i, feature in enumerate(num_features): plt.subplot(3, 3, i+1) sns.boxplot(x='Risk Rating', y=feature, data=df) plt.title(f'Boxplot of {feature}') plt.tight_layout() plt.show() plt.figure(figsize=(12,10)) correlation_matrix = df[num_features].corr() sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', vmin=-1, vmax=1) plt.title('Correlation Heatmap') plt.show() for column in['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country']: print('f{column} unique values:') print(df[column].value_counts()) print() X = df.drop('Risk Rating', axis=1) y = df['Risk Rating'] numeric_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job', 'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults', 'Marital Status Change'] categorical_features = ['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country'] numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features),('cat', categorical_transformer, categorical_features)]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=100, random_state=42))]) model.fit(X_train, y_train) y_pred = model.predict(X_test) print("Classification Report:") print(classification_report(y_test, y_pred)) conf_matrix = confusion_matrix(y_test, y_pred) plt.figure(figsize=(10,7)) sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Low', 'Medium', 'High'], yticklabels=['Low','Medium', 'High']) plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion Matrix') plt.show()