Upload tonal_159.py
Browse files- tonal_159.py +142 -0
tonal_159.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""tonal.159
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1d2iQuX1rG4rDuN_HjwOCnEStQRLaq-0V
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import os
|
13 |
+
import seaborn as sns
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import plotly.express as px
|
16 |
+
import pandas as pd
|
17 |
+
|
18 |
+
import missingno as msno
|
19 |
+
|
20 |
+
import warnings
|
21 |
+
warnings.filterwarnings('ignore')
|
22 |
+
|
23 |
+
df = pd.read_csv("/content/ecommerce_sales_analysis.csv")
|
24 |
+
df.head()
|
25 |
+
|
26 |
+
df.tail()
|
27 |
+
|
28 |
+
df.shape
|
29 |
+
|
30 |
+
df.info()
|
31 |
+
|
32 |
+
df.describe().T
|
33 |
+
|
34 |
+
df.describe().T.plot(kind='bar')
|
35 |
+
|
36 |
+
df.isnull().sum()
|
37 |
+
|
38 |
+
sns.heatmap(df.isnull())
|
39 |
+
|
40 |
+
df.duplicated().sum()
|
41 |
+
|
42 |
+
numeric_df = df.select_dtypes(include=['number'])
|
43 |
+
|
44 |
+
plt.figure(figsize=(12, 6))
|
45 |
+
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
|
46 |
+
plt.title('Correlation Heatmap')
|
47 |
+
plt.show()
|
48 |
+
|
49 |
+
df.columns.to_list()
|
50 |
+
|
51 |
+
import plotly.express as px
|
52 |
+
|
53 |
+
columns = ['product_id',
|
54 |
+
'product_name',
|
55 |
+
'category',
|
56 |
+
'price',
|
57 |
+
'review_score',
|
58 |
+
'review_count',
|
59 |
+
'sales_month_1',
|
60 |
+
'sales_month_2',
|
61 |
+
'sales_month_3',
|
62 |
+
'sales_month_4',
|
63 |
+
'sales_month_5',
|
64 |
+
'sales_month_6',
|
65 |
+
'sales_month_7',
|
66 |
+
'sales_month_8',
|
67 |
+
'sales_month_9',
|
68 |
+
'sales_month_10',
|
69 |
+
'sales_month_11',
|
70 |
+
'sales_month_12',]
|
71 |
+
|
72 |
+
for column in columns:
|
73 |
+
|
74 |
+
if df[column].dtype == 'object' or df[column].dtype == 'category':
|
75 |
+
column_counts = df[column].value_counts().reset_index()
|
76 |
+
column_counts.columns = [column, 'count']
|
77 |
+
|
78 |
+
fig = px.bar(
|
79 |
+
column_counts,
|
80 |
+
x=column,
|
81 |
+
y='count',
|
82 |
+
title=f'Distribution of {column}',
|
83 |
+
labels={column: column, 'count': 'Count'},
|
84 |
+
text='count'
|
85 |
+
)
|
86 |
+
|
87 |
+
fig.update_layout(
|
88 |
+
xaxis_title=column,
|
89 |
+
yaxis_title='Count',
|
90 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
91 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
92 |
+
title_font=dict(size=18, family="Arial"),
|
93 |
+
|
94 |
+
xaxis={'categoryorder':'total descending'}
|
95 |
+
)
|
96 |
+
|
97 |
+
fig.show()
|
98 |
+
|
99 |
+
elif df[column].dtype == 'int64' or df[column].dtype == 'float64':
|
100 |
+
|
101 |
+
fig = px.histogram(
|
102 |
+
df,
|
103 |
+
x=column,
|
104 |
+
title=f'Distribution of {column}',
|
105 |
+
labels={column: column, 'count': 'Count'},
|
106 |
+
|
107 |
+
)
|
108 |
+
|
109 |
+
fig.update_layout(
|
110 |
+
xaxis_title=column,
|
111 |
+
yaxis_title='Count',
|
112 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
113 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
114 |
+
title_font=dict(size=18, family="Arial")
|
115 |
+
)
|
116 |
+
|
117 |
+
fig.show()
|
118 |
+
|
119 |
+
df
|
120 |
+
|
121 |
+
import matplotlib.pyplot as plt
|
122 |
+
from wordcloud import WordCloud, STOPWORDS
|
123 |
+
from collections import Counter
|
124 |
+
import pandas as pd
|
125 |
+
|
126 |
+
stop_words_list = set(STOPWORDS)
|
127 |
+
|
128 |
+
counts = Counter(df["category"].dropna().apply(lambda x: str(x)))
|
129 |
+
|
130 |
+
wcc = WordCloud(
|
131 |
+
background_color="black",
|
132 |
+
width=1600, height=800,
|
133 |
+
max_words=2000,
|
134 |
+
stopwords=stop_words_list
|
135 |
+
)
|
136 |
+
wcc.generate_from_frequencies(counts)
|
137 |
+
|
138 |
+
plt.figure(figsize=(10, 5), facecolor='k')
|
139 |
+
plt.imshow(wcc, interpolation='bilinear')
|
140 |
+
plt.axis("off")
|
141 |
+
plt.tight_layout(pad=0)
|
142 |
+
plt.show()
|