text_prompt
stringlengths
157
13.1k
code_prompt
stringlengths
7
19.8k
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def _roundSlist(slist): """ Rounds a signed list over the last element and removes it. """
slist[-1] = 60 if slist[-1] >= 30 else 0 for i in range(len(slist)-1, 1, -1): if slist[i] == 60: slist[i] = 0 slist[i-1] += 1 return slist[:-1]
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def strSlist(string): """ Converts angle string to signed list. """
sign = '-' if string[0] == '-' else '+' values = [abs(int(x)) for x in string.split(':')] return _fixSlist(list(sign) + values)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def slistStr(slist): """ Converts signed list to angle string. """
slist = _fixSlist(slist) string = ':'.join(['%02d' % x for x in slist[1:]]) return slist[0] + string
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def slistFloat(slist): """ Converts signed list to float. """
values = [v / 60**(i) for (i,v) in enumerate(slist[1:])] value = sum(values) return -value if slist[0] == '-' else value
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def floatSlist(value): """ Converts float to signed list. """
slist = ['+', 0, 0, 0, 0] if value < 0: slist[0] = '-' value = abs(value) for i in range(1,5): slist[i] = math.floor(value) value = (value - slist[i]) * 60 return _roundSlist(slist)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def toFloat(value): """ Converts string or signed list to float. """
if isinstance(value, str): return strFloat(value) elif isinstance(value, list): return slistFloat(value) else: return value
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def inDignities(self, idA, idB): """ Returns the dignities of A which belong to B. """
objA = self.chart.get(idA) info = essential.getInfo(objA.sign, objA.signlon) # Should we ignore exile and fall? return [dign for (dign, ID) in info.items() if ID == idB]
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def mutualReceptions(self, idA, idB): """ Returns all pairs of dignities in mutual reception. """
AB = self.receives(idA, idB) BA = self.receives(idB, idA) # Returns a product of both lists return [(a,b) for a in AB for b in BA]
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def reMutualReceptions(self, idA, idB): """ Returns ruler and exaltation mutual receptions. """
mr = self.mutualReceptions(idA, idB) filter_ = ['ruler', 'exalt'] # Each pair of dignities must be 'ruler' or 'exalt' return [(a,b) for (a,b) in mr if (a in filter_ and b in filter_)]
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def validAspects(self, ID, aspList): """ Returns a list with the aspects an object makes with the other six planets, considering a list of possible aspects. """
obj = self.chart.getObject(ID) res = [] for otherID in const.LIST_SEVEN_PLANETS: if ID == otherID: continue otherObj = self.chart.getObject(otherID) aspType = aspects.aspectType(obj, otherObj, aspList) if aspType != const.NO_ASPECT: res.append({ 'id': otherID, 'asp': aspType, }) return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def immediateAspects(self, ID, aspList): """ Returns the last separation and next application considering a list of possible aspects. """
asps = self.aspectsByCat(ID, aspList) applications = asps[const.APPLICATIVE] separations = asps[const.SEPARATIVE] exact = asps[const.EXACT] # Get applications and separations sorted by orb applications = applications + [val for val in exact if val['orb'] >= 0] applications = sorted(applications, key=lambda var: var['orb']) separations = sorted(separations, key=lambda var: var['orb']) return ( separations[0] if separations else None, applications[0] if applications else None )
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def singleFactor(factors, chart, factor, obj, aspect=None): """" Single factor for the table. """
objID = obj if type(obj) == str else obj.id res = { 'factor': factor, 'objID': objID, 'aspect': aspect } # For signs (obj as string) return sign element if type(obj) == str: res['element'] = props.sign.element[obj] # For Sun return sign and sunseason element elif objID == const.SUN: sunseason = props.sign.sunseason[obj.sign] res['sign'] = obj.sign res['sunseason'] = sunseason res['element'] = props.base.sunseasonElement[sunseason] # For Moon return phase and phase element elif objID == const.MOON: phase = chart.getMoonPhase() res['phase'] = phase res['element'] = props.base.moonphaseElement[phase] # For regular planets return element or sign/sign element # if there's an aspect involved elif objID in const.LIST_SEVEN_PLANETS: if aspect: res['sign'] = obj.sign res['element'] = props.sign.element[obj.sign] else: res['element'] = obj.element() try: # If there's element, insert into list res['element'] factors.append(res) except KeyError: pass return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def modifierFactor(chart, factor, factorObj, otherObj, aspList): """ Computes a factor for a modifier. """
asp = aspects.aspectType(factorObj, otherObj, aspList) if asp != const.NO_ASPECT: return { 'factor': factor, 'aspect': asp, 'objID': otherObj.id, 'element': otherObj.element() } return None
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getFactors(chart): """ Returns the factors for the temperament. """
factors = [] # Asc sign asc = chart.getAngle(const.ASC) singleFactor(factors, chart, ASC_SIGN, asc.sign) # Asc ruler ascRulerID = essential.ruler(asc.sign) ascRuler = chart.getObject(ascRulerID) singleFactor(factors, chart, ASC_RULER, ascRuler) singleFactor(factors, chart, ASC_RULER_SIGN, ascRuler.sign) # Planets in House 1 house1 = chart.getHouse(const.HOUSE1) planetsHouse1 = chart.objects.getObjectsInHouse(house1) for obj in planetsHouse1: singleFactor(factors, chart, HOUSE1_PLANETS_IN, obj) # Planets conjunct Asc planetsConjAsc = chart.objects.getObjectsAspecting(asc, [0]) for obj in planetsConjAsc: # Ignore planets already in house 1 if obj not in planetsHouse1: singleFactor(factors, chart, ASC_PLANETS_CONJ, obj) # Planets aspecting Asc cusp aspList = [60, 90, 120, 180] planetsAspAsc = chart.objects.getObjectsAspecting(asc, aspList) for obj in planetsAspAsc: aspect = aspects.aspectType(obj, asc, aspList) singleFactor(factors, chart, ASC_PLANETS_ASP, obj, aspect) # Moon sign and phase moon = chart.getObject(const.MOON) singleFactor(factors, chart, MOON_SIGN, moon.sign) singleFactor(factors, chart, MOON_PHASE, moon) # Moon dispositor moonRulerID = essential.ruler(moon.sign) moonRuler = chart.getObject(moonRulerID) moonFactor = singleFactor(factors, chart, MOON_DISPOSITOR_SIGN, moonRuler.sign) moonFactor['planetID'] = moonRulerID # Append moon dispositor ID # Planets conjunct Moon planetsConjMoon = chart.objects.getObjectsAspecting(moon, [0]) for obj in planetsConjMoon: singleFactor(factors, chart, MOON_PLANETS_CONJ, obj) # Planets aspecting Moon aspList = [60, 90, 120, 180] planetsAspMoon = chart.objects.getObjectsAspecting(moon, aspList) for obj in planetsAspMoon: aspect = aspects.aspectType(obj, moon, aspList) singleFactor(factors, chart, MOON_PLANETS_ASP, obj, aspect) # Sun season sun = chart.getObject(const.SUN) singleFactor(factors, chart, SUN_SEASON, sun) return factors
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getModifiers(chart): """ Returns the factors of the temperament modifiers. """
modifiers = [] # Factors which can be affected asc = chart.getAngle(const.ASC) ascRulerID = essential.ruler(asc.sign) ascRuler = chart.getObject(ascRulerID) moon = chart.getObject(const.MOON) factors = [ [MOD_ASC, asc], [MOD_ASC_RULER, ascRuler], [MOD_MOON, moon] ] # Factors of affliction mars = chart.getObject(const.MARS) saturn = chart.getObject(const.SATURN) sun = chart.getObject(const.SUN) affect = [ [mars, [0, 90, 180]], [saturn, [0, 90, 180]], [sun, [0]] ] # Do calculations of afflictions for affectingObj, affectingAsps in affect: for factor, affectedObj in factors: modf = modifierFactor(chart, factor, affectedObj, affectingObj, affectingAsps) if modf: modifiers.append(modf) return modifiers
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def scores(factors): """ Computes the score of temperaments and elements. """
temperaments = { const.CHOLERIC: 0, const.MELANCHOLIC: 0, const.SANGUINE: 0, const.PHLEGMATIC: 0 } qualities = { const.HOT: 0, const.COLD: 0, const.DRY: 0, const.HUMID: 0 } for factor in factors: element = factor['element'] # Score temperament temperament = props.base.elementTemperament[element] temperaments[temperament] += 1 # Score qualities tqualities = props.base.temperamentQuality[temperament] qualities[tqualities[0]] += 1 qualities[tqualities[1]] += 1 return { 'temperaments': temperaments, 'qualities': qualities }
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getObject(ID, date, pos): """ Returns an ephemeris object. """
obj = eph.getObject(ID, date.jd, pos.lat, pos.lon) return Object.fromDict(obj)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getObjectList(IDs, date, pos): """ Returns a list of objects. """
objList = [getObject(ID, date, pos) for ID in IDs] return ObjectList(objList)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getHouses(date, pos, hsys): """ Returns the lists of houses and angles. Since houses and angles are computed at the same time, this function should be fast. """
houses, angles = eph.getHouses(date.jd, pos.lat, pos.lon, hsys) hList = [House.fromDict(house) for house in houses] aList = [GenericObject.fromDict(angle) for angle in angles] return (HouseList(hList), GenericList(aList))
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getFixedStar(ID, date): """ Returns a fixed star from the ephemeris. """
star = eph.getFixedStar(ID, date.jd) return FixedStar.fromDict(star)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getFixedStarList(IDs, date): """ Returns a list of fixed stars. """
starList = [getFixedStar(ID, date) for ID in IDs] return FixedStarList(starList)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def nextSolarReturn(date, lon): """ Returns the next date when sun is at longitude 'lon'. """
jd = eph.nextSolarReturn(date.jd, lon) return Datetime.fromJD(jd, date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def prevSolarReturn(date, lon): """ Returns the previous date when sun is at longitude 'lon'. """
jd = eph.prevSolarReturn(date.jd, lon) return Datetime.fromJD(jd, date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def nextSunrise(date, pos): """ Returns the date of the next sunrise. """
jd = eph.nextSunrise(date.jd, pos.lat, pos.lon) return Datetime.fromJD(jd, date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def nextStation(ID, date): """ Returns the aproximate date of the next station. """
jd = eph.nextStation(ID, date.jd) return Datetime.fromJD(jd, date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def prevSolarEclipse(date): """ Returns the Datetime of the maximum phase of the previous global solar eclipse. """
eclipse = swe.solarEclipseGlobal(date.jd, backward=True) return Datetime.fromJD(eclipse['maximum'], date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def nextSolarEclipse(date): """ Returns the Datetime of the maximum phase of the next global solar eclipse. """
eclipse = swe.solarEclipseGlobal(date.jd, backward=False) return Datetime.fromJD(eclipse['maximum'], date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def prevLunarEclipse(date): """ Returns the Datetime of the maximum phase of the previous global lunar eclipse. """
eclipse = swe.lunarEclipseGlobal(date.jd, backward=True) return Datetime.fromJD(eclipse['maximum'], date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def nextLunarEclipse(date): """ Returns the Datetime of the maximum phase of the next global lunar eclipse. """
eclipse = swe.lunarEclipseGlobal(date.jd, backward=False) return Datetime.fromJD(eclipse['maximum'], date.utcoffset)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def plot(hdiff, title): """ Plots the tropical solar length by year. """
import matplotlib.pyplot as plt years = [elem[0] for elem in hdiff] diffs = [elem[1] for elem in hdiff] plt.plot(years, diffs) plt.ylabel('Distance in minutes') plt.xlabel('Year') plt.title(title) plt.axhline(y=0, c='red') plt.show()
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def ascdiff(decl, lat): """ Returns the Ascensional Difference of a point. """
delta = math.radians(decl) phi = math.radians(lat) ad = math.asin(math.tan(delta) * math.tan(phi)) return math.degrees(ad)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def dnarcs(decl, lat): """ Returns the diurnal and nocturnal arcs of a point. """
dArc = 180 + 2 * ascdiff(decl, lat) nArc = 360 - dArc return (dArc, nArc)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isAboveHorizon(ra, decl, mcRA, lat): """ Returns if an object's 'ra' and 'decl' is above the horizon at a specific latitude, given the MC's right ascension. """
# This function checks if the equatorial distance from # the object to the MC is within its diurnal semi-arc. dArc, _ = dnarcs(decl, lat) dist = abs(angle.closestdistance(mcRA, ra)) return dist <= dArc/2.0 + 0.0003
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def eqCoords(lon, lat): """ Converts from ecliptical to equatorial coordinates. This algorithm is described in book 'Primary Directions', pp. 147-150. """
# Convert to radians _lambda = math.radians(lon) _beta = math.radians(lat) _epson = math.radians(23.44) # The earth's inclination # Declination in radians decl = math.asin(math.sin(_epson) * math.sin(_lambda) * math.cos(_beta) + \ math.cos(_epson) * math.sin(_beta)) # Equatorial Distance in radians ED = math.acos(math.cos(_lambda) * math.cos(_beta) / math.cos(decl)) # RA in radians ra = ED if lon < 180 else math.radians(360) - ED # Correctness of RA if longitude is close to 0º or 180º in a radius of 5º if (abs(angle.closestdistance(lon, 0)) < 5 or abs(angle.closestdistance(lon, 180)) < 5): a = math.sin(ra) * math.cos(decl) b = math.cos(_epson) * math.sin(_lambda) * math.cos(_beta) - \ math.sin(_epson) * math.sin(_beta) if (math.fabs(a-b) > 0.0003): ra = math.radians(360) - ra return (math.degrees(ra), math.degrees(decl))
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def sunRelation(obj, sun): """ Returns an object's relation with the sun. """
if obj.id == const.SUN: return None dist = abs(angle.closestdistance(sun.lon, obj.lon)) if dist < 0.2833: return CAZIMI elif dist < 8.0: return COMBUST elif dist < 16.0: return UNDER_SUN else: return None
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def light(obj, sun): """ Returns if an object is augmenting or diminishing light. """
dist = angle.distance(sun.lon, obj.lon) faster = sun if sun.lonspeed > obj.lonspeed else obj if faster == sun: return LIGHT_DIMINISHING if dist < 180 else LIGHT_AUGMENTING else: return LIGHT_AUGMENTING if dist < 180 else LIGHT_DIMINISHING
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def orientality(obj, sun): """ Returns if an object is oriental or occidental to the sun. """
dist = angle.distance(sun.lon, obj.lon) return OCCIDENTAL if dist < 180 else ORIENTAL
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def haiz(obj, chart): """ Returns if an object is in Haiz. """
objGender = obj.gender() objFaction = obj.faction() if obj.id == const.MERCURY: # Gender and faction of mercury depends on orientality sun = chart.getObject(const.SUN) orientalityM = orientality(obj, sun) if orientalityM == ORIENTAL: objGender = const.MASCULINE objFaction = const.DIURNAL else: objGender = const.FEMININE objFaction = const.NOCTURNAL # Object gender match sign gender? signGender = props.sign.gender[obj.sign] genderConformity = (objGender == signGender) # Match faction factionConformity = False diurnalChart = chart.isDiurnal() if obj.id == const.SUN and not diurnalChart: # Sun is in conformity only when above horizon factionConformity = False else: # Get list of houses in the chart's diurnal faction if diurnalChart: diurnalFaction = props.house.aboveHorizon nocturnalFaction = props.house.belowHorizon else: diurnalFaction = props.house.belowHorizon nocturnalFaction = props.house.aboveHorizon # Get the object's house and match factions objHouse = chart.houses.getObjectHouse(obj) if (objFaction == const.DIURNAL and objHouse.id in diurnalFaction or objFaction == const.NOCTURNAL and objHouse.id in nocturnalFaction): factionConformity = True # Match things if (genderConformity and factionConformity): return HAIZ elif (not genderConformity and not factionConformity): return CHAIZ else: return None
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def house(self): """ Returns the object's house. """
house = self.chart.houses.getObjectHouse(self.obj) return house
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def sunRelation(self): """ Returns the relation of the object with the sun. """
sun = self.chart.getObject(const.SUN) return sunRelation(self.obj, sun)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def light(self): """ Returns if object is augmenting or diminishing its light. """
sun = self.chart.getObject(const.SUN) return light(self.obj, sun)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def orientality(self): """ Returns the orientality of the object. """
sun = self.chart.getObject(const.SUN) return orientality(self.obj, sun)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def inHouseJoy(self): """ Returns if the object is in its house of joy. """
house = self.house() return props.object.houseJoy[self.obj.id] == house.id
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def inSignJoy(self): """ Returns if the object is in its sign of joy. """
return props.object.signJoy[self.obj.id] == self.obj.sign
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def reMutualReceptions(self): """ Returns all mutual receptions with the object and other planets, indexed by planet ID. It only includes ruler and exaltation receptions. """
planets = copy(const.LIST_SEVEN_PLANETS) planets.remove(self.obj.id) mrs = {} for ID in planets: mr = self.dyn.reMutualReceptions(self.obj.id, ID) if mr: mrs[ID] = mr return mrs
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def aspectBenefics(self): """ Returns a list with the good aspects the object makes to the benefics. """
benefics = [const.VENUS, const.JUPITER] return self.__aspectLists(benefics, aspList=[0, 60, 120])
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def aspectMalefics(self): """ Returns a list with the bad aspects the object makes to the malefics. """
malefics = [const.MARS, const.SATURN] return self.__aspectLists(malefics, aspList=[0, 90, 180])
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def __sepApp(self, IDs, aspList): """ Returns true if the object last and next movement are separations and applications to objects in list IDs. It only considers aspects in aspList. This function is static since it does not test if the next application will be indeed perfected. It considers only a snapshot of the chart and not its astronomical movement. """
sep, app = self.dyn.immediateAspects(self.obj.id, aspList) if sep is None or app is None: return False else: sepCondition = sep['id'] in IDs appCondition = app['id'] in IDs return sepCondition == appCondition == True
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isAuxilied(self): """ Returns if the object is separating and applying to a benefic considering good aspects. """
benefics = [const.VENUS, const.JUPITER] return self.__sepApp(benefics, aspList=[0, 60, 120])
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isSurrounded(self): """ Returns if the object is separating and applying to a malefic considering bad aspects. """
malefics = [const.MARS, const.SATURN] return self.__sepApp(malefics, aspList=[0, 90, 180])
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isConjNorthNode(self): """ Returns if object is conjunct north node. """
node = self.chart.getObject(const.NORTH_NODE) return aspects.hasAspect(self.obj, node, aspList=[0])
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isConjSouthNode(self): """ Returns if object is conjunct south node. """
node = self.chart.getObject(const.SOUTH_NODE) return aspects.hasAspect(self.obj, node, aspList=[0])
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isFeral(self): """ Returns true if the object does not have any aspects. """
planets = copy(const.LIST_SEVEN_PLANETS) planets.remove(self.obj.id) for otherID in planets: otherObj = self.chart.getObject(otherID) if aspects.hasAspect(self.obj, otherObj, const.MAJOR_ASPECTS): return False return True
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getActiveProperties(self): """ Returns the non-zero accidental dignities. """
score = self.getScoreProperties() return {key: value for (key, value) in score.items() if value != 0}
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def score(self): """ Returns the sum of the accidental dignities score. """
if not self.scoreProperties: self.scoreProperties = self.getScoreProperties() return sum(self.scoreProperties.values())
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def fromDict(cls, _dict): """ Builds instance from dictionary of properties. """
obj = cls() obj.__dict__.update(_dict) return obj
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def eqCoords(self, zerolat=False): """ Returns the Equatorial Coordinates of this object. Receives a boolean parameter to consider a zero latitude. """
lat = 0.0 if zerolat else self.lat return utils.eqCoords(self.lon, lat)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def relocate(self, lon): """ Relocates this object to a new longitude. """
self.lon = angle.norm(lon) self.signlon = self.lon % 30 self.sign = const.LIST_SIGNS[int(self.lon / 30.0)]
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def antiscia(self): """ Returns antiscia object. """
obj = self.copy() obj.type = const.OBJ_GENERIC obj.relocate(360 - obj.lon + 180) return obj
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def movement(self): """ Returns if this object is direct, retrograde or stationary. """
if abs(self.lonspeed) < 0.0003: return const.STATIONARY elif self.lonspeed > 0: return const.DIRECT else: return const.RETROGRADE
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def inHouse(self, lon): """ Returns if a longitude belongs to this house. """
dist = angle.distance(self.lon + House._OFFSET, lon) return dist < self.size
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def orb(self): """ Returns the orb of this fixed star. """
for (mag, orb) in FixedStar._ORBS: if self.mag < mag: return orb return 0.5
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def aspects(self, obj): """ Returns true if this star aspects another object. Fixed stars only aspect by conjunctions. """
dist = angle.closestdistance(self.lon, obj.lon) return abs(dist) < self.orb()
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getObjectsInHouse(self, house): """ Returns a list with all objects in a house. """
res = [obj for obj in self if house.hasObject(obj)] return ObjectList(res)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getObjectsAspecting(self, point, aspList): """ Returns a list of objects aspecting a point considering a list of possible aspects. """
res = [] for obj in self: if obj.isPlanet() and aspects.isAspecting(obj, point, aspList): res.append(obj) return ObjectList(res)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def arc(pRA, pDecl, sRA, sDecl, mcRA, lat): """ Returns the arc of direction between a Promissor and Significator. It uses the generic proportional semi-arc method. """
pDArc, pNArc = utils.dnarcs(pDecl, lat) sDArc, sNArc = utils.dnarcs(sDecl, lat) # Select meridian and arcs to be used # Default is MC and Diurnal arcs mdRA = mcRA sArc = sDArc pArc = pDArc if not utils.isAboveHorizon(sRA, sDecl, mcRA, lat): # Use IC and Nocturnal arcs mdRA = angle.norm(mcRA + 180) sArc = sNArc pArc = pNArc # Promissor and Significator distance to meridian pDist = angle.closestdistance(mdRA, pRA) sDist = angle.closestdistance(mdRA, sRA) # Promissor should be after significator (in degrees) if pDist < sDist: pDist += 360 # Meridian distances proportional to respective semi-arcs sPropDist = sDist / (sArc / 2.0) pPropDist = pDist / (pArc / 2.0) # The arc is how much of the promissor's semi-arc is # needed to reach the significator return (pPropDist - sPropDist) * (pArc / 2.0)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getArc(prom, sig, mc, pos, zerolat): """ Returns the arc of direction between a promissor and a significator. Arguments are also the MC, the geoposition and zerolat to assume zero ecliptical latitudes. ZeroLat true => inZodiaco, false => inMundo """
pRA, pDecl = prom.eqCoords(zerolat) sRa, sDecl = sig.eqCoords(zerolat) mcRa, mcDecl = mc.eqCoords() return arc(pRA, pDecl, sRa, sDecl, mcRa, pos.lat)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def _buildTerms(self): """ Builds a data structure indexing the terms longitude by sign and object. """
termLons = tables.termLons(tables.EGYPTIAN_TERMS) res = {} for (ID, sign, lon) in termLons: try: res[sign][ID] = lon except KeyError: res[sign] = {} res[sign][ID] = lon return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def G(self, ID, lat, lon): """ Creates a generic entry for an object. """
# Equatorial coordinates eqM = utils.eqCoords(lon, lat) eqZ = eqM if lat != 0: eqZ = utils.eqCoords(lon, 0) return { 'id': ID, 'lat': lat, 'lon': lon, 'ra': eqM[0], 'decl': eqM[1], 'raZ': eqZ[0], 'declZ': eqZ[1], }
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def T(self, ID, sign): """ Returns the term of an object in a sign. """
lon = self.terms[sign][ID] ID = 'T_%s_%s' % (ID, sign) return self.G(ID, 0, lon)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def A(self, ID): """ Returns the Antiscia of an object. """
obj = self.chart.getObject(ID).antiscia() ID = 'A_%s' % (ID) return self.G(ID, obj.lat, obj.lon)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def C(self, ID): """ Returns the CAntiscia of an object. """
obj = self.chart.getObject(ID).cantiscia() ID = 'C_%s' % (ID) return self.G(ID, obj.lat, obj.lon)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def D(self, ID, asp): """ Returns the dexter aspect of an object. """
obj = self.chart.getObject(ID).copy() obj.relocate(obj.lon - asp) ID = 'D_%s_%s' % (ID, asp) return self.G(ID, obj.lat, obj.lon)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def N(self, ID, asp=0): """ Returns the conjunction or opposition aspect of an object. """
obj = self.chart.get(ID).copy() obj.relocate(obj.lon + asp) ID = 'N_%s_%s' % (ID, asp) return self.G(ID, obj.lat, obj.lon)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def _arc(self, prom, sig): """ Computes the in-zodiaco and in-mundo arcs between a promissor and a significator. """
arcm = arc(prom['ra'], prom['decl'], sig['ra'], sig['decl'], self.mcRA, self.lat) arcz = arc(prom['raZ'], prom['declZ'], sig['raZ'], sig['declZ'], self.mcRA, self.lat) return { 'arcm': arcm, 'arcz': arcz }
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getArc(self, prom, sig): """ Returns the arcs between a promissor and a significator. Should uses the object creation functions to build the objects. """
res = self._arc(prom, sig) res.update({ 'prom': prom['id'], 'sig': sig['id'] }) return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def _elements(self, IDs, func, aspList): """ Returns the IDs as objects considering the aspList and the function. """
res = [] for asp in aspList: if (asp in [0, 180]): # Generate func for conjunctions and oppositions if func == self.N: res.extend([func(ID, asp) for ID in IDs]) else: res.extend([func(ID) for ID in IDs]) else: # Generate Dexter and Sinister for others res.extend([self.D(ID, asp) for ID in IDs]) res.extend([self.S(ID, asp) for ID in IDs]) return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def _terms(self): """ Returns a list with the objects as terms. """
res = [] for sign, terms in self.terms.items(): for ID, lon in terms.items(): res.append(self.T(ID, sign)) return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getList(self, aspList): """ Returns a sorted list with all primary directions. """
# Significators objects = self._elements(self.SIG_OBJECTS, self.N, [0]) houses = self._elements(self.SIG_HOUSES, self.N, [0]) angles = self._elements(self.SIG_ANGLES, self.N, [0]) significators = objects + houses + angles # Promissors objects = self._elements(self.SIG_OBJECTS, self.N, aspList) terms = self._terms() antiscias = self._elements(self.SIG_OBJECTS, self.A, [0]) cantiscias = self._elements(self.SIG_OBJECTS, self.C, [0]) promissors = objects + terms + antiscias + cantiscias # Compute all res = [] for prom in promissors: for sig in significators: if (prom['id'] == sig['id']): continue arcs = self._arc(prom, sig) for (x,y) in [('arcm', 'M'), ('arcz', 'Z')]: arc = arcs[x] if 0 < arc < self.MAX_ARC: res.append([ arcs[x], prom['id'], sig['id'], y, ]) return sorted(res)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def view(self, arcmin, arcmax): """ Returns the directions within the min and max arcs. """
res = [] for direction in self.table: if arcmin < direction[0] < arcmax: res.append(direction) return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def bySignificator(self, ID): """ Returns all directions to a significator. """
res = [] for direction in self.table: if ID in direction[2]: res.append(direction) return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def byPromissor(self, ID): """ Returns all directions to a promissor. """
res = [] for direction in self.table: if ID in direction[1]: res.append(direction) return res
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def copy(self): """ Returns a deep copy of this chart. """
chart = Chart.__new__(Chart) chart.date = self.date chart.pos = self.pos chart.hsys = self.hsys chart.objects = self.objects.copy() chart.houses = self.houses.copy() chart.angles = self.angles.copy() return chart
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def get(self, ID): """ Returns an object, house or angle from the chart. """
if ID.startswith('House'): return self.getHouse(ID) elif ID in const.LIST_ANGLES: return self.getAngle(ID) else: return self.getObject(ID)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getFixedStars(self): """ Returns a list with all fixed stars. """
IDs = const.LIST_FIXED_STARS return ephem.getFixedStarList(IDs, self.date)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isHouse1Asc(self): """ Returns true if House1 is the same as the Asc. """
house1 = self.getHouse(const.HOUSE1) asc = self.getAngle(const.ASC) dist = angle.closestdistance(house1.lon, asc.lon) return abs(dist) < 0.0003
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isHouse10MC(self): """ Returns true if House10 is the same as the MC. """
house10 = self.getHouse(const.HOUSE10) mc = self.getAngle(const.MC) dist = angle.closestdistance(house10.lon, mc.lon) return abs(dist) < 0.0003
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def isDiurnal(self): """ Returns true if this chart is diurnal. """
sun = self.getObject(const.SUN) mc = self.getAngle(const.MC) # Get ecliptical positions and check if the # sun is above the horizon. lat = self.pos.lat sunRA, sunDecl = utils.eqCoords(sun.lon, sun.lat) mcRA, mcDecl = utils.eqCoords(mc.lon, 0) return utils.isAboveHorizon(sunRA, sunDecl, mcRA, lat)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getMoonPhase(self): """ Returns the phase of the moon. """
sun = self.getObject(const.SUN) moon = self.getObject(const.MOON) dist = angle.distance(sun.lon, moon.lon) if dist < 90: return const.MOON_FIRST_QUARTER elif dist < 180: return const.MOON_SECOND_QUARTER elif dist < 270: return const.MOON_THIRD_QUARTER else: return const.MOON_LAST_QUARTER
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def solarReturn(self, year): """ Returns this chart's solar return for a given year. """
sun = self.getObject(const.SUN) date = Datetime('{0}/01/01'.format(year), '00:00', self.date.utcoffset) srDate = ephem.nextSolarReturn(date, sun.lon) return Chart(srDate, self.pos, hsys=self.hsys)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def partLon(ID, chart): """ Returns the longitude of an arabic part. """
# Get diurnal or nocturnal formula abc = FORMULAS[ID][0] if chart.isDiurnal() else FORMULAS[ID][1] a = objLon(abc[0], chart) b = objLon(abc[1], chart) c = objLon(abc[2], chart) return c + b - a
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def getPart(ID, chart): """ Returns an Arabic Part. """
obj = GenericObject() obj.id = ID obj.type = const.OBJ_ARABIC_PART obj.relocate(partLon(ID, chart)) return obj
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def sweObject(obj, jd): """ Returns an object from the Ephemeris. """
sweObj = SWE_OBJECTS[obj] sweList = swisseph.calc_ut(jd, sweObj) return { 'id': obj, 'lon': sweList[0], 'lat': sweList[1], 'lonspeed': sweList[3], 'latspeed': sweList[4] }
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def sweNextTransit(obj, jd, lat, lon, flag): """ Returns the julian date of the next transit of an object. The flag should be 'RISE' or 'SET'. """
sweObj = SWE_OBJECTS[obj] flag = swisseph.CALC_RISE if flag == 'RISE' else swisseph.CALC_SET trans = swisseph.rise_trans(jd, sweObj, lon, lat, 0, 0, 0, flag) return trans[1][0]
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def sweHousesLon(jd, lat, lon, hsys): """ Returns lists with house and angle longitudes. """
hsys = SWE_HOUSESYS[hsys] hlist, ascmc = swisseph.houses(jd, lat, lon, hsys) angles = [ ascmc[0], ascmc[1], angle.norm(ascmc[0] + 180), angle.norm(ascmc[1] + 180) ] return (hlist, angles)
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def sweFixedStar(star, jd): """ Returns a fixed star from the Ephemeris. """
sweList = swisseph.fixstar_ut(star, jd) mag = swisseph.fixstar_mag(star) return { 'id': star, 'mag': mag, 'lon': sweList[0], 'lat': sweList[1] }
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def solarEclipseGlobal(jd, backward): """ Returns the jd details of previous or next global solar eclipse. """
sweList = swisseph.sol_eclipse_when_glob(jd, backward=backward) return { 'maximum': sweList[1][0], 'begin': sweList[1][2], 'end': sweList[1][3], 'totality_begin': sweList[1][4], 'totality_end': sweList[1][5], 'center_line_begin': sweList[1][6], 'center_line_end': sweList[1][7], }
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def lunarEclipseGlobal(jd, backward): """ Returns the jd details of previous or next global lunar eclipse. """
sweList = swisseph.lun_eclipse_when(jd, backward=backward) return { 'maximum': sweList[1][0], 'partial_begin': sweList[1][2], 'partial_end': sweList[1][3], 'totality_begin': sweList[1][4], 'totality_end': sweList[1][5], 'penumbral_begin': sweList[1][6], 'penumbral_end': sweList[1][7], }
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def dateJDN(year, month, day, calendar): """ Converts date to Julian Day Number. """
a = (14 - month) // 12 y = year + 4800 - a m = month + 12*a - 3 if calendar == GREGORIAN: return day + (153*m + 2)//5 + 365*y + y//4 - y//100 + y//400 - 32045 else: return day + (153*m + 2)//5 + 365*y + y//4 - 32083
<SYSTEM_TASK:> Solve the following problem using Python, implementing the functions described below, one line at a time <END_TASK> <USER_TASK:> Description: def jdnDate(jdn): """ Converts Julian Day Number to Gregorian date. """
a = jdn + 32044 b = (4*a + 3) // 146097 c = a - (146097*b) // 4 d = (4*c + 3) // 1461 e = c - (1461*d) // 4 m = (5*e + 2) // 153 day = e + 1 - (153*m + 2) // 5 month = m + 3 - 12*(m//10) year = 100*b + d - 4800 + m//10 return [year, month, day]