Upload mri_autoencoder.ipynb
Browse files- mri_autoencoder.ipynb +1956 -0
mri_autoencoder.ipynb
ADDED
@@ -0,0 +1,1956 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### Generating Train-Val Split from Dataset"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import os\n",
|
17 |
+
"import shutil\n",
|
18 |
+
"import random\n",
|
19 |
+
"import multiprocessing\n",
|
20 |
+
"from copy import deepcopy\n",
|
21 |
+
"\n",
|
22 |
+
"def recursive_copy_dicom(src_folder, dest_folder, file_counter):\n",
|
23 |
+
" \"\"\"\n",
|
24 |
+
" Recursively finds and copies DICOM files from the source to the destination folder, renaming them sequentially.\n",
|
25 |
+
" \n",
|
26 |
+
" :param src_folder: The source folder containing DICOM files (including subdirectories).\n",
|
27 |
+
" :param dest_folder: The destination folder where the files will be copied and renamed.\n",
|
28 |
+
" :param file_counter: The sequential counter for renaming files.\n",
|
29 |
+
" :return: List of renamed files for further splitting.\n",
|
30 |
+
" \"\"\"\n",
|
31 |
+
" renamed_files = []\n",
|
32 |
+
"\n",
|
33 |
+
" for root, dirs, files in os.walk(src_folder):\n",
|
34 |
+
" for dicom_file in files:\n",
|
35 |
+
" if dicom_file.lower().endswith('.dcm'):\n",
|
36 |
+
" # Get full path of the source file\n",
|
37 |
+
" src_file_path = os.path.join(root, dicom_file)\n",
|
38 |
+
" \n",
|
39 |
+
" # Create the new file path in the destination folder\n",
|
40 |
+
" dest_file_path = os.path.join(dest_folder, f\"{file_counter}.dcm\")\n",
|
41 |
+
" \n",
|
42 |
+
" # Copy and rename the file\n",
|
43 |
+
" shutil.copy(src_file_path, dest_file_path)\n",
|
44 |
+
" \n",
|
45 |
+
" # Append the renamed file to the list\n",
|
46 |
+
" renamed_files.append(f\"{file_counter}.dcm\")\n",
|
47 |
+
" \n",
|
48 |
+
" # Increment the file counter for the next file\n",
|
49 |
+
" file_counter += 1\n",
|
50 |
+
"\n",
|
51 |
+
" return renamed_files\n",
|
52 |
+
"\n",
|
53 |
+
"def split_and_transfer_files(file_list, dest_folder, split_factor):\n",
|
54 |
+
" \"\"\"\n",
|
55 |
+
" Splits the list of renamed files into train and val sets and moves them into the appropriate folders.\n",
|
56 |
+
" \n",
|
57 |
+
" :param file_list: List of renamed DICOM files.\n",
|
58 |
+
" :param dest_folder: Destination folder where train and val subfolders will be created.\n",
|
59 |
+
" :param split_factor: The ratio of files to go into the train subfolder.\n",
|
60 |
+
" \"\"\"\n",
|
61 |
+
" # Ensure the destination folder and subfolders exist\n",
|
62 |
+
" train_folder = os.path.join(dest_folder, 'train')\n",
|
63 |
+
" val_folder = os.path.join(dest_folder, 'val')\n",
|
64 |
+
" \n",
|
65 |
+
" if not os.path.exists(train_folder):\n",
|
66 |
+
" os.makedirs(train_folder)\n",
|
67 |
+
" \n",
|
68 |
+
" if not os.path.exists(val_folder):\n",
|
69 |
+
" os.makedirs(val_folder)\n",
|
70 |
+
"\n",
|
71 |
+
" # Shuffle the files for randomness\n",
|
72 |
+
" random.shuffle(file_list)\n",
|
73 |
+
"\n",
|
74 |
+
" # Calculate the number of files for the train and validation sets\n",
|
75 |
+
" split_index = int(len(file_list) * split_factor)\n",
|
76 |
+
" \n",
|
77 |
+
" # Split the files into train and val sets\n",
|
78 |
+
" train_files = file_list[:split_index]\n",
|
79 |
+
" val_files = file_list[split_index:]\n",
|
80 |
+
"\n",
|
81 |
+
" # Move the files to the respective folders\n",
|
82 |
+
" for file in train_files:\n",
|
83 |
+
" src_file = os.path.join(dest_folder, file)\n",
|
84 |
+
" dest_file = os.path.join(train_folder, file)\n",
|
85 |
+
" shutil.move(src_file, dest_file)\n",
|
86 |
+
" print(f\"Moved {file} to train folder\")\n",
|
87 |
+
" \n",
|
88 |
+
" for file in val_files:\n",
|
89 |
+
" src_file = os.path.join(dest_folder, file)\n",
|
90 |
+
" dest_file = os.path.join(val_folder, file)\n",
|
91 |
+
" shutil.move(src_file, dest_file)\n",
|
92 |
+
" print(f\"Moved {file} to val folder\")\n",
|
93 |
+
"\n",
|
94 |
+
"def process_dicom_files(src_folder, dest_folder, split_factor):\n",
|
95 |
+
" \"\"\"\n",
|
96 |
+
" Recursively finds, renames, copies DICOM files, and splits them into train and val sets.\n",
|
97 |
+
" \n",
|
98 |
+
" :param src_folder: The source folder containing DICOM files (including subdirectories).\n",
|
99 |
+
" :param dest_folder: The destination folder where the renamed files and the train/val split will be created.\n",
|
100 |
+
" :param split_factor: The ratio of files to go into the train subfolder.\n",
|
101 |
+
" \"\"\"\n",
|
102 |
+
" # Ensure the destination folder exists\n",
|
103 |
+
" if not os.path.exists(dest_folder):\n",
|
104 |
+
" os.makedirs(dest_folder)\n",
|
105 |
+
"\n",
|
106 |
+
" # Initialize file counter\n",
|
107 |
+
" file_counter = 1\n",
|
108 |
+
"\n",
|
109 |
+
" # Recursively copy DICOM files and rename them\n",
|
110 |
+
" renamed_files = recursive_copy_dicom(src_folder, dest_folder, file_counter)\n",
|
111 |
+
"\n",
|
112 |
+
" # Step 2: Split the renamed files into train and val sets\n",
|
113 |
+
" split_and_transfer_files(renamed_files, dest_folder, split_factor)\n",
|
114 |
+
"\n",
|
115 |
+
"# Example usage:\n",
|
116 |
+
"src_folder = r\"F:\\TCIA\" # Replace with your source folder path\n",
|
117 |
+
"dest_folder = r\"F:\\TCIA_Split\" # Destination folder for the renamed files and train/val split\n",
|
118 |
+
"split_factor = 0.95 # 90% of files will go to 'train', 10% will go to 'val'\n",
|
119 |
+
"\n",
|
120 |
+
"# Perform the entire process\n",
|
121 |
+
"process_dicom_files(src_folder, dest_folder, split_factor)"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "markdown",
|
126 |
+
"metadata": {},
|
127 |
+
"source": [
|
128 |
+
"### Faster Train-Val Split Generation"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": null,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"import os\n",
|
138 |
+
"import shutil\n",
|
139 |
+
"import random\n",
|
140 |
+
"import multiprocessing\n",
|
141 |
+
"from concurrent.futures import ThreadPoolExecutor\n",
|
142 |
+
"from copy import deepcopy\n",
|
143 |
+
"\n",
|
144 |
+
"def recursive_copy_dicom(src_folder, dest_folder, file_counter):\n",
|
145 |
+
" \"\"\"\n",
|
146 |
+
" Recursively finds and copies DICOM files from the source to the destination folder, renaming them sequentially.\n",
|
147 |
+
" \"\"\"\n",
|
148 |
+
" renamed_files = []\n",
|
149 |
+
"\n",
|
150 |
+
" for root, dirs, files in os.walk(src_folder):\n",
|
151 |
+
" for dicom_file in files:\n",
|
152 |
+
" if dicom_file.lower().endswith('.dcm'):\n",
|
153 |
+
" # Get full path of the source file\n",
|
154 |
+
" src_file_path = os.path.join(root, dicom_file)\n",
|
155 |
+
" \n",
|
156 |
+
" # Create the new file path in the destination folder\n",
|
157 |
+
" dest_file_path = os.path.join(dest_folder, f\"{file_counter}.dcm\")\n",
|
158 |
+
" \n",
|
159 |
+
" # Copy and rename the file\n",
|
160 |
+
" shutil.copy(src_file_path, dest_file_path)\n",
|
161 |
+
" \n",
|
162 |
+
" # Append the renamed file to the list\n",
|
163 |
+
" renamed_files.append(f\"{file_counter}.dcm\")\n",
|
164 |
+
" \n",
|
165 |
+
" # Increment the file counter for the next file\n",
|
166 |
+
" file_counter += 1\n",
|
167 |
+
"\n",
|
168 |
+
" return renamed_files\n",
|
169 |
+
"\n",
|
170 |
+
"def split_and_transfer_files(file_list, dest_folder, split_factor):\n",
|
171 |
+
" \"\"\"\n",
|
172 |
+
" Splits the list of renamed files into train and val sets and moves them into the appropriate folders.\n",
|
173 |
+
" \"\"\"\n",
|
174 |
+
" train_folder = os.path.join(dest_folder, 'train')\n",
|
175 |
+
" val_folder = os.path.join(dest_folder, 'val')\n",
|
176 |
+
" \n",
|
177 |
+
" if not os.path.exists(train_folder):\n",
|
178 |
+
" os.makedirs(train_folder)\n",
|
179 |
+
" \n",
|
180 |
+
" if not os.path.exists(val_folder):\n",
|
181 |
+
" os.makedirs(val_folder)\n",
|
182 |
+
"\n",
|
183 |
+
" # Shuffle the files for randomness\n",
|
184 |
+
" random.shuffle(file_list)\n",
|
185 |
+
"\n",
|
186 |
+
" # Calculate the number of files for the train and validation sets\n",
|
187 |
+
" split_index = int(len(file_list) * split_factor)\n",
|
188 |
+
" \n",
|
189 |
+
" # Split the files into train and val sets\n",
|
190 |
+
" train_files = file_list[:split_index]\n",
|
191 |
+
" val_files = file_list[split_index:]\n",
|
192 |
+
"\n",
|
193 |
+
" # Move files in parallel using multiprocessing\n",
|
194 |
+
" with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool:\n",
|
195 |
+
" pool.starmap(move_file, [(file, dest_folder, 'train') for file in train_files])\n",
|
196 |
+
" pool.starmap(move_file, [(file, dest_folder, 'val') for file in val_files])\n",
|
197 |
+
"\n",
|
198 |
+
"def move_file(file, dest_folder, folder_name):\n",
|
199 |
+
" \"\"\"Move file from the source to destination folder.\"\"\"\n",
|
200 |
+
" src_file = os.path.join(dest_folder, file)\n",
|
201 |
+
" dest_file = os.path.join(dest_folder, folder_name, file)\n",
|
202 |
+
" shutil.move(src_file, dest_file)\n",
|
203 |
+
" print(f\"Moved {file} to {folder_name} folder\")\n",
|
204 |
+
"\n",
|
205 |
+
"def process_dicom_files(src_folder, dest_folder, split_factor):\n",
|
206 |
+
" \"\"\"\n",
|
207 |
+
" Recursively finds, renames, copies DICOM files, and splits them into train and val sets.\n",
|
208 |
+
" \"\"\"\n",
|
209 |
+
" # Ensure the destination folder exists\n",
|
210 |
+
" if not os.path.exists(dest_folder):\n",
|
211 |
+
" os.makedirs(dest_folder)\n",
|
212 |
+
"\n",
|
213 |
+
" # Initialize file counter\n",
|
214 |
+
" file_counter = 1\n",
|
215 |
+
"\n",
|
216 |
+
" # Recursively copy DICOM files and rename them\n",
|
217 |
+
" renamed_files = recursive_copy_dicom(src_folder, dest_folder, file_counter)\n",
|
218 |
+
"\n",
|
219 |
+
" # Step 2: Split the renamed files into train and val sets\n",
|
220 |
+
" split_and_transfer_files(renamed_files, dest_folder, split_factor)\n",
|
221 |
+
"\n",
|
222 |
+
"# Example usage:\n",
|
223 |
+
"src_folder = r\"F:\\TCIA\" # Replace with your source folder path\n",
|
224 |
+
"dest_folder = r\"D:\\TCIA_Split\" # Destination folder for the renamed files and train/val split\n",
|
225 |
+
"split_factor = 0.95 # 90% of files will go to 'train', 10% will go to 'val'\n",
|
226 |
+
"\n",
|
227 |
+
"# Perform the entire process\n",
|
228 |
+
"process_dicom_files(src_folder, dest_folder, split_factor)"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "markdown",
|
233 |
+
"metadata": {},
|
234 |
+
"source": [
|
235 |
+
"### Filtering through only 512 x 512 scans"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": null,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"import os\n",
|
245 |
+
"import pydicom\n",
|
246 |
+
"\n",
|
247 |
+
"def filter_dicom_images(input_dirs, min_size=512):\n",
|
248 |
+
" for dir_path in input_dirs:\n",
|
249 |
+
" total_images = 0\n",
|
250 |
+
" filtered_images = 0\n",
|
251 |
+
" \n",
|
252 |
+
" # Use a list to store files to delete to avoid modifying directory during iteration\n",
|
253 |
+
" files_to_delete = []\n",
|
254 |
+
" \n",
|
255 |
+
" for filename in os.listdir(dir_path):\n",
|
256 |
+
" if filename.endswith('.dcm'):\n",
|
257 |
+
" full_path = os.path.join(dir_path, filename)\n",
|
258 |
+
" \n",
|
259 |
+
" try:\n",
|
260 |
+
" # Read DICOM file\n",
|
261 |
+
" dcm = pydicom.dcmread(full_path)\n",
|
262 |
+
" \n",
|
263 |
+
" # Check image dimensions\n",
|
264 |
+
" if dcm.pixel_array.shape[0] < min_size or dcm.pixel_array.shape[1] < min_size:\n",
|
265 |
+
" files_to_delete.append(full_path)\n",
|
266 |
+
" filtered_images += 1\n",
|
267 |
+
" \n",
|
268 |
+
" total_images += 1\n",
|
269 |
+
" \n",
|
270 |
+
" except Exception as e:\n",
|
271 |
+
" print(f\"Error processing {filename}: {e}\")\n",
|
272 |
+
" \n",
|
273 |
+
" # Delete files\n",
|
274 |
+
" for file_path in files_to_delete:\n",
|
275 |
+
" os.remove(file_path)\n",
|
276 |
+
" \n",
|
277 |
+
" print(f\"Directory: {dir_path}\")\n",
|
278 |
+
" print(f\"Total images: {total_images}\")\n",
|
279 |
+
" print(f\"Images deleted: {filtered_images}\\n\")\n",
|
280 |
+
"\n",
|
281 |
+
"# Usage\n",
|
282 |
+
"input_dirs = [r\"D:\\TCIA_Split\\train\", r\"D:\\TCIA_Split\\val\"]\n",
|
283 |
+
"filter_dicom_images(input_dirs)"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "markdown",
|
288 |
+
"metadata": {},
|
289 |
+
"source": [
|
290 |
+
"### Basic U-Net"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "code",
|
295 |
+
"execution_count": null,
|
296 |
+
"metadata": {},
|
297 |
+
"outputs": [],
|
298 |
+
"source": [
|
299 |
+
"import torch\n",
|
300 |
+
"import torch.nn as nn\n",
|
301 |
+
"import torch.nn.functional as F\n",
|
302 |
+
"import pydicom\n",
|
303 |
+
"import numpy as np\n",
|
304 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
305 |
+
"import os\n",
|
306 |
+
"from torch.utils.checkpoint import checkpoint\n",
|
307 |
+
"from tqdm import tqdm # Import tqdm for progress bar\n",
|
308 |
+
"\n",
|
309 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
310 |
+
"\n",
|
311 |
+
"class MedicalImageDataset(Dataset):\n",
|
312 |
+
" def __init__(self, dicom_dir):\n",
|
313 |
+
" self.dicom_files = [os.path.join(dicom_dir, f) for f in os.listdir(dicom_dir) if f.endswith('.dcm')]\n",
|
314 |
+
" \n",
|
315 |
+
" def __len__(self):\n",
|
316 |
+
" return len(self.dicom_files)\n",
|
317 |
+
" \n",
|
318 |
+
" def __getitem__(self, idx):\n",
|
319 |
+
" # Read DICOM file and normalize\n",
|
320 |
+
" dcm = pydicom.dcmread(self.dicom_files[idx])\n",
|
321 |
+
" image = dcm.pixel_array.astype(float)\n",
|
322 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
323 |
+
" \n",
|
324 |
+
" # Convert to tensor\n",
|
325 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0)\n",
|
326 |
+
" return image_tensor, image_tensor\n",
|
327 |
+
"\n",
|
328 |
+
"class UNetBlock(nn.Module):\n",
|
329 |
+
" def __init__(self, in_channels, out_channels):\n",
|
330 |
+
" super().__init__()\n",
|
331 |
+
" self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)\n",
|
332 |
+
" self.bn1 = nn.BatchNorm2d(out_channels)\n",
|
333 |
+
" self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)\n",
|
334 |
+
" self.bn2 = nn.BatchNorm2d(out_channels)\n",
|
335 |
+
" \n",
|
336 |
+
" def forward(self, x):\n",
|
337 |
+
" x = F.relu(self.bn1(self.conv1(x)))\n",
|
338 |
+
" x = F.relu(self.bn2(self.conv2(x)))\n",
|
339 |
+
" return x\n",
|
340 |
+
"\n",
|
341 |
+
"class UNet(nn.Module):\n",
|
342 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
343 |
+
" super().__init__()\n",
|
344 |
+
" # Encoder\n",
|
345 |
+
" self.enc1 = UNetBlock(in_channels, 64)\n",
|
346 |
+
" self.enc2 = UNetBlock(64, 128)\n",
|
347 |
+
" self.enc3 = UNetBlock(128, 256)\n",
|
348 |
+
" \n",
|
349 |
+
" # Decoder\n",
|
350 |
+
" self.dec3 = UNetBlock(256 + 128, 128) # Adjust for concatenation with skip connection\n",
|
351 |
+
" self.dec2 = UNetBlock(128 + 64, 64) # Adjust for concatenation with skip connection\n",
|
352 |
+
" self.dec1 = UNetBlock(64, out_channels)\n",
|
353 |
+
" \n",
|
354 |
+
" # Pooling and upsampling\n",
|
355 |
+
" self.pool = nn.MaxPool2d(2, 2)\n",
|
356 |
+
" self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)\n",
|
357 |
+
" \n",
|
358 |
+
" def forward(self, x):\n",
|
359 |
+
" # Encoder path\n",
|
360 |
+
" e1 = checkpoint(self.enc1, x)\n",
|
361 |
+
" e2 = checkpoint(self.enc2, self.pool(e1))\n",
|
362 |
+
" e3 = checkpoint(self.enc3, self.pool(e2))\n",
|
363 |
+
" \n",
|
364 |
+
" # Decoder path with skip connections\n",
|
365 |
+
" d3 = self.upsample(e3)\n",
|
366 |
+
" d3 = torch.cat([d3, e2], dim=1) # Concatenate along channels\n",
|
367 |
+
" d3 = checkpoint(self.dec3, d3)\n",
|
368 |
+
" \n",
|
369 |
+
" d2 = self.upsample(d3)\n",
|
370 |
+
" d2 = torch.cat([d2, e1], dim=1) # Concatenate along channels\n",
|
371 |
+
" d2 = checkpoint(self.dec2, d2)\n",
|
372 |
+
" \n",
|
373 |
+
" d1 = self.dec1(d2) # No checkpointing for final output layer\n",
|
374 |
+
" \n",
|
375 |
+
" return d1\n",
|
376 |
+
"\n",
|
377 |
+
"def calculate_loss(model, dataloader, criterion):\n",
|
378 |
+
" model.eval()\n",
|
379 |
+
" total_loss = 0\n",
|
380 |
+
" with torch.no_grad():\n",
|
381 |
+
" for images, targets in dataloader:\n",
|
382 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
383 |
+
" outputs = model(images)\n",
|
384 |
+
" loss = criterion(outputs, targets)\n",
|
385 |
+
" total_loss += loss.item()\n",
|
386 |
+
" return total_loss / len(dataloader)\n",
|
387 |
+
"\n",
|
388 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
389 |
+
" # Ensure the values are in the correct range\n",
|
390 |
+
" mse = F.mse_loss(output, target)\n",
|
391 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
392 |
+
" return psnr.item()\n",
|
393 |
+
"\n",
|
394 |
+
"def calculate_loss_and_psnr(model, dataloader, criterion):\n",
|
395 |
+
" model.eval()\n",
|
396 |
+
" total_loss = 0\n",
|
397 |
+
" total_psnr = 0\n",
|
398 |
+
" num_batches = len(dataloader)\n",
|
399 |
+
" \n",
|
400 |
+
" with torch.no_grad():\n",
|
401 |
+
" for images, targets in dataloader:\n",
|
402 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
403 |
+
" outputs = model(images)\n",
|
404 |
+
" \n",
|
405 |
+
" # Calculate MSE loss\n",
|
406 |
+
" loss = criterion(outputs, targets)\n",
|
407 |
+
" total_loss += loss.item()\n",
|
408 |
+
" \n",
|
409 |
+
" # Calculate PSNR\n",
|
410 |
+
" psnr = calculate_psnr(outputs, targets)\n",
|
411 |
+
" total_psnr += psnr\n",
|
412 |
+
" \n",
|
413 |
+
" avg_loss = total_loss / num_batches\n",
|
414 |
+
" avg_psnr = total_psnr / num_batches\n",
|
415 |
+
" \n",
|
416 |
+
" return avg_loss, avg_psnr\n",
|
417 |
+
"\n",
|
418 |
+
"best_val_loss = float('inf')\n",
|
419 |
+
"best_model_path = 'best_model.pth'\n",
|
420 |
+
"\n",
|
421 |
+
"def train_unet(dicom_dir, val_dicom_dir, epochs=50, batch_size=4, grad_accumulation_steps=2):\n",
|
422 |
+
" # Dataset and DataLoader\n",
|
423 |
+
" dataset = MedicalImageDataset(dicom_dir)\n",
|
424 |
+
" train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
|
425 |
+
" val_dataset = MedicalImageDataset(val_dicom_dir)\n",
|
426 |
+
" val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n",
|
427 |
+
" \n",
|
428 |
+
" # Model, Loss, Optimizer\n",
|
429 |
+
" model = UNet().to(device)\n",
|
430 |
+
" criterion = nn.MSELoss()\n",
|
431 |
+
" optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)\n",
|
432 |
+
" \n",
|
433 |
+
" # Training loop with tqdm\n",
|
434 |
+
" for epoch in range(epochs):\n",
|
435 |
+
" model.train()\n",
|
436 |
+
" total_loss = 0\n",
|
437 |
+
" optimizer.zero_grad()\n",
|
438 |
+
" \n",
|
439 |
+
" with tqdm(train_dataloader, unit=\"batch\", desc=f\"Epoch {epoch+1}/{epochs}\") as tepoch:\n",
|
440 |
+
" for i, (images, targets) in enumerate(tepoch):\n",
|
441 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
442 |
+
" \n",
|
443 |
+
" # Forward pass\n",
|
444 |
+
" outputs = model(images)\n",
|
445 |
+
" loss = criterion(outputs, targets)\n",
|
446 |
+
" loss.backward()\n",
|
447 |
+
" \n",
|
448 |
+
" # Gradient accumulation\n",
|
449 |
+
" if (i + 1) % grad_accumulation_steps == 0 or (i + 1) == len(tepoch):\n",
|
450 |
+
" optimizer.step()\n",
|
451 |
+
" optimizer.zero_grad()\n",
|
452 |
+
" \n",
|
453 |
+
" total_loss += loss.item()\n",
|
454 |
+
" \n",
|
455 |
+
" # Update the tqdm progress bar with the current loss\n",
|
456 |
+
" tepoch.set_postfix(loss=total_loss / ((i + 1) * batch_size))\n",
|
457 |
+
" \n",
|
458 |
+
" avg_train_loss = total_loss / len(train_dataloader)\n",
|
459 |
+
" avg_val_loss, avg_val_psnr = calculate_loss_and_psnr(model, val_dataloader, criterion)\n",
|
460 |
+
" \n",
|
461 |
+
" print(f\"Epoch [{epoch+1}/{epochs}] - Train Loss: {avg_train_loss:.4f}, Validation Loss: {avg_val_loss:.4f}, Validation PSNR: {avg_val_psnr:.4f}\")\n",
|
462 |
+
"\n",
|
463 |
+
" if avg_val_loss < best_val_loss:\n",
|
464 |
+
" best_val_loss = avg_val_loss\n",
|
465 |
+
" torch.save(model.state_dict(), best_model_path)\n",
|
466 |
+
" print(f\"Model saved with improved validation loss: {avg_val_loss:.4f}\")\n",
|
467 |
+
" \n",
|
468 |
+
" return model\n",
|
469 |
+
"\n",
|
470 |
+
"# Example usage with train and validation directories\n",
|
471 |
+
"model = train_unet(r\"D:\\TCIA_Split\\train\", r\"D:\\TCIA_Split\\val\", epochs=50, batch_size=4, grad_accumulation_steps=8)"
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "markdown",
|
476 |
+
"metadata": {},
|
477 |
+
"source": [
|
478 |
+
"### U-Net Inference"
|
479 |
+
]
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "code",
|
483 |
+
"execution_count": null,
|
484 |
+
"metadata": {},
|
485 |
+
"outputs": [],
|
486 |
+
"source": [
|
487 |
+
"import torch\n",
|
488 |
+
"import torch.nn as nn\n",
|
489 |
+
"import pydicom\n",
|
490 |
+
"import numpy as np\n",
|
491 |
+
"import matplotlib.pyplot as plt\n",
|
492 |
+
"import os\n",
|
493 |
+
"\n",
|
494 |
+
"# Import the UNet and related classes from the previous script\n",
|
495 |
+
"# Replace with the actual import method\n",
|
496 |
+
"\n",
|
497 |
+
"def load_dicom_image(dicom_path):\n",
|
498 |
+
" \"\"\"\n",
|
499 |
+
" Load and normalize a DICOM image\n",
|
500 |
+
" \n",
|
501 |
+
" Args:\n",
|
502 |
+
" dicom_path (str): Path to the DICOM file\n",
|
503 |
+
" \n",
|
504 |
+
" Returns:\n",
|
505 |
+
" torch.Tensor: Normalized image tensor\n",
|
506 |
+
" \"\"\"\n",
|
507 |
+
" # Read DICOM file\n",
|
508 |
+
" dcm = pydicom.dcmread(dicom_path)\n",
|
509 |
+
" image = dcm.pixel_array.astype(float)\n",
|
510 |
+
" \n",
|
511 |
+
" # Normalize image\n",
|
512 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
513 |
+
" \n",
|
514 |
+
" # Convert to tensor\n",
|
515 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0).unsqueeze(0)\n",
|
516 |
+
" return image_tensor\n",
|
517 |
+
"\n",
|
518 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
519 |
+
" \"\"\"\n",
|
520 |
+
" Calculate Peak Signal-to-Noise Ratio (PSNR)\n",
|
521 |
+
" \n",
|
522 |
+
" Args:\n",
|
523 |
+
" output (torch.Tensor): Reconstructed image\n",
|
524 |
+
" target (torch.Tensor): Original image\n",
|
525 |
+
" max_pixel (float): Maximum pixel value\n",
|
526 |
+
" \n",
|
527 |
+
" Returns:\n",
|
528 |
+
" float: PSNR value\n",
|
529 |
+
" \"\"\"\n",
|
530 |
+
" # Ensure the values are in the correct range\n",
|
531 |
+
" mse = torch.nn.functional.mse_loss(output, target)\n",
|
532 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
533 |
+
" return psnr.item()\n",
|
534 |
+
"\n",
|
535 |
+
"def visualize_reconstruction(original_image, reconstructed_image, psnr):\n",
|
536 |
+
" \"\"\"\n",
|
537 |
+
" Visualize original and reconstructed images\n",
|
538 |
+
" \n",
|
539 |
+
" Args:\n",
|
540 |
+
" original_image (torch.Tensor): Original image tensor\n",
|
541 |
+
" reconstructed_image (torch.Tensor): Reconstructed image tensor\n",
|
542 |
+
" psnr (float): Peak Signal-to-Noise Ratio\n",
|
543 |
+
" \"\"\"\n",
|
544 |
+
" # Convert tensors to numpy for visualization\n",
|
545 |
+
" original = original_image.squeeze().cpu().numpy()\n",
|
546 |
+
" reconstructed = reconstructed_image.squeeze().cpu().numpy()\n",
|
547 |
+
" \n",
|
548 |
+
" # Create subplot\n",
|
549 |
+
" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))\n",
|
550 |
+
" \n",
|
551 |
+
" # Plot original image\n",
|
552 |
+
" im1 = ax1.imshow(original, cmap='gray')\n",
|
553 |
+
" ax1.set_title('Original Image')\n",
|
554 |
+
" plt.colorbar(im1, ax=ax1)\n",
|
555 |
+
" \n",
|
556 |
+
" # Plot reconstructed image\n",
|
557 |
+
" im2 = ax2.imshow(reconstructed, cmap='gray')\n",
|
558 |
+
" ax2.set_title(f'Reconstructed Image\\nPSNR: {psnr:.2f} dB')\n",
|
559 |
+
" plt.colorbar(im2, ax=ax2)\n",
|
560 |
+
" \n",
|
561 |
+
" plt.tight_layout()\n",
|
562 |
+
" plt.show()\n",
|
563 |
+
"\n",
|
564 |
+
"def inference_single_image(model_path, test_dicom_path):\n",
|
565 |
+
" \"\"\"\n",
|
566 |
+
" Perform inference on a single DICOM image\n",
|
567 |
+
" \n",
|
568 |
+
" Args:\n",
|
569 |
+
" model_path (str): Path to the saved model weights\n",
|
570 |
+
" test_dicom_path (str): Path to the test DICOM file\n",
|
571 |
+
" \"\"\"\n",
|
572 |
+
" # Set device\n",
|
573 |
+
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
574 |
+
" \n",
|
575 |
+
" # Initialize model\n",
|
576 |
+
" model = UNet().to(device)\n",
|
577 |
+
" \n",
|
578 |
+
" # Load saved model weights\n",
|
579 |
+
" model.load_state_dict(torch.load(model_path))\n",
|
580 |
+
" model.eval()\n",
|
581 |
+
" \n",
|
582 |
+
" # Load and preprocess test image\n",
|
583 |
+
" with torch.no_grad():\n",
|
584 |
+
" test_image = load_dicom_image(test_dicom_path).to(device)\n",
|
585 |
+
" \n",
|
586 |
+
" # Perform reconstruction\n",
|
587 |
+
" reconstructed_image = model(test_image)\n",
|
588 |
+
" \n",
|
589 |
+
" # Calculate PSNR\n",
|
590 |
+
" psnr = calculate_psnr(reconstructed_image, test_image)\n",
|
591 |
+
"\n",
|
592 |
+
" print(f\"PSNR: {psnr:.2f} dB\")\n",
|
593 |
+
" \n",
|
594 |
+
" # Visualize results\n",
|
595 |
+
" visualize_reconstruction(test_image, reconstructed_image, psnr)\n",
|
596 |
+
"\n",
|
597 |
+
"# Example usage\n",
|
598 |
+
"if __name__ == \"__main__\":\n",
|
599 |
+
" # Paths to model and test image\n",
|
600 |
+
" MODEL_PATH = r\"D:\\VSCODE\\PreSense\\best_model.pth\" # Path to your saved model\n",
|
601 |
+
" TEST_DICOM_PATH = r\"D:\\VSCODE\\PreSense\\test.dcm\" # Replace with actual path to test DICOM\n",
|
602 |
+
" \n",
|
603 |
+
" # Run inference\n",
|
604 |
+
" inference_single_image(MODEL_PATH, TEST_DICOM_PATH)"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"cell_type": "markdown",
|
609 |
+
"metadata": {},
|
610 |
+
"source": [
|
611 |
+
"### U-Net Inference for Complete Scan"
|
612 |
+
]
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"cell_type": "code",
|
616 |
+
"execution_count": null,
|
617 |
+
"metadata": {},
|
618 |
+
"outputs": [],
|
619 |
+
"source": [
|
620 |
+
"import torch\n",
|
621 |
+
"import torch.nn as nn\n",
|
622 |
+
"import pydicom\n",
|
623 |
+
"import numpy as np\n",
|
624 |
+
"import os\n",
|
625 |
+
"from tqdm import tqdm\n",
|
626 |
+
"\n",
|
627 |
+
"# Import the UNet and related classes from the previous script\n",
|
628 |
+
"\n",
|
629 |
+
"def load_dicom_image(dicom_path):\n",
|
630 |
+
" \"\"\"\n",
|
631 |
+
" Load and normalize a DICOM image\n",
|
632 |
+
" \n",
|
633 |
+
" Args:\n",
|
634 |
+
" dicom_path (str): Path to the DICOM file\n",
|
635 |
+
" \n",
|
636 |
+
" Returns:\n",
|
637 |
+
" torch.Tensor: Normalized image tensor\n",
|
638 |
+
" \"\"\"\n",
|
639 |
+
" # Read DICOM file\n",
|
640 |
+
" dcm = pydicom.dcmread(dicom_path)\n",
|
641 |
+
" image = dcm.pixel_array.astype(float)\n",
|
642 |
+
" \n",
|
643 |
+
" # Normalize image\n",
|
644 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
645 |
+
" \n",
|
646 |
+
" # Convert to tensor\n",
|
647 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0).unsqueeze(0)\n",
|
648 |
+
" return image_tensor, dcm\n",
|
649 |
+
"\n",
|
650 |
+
"def save_reconstructed_dicom(image_tensor, original_dcm, output_path):\n",
|
651 |
+
" \"\"\"\n",
|
652 |
+
" Save reconstructed image as a DICOM file\n",
|
653 |
+
" \n",
|
654 |
+
" Args:\n",
|
655 |
+
" image_tensor (torch.Tensor): Reconstructed image tensor\n",
|
656 |
+
" original_dcm (pydicom.Dataset): Original DICOM dataset\n",
|
657 |
+
" output_path (str): Path to save the reconstructed image\n",
|
658 |
+
" \"\"\"\n",
|
659 |
+
" # Convert tensor to numpy and scale back to original pixel range\n",
|
660 |
+
" reconstructed_image = image_tensor.squeeze().cpu().numpy()\n",
|
661 |
+
" \n",
|
662 |
+
" # Scale to original pixel array range\n",
|
663 |
+
" min_val = original_dcm.pixel_array.min()\n",
|
664 |
+
" max_val = original_dcm.pixel_array.max()\n",
|
665 |
+
" reconstructed_image = reconstructed_image * (max_val - min_val) + min_val\n",
|
666 |
+
" \n",
|
667 |
+
" # Create a copy of the original DICOM dataset\n",
|
668 |
+
" ds = pydicom.Dataset()\n",
|
669 |
+
" ds.update(original_dcm)\n",
|
670 |
+
" \n",
|
671 |
+
" # Set the new pixel data\n",
|
672 |
+
" ds.PixelData = reconstructed_image.astype(original_dcm.pixel_array.dtype).tobytes()\n",
|
673 |
+
" \n",
|
674 |
+
" # Set transfer syntax to explicit VR little endian (common default)\n",
|
675 |
+
" ds.file_meta = pydicom.Dataset()\n",
|
676 |
+
" ds.file_meta.TransferSyntaxUID = pydicom.uid.ExplicitVRLittleEndian\n",
|
677 |
+
" \n",
|
678 |
+
" # Write the DICOM file\n",
|
679 |
+
" pydicom.dcmwrite(output_path, ds)\n",
|
680 |
+
"\n",
|
681 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
682 |
+
" \"\"\"\n",
|
683 |
+
" Calculate Peak Signal-to-Noise Ratio (PSNR)\n",
|
684 |
+
" \n",
|
685 |
+
" Args:\n",
|
686 |
+
" output (torch.Tensor): Reconstructed image\n",
|
687 |
+
" target (torch.Tensor): Original image\n",
|
688 |
+
" max_pixel (float): Maximum pixel value\n",
|
689 |
+
" \n",
|
690 |
+
" Returns:\n",
|
691 |
+
" float: PSNR value\n",
|
692 |
+
" \"\"\"\n",
|
693 |
+
" # Ensure the values are in the correct range\n",
|
694 |
+
" mse = torch.nn.functional.mse_loss(output, target)\n",
|
695 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
696 |
+
" return psnr.item()\n",
|
697 |
+
"\n",
|
698 |
+
"def batch_inference(model_path, input_dir, output_dir):\n",
|
699 |
+
" \"\"\"\n",
|
700 |
+
" Perform batch inference on all DICOM files in a directory\n",
|
701 |
+
" \n",
|
702 |
+
" Args:\n",
|
703 |
+
" model_path (str): Path to the saved model weights\n",
|
704 |
+
" input_dir (str): Directory containing input DICOM files\n",
|
705 |
+
" output_dir (str): Directory to save reconstructed DICOM files\n",
|
706 |
+
" \"\"\"\n",
|
707 |
+
" # Create output directory if it doesn't exist\n",
|
708 |
+
" os.makedirs(output_dir, exist_ok=True)\n",
|
709 |
+
" \n",
|
710 |
+
" # Set device\n",
|
711 |
+
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
712 |
+
" \n",
|
713 |
+
" # Initialize model\n",
|
714 |
+
" model = UNet().to(device)\n",
|
715 |
+
" \n",
|
716 |
+
" # Load saved model weights\n",
|
717 |
+
" model.load_state_dict(torch.load(model_path))\n",
|
718 |
+
" model.eval()\n",
|
719 |
+
" \n",
|
720 |
+
" # Get list of DICOM files\n",
|
721 |
+
" dcm_files = [f for f in os.listdir(input_dir) if f.endswith('.dcm')]\n",
|
722 |
+
" \n",
|
723 |
+
" # Prepare for inference\n",
|
724 |
+
" print(f\"Starting batch inference on {len(dcm_files)} DICOM files...\")\n",
|
725 |
+
" \n",
|
726 |
+
" # Store PSNR values\n",
|
727 |
+
" psnr_values = {}\n",
|
728 |
+
" \n",
|
729 |
+
" # Perform inference\n",
|
730 |
+
" with torch.no_grad():\n",
|
731 |
+
" for dcm_file in tqdm(dcm_files, desc=\"Reconstructing Images\"):\n",
|
732 |
+
" # Full paths\n",
|
733 |
+
" input_path = os.path.join(input_dir, dcm_file)\n",
|
734 |
+
" output_path = os.path.join(output_dir, dcm_file)\n",
|
735 |
+
" \n",
|
736 |
+
" # Load image\n",
|
737 |
+
" test_image, original_dcm = load_dicom_image(input_path)\n",
|
738 |
+
" test_image = test_image.to(device)\n",
|
739 |
+
" \n",
|
740 |
+
" # Perform reconstruction\n",
|
741 |
+
" reconstructed_image = model(test_image)\n",
|
742 |
+
" \n",
|
743 |
+
" # Calculate PSNR\n",
|
744 |
+
" psnr = calculate_psnr(reconstructed_image, test_image)\n",
|
745 |
+
" psnr_values[dcm_file] = psnr\n",
|
746 |
+
" \n",
|
747 |
+
" # Save reconstructed image\n",
|
748 |
+
" save_reconstructed_dicom(reconstructed_image, original_dcm, output_path)\n",
|
749 |
+
" \n",
|
750 |
+
" # Print PSNR values\n",
|
751 |
+
" print(\"\\nPSNR Values:\")\n",
|
752 |
+
" for filename, psnr in psnr_values.items():\n",
|
753 |
+
" print(f\"{filename}: {psnr:.2f} dB\")\n",
|
754 |
+
" \n",
|
755 |
+
" # Calculate and print overall statistics\n",
|
756 |
+
" psnr_list = list(psnr_values.values())\n",
|
757 |
+
" print(f\"\\nPSNR Statistics:\")\n",
|
758 |
+
" print(f\"Average PSNR: {np.mean(psnr_list):.2f} dB\")\n",
|
759 |
+
" print(f\"Minimum PSNR: {np.min(psnr_list):.2f} dB\")\n",
|
760 |
+
" print(f\"Maximum PSNR: {np.max(psnr_list):.2f} dB\")\n",
|
761 |
+
"\n",
|
762 |
+
"# Example usage\n",
|
763 |
+
"if __name__ == \"__main__\":\n",
|
764 |
+
" # Paths to model, input, and output directories\n",
|
765 |
+
" MODEL_PATH = r\"D:\\VSCODE\\PreSense\\best_model.pth\" # Path to your saved model\n",
|
766 |
+
" INPUT_DICOM_DIR = r\"D:\\Pancreatic Neuroendocrine\\manifest-1662644254281\\CTpred-Sunitinib-panNET\\PAN_01\\04-11-2001-NA-NA-29221\\3.000000-CEFC07AIDR 3D STD-16260\" # Directory with input DICOM files\n",
|
767 |
+
" OUTPUT_DICOM_DIR = r\"D:\\VSCODE\\PreSense\\reconstructed_dicom\" # Directory to save reconstructed DICOM files\n",
|
768 |
+
" \n",
|
769 |
+
" # Run batch inference\n",
|
770 |
+
" batch_inference(MODEL_PATH, INPUT_DICOM_DIR, OUTPUT_DICOM_DIR)"
|
771 |
+
]
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"cell_type": "code",
|
775 |
+
"execution_count": null,
|
776 |
+
"metadata": {},
|
777 |
+
"outputs": [],
|
778 |
+
"source": [
|
779 |
+
"import torch\n",
|
780 |
+
"import torch.nn as nn\n",
|
781 |
+
"import pydicom\n",
|
782 |
+
"import numpy as np\n",
|
783 |
+
"import os\n",
|
784 |
+
"from tqdm import tqdm\n",
|
785 |
+
"from PIL import Image\n",
|
786 |
+
"\n",
|
787 |
+
"# Import the UNet and related classes from the previous script\n",
|
788 |
+
"\n",
|
789 |
+
"def load_dicom_image(dicom_path):\n",
|
790 |
+
" \"\"\"\n",
|
791 |
+
" Load and normalize a DICOM image\n",
|
792 |
+
" \n",
|
793 |
+
" Args:\n",
|
794 |
+
" dicom_path (str): Path to the DICOM file\n",
|
795 |
+
" \n",
|
796 |
+
" Returns:\n",
|
797 |
+
" torch.Tensor: Normalized image tensor\n",
|
798 |
+
" \"\"\"\n",
|
799 |
+
" # Read DICOM file\n",
|
800 |
+
" dcm = pydicom.dcmread(dicom_path)\n",
|
801 |
+
" image = dcm.pixel_array.astype(float)\n",
|
802 |
+
" \n",
|
803 |
+
" # Normalize image\n",
|
804 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
805 |
+
" \n",
|
806 |
+
" # Convert to tensor\n",
|
807 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0).unsqueeze(0)\n",
|
808 |
+
" return image_tensor, dcm\n",
|
809 |
+
"\n",
|
810 |
+
"def save_reconstructed_image(image_tensor, output_path):\n",
|
811 |
+
" \"\"\"\n",
|
812 |
+
" Save reconstructed image as a JPEG file\n",
|
813 |
+
" \n",
|
814 |
+
" Args:\n",
|
815 |
+
" image_tensor (torch.Tensor): Reconstructed image tensor\n",
|
816 |
+
" output_path (str): Path to save the reconstructed JPEG image\n",
|
817 |
+
" \"\"\"\n",
|
818 |
+
" # Convert tensor to numpy array\n",
|
819 |
+
" reconstructed_image = image_tensor.squeeze().cpu().numpy()\n",
|
820 |
+
" \n",
|
821 |
+
" # Scale back to the original pixel range (assuming input was normalized to [0, 1])\n",
|
822 |
+
" reconstructed_image = np.uint8(reconstructed_image * 255)\n",
|
823 |
+
" \n",
|
824 |
+
" # Convert to PIL Image\n",
|
825 |
+
" pil_image = Image.fromarray(reconstructed_image)\n",
|
826 |
+
" \n",
|
827 |
+
" # Save as JPEG\n",
|
828 |
+
" pil_image.save(output_path, 'JPEG')\n",
|
829 |
+
"\n",
|
830 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
831 |
+
" \"\"\"\n",
|
832 |
+
" Calculate Peak Signal-to-Noise Ratio (PSNR)\n",
|
833 |
+
" \n",
|
834 |
+
" Args:\n",
|
835 |
+
" output (torch.Tensor): Reconstructed image\n",
|
836 |
+
" target (torch.Tensor): Original image\n",
|
837 |
+
" max_pixel (float): Maximum pixel value\n",
|
838 |
+
" \n",
|
839 |
+
" Returns:\n",
|
840 |
+
" float: PSNR value\n",
|
841 |
+
" \"\"\"\n",
|
842 |
+
" # Ensure the values are in the correct range\n",
|
843 |
+
" mse = torch.nn.functional.mse_loss(output, target)\n",
|
844 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
845 |
+
" return psnr.item()\n",
|
846 |
+
"\n",
|
847 |
+
"def batch_inference(model_path, input_dir, output_dir):\n",
|
848 |
+
" \"\"\"\n",
|
849 |
+
" Perform batch inference on all DICOM files in a directory\n",
|
850 |
+
" \n",
|
851 |
+
" Args:\n",
|
852 |
+
" model_path (str): Path to the saved model weights\n",
|
853 |
+
" input_dir (str): Directory containing input DICOM files\n",
|
854 |
+
" output_dir (str): Directory to save reconstructed JPEG images\n",
|
855 |
+
" \"\"\"\n",
|
856 |
+
" # Create output directory if it doesn't exist\n",
|
857 |
+
" os.makedirs(output_dir, exist_ok=True)\n",
|
858 |
+
" \n",
|
859 |
+
" # Set device\n",
|
860 |
+
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
861 |
+
" \n",
|
862 |
+
" # Initialize model\n",
|
863 |
+
" model = UNet().to(device)\n",
|
864 |
+
" \n",
|
865 |
+
" # Load saved model weights\n",
|
866 |
+
" model.load_state_dict(torch.load(model_path))\n",
|
867 |
+
" model.eval()\n",
|
868 |
+
" \n",
|
869 |
+
" # Get list of DICOM files\n",
|
870 |
+
" dcm_files = [f for f in os.listdir(input_dir) if f.endswith('.dcm')]\n",
|
871 |
+
" \n",
|
872 |
+
" # Prepare for inference\n",
|
873 |
+
" print(f\"Starting batch inference on {len(dcm_files)} DICOM files...\")\n",
|
874 |
+
" \n",
|
875 |
+
" # Store PSNR values\n",
|
876 |
+
" psnr_values = {}\n",
|
877 |
+
" \n",
|
878 |
+
" # Perform inference\n",
|
879 |
+
" with torch.no_grad():\n",
|
880 |
+
" for dcm_file in tqdm(dcm_files, desc=\"Reconstructing Images\"):\n",
|
881 |
+
" # Full paths\n",
|
882 |
+
" input_path = os.path.join(input_dir, dcm_file)\n",
|
883 |
+
" output_path = os.path.join(output_dir, f\"{os.path.splitext(dcm_file)[0]}.jpg\") # Save as .jpg\n",
|
884 |
+
" \n",
|
885 |
+
" # Load image\n",
|
886 |
+
" test_image, original_dcm = load_dicom_image(input_path)\n",
|
887 |
+
" test_image = test_image.to(device)\n",
|
888 |
+
" \n",
|
889 |
+
" # Perform reconstruction\n",
|
890 |
+
" reconstructed_image = model(test_image)\n",
|
891 |
+
" \n",
|
892 |
+
" # Calculate PSNR\n",
|
893 |
+
" psnr = calculate_psnr(reconstructed_image, test_image)\n",
|
894 |
+
" psnr_values[dcm_file] = psnr\n",
|
895 |
+
" \n",
|
896 |
+
" # Save reconstructed image as JPEG\n",
|
897 |
+
" save_reconstructed_image(reconstructed_image, output_path)\n",
|
898 |
+
" \n",
|
899 |
+
" # Print PSNR values\n",
|
900 |
+
" print(\"\\nPSNR Values:\")\n",
|
901 |
+
" for filename, psnr in psnr_values.items():\n",
|
902 |
+
" print(f\"{filename}: {psnr:.2f} dB\")\n",
|
903 |
+
" \n",
|
904 |
+
" # Calculate and print overall statistics\n",
|
905 |
+
" psnr_list = list(psnr_values.values())\n",
|
906 |
+
" print(f\"\\nPSNR Statistics:\")\n",
|
907 |
+
" print(f\"Average PSNR: {np.mean(psnr_list):.2f} dB\")\n",
|
908 |
+
" print(f\"Minimum PSNR: {np.min(psnr_list):.2f} dB\")\n",
|
909 |
+
" print(f\"Maximum PSNR: {np.max(psnr_list):.2f} dB\")\n",
|
910 |
+
"\n",
|
911 |
+
"# Example usage\n",
|
912 |
+
"if __name__ == \"__main__\":\n",
|
913 |
+
" # Paths to model, input, and output directories\n",
|
914 |
+
" MODEL_PATH = r\"D:\\VSCODE\\PreSense\\best_model.pth\" # Path to your saved model\n",
|
915 |
+
" INPUT_DICOM_DIR = r\"D:\\Pancreatic Neuroendocrine\\manifest-1662644254281\\CTpred-Sunitinib-panNET\\PAN_01\\04-11-2001-NA-NA-29221\\3.000000-CEFC07AIDR 3D STD-16260\" # Directory with input DICOM files\n",
|
916 |
+
" OUTPUT_JPEG_DIR = r\"D:\\VSCODE\\PreSense\\reconstructed_images\" # Directory to save reconstructed JPEG images\n",
|
917 |
+
" \n",
|
918 |
+
" # Run batch inference\n",
|
919 |
+
" batch_inference(MODEL_PATH, INPUT_DICOM_DIR, OUTPUT_JPEG_DIR)"
|
920 |
+
]
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"cell_type": "markdown",
|
924 |
+
"metadata": {},
|
925 |
+
"source": [
|
926 |
+
"### Small Reconstructor and Denoiser U-Net (smallRD)"
|
927 |
+
]
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"cell_type": "code",
|
931 |
+
"execution_count": null,
|
932 |
+
"metadata": {},
|
933 |
+
"outputs": [],
|
934 |
+
"source": [
|
935 |
+
"import torch\n",
|
936 |
+
"import torch.nn as nn\n",
|
937 |
+
"import torch.nn.functional as F\n",
|
938 |
+
"import pydicom\n",
|
939 |
+
"import numpy as np\n",
|
940 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
941 |
+
"import os\n",
|
942 |
+
"from torch.utils.checkpoint import checkpoint\n",
|
943 |
+
"from tqdm import tqdm # Import tqdm for progress bar\n",
|
944 |
+
"\n",
|
945 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
946 |
+
"\n",
|
947 |
+
"class MedicalImageDataset(Dataset):\n",
|
948 |
+
" def __init__(self, dicom_dir):\n",
|
949 |
+
" self.dicom_files = [os.path.join(dicom_dir, f) for f in os.listdir(dicom_dir) if f.endswith('.dcm')]\n",
|
950 |
+
" \n",
|
951 |
+
" def __len__(self):\n",
|
952 |
+
" return len(self.dicom_files)\n",
|
953 |
+
" \n",
|
954 |
+
" def __getitem__(self, idx):\n",
|
955 |
+
" # Read DICOM file and normalize\n",
|
956 |
+
" dcm = pydicom.dcmread(self.dicom_files[idx])\n",
|
957 |
+
" image = dcm.pixel_array.astype(float)\n",
|
958 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
959 |
+
" \n",
|
960 |
+
" # Convert to tensor\n",
|
961 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0)\n",
|
962 |
+
" return image_tensor, image_tensor\n",
|
963 |
+
"\n",
|
964 |
+
"class UNetBlock(nn.Module):\n",
|
965 |
+
" def __init__(self, in_channels, out_channels):\n",
|
966 |
+
" super().__init__()\n",
|
967 |
+
" self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)\n",
|
968 |
+
" self.bn1 = nn.BatchNorm2d(out_channels)\n",
|
969 |
+
" self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)\n",
|
970 |
+
" self.bn2 = nn.BatchNorm2d(out_channels)\n",
|
971 |
+
" \n",
|
972 |
+
" def forward(self, x):\n",
|
973 |
+
" x = F.relu(self.bn1(self.conv1(x)))\n",
|
974 |
+
" x = F.relu(self.bn2(self.conv2(x)))\n",
|
975 |
+
" return x\n",
|
976 |
+
"\n",
|
977 |
+
"class UNet(nn.Module):\n",
|
978 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
979 |
+
" super().__init__()\n",
|
980 |
+
" # Encoder\n",
|
981 |
+
" self.enc1 = UNetBlock(in_channels, 64)\n",
|
982 |
+
" self.enc2 = UNetBlock(64, 128)\n",
|
983 |
+
" self.enc3 = UNetBlock(128, 256)\n",
|
984 |
+
" \n",
|
985 |
+
" # Decoder\n",
|
986 |
+
" self.dec3 = UNetBlock(256 + 128, 128) # Adjust for concatenation with skip connection\n",
|
987 |
+
" self.dec2 = UNetBlock(128 + 64, 64) # Adjust for concatenation with skip connection\n",
|
988 |
+
" self.dec1 = UNetBlock(64, out_channels)\n",
|
989 |
+
" \n",
|
990 |
+
" # Pooling and upsampling\n",
|
991 |
+
" self.pool = nn.MaxPool2d(2, 2)\n",
|
992 |
+
" self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)\n",
|
993 |
+
" \n",
|
994 |
+
" def forward(self, x):\n",
|
995 |
+
" # Encoder path\n",
|
996 |
+
" e1 = checkpoint(self.enc1, x)\n",
|
997 |
+
" e2 = checkpoint(self.enc2, self.pool(e1))\n",
|
998 |
+
" e3 = checkpoint(self.enc3, self.pool(e2))\n",
|
999 |
+
" \n",
|
1000 |
+
" # Decoder path with skip connections\n",
|
1001 |
+
" d3 = self.upsample(e3)\n",
|
1002 |
+
" d3 = torch.cat([d3, e2], dim=1) # Concatenate along channels\n",
|
1003 |
+
" d3 = checkpoint(self.dec3, d3)\n",
|
1004 |
+
" \n",
|
1005 |
+
" d2 = self.upsample(d3)\n",
|
1006 |
+
" d2 = torch.cat([d2, e1], dim=1) # Concatenate along channels\n",
|
1007 |
+
" d2 = checkpoint(self.dec2, d2)\n",
|
1008 |
+
" \n",
|
1009 |
+
" d1 = self.dec1(d2) # No checkpointing for final output layer\n",
|
1010 |
+
" \n",
|
1011 |
+
" return d1\n",
|
1012 |
+
"\n",
|
1013 |
+
"def calculate_loss(model, dataloader, criterion):\n",
|
1014 |
+
" model.eval()\n",
|
1015 |
+
" total_loss = 0\n",
|
1016 |
+
" with torch.no_grad():\n",
|
1017 |
+
" for images, targets in dataloader:\n",
|
1018 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1019 |
+
" outputs = model(images)\n",
|
1020 |
+
" loss = criterion(outputs, targets)\n",
|
1021 |
+
" total_loss += loss.item()\n",
|
1022 |
+
" return total_loss / len(dataloader)\n",
|
1023 |
+
"\n",
|
1024 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
1025 |
+
" # Ensure the values are in the correct range\n",
|
1026 |
+
" mse = F.mse_loss(output, target)\n",
|
1027 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
1028 |
+
" return psnr.item()\n",
|
1029 |
+
"\n",
|
1030 |
+
"def calculate_loss_and_psnr(model, dataloader, criterion):\n",
|
1031 |
+
" model.eval()\n",
|
1032 |
+
" total_loss = 0\n",
|
1033 |
+
" total_psnr = 0\n",
|
1034 |
+
" num_batches = len(dataloader)\n",
|
1035 |
+
" \n",
|
1036 |
+
" with torch.no_grad():\n",
|
1037 |
+
" for images, targets in dataloader:\n",
|
1038 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1039 |
+
" outputs = model(images)\n",
|
1040 |
+
" \n",
|
1041 |
+
" # Calculate MSE loss\n",
|
1042 |
+
" loss = criterion(outputs, targets)\n",
|
1043 |
+
" total_loss += loss.item()\n",
|
1044 |
+
" \n",
|
1045 |
+
" # Calculate PSNR\n",
|
1046 |
+
" psnr = calculate_psnr(outputs, targets)\n",
|
1047 |
+
" total_psnr += psnr\n",
|
1048 |
+
" \n",
|
1049 |
+
" avg_loss = total_loss / num_batches\n",
|
1050 |
+
" avg_psnr = total_psnr / num_batches\n",
|
1051 |
+
" \n",
|
1052 |
+
" return avg_loss, avg_psnr\n",
|
1053 |
+
"\n",
|
1054 |
+
"class UNet(nn.Module):\n",
|
1055 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1056 |
+
" super().__init__()\n",
|
1057 |
+
" # Encoder\n",
|
1058 |
+
" self.enc1 = UNetBlock(in_channels, 64)\n",
|
1059 |
+
" self.enc2 = UNetBlock(64, 128)\n",
|
1060 |
+
" self.enc3 = UNetBlock(128, 256)\n",
|
1061 |
+
" \n",
|
1062 |
+
" # Decoder\n",
|
1063 |
+
" self.dec3 = UNetBlock(256 + 128, 128) # Adjust for concatenation with skip connection\n",
|
1064 |
+
" self.dec2 = UNetBlock(128 + 64, 64) # Adjust for concatenation with skip connection\n",
|
1065 |
+
" self.dec1 = UNetBlock(64, out_channels)\n",
|
1066 |
+
" \n",
|
1067 |
+
" # Pooling and upsampling\n",
|
1068 |
+
" self.pool = nn.MaxPool2d(2, 2)\n",
|
1069 |
+
" self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)\n",
|
1070 |
+
" \n",
|
1071 |
+
" def forward(self, x):\n",
|
1072 |
+
" # Encoder path\n",
|
1073 |
+
" e1 = checkpoint(self.enc1, x)\n",
|
1074 |
+
" e2 = checkpoint(self.enc2, self.pool(e1))\n",
|
1075 |
+
" e3 = checkpoint(self.enc3, self.pool(e2))\n",
|
1076 |
+
" \n",
|
1077 |
+
" # Decoder path with skip connections\n",
|
1078 |
+
" d3 = self.upsample(e3)\n",
|
1079 |
+
" d3 = torch.cat([d3, e2], dim=1) # Concatenate along channels\n",
|
1080 |
+
" d3 = checkpoint(self.dec3, d3)\n",
|
1081 |
+
" \n",
|
1082 |
+
" d2 = self.upsample(d3)\n",
|
1083 |
+
" d2 = torch.cat([d2, e1], dim=1) # Concatenate along channels\n",
|
1084 |
+
" d2 = checkpoint(self.dec2, d2)\n",
|
1085 |
+
" \n",
|
1086 |
+
" d1 = self.dec1(d2) # No checkpointing for final output layer\n",
|
1087 |
+
" \n",
|
1088 |
+
" return d1\n",
|
1089 |
+
"\n",
|
1090 |
+
"class Reconstructor(nn.Module):\n",
|
1091 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1092 |
+
" super().__init__()\n",
|
1093 |
+
" # Same UNet architecture for reconstruction\n",
|
1094 |
+
" self.unet = UNet(in_channels=in_channels, out_channels=out_channels)\n",
|
1095 |
+
" \n",
|
1096 |
+
" def forward(self, x):\n",
|
1097 |
+
" return self.unet(x)\n",
|
1098 |
+
"\n",
|
1099 |
+
"\n",
|
1100 |
+
"class Denoiser(nn.Module):\n",
|
1101 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1102 |
+
" super().__init__()\n",
|
1103 |
+
" # Same UNet architecture for denoising\n",
|
1104 |
+
" self.unet = UNet(in_channels=in_channels, out_channels=out_channels)\n",
|
1105 |
+
" \n",
|
1106 |
+
" def forward(self, x):\n",
|
1107 |
+
" return self.unet(x)\n",
|
1108 |
+
" \n",
|
1109 |
+
"def train_reconstructor_and_denoiser(dicom_dir, val_dicom_dir, epochs=50, batch_size=4, grad_accumulation_steps=2):\n",
|
1110 |
+
" # Dataset and DataLoader\n",
|
1111 |
+
" dataset = MedicalImageDataset(dicom_dir)\n",
|
1112 |
+
" train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
|
1113 |
+
" val_dataset = MedicalImageDataset(val_dicom_dir)\n",
|
1114 |
+
" val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n",
|
1115 |
+
" \n",
|
1116 |
+
" # Initialize both models\n",
|
1117 |
+
" reconstructor = Reconstructor().to(device)\n",
|
1118 |
+
" denoiser = Denoiser().to(device)\n",
|
1119 |
+
" \n",
|
1120 |
+
" # Loss functions for both models\n",
|
1121 |
+
" reconstructor_criterion = nn.MSELoss()\n",
|
1122 |
+
" denoiser_criterion = nn.MSELoss()\n",
|
1123 |
+
" \n",
|
1124 |
+
" # Optimizers for both models\n",
|
1125 |
+
" reconstructor_optimizer = torch.optim.Adam(reconstructor.parameters(), lr=0.0001)\n",
|
1126 |
+
" denoiser_optimizer = torch.optim.Adam(denoiser.parameters(), lr=0.0001)\n",
|
1127 |
+
" \n",
|
1128 |
+
" # Best validation loss initialization\n",
|
1129 |
+
" best_reconstructor_val_loss = float('inf')\n",
|
1130 |
+
" best_denoiser_val_loss = float('inf')\n",
|
1131 |
+
" best_reconstructor_model_path = 'best_reconstructor_model.pth'\n",
|
1132 |
+
" best_denoiser_model_path = 'best_denoiser_model.pth'\n",
|
1133 |
+
"\n",
|
1134 |
+
" # Training loop with tqdm\n",
|
1135 |
+
" for epoch in range(epochs):\n",
|
1136 |
+
" reconstructor.train()\n",
|
1137 |
+
" denoiser.train()\n",
|
1138 |
+
" \n",
|
1139 |
+
" reconstructor_total_loss = 0\n",
|
1140 |
+
" denoiser_total_loss = 0\n",
|
1141 |
+
" \n",
|
1142 |
+
" reconstructor_optimizer.zero_grad()\n",
|
1143 |
+
" denoiser_optimizer.zero_grad()\n",
|
1144 |
+
"\n",
|
1145 |
+
" with tqdm(train_dataloader, unit=\"batch\", desc=f\"Epoch {epoch+1}/{epochs}\") as tepoch:\n",
|
1146 |
+
" for i, (images, targets) in enumerate(tepoch):\n",
|
1147 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1148 |
+
" \n",
|
1149 |
+
" # Training Reconstructor\n",
|
1150 |
+
" reconstructor_outputs = reconstructor(images)\n",
|
1151 |
+
" reconstructor_loss = reconstructor_criterion(reconstructor_outputs, targets)\n",
|
1152 |
+
" reconstructor_loss.backward(retain_graph=True)\n",
|
1153 |
+
"\n",
|
1154 |
+
" # Gradient accumulation for reconstructor\n",
|
1155 |
+
" if (i + 1) % grad_accumulation_steps == 0 or (i + 1) == len(tepoch):\n",
|
1156 |
+
" reconstructor_optimizer.step()\n",
|
1157 |
+
" reconstructor_optimizer.zero_grad()\n",
|
1158 |
+
"\n",
|
1159 |
+
" reconstructor_total_loss += reconstructor_loss.item()\n",
|
1160 |
+
"\n",
|
1161 |
+
" # Training Denoiser (using output from Reconstructor as noisy input)\n",
|
1162 |
+
" noisy_images = reconstructor_outputs.detach() # Detach from the computation graph to avoid in-place error\n",
|
1163 |
+
" denoiser_outputs = denoiser(noisy_images)\n",
|
1164 |
+
" denoiser_loss = denoiser_criterion(denoiser_outputs, targets)\n",
|
1165 |
+
" denoiser_loss.backward()\n",
|
1166 |
+
"\n",
|
1167 |
+
" # Gradient accumulation for denoiser\n",
|
1168 |
+
" if (i + 1) % grad_accumulation_steps == 0 or (i + 1) == len(tepoch):\n",
|
1169 |
+
" denoiser_optimizer.step()\n",
|
1170 |
+
" denoiser_optimizer.zero_grad()\n",
|
1171 |
+
"\n",
|
1172 |
+
" denoiser_total_loss += denoiser_loss.item()\n",
|
1173 |
+
"\n",
|
1174 |
+
" # Update the tqdm progress bar with current loss\n",
|
1175 |
+
" tepoch.set_postfix(\n",
|
1176 |
+
" reconstructor_loss=reconstructor_total_loss / ((i + 1) * batch_size),\n",
|
1177 |
+
" denoiser_loss=denoiser_total_loss / ((i + 1) * batch_size)\n",
|
1178 |
+
" )\n",
|
1179 |
+
" \n",
|
1180 |
+
" # Calculate validation loss for both models\n",
|
1181 |
+
" avg_reconstructor_train_loss = reconstructor_total_loss / len(train_dataloader)\n",
|
1182 |
+
" avg_denoiser_train_loss = denoiser_total_loss / len(train_dataloader)\n",
|
1183 |
+
" \n",
|
1184 |
+
" avg_reconstructor_val_loss, avg_reconstructor_val_psnr = calculate_loss_and_psnr(reconstructor, val_dataloader, reconstructor_criterion)\n",
|
1185 |
+
" avg_denoiser_val_loss, avg_denoiser_val_psnr = calculate_loss_and_psnr(denoiser, val_dataloader, denoiser_criterion)\n",
|
1186 |
+
" \n",
|
1187 |
+
" print(f\"Epoch [{epoch+1}/{epochs}] - \"\n",
|
1188 |
+
" f\"Reconstructor Train Loss: {avg_reconstructor_train_loss:.4f}, \"\n",
|
1189 |
+
" f\"Denoiser Train Loss: {avg_denoiser_train_loss:.4f}, \"\n",
|
1190 |
+
" f\"Reconstructor Val Loss: {avg_reconstructor_val_loss:.4f}, \"\n",
|
1191 |
+
" f\"Denoiser Val Loss: {avg_denoiser_val_loss:.4f}, \"\n",
|
1192 |
+
" f\"Reconstructor Validation PSNR: {avg_reconstructor_val_psnr:.4f}, \"\n",
|
1193 |
+
" f\"Denoiser Validation PSNR: {avg_denoiser_val_psnr:.4f}\")\n",
|
1194 |
+
" \n",
|
1195 |
+
" # Save models if validation loss is improved\n",
|
1196 |
+
" if avg_reconstructor_val_loss < best_reconstructor_val_loss:\n",
|
1197 |
+
" best_reconstructor_val_loss = avg_reconstructor_val_loss\n",
|
1198 |
+
" torch.save(reconstructor.state_dict(), best_reconstructor_model_path)\n",
|
1199 |
+
" print(f\"Reconstructor model saved with improved validation loss: {avg_reconstructor_val_loss:.4f}\")\n",
|
1200 |
+
" \n",
|
1201 |
+
" if avg_denoiser_val_loss < best_denoiser_val_loss:\n",
|
1202 |
+
" best_denoiser_val_loss = avg_denoiser_val_loss\n",
|
1203 |
+
" torch.save(denoiser.state_dict(), best_denoiser_model_path)\n",
|
1204 |
+
" print(f\"Denoiser model saved with improved validation loss: {avg_denoiser_val_loss:.4f}\")\n",
|
1205 |
+
" \n",
|
1206 |
+
" return reconstructor, denoiser\n",
|
1207 |
+
"\n",
|
1208 |
+
"# Example usage with train and validation directories\n",
|
1209 |
+
"reconstructor_model, denoiser_model = train_reconstructor_and_denoiser(\n",
|
1210 |
+
" r\"D:/PN_Split/train\", r\"D:/PN_Split/val\", epochs=50, batch_size=20, grad_accumulation_steps=2\n",
|
1211 |
+
")"
|
1212 |
+
]
|
1213 |
+
},
|
1214 |
+
{
|
1215 |
+
"cell_type": "markdown",
|
1216 |
+
"metadata": {},
|
1217 |
+
"source": [
|
1218 |
+
"### smallRD Single Image Inference"
|
1219 |
+
]
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"cell_type": "code",
|
1223 |
+
"execution_count": null,
|
1224 |
+
"metadata": {},
|
1225 |
+
"outputs": [],
|
1226 |
+
"source": [
|
1227 |
+
"import torch\n",
|
1228 |
+
"import pydicom\n",
|
1229 |
+
"import numpy as np\n",
|
1230 |
+
"import matplotlib.pyplot as plt\n",
|
1231 |
+
"import os\n",
|
1232 |
+
"\n",
|
1233 |
+
"# Import the models from the previous script\n",
|
1234 |
+
"# Assuming they are defined or imported correctly\n",
|
1235 |
+
"\n",
|
1236 |
+
"def load_dicom_image(dicom_path):\n",
|
1237 |
+
" \"\"\"\n",
|
1238 |
+
" Load and normalize a DICOM image\n",
|
1239 |
+
" \n",
|
1240 |
+
" Args:\n",
|
1241 |
+
" dicom_path (str): Path to the DICOM file\n",
|
1242 |
+
" \n",
|
1243 |
+
" Returns:\n",
|
1244 |
+
" torch.Tensor: Normalized image tensor\n",
|
1245 |
+
" \"\"\"\n",
|
1246 |
+
" # Read DICOM file\n",
|
1247 |
+
" dcm = pydicom.dcmread(dicom_path)\n",
|
1248 |
+
" image = dcm.pixel_array.astype(float)\n",
|
1249 |
+
" \n",
|
1250 |
+
" # Normalize image\n",
|
1251 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
1252 |
+
" \n",
|
1253 |
+
" # Convert to tensor\n",
|
1254 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions\n",
|
1255 |
+
" return image_tensor\n",
|
1256 |
+
"\n",
|
1257 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
1258 |
+
" \"\"\"\n",
|
1259 |
+
" Calculate Peak Signal-to-Noise Ratio (PSNR)\n",
|
1260 |
+
" \n",
|
1261 |
+
" Args:\n",
|
1262 |
+
" output (torch.Tensor): Reconstructed image\n",
|
1263 |
+
" target (torch.Tensor): Original image\n",
|
1264 |
+
" max_pixel (float): Maximum pixel value\n",
|
1265 |
+
" \n",
|
1266 |
+
" Returns:\n",
|
1267 |
+
" float: PSNR value\n",
|
1268 |
+
" \"\"\"\n",
|
1269 |
+
" # Ensure the values are in the correct range\n",
|
1270 |
+
" mse = torch.nn.functional.mse_loss(output, target)\n",
|
1271 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
1272 |
+
" return psnr.item()\n",
|
1273 |
+
"\n",
|
1274 |
+
"def visualize_reconstruction(original_image, reconstructed_image, psnr):\n",
|
1275 |
+
" \"\"\"\n",
|
1276 |
+
" Visualize original and reconstructed images\n",
|
1277 |
+
" \n",
|
1278 |
+
" Args:\n",
|
1279 |
+
" original_image (torch.Tensor): Original image tensor\n",
|
1280 |
+
" reconstructed_image (torch.Tensor): Reconstructed image tensor\n",
|
1281 |
+
" psnr (float): Peak Signal-to-Noise Ratio\n",
|
1282 |
+
" \"\"\"\n",
|
1283 |
+
" # Convert tensors to numpy for visualization\n",
|
1284 |
+
" original = original_image.squeeze().cpu().numpy()\n",
|
1285 |
+
" reconstructed = reconstructed_image.squeeze().cpu().numpy()\n",
|
1286 |
+
" \n",
|
1287 |
+
" # Create subplot\n",
|
1288 |
+
" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))\n",
|
1289 |
+
" \n",
|
1290 |
+
" # Plot original image\n",
|
1291 |
+
" im1 = ax1.imshow(original, cmap='gray')\n",
|
1292 |
+
" ax1.set_title('Original Image')\n",
|
1293 |
+
" plt.colorbar(im1, ax=ax1)\n",
|
1294 |
+
" \n",
|
1295 |
+
" # Plot reconstructed image\n",
|
1296 |
+
" im2 = ax2.imshow(reconstructed, cmap='gray')\n",
|
1297 |
+
" ax2.set_title(f'Reconstructed Image\\nPSNR: {psnr:.2f} dB')\n",
|
1298 |
+
" plt.colorbar(im2, ax=ax2)\n",
|
1299 |
+
" \n",
|
1300 |
+
" plt.tight_layout()\n",
|
1301 |
+
" plt.show()\n",
|
1302 |
+
"\n",
|
1303 |
+
"def inference_single_image(reconstructor_model_path, denoiser_model_path, test_dicom_path):\n",
|
1304 |
+
" \"\"\"\n",
|
1305 |
+
" Perform inference on a single DICOM image using both Reconstructor and Denoiser models.\n",
|
1306 |
+
" \n",
|
1307 |
+
" Args:\n",
|
1308 |
+
" reconstructor_model_path (str): Path to the saved Reconstructor model weights\n",
|
1309 |
+
" denoiser_model_path (str): Path to the saved Denoiser model weights\n",
|
1310 |
+
" test_dicom_path (str): Path to the test DICOM file\n",
|
1311 |
+
" \"\"\"\n",
|
1312 |
+
" # Set device\n",
|
1313 |
+
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1314 |
+
" \n",
|
1315 |
+
" # Initialize models\n",
|
1316 |
+
" reconstructor = Reconstructor().to(device)\n",
|
1317 |
+
" denoiser = Denoiser().to(device)\n",
|
1318 |
+
" \n",
|
1319 |
+
" # Load saved model weights\n",
|
1320 |
+
" reconstructor.load_state_dict(torch.load(reconstructor_model_path))\n",
|
1321 |
+
" denoiser.load_state_dict(torch.load(denoiser_model_path))\n",
|
1322 |
+
" \n",
|
1323 |
+
" reconstructor.eval()\n",
|
1324 |
+
" denoiser.eval()\n",
|
1325 |
+
" \n",
|
1326 |
+
" # Load and preprocess test image\n",
|
1327 |
+
" with torch.no_grad():\n",
|
1328 |
+
" test_image = load_dicom_image(test_dicom_path).to(device)\n",
|
1329 |
+
" \n",
|
1330 |
+
" # Perform reconstruction\n",
|
1331 |
+
" reconstructed_image = reconstructor(test_image)\n",
|
1332 |
+
" \n",
|
1333 |
+
" # Perform denoising on the reconstructed image\n",
|
1334 |
+
" denoised_image = denoiser(reconstructed_image)\n",
|
1335 |
+
" \n",
|
1336 |
+
" # Calculate PSNR for both original and denoised outputs\n",
|
1337 |
+
" psnr_reconstructed = calculate_psnr(reconstructed_image, test_image)\n",
|
1338 |
+
" psnr_denoised = calculate_psnr(denoised_image, test_image)\n",
|
1339 |
+
"\n",
|
1340 |
+
" print(f\"PSNR (Reconstructed): {psnr_reconstructed:.2f} dB\")\n",
|
1341 |
+
" print(f\"PSNR (Denoised): {psnr_denoised:.2f} dB\")\n",
|
1342 |
+
" \n",
|
1343 |
+
" # Visualize results\n",
|
1344 |
+
" visualize_reconstruction(test_image, reconstructed_image, psnr_reconstructed)\n",
|
1345 |
+
" visualize_reconstruction(test_image, denoised_image, psnr_denoised)\n",
|
1346 |
+
"\n",
|
1347 |
+
"# Example usage\n",
|
1348 |
+
"if __name__ == \"__main__\":\n",
|
1349 |
+
" # Paths to models and test image\n",
|
1350 |
+
" RECONSTRUCTOR_MODEL_PATH = r\"D:/VSCODE/PreSense/small_reconstructor.pth\" # Path to your saved Reconstructor model\n",
|
1351 |
+
" DENOISER_MODEL_PATH = r\"D:/VSCODE/PreSense/small_denoiser.pth\" # Path to your saved Denoiser model\n",
|
1352 |
+
" TEST_DICOM_PATH = r\"D:/VSCODE/PreSense/test2.dcm\" # Replace with actual path to test DICOM \n",
|
1353 |
+
" # Run inference\n",
|
1354 |
+
" inference_single_image(RECONSTRUCTOR_MODEL_PATH, DENOISER_MODEL_PATH, TEST_DICOM_PATH)"
|
1355 |
+
]
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"cell_type": "markdown",
|
1359 |
+
"metadata": {},
|
1360 |
+
"source": [
|
1361 |
+
"### Medium Reconstructor and Denoiser U-Net (mediumRD)"
|
1362 |
+
]
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"cell_type": "code",
|
1366 |
+
"execution_count": null,
|
1367 |
+
"metadata": {},
|
1368 |
+
"outputs": [],
|
1369 |
+
"source": [
|
1370 |
+
"import torch\n",
|
1371 |
+
"import torch.nn as nn\n",
|
1372 |
+
"import torch.nn.functional as F\n",
|
1373 |
+
"import pydicom\n",
|
1374 |
+
"import numpy as np\n",
|
1375 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
1376 |
+
"import os\n",
|
1377 |
+
"from torch.utils.checkpoint import checkpoint\n",
|
1378 |
+
"from tqdm import tqdm # Import tqdm for progress bar\n",
|
1379 |
+
"\n",
|
1380 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1381 |
+
"\n",
|
1382 |
+
"class MedicalImageDataset(Dataset):\n",
|
1383 |
+
" def __init__(self, dicom_dir):\n",
|
1384 |
+
" self.dicom_files = [os.path.join(dicom_dir, f) for f in os.listdir(dicom_dir) if f.endswith('.dcm')]\n",
|
1385 |
+
" \n",
|
1386 |
+
" def __len__(self):\n",
|
1387 |
+
" return len(self.dicom_files)\n",
|
1388 |
+
" \n",
|
1389 |
+
" def __getitem__(self, idx):\n",
|
1390 |
+
" # Read DICOM file and normalize\n",
|
1391 |
+
" dcm = pydicom.dcmread(self.dicom_files[idx])\n",
|
1392 |
+
" image = dcm.pixel_array.astype(float)\n",
|
1393 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
1394 |
+
" \n",
|
1395 |
+
" # Convert to tensor\n",
|
1396 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0)\n",
|
1397 |
+
" return image_tensor, image_tensor\n",
|
1398 |
+
"\n",
|
1399 |
+
"class UNetBlock(nn.Module):\n",
|
1400 |
+
" def __init__(self, in_channels, out_channels):\n",
|
1401 |
+
" super().__init__()\n",
|
1402 |
+
" self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)\n",
|
1403 |
+
" self.bn1 = nn.BatchNorm2d(out_channels)\n",
|
1404 |
+
" self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)\n",
|
1405 |
+
" self.bn2 = nn.BatchNorm2d(out_channels)\n",
|
1406 |
+
" self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)\n",
|
1407 |
+
" self.bn2 = nn.BatchNorm2d(out_channels)\n",
|
1408 |
+
" \n",
|
1409 |
+
" def forward(self, x):\n",
|
1410 |
+
" x = F.relu(self.bn1(self.conv1(x)))\n",
|
1411 |
+
" x = F.relu(self.bn2(self.conv2(x)))\n",
|
1412 |
+
" return x\n",
|
1413 |
+
"\n",
|
1414 |
+
"class UNet(nn.Module):\n",
|
1415 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1416 |
+
" super().__init__()\n",
|
1417 |
+
" # Encoder\n",
|
1418 |
+
" self.enc1 = UNetBlock(in_channels, 96)\n",
|
1419 |
+
" self.enc2 = UNetBlock(96, 192)\n",
|
1420 |
+
" self.enc3 = UNetBlock(192, 384)\n",
|
1421 |
+
" self.enc4 = UNetBlock(384, 784)\n",
|
1422 |
+
" \n",
|
1423 |
+
" # Decoder with learned upsampling (transposed convolutions)\n",
|
1424 |
+
" self.upconv4 = nn.ConvTranspose2d(784, 384, kernel_size=2, stride=2) # Learnable upsampling\n",
|
1425 |
+
" self.dec4 = UNetBlock(384 + 384, 384) # Adjust input channels after concatenation\n",
|
1426 |
+
"\n",
|
1427 |
+
" self.upconv3 = nn.ConvTranspose2d(384, 192, kernel_size=2, stride=2) # Learnable upsampling\n",
|
1428 |
+
" self.dec3 = UNetBlock(192 + 192, 192) # Adjust input channels after concatenation\n",
|
1429 |
+
"\n",
|
1430 |
+
" self.upconv2 = nn.ConvTranspose2d(192, 96, kernel_size=2, stride=2) # Learnable upsampling\n",
|
1431 |
+
" self.dec2 = UNetBlock(96 + 96, 96) # Adjust input channels after concatenation\n",
|
1432 |
+
"\n",
|
1433 |
+
" self.dec1 = UNetBlock(96, out_channels) # Final output\n",
|
1434 |
+
"\n",
|
1435 |
+
" self.pool = nn.MaxPool2d(2, 2)\n",
|
1436 |
+
" \n",
|
1437 |
+
" def forward(self, x):\n",
|
1438 |
+
" # Encoder path\n",
|
1439 |
+
" e1 = checkpoint(self.enc1, x)\n",
|
1440 |
+
" e2 = checkpoint(self.enc2, self.pool(e1))\n",
|
1441 |
+
" e3 = checkpoint(self.enc3, self.pool(e2))\n",
|
1442 |
+
" e4 = checkpoint(self.enc4, self.pool(e3))\n",
|
1443 |
+
" \n",
|
1444 |
+
" # Decoder path with learned upsampling and skip connections\n",
|
1445 |
+
" d4 = self.upconv4(e4) # Learnable upsampling\n",
|
1446 |
+
" d4 = torch.cat([d4, e3], dim=1) # Concatenate with encoder features\n",
|
1447 |
+
" d4 = checkpoint(self.dec4, d4)\n",
|
1448 |
+
"\n",
|
1449 |
+
" d3 = self.upconv3(d4) # Learnable upsampling\n",
|
1450 |
+
" d3 = torch.cat([d3, e2], dim=1) # Concatenate with encoder features\n",
|
1451 |
+
" d3 = checkpoint(self.dec3, d3)\n",
|
1452 |
+
"\n",
|
1453 |
+
" d2 = self.upconv2(d3) # Learnable upsampling\n",
|
1454 |
+
" d2 = torch.cat([d2, e1], dim=1) # Concatenate with encoder features\n",
|
1455 |
+
" d2 = checkpoint(self.dec2, d2)\n",
|
1456 |
+
" \n",
|
1457 |
+
" d1 = self.dec1(d2) # No checkpointing for final output layer\n",
|
1458 |
+
" \n",
|
1459 |
+
" return d1\n",
|
1460 |
+
"\n",
|
1461 |
+
"def calculate_loss(model, dataloader, criterion):\n",
|
1462 |
+
" model.eval()\n",
|
1463 |
+
" total_loss = 0\n",
|
1464 |
+
" with torch.no_grad():\n",
|
1465 |
+
" for images, targets in dataloader:\n",
|
1466 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1467 |
+
" outputs = model(images)\n",
|
1468 |
+
" loss = criterion(outputs, targets)\n",
|
1469 |
+
" total_loss += loss.item()\n",
|
1470 |
+
" return total_loss / len(dataloader)\n",
|
1471 |
+
"\n",
|
1472 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
1473 |
+
" # Ensure the values are in the correct range\n",
|
1474 |
+
" mse = F.mse_loss(output, target)\n",
|
1475 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
1476 |
+
" return psnr.item()\n",
|
1477 |
+
"\n",
|
1478 |
+
"def calculate_loss_and_psnr(model, dataloader, criterion):\n",
|
1479 |
+
" model.eval()\n",
|
1480 |
+
" total_loss = 0\n",
|
1481 |
+
" total_psnr = 0\n",
|
1482 |
+
" num_batches = len(dataloader)\n",
|
1483 |
+
" \n",
|
1484 |
+
" with torch.no_grad():\n",
|
1485 |
+
" for images, targets in dataloader:\n",
|
1486 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1487 |
+
" outputs = model(images)\n",
|
1488 |
+
" \n",
|
1489 |
+
" # Calculate MSE loss\n",
|
1490 |
+
" loss = criterion(outputs, targets)\n",
|
1491 |
+
" total_loss += loss.item()\n",
|
1492 |
+
" \n",
|
1493 |
+
" # Calculate PSNR\n",
|
1494 |
+
" psnr = calculate_psnr(outputs, targets)\n",
|
1495 |
+
" total_psnr += psnr\n",
|
1496 |
+
" \n",
|
1497 |
+
" avg_loss = total_loss / num_batches\n",
|
1498 |
+
" avg_psnr = total_psnr / num_batches\n",
|
1499 |
+
" \n",
|
1500 |
+
" return avg_loss, avg_psnr\n",
|
1501 |
+
"\n",
|
1502 |
+
"class Reconstructor(nn.Module):\n",
|
1503 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1504 |
+
" super().__init__()\n",
|
1505 |
+
" # Same UNet architecture for reconstruction\n",
|
1506 |
+
" self.unet = UNet(in_channels=in_channels, out_channels=out_channels)\n",
|
1507 |
+
" \n",
|
1508 |
+
" def forward(self, x):\n",
|
1509 |
+
" return self.unet(x)\n",
|
1510 |
+
"\n",
|
1511 |
+
"\n",
|
1512 |
+
"class Denoiser(nn.Module):\n",
|
1513 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1514 |
+
" super().__init__()\n",
|
1515 |
+
" # Same UNet architecture for denoising\n",
|
1516 |
+
" self.unet = UNet(in_channels=in_channels, out_channels=out_channels)\n",
|
1517 |
+
" \n",
|
1518 |
+
" def forward(self, x):\n",
|
1519 |
+
" return self.unet(x)\n",
|
1520 |
+
" \n",
|
1521 |
+
"import os\n",
|
1522 |
+
"\n",
|
1523 |
+
"def train_reconstructor_and_denoiser(dicom_dir, val_dicom_dir, epochs=50, batch_size=4, grad_accumulation_steps=2):\n",
|
1524 |
+
" # Dataset and DataLoader\n",
|
1525 |
+
" dataset = MedicalImageDataset(dicom_dir)\n",
|
1526 |
+
" train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
|
1527 |
+
" val_dataset = MedicalImageDataset(val_dicom_dir)\n",
|
1528 |
+
" val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n",
|
1529 |
+
" \n",
|
1530 |
+
" # Initialize both models\n",
|
1531 |
+
" reconstructor = Reconstructor().to(device)\n",
|
1532 |
+
" denoiser = Denoiser().to(device)\n",
|
1533 |
+
" \n",
|
1534 |
+
" # Check if pre-trained models exist\n",
|
1535 |
+
" reconstructor_model_path = 'large_reconstructor.pth'\n",
|
1536 |
+
" denoiser_model_path = 'large_denoiser.pth'\n",
|
1537 |
+
"\n",
|
1538 |
+
" # Resume from existing models if they exist\n",
|
1539 |
+
" if os.path.exists(reconstructor_model_path):\n",
|
1540 |
+
" reconstructor.load_state_dict(torch.load(reconstructor_model_path))\n",
|
1541 |
+
" print(f\"Resumed training from {reconstructor_model_path}\")\n",
|
1542 |
+
" else:\n",
|
1543 |
+
" print(f\"No pre-trained reconstructor model found, starting from scratch.\")\n",
|
1544 |
+
" \n",
|
1545 |
+
" if os.path.exists(denoiser_model_path):\n",
|
1546 |
+
" denoiser.load_state_dict(torch.load(denoiser_model_path))\n",
|
1547 |
+
" print(f\"Resumed training from {denoiser_model_path}\")\n",
|
1548 |
+
" else:\n",
|
1549 |
+
" print(f\"No pre-trained denoiser model found, starting from scratch.\")\n",
|
1550 |
+
" \n",
|
1551 |
+
" # Loss functions for both models\n",
|
1552 |
+
" reconstructor_criterion = nn.MSELoss()\n",
|
1553 |
+
" denoiser_criterion = nn.MSELoss()\n",
|
1554 |
+
" \n",
|
1555 |
+
" # Optimizers for both models\n",
|
1556 |
+
" reconstructor_optimizer = torch.optim.Adam(reconstructor.parameters(), lr=0.0001)\n",
|
1557 |
+
" denoiser_optimizer = torch.optim.Adam(denoiser.parameters(), lr=0.0001)\n",
|
1558 |
+
" \n",
|
1559 |
+
" # Best validation loss initialization\n",
|
1560 |
+
" best_reconstructor_val_loss = float('inf')\n",
|
1561 |
+
" best_denoiser_val_loss = float('inf')\n",
|
1562 |
+
" best_reconstructor_model_path = 'best_reconstructor_model.pth'\n",
|
1563 |
+
" best_denoiser_model_path = 'best_denoiser_model.pth'\n",
|
1564 |
+
"\n",
|
1565 |
+
" # Training loop with tqdm\n",
|
1566 |
+
" for epoch in range(epochs):\n",
|
1567 |
+
" reconstructor.train()\n",
|
1568 |
+
" denoiser.train()\n",
|
1569 |
+
" \n",
|
1570 |
+
" reconstructor_total_loss = 0\n",
|
1571 |
+
" denoiser_total_loss = 0\n",
|
1572 |
+
" \n",
|
1573 |
+
" reconstructor_optimizer.zero_grad()\n",
|
1574 |
+
" denoiser_optimizer.zero_grad()\n",
|
1575 |
+
"\n",
|
1576 |
+
" with tqdm(train_dataloader, unit=\"batch\", desc=f\"Epoch {epoch+1}/{epochs}\") as tepoch:\n",
|
1577 |
+
" for i, (images, targets) in enumerate(tepoch):\n",
|
1578 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1579 |
+
" \n",
|
1580 |
+
" # Training Reconstructor\n",
|
1581 |
+
" reconstructor_outputs = reconstructor(images)\n",
|
1582 |
+
" reconstructor_loss = reconstructor_criterion(reconstructor_outputs, targets)\n",
|
1583 |
+
" reconstructor_loss.backward(retain_graph=True)\n",
|
1584 |
+
"\n",
|
1585 |
+
" # Gradient accumulation for reconstructor\n",
|
1586 |
+
" if (i + 1) % grad_accumulation_steps == 0 or (i + 1) == len(tepoch):\n",
|
1587 |
+
" reconstructor_optimizer.step()\n",
|
1588 |
+
" reconstructor_optimizer.zero_grad()\n",
|
1589 |
+
"\n",
|
1590 |
+
" reconstructor_total_loss += reconstructor_loss.item()\n",
|
1591 |
+
"\n",
|
1592 |
+
" # Training Denoiser (using output from Reconstructor as noisy input)\n",
|
1593 |
+
" noisy_images = reconstructor_outputs.detach() # Detach from the computation graph to avoid in-place error\n",
|
1594 |
+
" denoiser_outputs = denoiser(noisy_images)\n",
|
1595 |
+
" denoiser_loss = denoiser_criterion(denoiser_outputs, targets)\n",
|
1596 |
+
" denoiser_loss.backward()\n",
|
1597 |
+
"\n",
|
1598 |
+
" # Gradient accumulation for denoiser\n",
|
1599 |
+
" if (i + 1) % grad_accumulation_steps == 0 or (i + 1) == len(tepoch):\n",
|
1600 |
+
" denoiser_optimizer.step()\n",
|
1601 |
+
" denoiser_optimizer.zero_grad()\n",
|
1602 |
+
"\n",
|
1603 |
+
" denoiser_total_loss += denoiser_loss.item()\n",
|
1604 |
+
"\n",
|
1605 |
+
" # Update the tqdm progress bar with current loss\n",
|
1606 |
+
" tepoch.set_postfix(\n",
|
1607 |
+
" reconstructor_loss=reconstructor_total_loss / ((i + 1) * batch_size),\n",
|
1608 |
+
" denoiser_loss=denoiser_total_loss / ((i + 1) * batch_size)\n",
|
1609 |
+
" )\n",
|
1610 |
+
" \n",
|
1611 |
+
" # Calculate validation loss for both models\n",
|
1612 |
+
" avg_reconstructor_train_loss = reconstructor_total_loss / len(train_dataloader)\n",
|
1613 |
+
" avg_denoiser_train_loss = denoiser_total_loss / len(train_dataloader)\n",
|
1614 |
+
" \n",
|
1615 |
+
" avg_reconstructor_val_loss, _ = calculate_loss_and_psnr(reconstructor, val_dataloader, reconstructor_criterion)\n",
|
1616 |
+
" avg_denoiser_val_loss, _ = calculate_loss_and_psnr(denoiser, val_dataloader, denoiser_criterion)\n",
|
1617 |
+
" \n",
|
1618 |
+
" print(f\"Epoch [{epoch+1}/{epochs}] - \"\n",
|
1619 |
+
" f\"Reconstructor Train Loss: {avg_reconstructor_train_loss:.4f}, \"\n",
|
1620 |
+
" f\"Denoiser Train Loss: {avg_denoiser_train_loss:.4f}, \"\n",
|
1621 |
+
" f\"Reconstructor Val Loss: {avg_reconstructor_val_loss:.4f}, \"\n",
|
1622 |
+
" f\"Denoiser Val Loss: {avg_denoiser_val_loss:.4f}\")\n",
|
1623 |
+
" \n",
|
1624 |
+
" # Save models if validation loss is improved\n",
|
1625 |
+
" if avg_reconstructor_val_loss < best_reconstructor_val_loss:\n",
|
1626 |
+
" best_reconstructor_val_loss = avg_reconstructor_val_loss\n",
|
1627 |
+
" torch.save(reconstructor.state_dict(), reconstructor_model_path)\n",
|
1628 |
+
" print(f\"Reconstructor model saved with improved validation loss: {avg_reconstructor_val_loss:.4f}\")\n",
|
1629 |
+
" \n",
|
1630 |
+
" if avg_denoiser_val_loss < best_denoiser_val_loss:\n",
|
1631 |
+
" best_denoiser_val_loss = avg_denoiser_val_loss\n",
|
1632 |
+
" torch.save(denoiser.state_dict(), denoiser_model_path)\n",
|
1633 |
+
" print(f\"Denoiser model saved with improved validation loss: {avg_denoiser_val_loss:.4f}\")\n",
|
1634 |
+
" \n",
|
1635 |
+
" return reconstructor, denoiser\n",
|
1636 |
+
"\n",
|
1637 |
+
"# Example usage with train and validation directories\n",
|
1638 |
+
"reconstructor_model, denoiser_model = train_reconstructor_and_denoiser(\n",
|
1639 |
+
" \"./TCIA_Split/train\", \"./TCIA_Split/val\", epochs=50, batch_size=6, grad_accumulation_steps=16\n",
|
1640 |
+
")"
|
1641 |
+
]
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"cell_type": "markdown",
|
1645 |
+
"metadata": {},
|
1646 |
+
"source": [
|
1647 |
+
"### Larger Reconstructor and Denoiser U-Net (largeRD)"
|
1648 |
+
]
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"cell_type": "code",
|
1652 |
+
"execution_count": null,
|
1653 |
+
"metadata": {},
|
1654 |
+
"outputs": [],
|
1655 |
+
"source": [
|
1656 |
+
"import torch\n",
|
1657 |
+
"import torch.nn as nn\n",
|
1658 |
+
"import torch.nn.functional as F\n",
|
1659 |
+
"import pydicom\n",
|
1660 |
+
"import numpy as np\n",
|
1661 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
1662 |
+
"import os\n",
|
1663 |
+
"from torch.utils.checkpoint import checkpoint\n",
|
1664 |
+
"from tqdm import tqdm # Import tqdm for progress bar\n",
|
1665 |
+
"\n",
|
1666 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1667 |
+
"\n",
|
1668 |
+
"class MedicalImageDataset(Dataset):\n",
|
1669 |
+
" def __init__(self, dicom_dir):\n",
|
1670 |
+
" self.dicom_files = [os.path.join(dicom_dir, f) for f in os.listdir(dicom_dir) if f.endswith('.dcm')]\n",
|
1671 |
+
" \n",
|
1672 |
+
" def __len__(self):\n",
|
1673 |
+
" return len(self.dicom_files)\n",
|
1674 |
+
" \n",
|
1675 |
+
" def __getitem__(self, idx):\n",
|
1676 |
+
" # Read DICOM file and normalize\n",
|
1677 |
+
" dcm = pydicom.dcmread(self.dicom_files[idx])\n",
|
1678 |
+
" image = dcm.pixel_array.astype(float)\n",
|
1679 |
+
" image = (image - image.min()) / (image.max() - image.min())\n",
|
1680 |
+
" \n",
|
1681 |
+
" # Convert to tensor\n",
|
1682 |
+
" image_tensor = torch.from_numpy(image).float().unsqueeze(0)\n",
|
1683 |
+
" return image_tensor, image_tensor\n",
|
1684 |
+
"\n",
|
1685 |
+
"class UNetBlock(nn.Module):\n",
|
1686 |
+
" def __init__(self, in_channels, out_channels):\n",
|
1687 |
+
" super().__init__()\n",
|
1688 |
+
" self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)\n",
|
1689 |
+
" self.bn1 = nn.BatchNorm2d(out_channels)\n",
|
1690 |
+
" self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)\n",
|
1691 |
+
" self.bn2 = nn.BatchNorm2d(out_channels)\n",
|
1692 |
+
" self.conv3 = nn.Conv2d(out_channels, out_channels, 3, padding=1)\n",
|
1693 |
+
" self.bn3 = nn.BatchNorm2d(out_channels)\n",
|
1694 |
+
" \n",
|
1695 |
+
" def forward(self, x):\n",
|
1696 |
+
" x = F.relu(self.bn1(self.conv1(x)))\n",
|
1697 |
+
" x = F.relu(self.bn2(self.conv2(x)))\n",
|
1698 |
+
" x = F.relu(self.bn3(self.conv3(x)))\n",
|
1699 |
+
" return x\n",
|
1700 |
+
"\n",
|
1701 |
+
"class UNet(nn.Module):\n",
|
1702 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1703 |
+
" super().__init__()\n",
|
1704 |
+
" # Encoder\n",
|
1705 |
+
" self.enc1 = UNetBlock(in_channels, 96)\n",
|
1706 |
+
" self.enc2 = UNetBlock(96, 192)\n",
|
1707 |
+
" self.enc3 = UNetBlock(192, 384)\n",
|
1708 |
+
" self.enc4 = UNetBlock(384, 768)\n",
|
1709 |
+
" self.enc5 = UNetBlock(768, 1536)\n",
|
1710 |
+
" \n",
|
1711 |
+
" # Decoder with learned upsampling (transposed convolutions)\n",
|
1712 |
+
"\n",
|
1713 |
+
" self.upconv5 = nn.ConvTranspose2d(1536, 768, kernel_size=2, stride=2) # Learnable upsampling\n",
|
1714 |
+
" self.dec5 = UNetBlock(768 + 768, 768) # Adjust input channels after concatenation\n",
|
1715 |
+
"\n",
|
1716 |
+
" self.upconv4 = nn.ConvTranspose2d(768, 384, kernel_size=2, stride=2) # Learnable upsampling\n",
|
1717 |
+
" self.dec4 = UNetBlock(384 + 384, 384) # Adjust input channels after concatenation\n",
|
1718 |
+
"\n",
|
1719 |
+
" self.upconv3 = nn.ConvTranspose2d(384, 192, kernel_size=2, stride=2) # Learnable upsampling\n",
|
1720 |
+
" self.dec3 = UNetBlock(192 + 192, 192) # Adjust input channels after concatenation\n",
|
1721 |
+
"\n",
|
1722 |
+
" self.upconv2 = nn.ConvTranspose2d(192, 96, kernel_size=2, stride=2) # Learnable upsampling\n",
|
1723 |
+
" self.dec2 = UNetBlock(96 + 96, 96) # Adjust input channels after concatenation\n",
|
1724 |
+
"\n",
|
1725 |
+
" self.dec1 = UNetBlock(96, out_channels) # Final output\n",
|
1726 |
+
"\n",
|
1727 |
+
" self.pool = nn.MaxPool2d(2, 2)\n",
|
1728 |
+
" \n",
|
1729 |
+
" def forward(self, x):\n",
|
1730 |
+
" # Encoder path\n",
|
1731 |
+
" e1 = checkpoint(self.enc1, x)\n",
|
1732 |
+
" e2 = checkpoint(self.enc2, self.pool(e1))\n",
|
1733 |
+
" e3 = checkpoint(self.enc3, self.pool(e2))\n",
|
1734 |
+
" e4 = checkpoint(self.enc4, self.pool(e3))\n",
|
1735 |
+
" e5 = checkpoint(self.enc5, self.pool(e4))\n",
|
1736 |
+
" \n",
|
1737 |
+
" # Decoder path with learned upsampling and skip connections\n",
|
1738 |
+
"\n",
|
1739 |
+
" d5 = self.upconv5(e5) # Learnable upsampling\n",
|
1740 |
+
" # if d5.size(2) != e4.size(2) or d5.size(3) != e4.size(3):\n",
|
1741 |
+
" # # Resize e4 to match d5's dimensions\n",
|
1742 |
+
" # e4 = F.interpolate(e4, size=(d5.size(2), d5.size(3)), mode='nearest')\n",
|
1743 |
+
" d5 = torch.cat([d5, e4], dim=1) # Concatenate with encoder features\n",
|
1744 |
+
" d5 = checkpoint(self.dec5, d5)\n",
|
1745 |
+
"\n",
|
1746 |
+
" d4 = self.upconv4(d5) # Learnable upsampling\n",
|
1747 |
+
" # if d4.size(2) != e2.size(2) or d4.size(3) != e2.size(3):\n",
|
1748 |
+
" # # Resize e3 to match d4's dimensions\n",
|
1749 |
+
" # e3 = F.interpolate(e3, size=(d4.size(2), d4.size(3)), mode='nearest')\n",
|
1750 |
+
" d4 = torch.cat([d4, e3], dim=1) # Concatenate with encoder features\n",
|
1751 |
+
" d4 = checkpoint(self.dec4, d4)\n",
|
1752 |
+
"\n",
|
1753 |
+
" d3 = self.upconv3(d4) # Learnable upsampling\n",
|
1754 |
+
" # if d3.size(2) != e2.size(2) or d3.size(3) != e2.size(3):\n",
|
1755 |
+
" # # Resize e2 to match d3's dimensions\n",
|
1756 |
+
" # e2 = F.interpolate(e2, size=(d3.size(2), d3.size(3)), mode='nearest')\n",
|
1757 |
+
" d3 = torch.cat([d3, e2], dim=1) # Concatenate with encoder features\n",
|
1758 |
+
" d3 = checkpoint(self.dec3, d3)\n",
|
1759 |
+
"\n",
|
1760 |
+
" d2 = self.upconv2(d3) # Learnable upsampling\n",
|
1761 |
+
" # if d2.size(2) != e1.size(2) or d2.size(3) != e1.size(3):\n",
|
1762 |
+
" # # Resize e1 to match d2's dimensions\n",
|
1763 |
+
" # e1 = F.interpolate(e1, size=(d2.size(2), d2.size(3)), mode='nearest')\n",
|
1764 |
+
" d2 = torch.cat([d2, e1], dim=1) # Concatenate with encoder features\n",
|
1765 |
+
" d2 = checkpoint(self.dec2, d2)\n",
|
1766 |
+
" \n",
|
1767 |
+
" d1 = self.dec1(d2) # No checkpointing for final output layer\n",
|
1768 |
+
" \n",
|
1769 |
+
" return d1\n",
|
1770 |
+
"\n",
|
1771 |
+
"def calculate_loss(model, dataloader, criterion):\n",
|
1772 |
+
" model.eval()\n",
|
1773 |
+
" total_loss = 0\n",
|
1774 |
+
" with torch.no_grad():\n",
|
1775 |
+
" for images, targets in dataloader:\n",
|
1776 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1777 |
+
" outputs = model(images)\n",
|
1778 |
+
" loss = criterion(outputs, targets)\n",
|
1779 |
+
" total_loss += loss.item()\n",
|
1780 |
+
" return total_loss / len(dataloader)\n",
|
1781 |
+
"\n",
|
1782 |
+
"def calculate_psnr(output, target, max_pixel=1.0):\n",
|
1783 |
+
" # Ensure the values are in the correct range\n",
|
1784 |
+
" mse = F.mse_loss(output, target)\n",
|
1785 |
+
" psnr = 20 * torch.log10(max_pixel / torch.sqrt(mse))\n",
|
1786 |
+
" return psnr.item()\n",
|
1787 |
+
"\n",
|
1788 |
+
"def calculate_loss_and_psnr(model, dataloader, criterion):\n",
|
1789 |
+
" model.eval()\n",
|
1790 |
+
" total_loss = 0\n",
|
1791 |
+
" total_psnr = 0\n",
|
1792 |
+
" num_batches = len(dataloader)\n",
|
1793 |
+
" \n",
|
1794 |
+
" with torch.no_grad():\n",
|
1795 |
+
" for images, targets in dataloader:\n",
|
1796 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1797 |
+
" outputs = model(images)\n",
|
1798 |
+
" \n",
|
1799 |
+
" # Calculate MSE loss\n",
|
1800 |
+
" loss = criterion(outputs, targets)\n",
|
1801 |
+
" total_loss += loss.item()\n",
|
1802 |
+
" \n",
|
1803 |
+
" # Calculate PSNR\n",
|
1804 |
+
" psnr = calculate_psnr(outputs, targets)\n",
|
1805 |
+
" total_psnr += psnr\n",
|
1806 |
+
" \n",
|
1807 |
+
" avg_loss = total_loss / num_batches\n",
|
1808 |
+
" avg_psnr = total_psnr / num_batches\n",
|
1809 |
+
" \n",
|
1810 |
+
" return avg_loss, avg_psnr\n",
|
1811 |
+
"\n",
|
1812 |
+
"class Reconstructor(nn.Module):\n",
|
1813 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1814 |
+
" super().__init__()\n",
|
1815 |
+
" # Same UNet architecture for reconstruction\n",
|
1816 |
+
" self.unet = UNet(in_channels=in_channels, out_channels=out_channels)\n",
|
1817 |
+
" \n",
|
1818 |
+
" def forward(self, x):\n",
|
1819 |
+
" return self.unet(x)\n",
|
1820 |
+
"\n",
|
1821 |
+
"\n",
|
1822 |
+
"class Denoiser(nn.Module):\n",
|
1823 |
+
" def __init__(self, in_channels=1, out_channels=1):\n",
|
1824 |
+
" super().__init__()\n",
|
1825 |
+
" # Same UNet architecture for denoising\n",
|
1826 |
+
" self.unet = UNet(in_channels=in_channels, out_channels=out_channels)\n",
|
1827 |
+
" \n",
|
1828 |
+
" def forward(self, x):\n",
|
1829 |
+
" return self.unet(x)\n",
|
1830 |
+
" \n",
|
1831 |
+
"def train_reconstructor_and_denoiser(dicom_dir, val_dicom_dir, epochs=50, batch_size=4, grad_accumulation_steps=2):\n",
|
1832 |
+
" # Dataset and DataLoader\n",
|
1833 |
+
" dataset = MedicalImageDataset(dicom_dir)\n",
|
1834 |
+
" train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
|
1835 |
+
" val_dataset = MedicalImageDataset(val_dicom_dir)\n",
|
1836 |
+
" val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n",
|
1837 |
+
" \n",
|
1838 |
+
" # Initialize both models\n",
|
1839 |
+
" reconstructor = Reconstructor().to(device)\n",
|
1840 |
+
" denoiser = Denoiser().to(device)\n",
|
1841 |
+
" \n",
|
1842 |
+
" # Loss functions for both models\n",
|
1843 |
+
" reconstructor_criterion = nn.MSELoss()\n",
|
1844 |
+
" denoiser_criterion = nn.MSELoss()\n",
|
1845 |
+
" \n",
|
1846 |
+
" # Optimizers for both models\n",
|
1847 |
+
" reconstructor_optimizer = torch.optim.Adam(reconstructor.parameters(), lr=0.0001)\n",
|
1848 |
+
" denoiser_optimizer = torch.optim.Adam(denoiser.parameters(), lr=0.0001)\n",
|
1849 |
+
" \n",
|
1850 |
+
" # Best validation loss initialization\n",
|
1851 |
+
" best_reconstructor_val_loss = float('inf')\n",
|
1852 |
+
" best_denoiser_val_loss = float('inf')\n",
|
1853 |
+
" best_reconstructor_model_path = 'largeR.pth'\n",
|
1854 |
+
" best_denoiser_model_path = 'largeD.pth'\n",
|
1855 |
+
"\n",
|
1856 |
+
" # Training loop with tqdm\n",
|
1857 |
+
" for epoch in range(epochs):\n",
|
1858 |
+
" reconstructor.train()\n",
|
1859 |
+
" denoiser.train()\n",
|
1860 |
+
" \n",
|
1861 |
+
" reconstructor_total_loss = 0\n",
|
1862 |
+
" denoiser_total_loss = 0\n",
|
1863 |
+
" \n",
|
1864 |
+
" reconstructor_optimizer.zero_grad()\n",
|
1865 |
+
" denoiser_optimizer.zero_grad()\n",
|
1866 |
+
"\n",
|
1867 |
+
" with tqdm(train_dataloader, unit=\"batch\", desc=f\"Epoch {epoch+1}/{epochs}\") as tepoch:\n",
|
1868 |
+
" for i, (images, targets) in enumerate(tepoch):\n",
|
1869 |
+
" images, targets = images.to(device), targets.to(device)\n",
|
1870 |
+
" \n",
|
1871 |
+
" # Training Reconstructor\n",
|
1872 |
+
" reconstructor_outputs = reconstructor(images)\n",
|
1873 |
+
" reconstructor_loss = reconstructor_criterion(reconstructor_outputs, targets)\n",
|
1874 |
+
" reconstructor_loss.backward(retain_graph=True)\n",
|
1875 |
+
"\n",
|
1876 |
+
" # Gradient accumulation for reconstructor\n",
|
1877 |
+
" if (i + 1) % grad_accumulation_steps == 0 or (i + 1) == len(tepoch):\n",
|
1878 |
+
" reconstructor_optimizer.step()\n",
|
1879 |
+
" reconstructor_optimizer.zero_grad()\n",
|
1880 |
+
"\n",
|
1881 |
+
" reconstructor_total_loss += reconstructor_loss.item()\n",
|
1882 |
+
"\n",
|
1883 |
+
" # Training Denoiser (using output from Reconstructor as noisy input)\n",
|
1884 |
+
" noisy_images = reconstructor_outputs.detach() # Detach from the computation graph to avoid in-place error\n",
|
1885 |
+
" denoiser_outputs = denoiser(noisy_images)\n",
|
1886 |
+
" denoiser_loss = denoiser_criterion(denoiser_outputs, targets)\n",
|
1887 |
+
" denoiser_loss.backward()\n",
|
1888 |
+
"\n",
|
1889 |
+
" # Gradient accumulation for denoiser\n",
|
1890 |
+
" if (i + 1) % grad_accumulation_steps == 0 or (i + 1) == len(tepoch):\n",
|
1891 |
+
" denoiser_optimizer.step()\n",
|
1892 |
+
" denoiser_optimizer.zero_grad()\n",
|
1893 |
+
"\n",
|
1894 |
+
" denoiser_total_loss += denoiser_loss.item()\n",
|
1895 |
+
"\n",
|
1896 |
+
" # Update the tqdm progress bar with current loss\n",
|
1897 |
+
" tepoch.set_postfix(\n",
|
1898 |
+
" reconstructor_loss=reconstructor_total_loss / ((i + 1) * batch_size),\n",
|
1899 |
+
" denoiser_loss=denoiser_total_loss / ((i + 1) * batch_size)\n",
|
1900 |
+
" )\n",
|
1901 |
+
" \n",
|
1902 |
+
" # Calculate validation loss for both models\n",
|
1903 |
+
" avg_reconstructor_train_loss = reconstructor_total_loss / len(train_dataloader)\n",
|
1904 |
+
" avg_denoiser_train_loss = denoiser_total_loss / len(train_dataloader)\n",
|
1905 |
+
" \n",
|
1906 |
+
" avg_reconstructor_val_loss, _ = calculate_loss_and_psnr(reconstructor, val_dataloader, reconstructor_criterion)\n",
|
1907 |
+
" avg_denoiser_val_loss, _ = calculate_loss_and_psnr(denoiser, val_dataloader, denoiser_criterion)\n",
|
1908 |
+
" \n",
|
1909 |
+
" print(f\"Epoch [{epoch+1}/{epochs}] - \"\n",
|
1910 |
+
" f\"Reconstructor Train Loss: {avg_reconstructor_train_loss:.4f}, \"\n",
|
1911 |
+
" f\"Denoiser Train Loss: {avg_denoiser_train_loss:.4f}, \"\n",
|
1912 |
+
" f\"Reconstructor Val Loss: {avg_reconstructor_val_loss:.4f}, \"\n",
|
1913 |
+
" f\"Denoiser Val Loss: {avg_denoiser_val_loss:.4f}\")\n",
|
1914 |
+
" \n",
|
1915 |
+
" # Save models if validation loss is improved\n",
|
1916 |
+
" if avg_reconstructor_val_loss < best_reconstructor_val_loss:\n",
|
1917 |
+
" best_reconstructor_val_loss = avg_reconstructor_val_loss\n",
|
1918 |
+
" torch.save(reconstructor.state_dict(), best_reconstructor_model_path)\n",
|
1919 |
+
" print(f\"Reconstructor model saved with improved validation loss: {avg_reconstructor_val_loss:.4f}\")\n",
|
1920 |
+
" \n",
|
1921 |
+
" if avg_denoiser_val_loss < best_denoiser_val_loss:\n",
|
1922 |
+
" best_denoiser_val_loss = avg_denoiser_val_loss\n",
|
1923 |
+
" torch.save(denoiser.state_dict(), best_denoiser_model_path)\n",
|
1924 |
+
" print(f\"Denoiser model saved with improved validation loss: {avg_denoiser_val_loss:.4f}\")\n",
|
1925 |
+
" \n",
|
1926 |
+
" return reconstructor, denoiser\n",
|
1927 |
+
"\n",
|
1928 |
+
"# Example usage with train and validation directories\n",
|
1929 |
+
"reconstructor_model, denoiser_model = train_reconstructor_and_denoiser(\n",
|
1930 |
+
" r\"D:\\TCIA_Split\\train\", r\"D:\\TCIA_Split\\val\", epochs=50, batch_size=1, grad_accumulation_steps=64\n",
|
1931 |
+
")"
|
1932 |
+
]
|
1933 |
+
}
|
1934 |
+
],
|
1935 |
+
"metadata": {
|
1936 |
+
"kernelspec": {
|
1937 |
+
"display_name": "tf",
|
1938 |
+
"language": "python",
|
1939 |
+
"name": "python3"
|
1940 |
+
},
|
1941 |
+
"language_info": {
|
1942 |
+
"codemirror_mode": {
|
1943 |
+
"name": "ipython",
|
1944 |
+
"version": 3
|
1945 |
+
},
|
1946 |
+
"file_extension": ".py",
|
1947 |
+
"mimetype": "text/x-python",
|
1948 |
+
"name": "python",
|
1949 |
+
"nbconvert_exporter": "python",
|
1950 |
+
"pygments_lexer": "ipython3",
|
1951 |
+
"version": "3.10.11"
|
1952 |
+
}
|
1953 |
+
},
|
1954 |
+
"nbformat": 4,
|
1955 |
+
"nbformat_minor": 2
|
1956 |
+
}
|