Create metrecv2.py
Browse files- metrecv2.py +114 -0
metrecv2.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Arabic Poetry Metric v2 dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from datasets.tasks import TextClassification
|
24 |
+
|
25 |
+
|
26 |
+
_DESCRIPTION = """\
|
27 |
+
"""
|
28 |
+
|
29 |
+
_CITATION = """\
|
30 |
+
"""
|
31 |
+
|
32 |
+
_DOWNLOAD_URL = "https://drive.google.com/uc?export=download&id=11iIHChBR7sVcUfGMnxfEAjbe7sSjzx5M"
|
33 |
+
|
34 |
+
|
35 |
+
class MetRecV2Config(datasets.BuilderConfig):
|
36 |
+
"""BuilderConfig for MetRecV2."""
|
37 |
+
|
38 |
+
def __init__(self, **kwargs):
|
39 |
+
"""BuilderConfig for MetRecV2.
|
40 |
+
Args:
|
41 |
+
**kwargs: keyword arguments forwarded to super.
|
42 |
+
"""
|
43 |
+
super(MetRecV2Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
class MetRecV2(datasets.GeneratorBasedBuilder):
|
47 |
+
"""Metrec dataset."""
|
48 |
+
|
49 |
+
BUILDER_CONFIGS = [
|
50 |
+
MetRecV2Config(
|
51 |
+
name="plain_text",
|
52 |
+
description="Plain text",
|
53 |
+
)
|
54 |
+
]
|
55 |
+
|
56 |
+
def _info(self):
|
57 |
+
return datasets.DatasetInfo(
|
58 |
+
description=_DESCRIPTION,
|
59 |
+
features=datasets.Features(
|
60 |
+
{
|
61 |
+
"text": datasets.Value("string"),
|
62 |
+
"label": datasets.features.ClassLabel(
|
63 |
+
names=[
|
64 |
+
"saree",
|
65 |
+
"kamel",
|
66 |
+
"mutakareb",
|
67 |
+
"mutadarak",
|
68 |
+
"munsareh",
|
69 |
+
"madeed",
|
70 |
+
"mujtath",
|
71 |
+
"ramal",
|
72 |
+
"baseet",
|
73 |
+
"khafeef",
|
74 |
+
"taweel",
|
75 |
+
"wafer",
|
76 |
+
"hazaj",
|
77 |
+
"rajaz",
|
78 |
+
"mudhare",
|
79 |
+
"muqtadheb",
|
80 |
+
"prose"
|
81 |
+
]
|
82 |
+
),
|
83 |
+
}
|
84 |
+
),
|
85 |
+
supervised_keys=None,
|
86 |
+
homepage="",
|
87 |
+
citation=_CITATION,
|
88 |
+
task_templates=[TextClassification(text_column="text", label_column="label")],
|
89 |
+
)
|
90 |
+
|
91 |
+
def _vocab_text_gen(self, archive):
|
92 |
+
for _, ex in self._generate_examples(archive, os.path.join("final_baits", "train.txt")):
|
93 |
+
yield ex["text"]
|
94 |
+
|
95 |
+
def _split_generators(self, dl_manager):
|
96 |
+
data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
97 |
+
#data_dir = os.path.join(arch_path, "final_baits")
|
98 |
+
return [
|
99 |
+
datasets.SplitGenerator(
|
100 |
+
name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train.txt")}
|
101 |
+
),
|
102 |
+
datasets.SplitGenerator(
|
103 |
+
name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test.txt")}
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
def _generate_examples(self, directory, labeled=True):
|
108 |
+
"""Generate examples."""
|
109 |
+
# For labeled examples, extract the label from the path.
|
110 |
+
|
111 |
+
with open(directory, encoding="UTF-8") as f:
|
112 |
+
for id_, record in enumerate(f.read().splitlines()):
|
113 |
+
label, bait = record.split(" ", 1)
|
114 |
+
yield str(id_), {"text": bait, "label": int(label)}
|