id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
45,191
def test_drop_duplicates(): frame_data = { "A": list(range(3)) * 2, "B": list(range(1, 4)) * 2, "C": list(range(6)), } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) # noqa F841 df_equals( modin_df.drop_duplicates(subset=["A", "B"], keep="first", inplace=False), pandas_df.drop_duplicates(subset=["A", "B"], keep="first", inplace=False), ) df_equals( modin_df.drop_duplicates(subset=["A", "B"], keep="last", inplace=False), pandas_df.drop_duplicates(subset=["A", "B"], keep="last", inplace=False), ) df_equals( modin_df.drop_duplicates(subset=["A", "B"], keep=False, inplace=False), pandas_df.drop_duplicates(subset=["A", "B"], keep=False, inplace=False), ) df_equals(modin_df.drop_duplicates(inplace=False), pandas_df) modin_df.drop_duplicates(subset=["A", "B"], inplace=True) df_equals(modin_df, pandas_df.drop_duplicates(subset=["A", "B"], inplace=False)) modin_df = pd.DataFrame(frame_data) modin_df.drop_duplicates(subset=["A", "B"], keep=False, inplace=True) df_equals(modin_df, pandas.DataFrame({"A": [], "B": [], "C": []}))
def test_drop_duplicates(): frame_data = { "A": list(range(3)) * 2, "B": list(range(1, 4)) * 2, "C": list(range(6)), } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) df_equals( modin_df.drop_duplicates(subset=["A", "B"], keep="first", inplace=False), pandas_df.drop_duplicates(subset=["A", "B"], keep="first", inplace=False), ) df_equals( modin_df.drop_duplicates(subset=["A", "B"], keep="last", inplace=False), pandas_df.drop_duplicates(subset=["A", "B"], keep="last", inplace=False), ) df_equals( modin_df.drop_duplicates(subset=["A", "B"], keep=False, inplace=False), pandas_df.drop_duplicates(subset=["A", "B"], keep=False, inplace=False), ) df_equals(modin_df.drop_duplicates(inplace=False), pandas_df) modin_df.drop_duplicates(subset=["A", "B"], inplace=True) df_equals(modin_df, pandas_df.drop_duplicates(subset=["A", "B"], inplace=False)) modin_df = pd.DataFrame(frame_data) modin_df.drop_duplicates(subset=["A", "B"], keep=False, inplace=True) df_equals(modin_df, pandas.DataFrame({"A": [], "B": [], "C": []}))
9,363
def test_wrap_var_set(): assert not isinstance(wrap_var(set(['foo'])), AnsibleUnsafe) for item in wrap_var(set(['foo'])): assert isinstance(item, AnsibleUnsafe)
def test_wrap_var_set(): assert isinstance(wrap_var(set(['foo'])), set) for item in wrap_var(set(['foo'])): assert isinstance(item, AnsibleUnsafe)
24,704
def _declare_qos_parameteres( entity_type: Union[Type[Publisher], Type[Subscription]], node: 'Node', topic_name: Text, qos: QoSProfile, options: QoSOverridingOptions ) -> QoSProfile: """ Declare qos parameters for a Publisher or a Subscription. :param entity_type: Either `rclpy.node.Publisher` or `rclpy.node.Subscription`. :param node: Node used to declare the parameters. :param topic_name: Topic name of the entity being created. :param qos: Default qos settings of the entity being created, that will be overriden with the user provided qos parameter overrides. :param options: Options that indicates which parameters are going to be declared. """ if not issubclass(entity_type, (Publisher, Subscription)): raise TypeError('Argument `entity_type` should be a subclass of Publisher or Subscription') entity_type_str = 'publisher' if issubclass(entity_type, Publisher) else Subscription id_suffix = '' if options.entity_id is None else f'_{options.entity_id}' name = f'qos_overrides.{topic_name}.{entity_type_str}{id_suffix}.' '{}' description = '{}' f' for {entity_type_str} `{topic_name}` with id `{options.entity_id}`' allowed_policies = _get_allowed_policies(entity_type) for policy in options.policy_kinds: if policy not in allowed_policies: continue policy_name = policy.name.lower() descriptor = ParameterDescriptor() descriptor.description = description.format(policy_name) descriptor.read_only = True param = node.declare_parameter( name.format(policy_name), _get_qos_policy_parameter(qos, policy), descriptor) _override_qos_policy_with_param(qos, policy, param) if options.callback is not None and not options.callback(qos): raise InvalidQosOverridesError( description.format('Provided qos overrides') + ', are not valid')
def _declare_qos_parameters( entity_type: Union[Type[Publisher], Type[Subscription]], node: 'Node', topic_name: Text, qos: QoSProfile, options: QoSOverridingOptions ) -> QoSProfile: """ Declare qos parameters for a Publisher or a Subscription. :param entity_type: Either `rclpy.node.Publisher` or `rclpy.node.Subscription`. :param node: Node used to declare the parameters. :param topic_name: Topic name of the entity being created. :param qos: Default qos settings of the entity being created, that will be overriden with the user provided qos parameter overrides. :param options: Options that indicates which parameters are going to be declared. """ if not issubclass(entity_type, (Publisher, Subscription)): raise TypeError('Argument `entity_type` should be a subclass of Publisher or Subscription') entity_type_str = 'publisher' if issubclass(entity_type, Publisher) else Subscription id_suffix = '' if options.entity_id is None else f'_{options.entity_id}' name = f'qos_overrides.{topic_name}.{entity_type_str}{id_suffix}.' '{}' description = '{}' f' for {entity_type_str} `{topic_name}` with id `{options.entity_id}`' allowed_policies = _get_allowed_policies(entity_type) for policy in options.policy_kinds: if policy not in allowed_policies: continue policy_name = policy.name.lower() descriptor = ParameterDescriptor() descriptor.description = description.format(policy_name) descriptor.read_only = True param = node.declare_parameter( name.format(policy_name), _get_qos_policy_parameter(qos, policy), descriptor) _override_qos_policy_with_param(qos, policy, param) if options.callback is not None and not options.callback(qos): raise InvalidQosOverridesError( description.format('Provided qos overrides') + ', are not valid')
3,123
def test_win_type_freq_return_deprecation(): freq_roll = Series(range(2), index=date_range("2020", periods=2)).rolling("2s") with tm.assert_produces_warning(FutureWarning): freq_roll.win_type
def test_win_type_freq_return_deprecation(): freq_roll = Series(range(2), index=date_range("2020", periods=2)).rolling("2s") with tm.assert_produces_warning(FutureWarning): assert freq_roll.win_type == "freq"
19,831
def populate_counts(sf, schema, objs_cached, logger): objects_to_count = [objname for objname in objs_cached] counts, transports_errors, salesforce_errors = count_sobjects(sf, objects_to_count) errors = transports_errors + salesforce_errors for error in errors[0:10]: logger.warning(f"Error counting SObjects: {error}") if len(errors) > 10: logger.warning(f"{len(errors)} more counting errors surpressed") for objname, count in counts.items(): schema[objname].count = count schema.session.flush() return counts.items()
def populate_counts(sf, schema, objs_cached, logger): objects_to_count = [objname for objname in objs_cached] counts, transports_errors, salesforce_errors = count_sobjects(sf, objects_to_count) errors = transports_errors + salesforce_errors for error in errors[0:10]: logger.warning(f"Error counting SObjects: {error}") if len(errors) > 10: logger.warning(f"{len(errors)} more counting errors suppressed") for objname, count in counts.items(): schema[objname].count = count schema.session.flush() return counts.items()
31,982
def main(): install_logging('Prepare_Content_Packs_For_Testing.log', logger=logging) option = option_handler() packs_artifacts_path = option.packs_artifacts_path id_set_path = option.id_set_path extract_destination_path = option.extract_path storage_bucket_name = option.bucket_name service_account = option.service_account target_packs = option.pack_names if option.pack_names else "" build_number = option.ci_build_number if option.ci_build_number else str(uuid.uuid4()) override_all_packs = option.override_all_packs signature_key = option.key_string packs_dependencies_mapping = load_json(option.pack_dependencies) if option.pack_dependencies else {} storage_base_path = option.storage_base_path remove_test_playbooks = option.remove_test_playbooks is_bucket_upload_flow = option.bucket_upload private_bucket_name = option.private_bucket_name ci_branch = option.ci_branch force_upload = option.force_upload marketplace = option.marketplace is_create_dependencies_zip = option.create_dependencies_zip # google cloud storage client initialized storage_client = init_storage_client(service_account) storage_bucket = storage_client.bucket(storage_bucket_name) # Relevant when triggering test upload flow if storage_bucket_name: GCPConfig.PRODUCTION_BUCKET = storage_bucket_name # download and extract index from public bucket index_folder_path, index_blob, index_generation = download_and_extract_index(storage_bucket, extract_destination_path, storage_base_path) # content repo client initialized content_repo = get_content_git_client(CONTENT_ROOT_PATH) current_commit_hash, previous_commit_hash = get_recent_commits_data(content_repo, index_folder_path, is_bucket_upload_flow, ci_branch) # detect packs to upload pack_names = get_packs_names(target_packs, previous_commit_hash) extract_packs_artifacts(packs_artifacts_path, extract_destination_path) packs_list = [Pack(pack_name, os.path.join(extract_destination_path, pack_name), marketplace) for pack_name in pack_names if os.path.exists(os.path.join(extract_destination_path, pack_name))] diff_files_list = content_repo.commit(current_commit_hash).diff(content_repo.commit(previous_commit_hash)) # taking care of private packs is_private_content_updated, private_packs, updated_private_packs_ids = handle_private_content( index_folder_path, private_bucket_name, extract_destination_path, storage_client, pack_names, storage_base_path ) if not option.override_all_packs: check_if_index_is_updated(index_folder_path, content_repo, current_commit_hash, previous_commit_hash, storage_bucket, is_private_content_updated) # initiate the statistics handler for marketplace packs statistics_handler = StatisticsHandler(service_account, index_folder_path) # clean index and gcs from non existing or invalid packs clean_non_existing_packs(index_folder_path, private_packs, storage_bucket, storage_base_path) # Packages that depend on new packs that are not in the previous index.json packs_missing_dependencies = [] # starting iteration over packs for pack in packs_list: if not prepare_and_zip_pack(pack, signature_key, remove_test_playbooks): continue task_status = pack.upload_integration_images(storage_bucket, storage_base_path, diff_files_list, True) if not task_status: pack.status = PackStatus.FAILED_IMAGES_UPLOAD.name pack.cleanup() continue task_status = pack.upload_author_image(storage_bucket, storage_base_path, diff_files_list, True) if not task_status: pack.status = PackStatus.FAILED_AUTHOR_IMAGE_UPLOAD.name pack.cleanup() continue task_status, modified_rn_files_paths, pack_was_modified = pack.detect_modified( content_repo, index_folder_path, current_commit_hash, previous_commit_hash) if not task_status: pack.status = PackStatus.FAILED_DETECTING_MODIFIED_FILES.name pack.cleanup() continue task_status, is_missing_dependencies = pack.format_metadata(index_folder_path, packs_dependencies_mapping, build_number, current_commit_hash, pack_was_modified, statistics_handler, pack_names) if is_missing_dependencies: # If the pack is dependent on a new pack # (which is not yet in the index.zip as it might not have been iterated yet) # we will note that it is missing dependencies. # And finally after updating all the packages in index.zip - i.e. the new pack exists now. # We will go over the pack again to add what was missing. # See issue #37290 packs_missing_dependencies.append(pack) if not task_status: pack.status = PackStatus.FAILED_METADATA_PARSING.name pack.cleanup() continue task_status, not_updated_build = pack.prepare_release_notes(index_folder_path, build_number, pack_was_modified, modified_rn_files_paths) if not task_status: pack.status = PackStatus.FAILED_RELEASE_NOTES.name pack.cleanup() continue if not_updated_build: pack.status = PackStatus.PACK_IS_NOT_UPDATED_IN_RUNNING_BUILD.name pack.cleanup() continue task_status, skipped_upload, _ = pack.upload_to_storage(pack.zip_path, pack.latest_version, storage_bucket, override_all_packs or pack_was_modified, storage_base_path) if not task_status: pack.status = PackStatus.FAILED_UPLOADING_PACK.name pack.cleanup() continue task_status, exists_in_index = pack.check_if_exists_in_index(index_folder_path) if not task_status: pack.status = PackStatus.FAILED_SEARCHING_PACK_IN_INDEX.name pack.cleanup() continue task_status = pack.prepare_for_index_upload() if not task_status: pack.status = PackStatus.FAILED_PREPARING_INDEX_FOLDER.name pack.cleanup() continue task_status = update_index_folder(index_folder_path=index_folder_path, pack_name=pack.name, pack_path=pack.path, pack_version=pack.latest_version, hidden_pack=pack.hidden) if not task_status: pack.status = PackStatus.FAILED_UPDATING_INDEX_FOLDER.name pack.cleanup() continue # in case that pack already exist at cloud storage path and in index, don't show that the pack was changed if skipped_upload and exists_in_index and pack not in packs_missing_dependencies: pack.status = PackStatus.PACK_ALREADY_EXISTS.name pack.cleanup() continue pack.status = PackStatus.SUCCESS.name logging.info(f"packs_missing_dependencies: {packs_missing_dependencies}") # Going over all packs that were marked as missing dependencies, # updating them with the new data for the new packs that were added to the index.zip for pack in packs_missing_dependencies: task_status, _ = pack.format_metadata(index_folder_path, packs_dependencies_mapping, build_number, current_commit_hash, False, statistics_handler, pack_names, format_dependencies_only=True) if not task_status: pack.status = PackStatus.FAILED_METADATA_REFORMATING.name pack.cleanup() continue task_status = update_index_folder(index_folder_path=index_folder_path, pack_name=pack.name, pack_path=pack.path, pack_version=pack.latest_version, hidden_pack=pack.hidden) if not task_status: pack.status = PackStatus.FAILED_UPDATING_INDEX_FOLDER.name pack.cleanup() continue pack.status = PackStatus.SUCCESS.name # upload core packs json to bucket create_corepacks_config(storage_bucket, build_number, index_folder_path, os.path.dirname(packs_artifacts_path), storage_base_path, marketplace) # finished iteration over content packs upload_index_to_storage(index_folder_path=index_folder_path, extract_destination_path=extract_destination_path, index_blob=index_blob, build_number=build_number, private_packs=private_packs, current_commit_hash=current_commit_hash, index_generation=index_generation, force_upload=force_upload, previous_commit_hash=previous_commit_hash, landing_page_sections=statistics_handler.landing_page_sections, artifacts_dir=os.path.dirname(packs_artifacts_path), storage_bucket=storage_bucket, ) # get the lists of packs divided by their status successful_packs, skipped_packs, failed_packs = get_packs_summary(packs_list) # Store successful and failed packs list in CircleCI artifacts - to be used in Upload Packs To Marketplace job packs_results_file_path = os.path.join(os.path.dirname(packs_artifacts_path), BucketUploadFlow.PACKS_RESULTS_FILE) store_successful_and_failed_packs_in_ci_artifacts( packs_results_file_path, BucketUploadFlow.PREPARE_CONTENT_FOR_TESTING, successful_packs, failed_packs, updated_private_packs_ids, images_data=get_images_data(packs_list) ) # summary of packs status print_packs_summary(successful_packs, skipped_packs, failed_packs, not is_bucket_upload_flow) if is_create_dependencies_zip and is_create_dependencies_zip != 'false' and marketplace == 'xsoar': # handle packs with dependencies zip upload_packs_with_dependencies_zip(extract_destination_path, packs_dependencies_mapping, signature_key, storage_bucket, storage_base_path, id_set_path, packs_list, marketplace)
def main(): install_logging('Prepare_Content_Packs_For_Testing.log', logger=logging) option = option_handler() packs_artifacts_path = option.packs_artifacts_path id_set_path = option.id_set_path extract_destination_path = option.extract_path storage_bucket_name = option.bucket_name service_account = option.service_account target_packs = option.pack_names if option.pack_names else "" build_number = option.ci_build_number if option.ci_build_number else str(uuid.uuid4()) override_all_packs = option.override_all_packs signature_key = option.key_string packs_dependencies_mapping = load_json(option.pack_dependencies) if option.pack_dependencies else {} storage_base_path = option.storage_base_path remove_test_playbooks = option.remove_test_playbooks is_bucket_upload_flow = option.bucket_upload private_bucket_name = option.private_bucket_name ci_branch = option.ci_branch force_upload = option.force_upload marketplace = option.marketplace is_create_dependencies_zip = option.create_dependencies_zip # google cloud storage client initialized storage_client = init_storage_client(service_account) storage_bucket = storage_client.bucket(storage_bucket_name) # Relevant when triggering test upload flow if storage_bucket_name: GCPConfig.PRODUCTION_BUCKET = storage_bucket_name # download and extract index from public bucket index_folder_path, index_blob, index_generation = download_and_extract_index(storage_bucket, extract_destination_path, storage_base_path) # content repo client initialized content_repo = get_content_git_client(CONTENT_ROOT_PATH) current_commit_hash, previous_commit_hash = get_recent_commits_data(content_repo, index_folder_path, is_bucket_upload_flow, ci_branch) # detect packs to upload pack_names = get_packs_names(target_packs, previous_commit_hash) extract_packs_artifacts(packs_artifacts_path, extract_destination_path) packs_list = [Pack(pack_name, os.path.join(extract_destination_path, pack_name), marketplace) for pack_name in pack_names if os.path.exists(os.path.join(extract_destination_path, pack_name))] diff_files_list = content_repo.commit(current_commit_hash).diff(content_repo.commit(previous_commit_hash)) # taking care of private packs is_private_content_updated, private_packs, updated_private_packs_ids = handle_private_content( index_folder_path, private_bucket_name, extract_destination_path, storage_client, pack_names, storage_base_path ) if not option.override_all_packs: check_if_index_is_updated(index_folder_path, content_repo, current_commit_hash, previous_commit_hash, storage_bucket, is_private_content_updated) # initiate the statistics handler for marketplace packs statistics_handler = StatisticsHandler(service_account, index_folder_path) # clean index and gcs from non existing or invalid packs clean_non_existing_packs(index_folder_path, private_packs, storage_bucket, storage_base_path) # Packages that depend on new packs that are not in the previous index.json packs_missing_dependencies = [] # starting iteration over packs for pack in packs_list: if not prepare_and_zip_pack(pack, signature_key, remove_test_playbooks): continue task_status = pack.upload_integration_images(storage_bucket, storage_base_path, diff_files_list, True) if not task_status: pack.status = PackStatus.FAILED_IMAGES_UPLOAD.name pack.cleanup() continue task_status = pack.upload_author_image(storage_bucket, storage_base_path, diff_files_list, True) if not task_status: pack.status = PackStatus.FAILED_AUTHOR_IMAGE_UPLOAD.name pack.cleanup() continue task_status, modified_rn_files_paths, pack_was_modified = pack.detect_modified( content_repo, index_folder_path, current_commit_hash, previous_commit_hash) if not task_status: pack.status = PackStatus.FAILED_DETECTING_MODIFIED_FILES.name pack.cleanup() continue task_status, is_missing_dependencies = pack.format_metadata(index_folder_path, packs_dependencies_mapping, build_number, current_commit_hash, pack_was_modified, statistics_handler, pack_names) if is_missing_dependencies: # If the pack is dependent on a new pack # (which is not yet in the index.zip as it might not have been iterated yet) # we will note that it is missing dependencies. # And finally after updating all the packages in index.zip - i.e. the new pack exists now. # We will go over the pack again to add what was missing. # See issue #37290 packs_missing_dependencies.append(pack) if not task_status: pack.status = PackStatus.FAILED_METADATA_PARSING.name pack.cleanup() continue task_status, not_updated_build = pack.prepare_release_notes(index_folder_path, build_number, pack_was_modified, modified_rn_files_paths) if not task_status: pack.status = PackStatus.FAILED_RELEASE_NOTES.name pack.cleanup() continue if not_updated_build: pack.status = PackStatus.PACK_IS_NOT_UPDATED_IN_RUNNING_BUILD.name pack.cleanup() continue task_status, skipped_upload, _ = pack.upload_to_storage(pack.zip_path, pack.latest_version, storage_bucket, override_all_packs or pack_was_modified, storage_base_path) if not task_status: pack.status = PackStatus.FAILED_UPLOADING_PACK.name pack.cleanup() continue task_status, exists_in_index = pack.check_if_exists_in_index(index_folder_path) if not task_status: pack.status = PackStatus.FAILED_SEARCHING_PACK_IN_INDEX.name pack.cleanup() continue task_status = pack.prepare_for_index_upload() if not task_status: pack.status = PackStatus.FAILED_PREPARING_INDEX_FOLDER.name pack.cleanup() continue task_status = update_index_folder(index_folder_path=index_folder_path, pack_name=pack.name, pack_path=pack.path, pack_version=pack.latest_version, hidden_pack=pack.hidden) if not task_status: pack.status = PackStatus.FAILED_UPDATING_INDEX_FOLDER.name pack.cleanup() continue # in case that pack already exist at cloud storage path and in index, don't show that the pack was changed if skipped_upload and exists_in_index and pack not in packs_missing_dependencies: pack.status = PackStatus.PACK_ALREADY_EXISTS.name pack.cleanup() continue pack.status = PackStatus.SUCCESS.name logging.info(f"packs_missing_dependencies: {packs_missing_dependencies}") # Going over all packs that were marked as missing dependencies, # updating them with the new data for the new packs that were added to the index.zip for pack in packs_missing_dependencies: task_status, _ = pack.format_metadata(index_folder_path, packs_dependencies_mapping, build_number, current_commit_hash, False, statistics_handler, pack_names, format_dependencies_only=True) if not task_status: pack.status = PackStatus.FAILED_METADATA_REFORMATING.name pack.cleanup() continue task_status = update_index_folder(index_folder_path=index_folder_path, pack_name=pack.name, pack_path=pack.path, pack_version=pack.latest_version, hidden_pack=pack.hidden) if not task_status: pack.status = PackStatus.FAILED_UPDATING_INDEX_FOLDER.name pack.cleanup() continue pack.status = PackStatus.SUCCESS.name # upload core packs json to bucket create_corepacks_config(storage_bucket, build_number, index_folder_path, os.path.dirname(packs_artifacts_path), storage_base_path, marketplace) # finished iteration over content packs upload_index_to_storage(index_folder_path=index_folder_path, extract_destination_path=extract_destination_path, index_blob=index_blob, build_number=build_number, private_packs=private_packs, current_commit_hash=current_commit_hash, index_generation=index_generation, force_upload=force_upload, previous_commit_hash=previous_commit_hash, landing_page_sections=statistics_handler.landing_page_sections, artifacts_dir=os.path.dirname(packs_artifacts_path), storage_bucket=storage_bucket, ) # get the lists of packs divided by their status successful_packs, skipped_packs, failed_packs = get_packs_summary(packs_list) # Store successful and failed packs list in CircleCI artifacts - to be used in Upload Packs To Marketplace job packs_results_file_path = os.path.join(os.path.dirname(packs_artifacts_path), BucketUploadFlow.PACKS_RESULTS_FILE) store_successful_and_failed_packs_in_ci_artifacts( packs_results_file_path, BucketUploadFlow.PREPARE_CONTENT_FOR_TESTING, successful_packs, failed_packs, updated_private_packs_ids, images_data=get_images_data(packs_list) ) # summary of packs status print_packs_summary(successful_packs, skipped_packs, failed_packs, not is_bucket_upload_flow) if is_create_dependencies_zip and marketplace == 'xsoar': # handle packs with dependencies zip upload_packs_with_dependencies_zip(extract_destination_path, packs_dependencies_mapping, signature_key, storage_bucket, storage_base_path, id_set_path, packs_list, marketplace)
8,665
def configure(config): config.define_section('currency', CurrencySection, validate=False) config.currency.configure_setting('fixer_io_key', 'API key for fixer IO. Leave blank to use exchangeratesapi.io:') config.currency.configure_setting('enable_regex', 'automatically respond to regex matches:')
def configure(config): config.define_section('currency', CurrencySection, validate=False) config.currency.configure_setting('fixer_io_key', 'API key for fixer IO. Leave blank to use exchangeratesapi.io:') config.currency.configure_setting('enable_regex', 'Automatically respond to regex matches?')
20,224
def process_missing(missing_ids): """Create missing school and alias objects and dump csv of additions. """ csv_out_data = [] csv_slug = '{}/schools_added_on_{}.csv'.format(ipeds_directory, datetime.date.today()) missing_data = process_datafiles(add_schools=missing_ids) for school_id in missing_data: create_school(int(school_id), missing_data[school_id]) data_row = missing_data[school_id] data_row['ID'] = school_id csv_out_data.append(data_row) header = sorted(csv_out_data[0].keys()) dump_csv(csv_slug, header, csv_out_data)
def process_missing(missing_ids): """Create missing school and alias objects and dump csv of additions.""" csv_out_data = [] csv_slug = '{}/schools_added_on_{}.csv'.format(ipeds_directory, datetime.date.today()) missing_data = process_datafiles(add_schools=missing_ids) for school_id in missing_data: create_school(int(school_id), missing_data[school_id]) data_row = missing_data[school_id] data_row['ID'] = school_id csv_out_data.append(data_row) header = sorted(csv_out_data[0].keys()) dump_csv(csv_slug, header, csv_out_data)
30,938
def write_data(sheet, data_item, data_headers, workbook, bold, border): if not isinstance(data_item, list): data_item = [data_item] if not data_headers: data_headers = list(data_item[0].keys()) worksheet = workbook.add_worksheet(sheet) row = 0 col = 0 for key in data_headers: worksheet.write(row, col, key, bold) col += 1 for item in data_item: if len(item) > 0: col = 0 row += 1 for value in data_headers: if item.get(value): worksheet.write(row, col, item.get(value), border) col += 1 else: raise ValueError(f'The header "{value}" does not exist in the given data item.')
def write_data(sheet, data_item, data_headers, workbook, bold, border): if not isinstance(data_item, list): data_item = [data_item] if not data_headers: data_headers = list(data_item[0].keys()) worksheet = workbook.add_worksheet(sheet) row = 0 col = 0 for key in data_headers: worksheet.write(row, col, key, bold) col += 1 for item in data_item: if item: col = 0 row += 1 for value in data_headers: if item.get(value): worksheet.write(row, col, item.get(value), border) col += 1 else: raise ValueError(f'The header "{value}" does not exist in the given data item.')
31,006
def get_pack_dir(branch: str, pr_number: str, repo: str) -> List[str]: """ Get a packs dir names from a contribution pull request changed files Args: branch: The contrib branch pr_number: The contrib PR repo: The contrib repo Returns: A list of packs dir names, if found. """ page = 1 list_packs_dir_names = [] while True: response = requests.get(f'https://api.github.com/repos/demisto/content/pulls/{pr_number}/files', params={'page': str(page)}) response.raise_for_status() files = response.json() if not files: break for pr_file in files: if pr_file['filename'].startswith('Packs/'): pack_dir_name = pr_file['filename'].split('/')[1] if pack_dir_name not in list_packs_dir_names: list_packs_dir_names.append(pack_dir_name) page += 1 return list_packs_dir_names
def get_pack_dir(branch: str, pr_number: str, repo: str) -> List[str]: """ Get packs dir names from a contribution pull request changed files Args: branch: The contrib branch pr_number: The contrib PR repo: The contrib repo Returns: A list of packs dir names, if found. """ page = 1 list_packs_dir_names = [] while True: response = requests.get(f'https://api.github.com/repos/demisto/content/pulls/{pr_number}/files', params={'page': str(page)}) response.raise_for_status() files = response.json() if not files: break for pr_file in files: if pr_file['filename'].startswith('Packs/'): pack_dir_name = pr_file['filename'].split('/')[1] if pack_dir_name not in list_packs_dir_names: list_packs_dir_names.append(pack_dir_name) page += 1 return list_packs_dir_names
44,408
def states_to_numbers(hilbert: DiscreteHilbert, σ: Array) -> Array: """ Converts the configuration σ to a 64-bit integer labelling the Hilbert Space. .. Note:: Requires jax >= 0.3.17 and will crash on older versions. Args: hilbert: The Hilbert space σ: A single or a batch of configurations Returns: a single integer or a batch of integer indices. """ if module_version("jax") < (0, 3, 17): raise RuntimeError( "The jitted conversion of bit-strings to hilbert numbers" "is only supported with jax.__version__ >= 0.3.17, but you " f"have {module_version('jax')}" ) if not hilbert.is_indexable: raise ValueError( f"Hilbert space {hilbert} is too large to be indexed or " f"cannot be indexed at all." ) # calls back into python return jax.pure_callback( hilbert.states_to_numbers, jax.ShapeDtypeStruct(σ.shape[:-1], jnp.int64), σ, vectorized=True, )
def states_to_numbers(hilbert: DiscreteHilbert, σ: Array) -> Array: """ Converts the configuration σ to a 64-bit integer labelling the Hilbert Space. .. Note:: Requires jax >= 0.3.17 and will raise an exception on older versions. Args: hilbert: The Hilbert space σ: A single or a batch of configurations Returns: a single integer or a batch of integer indices. """ if module_version("jax") < (0, 3, 17): raise RuntimeError( "The jitted conversion of bit-strings to hilbert numbers" "is only supported with jax.__version__ >= 0.3.17, but you " f"have {module_version('jax')}" ) if not hilbert.is_indexable: raise ValueError( f"Hilbert space {hilbert} is too large to be indexed or " f"cannot be indexed at all." ) # calls back into python return jax.pure_callback( hilbert.states_to_numbers, jax.ShapeDtypeStruct(σ.shape[:-1], jnp.int64), σ, vectorized=True, )
6,606
def get_or_make_bin(item_code, warehouse): bin_record = frappe.db.get_value('Bin', {'item_code': item_code, 'warehouse': warehouse}) if not bin_record: bin_obj = frappe.get_doc({ "doctype": "Bin", "item_code": item_code, "warehouse": warehouse, }) bin_obj.flags.ignore_permissions = 1 bin_obj.insert() bin_record = bin_obj.name return bin_record
def get_or_make_bin(item_code, warehouse) -> str: bin_record = frappe.db.get_value('Bin', {'item_code': item_code, 'warehouse': warehouse}) if not bin_record: bin_obj = frappe.get_doc({ "doctype": "Bin", "item_code": item_code, "warehouse": warehouse, }) bin_obj.flags.ignore_permissions = 1 bin_obj.insert() bin_record = bin_obj.name return bin_record
13,911
def _find_excluded_ranges( lines: List[Tuple[int, str]], *, warnings: _ExclusionRangeWarnings, exclude_lines_by_pattern: Optional[str] = None, exclude_branches_by_pattern: Optional[str] = None, exclude_pattern_prefix: str, ) -> Callable[[int], bool]: """ Scan through all lines to find line ranges and branch ranges covered by exclusion markers. Example: >>> lines = [(11, '//PREFIX_EXCL_LINE'), (13, '//IGNORE_LINE'), (15, '//PREFIX_EXCL_START'), (18, '//PREFIX_EXCL_STOP'), ... (21, '//PREFIX_EXCL_BR_LINE'), (23, '//IGNORE_BR'), (25, '//PREFIX_EXCL_BR_START'), (28, '//PREFIX_EXCL_BR_STOP')] >>> [exclude_line, exclude_branch] = _find_excluded_ranges( ... lines, warnings=..., exclude_lines_by_pattern = '.*IGNORE_LINE', ... exclude_branches_by_pattern = '.*IGNORE_BR', exclude_pattern_prefix='PREFIX') >>> [lineno for lineno in range(30) if exclude_line(lineno)] [11, 13, 15, 16, 17] >>> [lineno for lineno in range(30) if exclude_branch(lineno)] [21, 23, 25, 26, 27] """ exclude_lines_by_pattern_regex = None if exclude_lines_by_pattern: exclude_lines_by_pattern_regex = re.compile(exclude_lines_by_pattern) exclude_branches_by_pattern_regex = None if exclude_branches_by_pattern: exclude_branches_by_pattern_regex = re.compile(exclude_branches_by_pattern) # possibly overlapping half-open ranges that are excluded exclude_line_ranges: List[Tuple[int, int]] = [] exclude_branch_ranges: List[Tuple[int, int]] = [] exclusion_stack_line = [] exclusion_stack_branch = [] for lineno, code in lines: if _EXCLUDE_FLAG in code: # process the exclusion marker # # header is a marker name like LCOV or GCOVR # # START flags are added to the exlusion stack # STOP flags remove a marker from the exclusion stack # line exclusion excl_line_pattern = re.compile( "(" + exclude_pattern_prefix + ")" + _EXCLUDE_LINE_PATTERN_POSTFIX ) for header, flag in excl_line_pattern.findall(code): if flag == "LINE": if exclusion_stack_line: warnings.line_after_start( lineno, f"{header}_EXCL_LINE", exclusion_stack_line[-1][1] ) else: exclude_line_ranges.append((lineno, lineno + 1)) if flag == "START": exclusion_stack_line.append((header, lineno)) elif flag == "STOP": if not exclusion_stack_line: warnings.stop_without_start( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) continue start_header, start_lineno = exclusion_stack_line.pop() if header != start_header: warnings.mismatched_start_stop( start_lineno, f"{start_header}_EXCL_START", lineno, f"{header}_EXCL_STOP", ) exclude_line_ranges.append((start_lineno, lineno)) else: # pragma: no cover pass # branche exclusion excl_branch_pattern = re.compile( "(" + exclude_pattern_prefix + ")" + _EXCLUDE_BRANCH_PATTERN_POSTFIX ) for header, flag in excl_branch_pattern.findall(code): if flag == "LINE": if exclusion_stack_branch: warnings.branch_after_start( lineno, f"{header}_EXCL_LINE", exclusion_stack_branch[-1][1] ) else: exclude_branch_ranges.append((lineno, lineno + 1)) if flag == "START": exclusion_stack_branch.append((header, lineno)) elif flag == "STOP": if not exclusion_stack_branch: warnings.stop_without_start( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) continue start_header, start_lineno = exclusion_stack_branch.pop() if header != start_header: warnings.mismatched_start_stop( start_lineno, f"{start_header}_EXCL_START", lineno, f"{header}_EXCL_STOP", ) exclude_branch_ranges.append((start_lineno, lineno)) else: # pragma: no cover pass if exclude_lines_by_pattern_regex: if exclude_lines_by_pattern_regex.match(code): exclude_line_ranges.append((lineno, lineno + 1)) if exclude_branches_by_pattern_regex: if exclude_branches_by_pattern_regex.match(code): exclude_branch_ranges.append((lineno, lineno + 1)) for header, lineno in exclusion_stack_line: warnings.start_without_stop( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) for header, lineno in exclusion_stack_branch: warnings.start_without_stop( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) return [ _make_is_in_any_range(exclude_line_ranges), _make_is_in_any_range(exclude_branch_ranges), ]
def _find_excluded_ranges( lines: List[Tuple[int, str]], *, warnings: _ExclusionRangeWarnings, exclude_lines_by_pattern: Optional[str] = None, exclude_branches_by_pattern: Optional[str] = None, exclude_pattern_prefix: str, ) -> Callable[[int], bool]: """ Scan through all lines to find line ranges and branch ranges covered by exclusion markers. Example: >>> lines = [(11, '//PREFIX_EXCL_LINE'), (13, '//IGNORE_LINE'), (15, '//PREFIX_EXCL_START'), (18, '//PREFIX_EXCL_STOP'), ... (21, '//PREFIX_EXCL_BR_LINE'), (23, '//IGNORE_BR'), (25, '//PREFIX_EXCL_BR_START'), (28, '//PREFIX_EXCL_BR_STOP')] >>> [exclude_line, exclude_branch] = _find_excluded_ranges( ... lines, warnings=..., exclude_lines_by_pattern = '.*IGNORE_LINE', ... exclude_branches_by_pattern = '.*IGNORE_BRANCH', exclude_pattern_prefix='PREFIX') >>> [lineno for lineno in range(30) if exclude_line(lineno)] [11, 13, 15, 16, 17] >>> [lineno for lineno in range(30) if exclude_branch(lineno)] [21, 23, 25, 26, 27] """ exclude_lines_by_pattern_regex = None if exclude_lines_by_pattern: exclude_lines_by_pattern_regex = re.compile(exclude_lines_by_pattern) exclude_branches_by_pattern_regex = None if exclude_branches_by_pattern: exclude_branches_by_pattern_regex = re.compile(exclude_branches_by_pattern) # possibly overlapping half-open ranges that are excluded exclude_line_ranges: List[Tuple[int, int]] = [] exclude_branch_ranges: List[Tuple[int, int]] = [] exclusion_stack_line = [] exclusion_stack_branch = [] for lineno, code in lines: if _EXCLUDE_FLAG in code: # process the exclusion marker # # header is a marker name like LCOV or GCOVR # # START flags are added to the exlusion stack # STOP flags remove a marker from the exclusion stack # line exclusion excl_line_pattern = re.compile( "(" + exclude_pattern_prefix + ")" + _EXCLUDE_LINE_PATTERN_POSTFIX ) for header, flag in excl_line_pattern.findall(code): if flag == "LINE": if exclusion_stack_line: warnings.line_after_start( lineno, f"{header}_EXCL_LINE", exclusion_stack_line[-1][1] ) else: exclude_line_ranges.append((lineno, lineno + 1)) if flag == "START": exclusion_stack_line.append((header, lineno)) elif flag == "STOP": if not exclusion_stack_line: warnings.stop_without_start( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) continue start_header, start_lineno = exclusion_stack_line.pop() if header != start_header: warnings.mismatched_start_stop( start_lineno, f"{start_header}_EXCL_START", lineno, f"{header}_EXCL_STOP", ) exclude_line_ranges.append((start_lineno, lineno)) else: # pragma: no cover pass # branche exclusion excl_branch_pattern = re.compile( "(" + exclude_pattern_prefix + ")" + _EXCLUDE_BRANCH_PATTERN_POSTFIX ) for header, flag in excl_branch_pattern.findall(code): if flag == "LINE": if exclusion_stack_branch: warnings.branch_after_start( lineno, f"{header}_EXCL_LINE", exclusion_stack_branch[-1][1] ) else: exclude_branch_ranges.append((lineno, lineno + 1)) if flag == "START": exclusion_stack_branch.append((header, lineno)) elif flag == "STOP": if not exclusion_stack_branch: warnings.stop_without_start( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) continue start_header, start_lineno = exclusion_stack_branch.pop() if header != start_header: warnings.mismatched_start_stop( start_lineno, f"{start_header}_EXCL_START", lineno, f"{header}_EXCL_STOP", ) exclude_branch_ranges.append((start_lineno, lineno)) else: # pragma: no cover pass if exclude_lines_by_pattern_regex: if exclude_lines_by_pattern_regex.match(code): exclude_line_ranges.append((lineno, lineno + 1)) if exclude_branches_by_pattern_regex: if exclude_branches_by_pattern_regex.match(code): exclude_branch_ranges.append((lineno, lineno + 1)) for header, lineno in exclusion_stack_line: warnings.start_without_stop( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) for header, lineno in exclusion_stack_branch: warnings.start_without_stop( lineno, f"{header}_EXCL_START", f"{header}_EXCL_STOP" ) return [ _make_is_in_any_range(exclude_line_ranges), _make_is_in_any_range(exclude_branch_ranges), ]
5,578
def parse_metar(metar_text, year, month, station_metadata=station_info): """Parse a METAR report in text form into a list of named tuples. Parameters ---------- metar_text : str The METAR report station_metadata : dict Mapping of station identifiers to station metadata year : int Reported year of observation for constructing 'date_time' month : int Reported month of observation for constructing 'date_time' Returns ------- metar : namedtuple Named tuple of parsed METAR fields Notes ----- Returned data has named tuples with the following attributes: * 'station_id': Station Identifier (ex. KLOT) * 'latitude': Latitude of the observation, measured in degrees * 'longitude': Longitude of the observation, measured in degrees * 'elevation': Elevation of the observation above sea level, measured in meters * 'date_time': Date and time of the observation, datetime object * 'wind_direction': Direction the wind is coming from, measured in degrees * 'wind_speed': Wind speed, measured in knots * 'wind_gust': Wind gusts, measured in knots * 'current_wx1': Current weather (1 of 3) * 'current_wx2': Current weather (2 of 3) * 'current_wx3': Current weather (3 of 3) * 'skyc1': Sky cover (ex. FEW) * 'skylev1': Height of sky cover 1, measured in feet * 'skyc2': Sky cover (ex. OVC) * 'skylev2': Height of sky cover 2, measured in feet * 'skyc3': Sky cover (ex. FEW) * 'skylev3': Height of sky cover 3, measured in feet * 'skyc4': Sky cover (ex. CLR) * 'skylev4:': Height of sky cover 4, measured in feet * 'cloudcover': Cloud coverage measured in oktas, taken from maximum of sky cover values * 'temperature': Temperature, measured in degrees Celsius * 'dewpoint': Dewpoint, measured in degrees Celsius * 'altimeter': Altimeter value, measured in inches of mercury * 'current_wx1_symbol': Current weather symbol (1 of 3), WMO integer code from [WMO306]_ Attachment IV * 'current_wx2_symbol': Current weather symbol (2 of 3), WMO integer code from [WMO306]_ Attachment IV * 'current_wx3_symbol': Current weather symbol (3 of 3), WMO integer code from [WMO306]_ Attachment IV * 'visibility': Visibility distance, measured in meters * 'remarks': Remarks (unparsed) in the report """ from ..plots.wx_symbols import wx_code_to_numeric # Decode the data using the parser (built using Canopy) the parser utilizes a grammar # file which follows the format structure dictated by the WMO Handbook, but has the # flexibility to decode the METAR text when there are missing or incorrectly # encoded values tree = parse(metar_text) # Station ID which is used to find the latitude, longitude, and elevation station_id = tree.siteid.text.strip() # Extract the latitude and longitude values from 'master' dictionary try: info = station_metadata[station_id] lat = info.latitude lon = info.longitude elev = info.altitude except KeyError: lat = np.nan lon = np.nan elev = np.nan # Set the datetime, day, and time_utc try: day_time_utc = tree.datetime.text.strip() day = int(day_time_utc[0:2]) hour = int(day_time_utc[2:4]) minute = int(day_time_utc[4:6]) date_time = datetime(year, month, day, hour, minute) except ValueError: date_time = np.nan # Set the wind values wind_units = 'kts' try: # If there are missing wind values, set wind speed and wind direction to nan if ('/' in tree.wind.text) or (tree.wind.text == 'KT') or (tree.wind.text == ''): wind_dir = np.nan wind_spd = np.nan # If the wind direction is variable, set wind direction to nan but keep the wind speed else: wind_spd = float(tree.wind.wind_spd.text) if 'MPS' in tree.wind.text: wind_units = 'm/s' wind_spd = units.Quantity(wind_spd, wind_units).m_as('knots') if (tree.wind.wind_dir.text == 'VRB') or (tree.wind.wind_dir.text == 'VAR'): wind_dir = np.nan else: wind_dir = int(tree.wind.wind_dir.text) # If there are any errors, return nan except ValueError: wind_dir = np.nan wind_spd = np.nan # Parse out the wind gust field if 'G' in tree.wind.text: wind_gust = units.Quantity(float(tree.wind.gust.text.strip()[1:]), wind_units).m_as('knots') else: wind_gust = np.nan # Handle visibility try: if tree.vis.text.endswith('SM'): visibility = 0 # Strip off the SM and any whitespace around the value and any leading 'M' vis_str = tree.vis.text[:-2].strip().lstrip('M') # Case of e.g. 1 1/4SM if ' ' in vis_str: whole, vis_str = vis_str.split(maxsplit=1) visibility += int(whole) # Handle fraction regardless if '/' in vis_str: num, denom = vis_str.split('/', maxsplit=1) visibility += int(num) / int(denom) else: # Should be getting all cases of whole number without fraction visibility += int(vis_str) visibility = units.Quantity(visibility, 'miles').m_as('meter') # CAVOK means vis is "at least 10km" and no significant clouds or weather elif 'CAVOK' in tree.vis.text: visibility = 10000 elif not tree.vis.text or tree.vis.text.strip() == '////': visibility = np.nan else: # Only worry about the first 4 characters (digits) and ignore possible 'NDV' visibility = int(tree.vis.text.strip()[:4]) # If there are any errors, return nan except ValueError: visibility = np.nan # Set the weather symbols # If the weather symbol is missing, set values to nan current_wx = [] current_wx_symbol = [] if tree.curwx.text.strip() not in ('', '//', 'NSW'): current_wx = tree.curwx.text.strip().split() # Handle having e.g. '+' and 'TSRA' parsed into separate items if current_wx[0] in ('-', '+') and current_wx[1]: current_wx[0] += current_wx[1] current_wx.pop(1) current_wx_symbol = wx_code_to_numeric(current_wx).tolist() while len(current_wx) < 3: current_wx.append(np.nan) while len(current_wx_symbol) < 3: current_wx_symbol.append(0) # Set the sky conditions skyc = [np.nan] * 4 skylev = [np.nan] * 4 if tree.skyc.text[1:3] == 'VV': skyc[0] = 'VV' level = tree.skyc.text.strip()[2:5] skylev[0] = np.nan if '/' in level else 100 * int(level) else: for ind, part in enumerate(tree.skyc.text.strip().split(maxsplit=3)): cover = part[:3] level = part[3:6] # Strips off any ending text like in FEW017CB if '/' not in cover: skyc[ind] = cover if level and '/' not in level: with contextlib.suppress(ValueError): skylev[ind] = float(level) * 100 # Set the cloud cover variable (measured in oktas) if 'OVC' in tree.skyc.text or 'VV' in tree.skyc.text: cloudcover = 8 elif 'BKN' in tree.skyc.text: cloudcover = 6 elif 'SCT' in tree.skyc.text: cloudcover = 4 elif 'FEW' in tree.skyc.text: cloudcover = 2 elif ('SKC' in tree.skyc.text or 'NCD' in tree.skyc.text or 'NSC' in tree.skyc.text or 'CLR' in tree.skyc.text or 'CAVOK' in tree.vis.text): cloudcover = 0 else: cloudcover = 10 # Set the temperature and dewpoint temp = np.nan dewp = np.nan if tree.temp_dewp.text and tree.temp_dewp.text != ' MM/MM': with contextlib.suppress(ValueError): temp = float(tree.temp_dewp.temp.text[-2:]) if 'M' in tree.temp_dewp.temp.text: temp *= -1 with contextlib.suppress(ValueError): dewp = float(tree.temp_dewp.dewp.text[-2:]) if 'M' in tree.temp_dewp.dewp.text: dewp *= -1 # Set the altimeter value and sea level pressure if tree.altim.text: val = float(tree.altim.text.strip()[1:5]) altim = val / 100 if val > 1100 else units.Quantity(val, 'hPa').m_as('inHg') else: altim = np.nan # Strip off extraneous stuff off the remarks section remarks = tree.remarks.text.lstrip().rstrip('= ') if remarks.startswith('RMK'): remarks = remarks[3:].strip() # Returns a named tuple with all the relevant variables return Metar(station_id, lat, lon, elev, date_time, wind_dir, wind_spd, wind_gust, visibility, current_wx[0], current_wx[1], current_wx[2], skyc[0], skylev[0], skyc[1], skylev[1], skyc[2], skylev[2], skyc[3], skylev[3], cloudcover, temp, dewp, altim, current_wx_symbol[0], current_wx_symbol[1], current_wx_symbol[2], remarks)
def parse_metar(metar_text, year, month, station_metadata=station_info): """Parse a METAR report in text form into a list of named tuples. Parameters ---------- metar_text : str The METAR report station_metadata : dict Mapping of station identifiers to station metadata year : int Reported year of observation for constructing 'date_time' month : int Reported month of observation for constructing 'date_time' Returns ------- metar : namedtuple Named tuple of parsed METAR fields Notes ----- Returned data has named tuples with the following attributes: * 'station_id': Station Identifier (ex. KLOT) * 'latitude': Latitude of the observation, measured in degrees * 'longitude': Longitude of the observation, measured in degrees * 'elevation': Elevation of the observation above sea level, measured in meters * 'date_time': Date and time of the observation, datetime object * 'wind_direction': Direction the wind is coming from, measured in degrees * 'wind_speed': Wind speed, measured in knots * 'wind_gust': Wind gust, measured in knots * 'current_wx1': Current weather (1 of 3) * 'current_wx2': Current weather (2 of 3) * 'current_wx3': Current weather (3 of 3) * 'skyc1': Sky cover (ex. FEW) * 'skylev1': Height of sky cover 1, measured in feet * 'skyc2': Sky cover (ex. OVC) * 'skylev2': Height of sky cover 2, measured in feet * 'skyc3': Sky cover (ex. FEW) * 'skylev3': Height of sky cover 3, measured in feet * 'skyc4': Sky cover (ex. CLR) * 'skylev4:': Height of sky cover 4, measured in feet * 'cloudcover': Cloud coverage measured in oktas, taken from maximum of sky cover values * 'temperature': Temperature, measured in degrees Celsius * 'dewpoint': Dewpoint, measured in degrees Celsius * 'altimeter': Altimeter value, measured in inches of mercury * 'current_wx1_symbol': Current weather symbol (1 of 3), WMO integer code from [WMO306]_ Attachment IV * 'current_wx2_symbol': Current weather symbol (2 of 3), WMO integer code from [WMO306]_ Attachment IV * 'current_wx3_symbol': Current weather symbol (3 of 3), WMO integer code from [WMO306]_ Attachment IV * 'visibility': Visibility distance, measured in meters * 'remarks': Remarks (unparsed) in the report """ from ..plots.wx_symbols import wx_code_to_numeric # Decode the data using the parser (built using Canopy) the parser utilizes a grammar # file which follows the format structure dictated by the WMO Handbook, but has the # flexibility to decode the METAR text when there are missing or incorrectly # encoded values tree = parse(metar_text) # Station ID which is used to find the latitude, longitude, and elevation station_id = tree.siteid.text.strip() # Extract the latitude and longitude values from 'master' dictionary try: info = station_metadata[station_id] lat = info.latitude lon = info.longitude elev = info.altitude except KeyError: lat = np.nan lon = np.nan elev = np.nan # Set the datetime, day, and time_utc try: day_time_utc = tree.datetime.text.strip() day = int(day_time_utc[0:2]) hour = int(day_time_utc[2:4]) minute = int(day_time_utc[4:6]) date_time = datetime(year, month, day, hour, minute) except ValueError: date_time = np.nan # Set the wind values wind_units = 'kts' try: # If there are missing wind values, set wind speed and wind direction to nan if ('/' in tree.wind.text) or (tree.wind.text == 'KT') or (tree.wind.text == ''): wind_dir = np.nan wind_spd = np.nan # If the wind direction is variable, set wind direction to nan but keep the wind speed else: wind_spd = float(tree.wind.wind_spd.text) if 'MPS' in tree.wind.text: wind_units = 'm/s' wind_spd = units.Quantity(wind_spd, wind_units).m_as('knots') if (tree.wind.wind_dir.text == 'VRB') or (tree.wind.wind_dir.text == 'VAR'): wind_dir = np.nan else: wind_dir = int(tree.wind.wind_dir.text) # If there are any errors, return nan except ValueError: wind_dir = np.nan wind_spd = np.nan # Parse out the wind gust field if 'G' in tree.wind.text: wind_gust = units.Quantity(float(tree.wind.gust.text.strip()[1:]), wind_units).m_as('knots') else: wind_gust = np.nan # Handle visibility try: if tree.vis.text.endswith('SM'): visibility = 0 # Strip off the SM and any whitespace around the value and any leading 'M' vis_str = tree.vis.text[:-2].strip().lstrip('M') # Case of e.g. 1 1/4SM if ' ' in vis_str: whole, vis_str = vis_str.split(maxsplit=1) visibility += int(whole) # Handle fraction regardless if '/' in vis_str: num, denom = vis_str.split('/', maxsplit=1) visibility += int(num) / int(denom) else: # Should be getting all cases of whole number without fraction visibility += int(vis_str) visibility = units.Quantity(visibility, 'miles').m_as('meter') # CAVOK means vis is "at least 10km" and no significant clouds or weather elif 'CAVOK' in tree.vis.text: visibility = 10000 elif not tree.vis.text or tree.vis.text.strip() == '////': visibility = np.nan else: # Only worry about the first 4 characters (digits) and ignore possible 'NDV' visibility = int(tree.vis.text.strip()[:4]) # If there are any errors, return nan except ValueError: visibility = np.nan # Set the weather symbols # If the weather symbol is missing, set values to nan current_wx = [] current_wx_symbol = [] if tree.curwx.text.strip() not in ('', '//', 'NSW'): current_wx = tree.curwx.text.strip().split() # Handle having e.g. '+' and 'TSRA' parsed into separate items if current_wx[0] in ('-', '+') and current_wx[1]: current_wx[0] += current_wx[1] current_wx.pop(1) current_wx_symbol = wx_code_to_numeric(current_wx).tolist() while len(current_wx) < 3: current_wx.append(np.nan) while len(current_wx_symbol) < 3: current_wx_symbol.append(0) # Set the sky conditions skyc = [np.nan] * 4 skylev = [np.nan] * 4 if tree.skyc.text[1:3] == 'VV': skyc[0] = 'VV' level = tree.skyc.text.strip()[2:5] skylev[0] = np.nan if '/' in level else 100 * int(level) else: for ind, part in enumerate(tree.skyc.text.strip().split(maxsplit=3)): cover = part[:3] level = part[3:6] # Strips off any ending text like in FEW017CB if '/' not in cover: skyc[ind] = cover if level and '/' not in level: with contextlib.suppress(ValueError): skylev[ind] = float(level) * 100 # Set the cloud cover variable (measured in oktas) if 'OVC' in tree.skyc.text or 'VV' in tree.skyc.text: cloudcover = 8 elif 'BKN' in tree.skyc.text: cloudcover = 6 elif 'SCT' in tree.skyc.text: cloudcover = 4 elif 'FEW' in tree.skyc.text: cloudcover = 2 elif ('SKC' in tree.skyc.text or 'NCD' in tree.skyc.text or 'NSC' in tree.skyc.text or 'CLR' in tree.skyc.text or 'CAVOK' in tree.vis.text): cloudcover = 0 else: cloudcover = 10 # Set the temperature and dewpoint temp = np.nan dewp = np.nan if tree.temp_dewp.text and tree.temp_dewp.text != ' MM/MM': with contextlib.suppress(ValueError): temp = float(tree.temp_dewp.temp.text[-2:]) if 'M' in tree.temp_dewp.temp.text: temp *= -1 with contextlib.suppress(ValueError): dewp = float(tree.temp_dewp.dewp.text[-2:]) if 'M' in tree.temp_dewp.dewp.text: dewp *= -1 # Set the altimeter value and sea level pressure if tree.altim.text: val = float(tree.altim.text.strip()[1:5]) altim = val / 100 if val > 1100 else units.Quantity(val, 'hPa').m_as('inHg') else: altim = np.nan # Strip off extraneous stuff off the remarks section remarks = tree.remarks.text.lstrip().rstrip('= ') if remarks.startswith('RMK'): remarks = remarks[3:].strip() # Returns a named tuple with all the relevant variables return Metar(station_id, lat, lon, elev, date_time, wind_dir, wind_spd, wind_gust, visibility, current_wx[0], current_wx[1], current_wx[2], skyc[0], skylev[0], skyc[1], skylev[1], skyc[2], skylev[2], skyc[3], skylev[3], cloudcover, temp, dewp, altim, current_wx_symbol[0], current_wx_symbol[1], current_wx_symbol[2], remarks)
42,005
def _run_iteration( zmap: Dict[complex, Union[int, float]], coordinates: List[complex], overshoot: float = 0.0 ) -> Tuple[Dict[complex, Union[int, float]], float]: max_fractional_delta = 0.0 for coord in coordinates: current_val = zmap.get(coord, None) max_neighbor = -np.inf min_neighbor = np.inf sum_neighbors = 0 n_neighbors = 0 for offset in NEIGHBOR_OFFSETS: neighbor = zmap.get(coord + offset, None) if neighbor is None: # off the edge or not filled in continue sum_neighbors += neighbor # type: ignore n_neighbors += 1 if current_val is not None: max_neighbor = max(max_neighbor, neighbor) min_neighbor = min(min_neighbor, neighbor) # fill value is just mean of its neighbors new_val = sum_neighbors / n_neighbors if current_val is None: zmap[coord] = new_val max_fractional_delta = 1.0 else: zmap[coord] = (1 + overshoot) * new_val - overshoot * current_val if max_neighbor > min_neighbor: fractional_delta = abs(new_val - current_val) / (max_neighbor - min_neighbor) max_fractional_delta = max(overshoot, fractional_delta) return zmap, max_fractional_delta
def _run_iteration( zmap: Dict[complex, Union[int, float]], coordinates: List[complex], overshoot: float = 0.0 ) -> Tuple[Dict[complex, Union[int, float]], float]: max_fractional_delta = 0.0 for coord in coordinates: current_val = zmap.get(coord, None) max_neighbor = -np.inf min_neighbor = np.inf sum_neighbors = 0 n_neighbors = 0 for offset in NEIGHBOR_OFFSETS: neighbor = zmap.get(coord + offset, None) if neighbor is None: # off the edge or not filled in continue sum_neighbors += neighbor # type: ignore n_neighbors += 1 if current_val is not None: max_neighbor = max(max_neighbor, neighbor) min_neighbor = min(min_neighbor, neighbor) # fill value is just mean of its neighbors new_val = sum_neighbors / n_neighbors if current_val is None: zmap[coord] = new_val max_fractional_delta = 1.0 else: zmap[coord] = (1 + overshoot) * new_val - overshoot * current_val if max_neighbor > min_neighbor: fractional_delta = abs(new_val - current_val) / (max_neighbor - min_neighbor) max_fractional_delta = max(overshoot, fractional_delta) return max_fractional_delta
38,902
def field_singleton_schema( # noqa: C901 (ignore complexity) field: Field, *, by_alias: bool, model_name_map: Dict[Type['BaseModel'], str], schema_overrides: bool = False, ref_prefix: Optional[str] = None, known_models: Set[Type['BaseModel']], ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ This function is indirectly used by ``field_schema()``, you should probably be using that function. Take a single Pydantic ``Field``, and return its schema and any additional definitions from sub-models. """ ref_prefix = ref_prefix or default_prefix definitions: Dict[str, Any] = {} if field.sub_fields: return field_singleton_sub_fields_schema( field.sub_fields, by_alias=by_alias, model_name_map=model_name_map, schema_overrides=schema_overrides, ref_prefix=ref_prefix, known_models=known_models, ) if field.type_ is Any: return {}, definitions # no restrictions if is_callable_type(field.type_): raise SkipField(f'Callable {field.name} was excluded from schema since JSON schema has no equivalent type.') f_schema: Dict[str, Any] = {} if field.schema is not None and field.schema.const: f_schema['const'] = field.default if issubclass(field.type_, Enum): f_schema.update({'enum': [item.value for item in field.type_]}) # Don't return immediately, to allow adding specific types for field_name, schema_name in validation_attribute_to_schema_keyword.items(): field_value = getattr(field.type_, field_name, None) if field_value is not None: if field_name == 'regex': field_value = field_value.pattern f_schema[schema_name] = field_value for type_, t_schema in field_class_to_schema_enum_enabled: if issubclass(field.type_, type_): f_schema.update(t_schema) break # Return schema, with or without enum definitions if f_schema: return f_schema, definitions for type_, t_schema in field_class_to_schema_enum_disabled: if issubclass(field.type_, type_): return t_schema, definitions # Handle dataclass-based models field_type = field.type_ if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), pydantic.BaseModel): field_type = cast(Type['dataclasses.DataclassType'], field_type) field_type = field_type.__pydantic_model__ if issubclass(field_type, pydantic.BaseModel): model_name = model_name_map[field_type] if field_type not in known_models: sub_schema, sub_definitions = model_process_schema( field_type, by_alias=by_alias, model_name_map=model_name_map, ref_prefix=ref_prefix, known_models=known_models, ) definitions.update(sub_definitions) definitions[model_name] = sub_schema else: definitions[model_name] = None schema_ref = {'$ref': f'{ref_prefix}{model_name}'} if not schema_overrides: return schema_ref, definitions else: return {'allOf': [schema_ref]}, definitions raise ValueError(f'Value not declarable with JSON Schema, field: {field}')
def field_singleton_schema( # noqa: C901 (ignore complexity) field: Field, *, by_alias: bool, model_name_map: Dict[Type['BaseModel'], str], schema_overrides: bool = False, ref_prefix: Optional[str] = None, known_models: Set[Type['BaseModel']], ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ This function is indirectly used by ``field_schema()``, you should probably be using that function. Take a single Pydantic ``Field``, and return its schema and any additional definitions from sub-models. """ ref_prefix = ref_prefix or default_prefix definitions: Dict[str, Any] = {} if field.sub_fields: return field_singleton_sub_fields_schema( field.sub_fields, by_alias=by_alias, model_name_map=model_name_map, schema_overrides=schema_overrides, ref_prefix=ref_prefix, known_models=known_models, ) if field.type_ is Any: return {}, definitions # no restrictions if is_callable_type(field.type_): raise SkipField(f'Callable {field.name} was excluded from schema since JSON schema has no equivalent type.') f_schema: Dict[str, Any] = {} if field.schema is not None and field.schema.const: f_schema['const'] = field.default if issubclass(field.type_, Enum): f_schema.update({'enum': [item.value for item in field.type_]}) # Don't return immediately, to allow adding specific types for field_name, schema_name in validation_attribute_to_schema_keyword.items(): field_value = getattr(field.type_, field_name, None) if field_value is not None: if field_name == 'regex': field_value = field_value.pattern f_schema[schema_name] = field_value for type_, t_schema in field_class_to_schema_enum_enabled: if issubclass(field.type_, type_): f_schema.update(t_schema) break # Return schema, with or without enum definitions if f_schema: return f_schema, definitions for type_, t_schema in field_class_to_schema_enum_disabled: if issubclass(field.type_, type_): return t_schema, definitions # Handle dataclass-based models field_type = field.type_ if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), pydantic.BaseModel): field_type = cast(Type['dataclasses.DataclassType'], field_type) field_type = field_type.__pydantic_model__ if issubclass(field_type, pydantic.BaseModel): model_name = model_name_map[field_type] if field_type not in known_models: sub_schema, sub_definitions = model_process_schema( field_type, by_alias=by_alias, model_name_map=model_name_map, ref_prefix=ref_prefix, known_models=known_models, ) definitions.update(sub_definitions) definitions[model_name] = sub_schema else: definitions[model_name] = None schema_ref = {'$ref': ref_prefix + model_name} if not schema_overrides: return schema_ref, definitions else: return {'allOf': [schema_ref]}, definitions raise ValueError(f'Value not declarable with JSON Schema, field: {field}')
44,177
def catch_warn_ExpvalCost(ansatz, hamiltonian, device, **kwargs): """Computes the ExpvalCost and catches the initial deprecation warning.""" with pytest.warns(UserWarning, match="will be deprecated,"): res = qml.ExpvalCost(ansatz, hamiltonian, device, **kwargs) return res
def catch_warn_ExpvalCost(ansatz, hamiltonian, device, **kwargs): """Computes the ExpvalCost and catches the initial deprecation warning.""" with pytest.warns(UserWarning, match="is deprecated,"): res = qml.ExpvalCost(ansatz, hamiltonian, device, **kwargs) return res
4,560
def clean(signals, sessions=None, detrend=True, standardize='zscore', confounds=None, standardize_confounds=True, filter="butterworth", low_pass=None, high_pass=None, t_r=2.5, ensure_finite=False): """Improve SNR on masked fMRI signals. This function can do several things on the input signals, in the following order: - detrend - low- and high-pass filter - remove confounds - standardize Low-pass filtering improves specificity. High-pass filtering should be kept small, to keep some sensitivity. Filtering is only meaningful on evenly-sampled signals. According to Lindquist et al. (2018), removal of confounds will be done orthogonally to temporal filters (low- and/or high-pass filters), if both are specified. Parameters ---------- signals: numpy.ndarray Timeseries. Must have shape (instant number, features number). This array is not modified. sessions : numpy array, optional Add a session level to the cleaning process. Each session will be cleaned independently. Must be a 1D array of n_samples elements. confounds: numpy.ndarray, str, DataFrame or list of Confounds timeseries. Shape must be (instant number, confound number), or just (instant number,) The number of time instants in signals and confounds must be identical (i.e. signals.shape[0] == confounds.shape[0]). If a string is provided, it is assumed to be the name of a csv file containing signals as columns, with an optional one-line header. If a list is provided, all confounds are removed from the input signal, as if all were in the same array. t_r: float Repetition time, in second (sampling period). Set to None if not. filter: {'butterworth', False} Filtering methods. 'butterworth': perform butterworth filtering. False : Do not perform filtering. low_pass, high_pass: float Respectively high and low cutoff frequencies, in Hertz. detrend: bool If detrending should be applied on timeseries (before confound removal) standardize: {'zscore', 'psc', False}, default is 'zscore' Strategy to standardize the signal. 'zscore': the signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. 'psc': Timeseries are shifted to zero mean value and scaled to percent signal change (as compared to original mean signal). False : Do not standardize the data. standardize_confounds: boolean, optional, default is True If standardize_confounds is True, the confounds are z-scored: their mean is put to 0 and their variance to 1 in the time dimension. ensure_finite: bool If True, the non-finite values (NANs and infs) found in the data will be replaced by zeros. Returns ------- cleaned_signals: numpy.ndarray Input signals, cleaned. Same shape as `signals`. Notes ----- Confounds removal is based on a projection on the orthogonal of the signal space. See `Friston, K. J., A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, et R. S. J. Frackowiak. "Statistical Parametric Maps in Functional Imaging: A General Linear Approach". Human Brain Mapping 2, no 4 (1994): 189-210. <http://dx.doi.org/10.1002/hbm.460020402>`_ Orthogonalization between temporal filters and confound removal is based on suggestions in `Lindquist, M., Geuter, S., Wager, T., & Caffo, B. (2018). Modular preprocessing pipelines can reintroduce artifacts into fMRI data. bioRxiv, 407676. <http://dx.doi.org/10.1101/407676>`_ See Also -------- nilearn.image.clean_img """ # Read confounds and signals signals, confounds = _sanitize_inputs(signals, confounds, ensure_finite) # check if filter paramters are satidfied _ = _check_filter_parameters(filter, low_pass, high_pass, t_r) # Restrict the signal to the orthogonal of the confounds if sessions is not None: signals = _process_session(signals, sessions, detrend, standardize, confounds, low_pass, high_pass, t_r) # Detrend # Detrend and filtering should apply to confounds, if confound presents # keep filters orthogonal (according to Lindquist et al. (2018)) if detrend: mean_signals = signals.mean(axis=0) signals = _standardize(signals, standardize=False, detrend=detrend) if confounds is not None: confounds = _standardize(confounds, standardize=False, detrend=detrend) # Apply low- and high-pass filters if filter == "butterworth" and t_r is not None: # this change enticipate extra fltering methods signals = butterworth(signals, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) if confounds is not None: # Apply low- and high-pass filters to keep filters orthogonal # (according to Lindquist et al. (2018)) confounds = butterworth(confounds, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) # if filter == "cosine": # ... # Remove confounds if confounds is not None: confounds = _standardize(confounds, standardize=standardize_confounds, detrend=False) if not standardize_confounds: # Improve numerical stability by controlling the range of # confounds. We don't rely on _standardize as it removes any # constant contribution to confounds. confound_max = np.max(np.abs(confounds), axis=0) confound_max[confound_max == 0] = 1 confounds /= confound_max # Pivoting in qr decomposition was added in scipy 0.10 Q, R, _ = linalg.qr(confounds, mode='economic', pivoting=True) Q = Q[:, np.abs(np.diag(R)) > np.finfo(np.float64).eps * 100.] signals -= Q.dot(Q.T).dot(signals) # Standardize if detrend and (standardize == 'psc'): # If the signal is detrended, we have to know the original mean # signal to calculate the psc. signals = _standardize(signals + mean_signals, standardize=standardize, detrend=False) else: signals = _standardize(signals, standardize=standardize, detrend=False) return signals
def clean(signals, sessions=None, detrend=True, standardize='zscore', confounds=None, standardize_confounds=True, filter='butterworth', low_pass=None, high_pass=None, t_r=2.5, ensure_finite=False): """Improve SNR on masked fMRI signals. This function can do several things on the input signals, in the following order: - detrend - low- and high-pass filter - remove confounds - standardize Low-pass filtering improves specificity. High-pass filtering should be kept small, to keep some sensitivity. Filtering is only meaningful on evenly-sampled signals. According to Lindquist et al. (2018), removal of confounds will be done orthogonally to temporal filters (low- and/or high-pass filters), if both are specified. Parameters ---------- signals: numpy.ndarray Timeseries. Must have shape (instant number, features number). This array is not modified. sessions : numpy array, optional Add a session level to the cleaning process. Each session will be cleaned independently. Must be a 1D array of n_samples elements. confounds: numpy.ndarray, str, DataFrame or list of Confounds timeseries. Shape must be (instant number, confound number), or just (instant number,) The number of time instants in signals and confounds must be identical (i.e. signals.shape[0] == confounds.shape[0]). If a string is provided, it is assumed to be the name of a csv file containing signals as columns, with an optional one-line header. If a list is provided, all confounds are removed from the input signal, as if all were in the same array. t_r: float Repetition time, in second (sampling period). Set to None if not. filter: {'butterworth', False} Filtering methods. 'butterworth': perform butterworth filtering. False : Do not perform filtering. low_pass, high_pass: float Respectively high and low cutoff frequencies, in Hertz. detrend: bool If detrending should be applied on timeseries (before confound removal) standardize: {'zscore', 'psc', False}, default is 'zscore' Strategy to standardize the signal. 'zscore': the signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. 'psc': Timeseries are shifted to zero mean value and scaled to percent signal change (as compared to original mean signal). False : Do not standardize the data. standardize_confounds: boolean, optional, default is True If standardize_confounds is True, the confounds are z-scored: their mean is put to 0 and their variance to 1 in the time dimension. ensure_finite: bool If True, the non-finite values (NANs and infs) found in the data will be replaced by zeros. Returns ------- cleaned_signals: numpy.ndarray Input signals, cleaned. Same shape as `signals`. Notes ----- Confounds removal is based on a projection on the orthogonal of the signal space. See `Friston, K. J., A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, et R. S. J. Frackowiak. "Statistical Parametric Maps in Functional Imaging: A General Linear Approach". Human Brain Mapping 2, no 4 (1994): 189-210. <http://dx.doi.org/10.1002/hbm.460020402>`_ Orthogonalization between temporal filters and confound removal is based on suggestions in `Lindquist, M., Geuter, S., Wager, T., & Caffo, B. (2018). Modular preprocessing pipelines can reintroduce artifacts into fMRI data. bioRxiv, 407676. <http://dx.doi.org/10.1101/407676>`_ See Also -------- nilearn.image.clean_img """ # Read confounds and signals signals, confounds = _sanitize_inputs(signals, confounds, ensure_finite) # check if filter paramters are satidfied _ = _check_filter_parameters(filter, low_pass, high_pass, t_r) # Restrict the signal to the orthogonal of the confounds if sessions is not None: signals = _process_session(signals, sessions, detrend, standardize, confounds, low_pass, high_pass, t_r) # Detrend # Detrend and filtering should apply to confounds, if confound presents # keep filters orthogonal (according to Lindquist et al. (2018)) if detrend: mean_signals = signals.mean(axis=0) signals = _standardize(signals, standardize=False, detrend=detrend) if confounds is not None: confounds = _standardize(confounds, standardize=False, detrend=detrend) # Apply low- and high-pass filters if filter == "butterworth" and t_r is not None: # this change enticipate extra fltering methods signals = butterworth(signals, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) if confounds is not None: # Apply low- and high-pass filters to keep filters orthogonal # (according to Lindquist et al. (2018)) confounds = butterworth(confounds, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) # if filter == "cosine": # ... # Remove confounds if confounds is not None: confounds = _standardize(confounds, standardize=standardize_confounds, detrend=False) if not standardize_confounds: # Improve numerical stability by controlling the range of # confounds. We don't rely on _standardize as it removes any # constant contribution to confounds. confound_max = np.max(np.abs(confounds), axis=0) confound_max[confound_max == 0] = 1 confounds /= confound_max # Pivoting in qr decomposition was added in scipy 0.10 Q, R, _ = linalg.qr(confounds, mode='economic', pivoting=True) Q = Q[:, np.abs(np.diag(R)) > np.finfo(np.float64).eps * 100.] signals -= Q.dot(Q.T).dot(signals) # Standardize if detrend and (standardize == 'psc'): # If the signal is detrended, we have to know the original mean # signal to calculate the psc. signals = _standardize(signals + mean_signals, standardize=standardize, detrend=False) else: signals = _standardize(signals, standardize=standardize, detrend=False) return signals
14,255
def get_sim_steps( time: Union[Real, Decimal], units: str = "step", round_mode: str = "error" ) -> int: """Calculates the number of simulation time steps for a given amount of *time*. Args: time: The value to convert to simulation time steps. units: String specifying the units of the result (one of ``'step'``, ``'fs'``, ``'ps'``, ``'ns'``, ``'us'``, ``'ms'``, ``'sec'``). ``'step'`` means time is already in simulation time steps. round_mode: String specifying how to handle time values that sit between time steps (one of ``'error'``, ``'round'``, ``'ceil'``, ``'floor'``). Returns: The number of simulation time steps. When *round_mode* is ``"error"``, a :exc:`ValueError` is thrown if the value cannot be accurately represented in terms of simulator time steps. When *round_mode* is ``"round"``, ``"ceil"``, or ``"floor"``, the corresponding rounding function from the standard library will be used to round to a simulator time step. .. versionchanged:: 1.5 Support ``'step'`` as the the *units* argument to mean "simulator time step". .. versionchanged:: 1.6 Support rounding modes. """ if units not in (None, "step"): result = _ldexp10(time, _get_log_time_scale(units) - _get_simulator_precision()) else: result = time if units is None: warnings.warn( 'Using units=None is deprecated, use units="step" instead.', DeprecationWarning, stacklevel=2) units="step" # don't propagate deprecated value if round_mode == "error": result_rounded = math.floor(result) if result_rounded != result: precision = _get_simulator_precision() raise ValueError( f"Unable to accurately represent {time}({units}) with the simulator precision of 1e{precision}" ) elif round_mode == "ceil": result_rounded = math.ceil(result) elif round_mode == "round": result_rounded = round(result) elif round_mode == "floor": result_rounded = math.floor(result) else: raise ValueError(f"invalid round_mode specifier: {round_mode}") return result_rounded
def get_sim_steps( time: Union[Real, Decimal], units: str = "step", round_mode: str = "error" ) -> int: """Calculates the number of simulation time steps for a given amount of *time*. Args: time: The value to convert to simulation time steps. units: String specifying the units of the result (one of ``'step'``, ``'fs'``, ``'ps'``, ``'ns'``, ``'us'``, ``'ms'``, ``'sec'``). ``'step'`` means time is already in simulation time steps. round_mode: String specifying how to handle time values that sit between time steps (one of ``'error'``, ``'round'``, ``'ceil'``, ``'floor'``). Returns: The number of simulation time steps. When *round_mode* is ``"error"``, a :exc:`ValueError` is thrown if the value cannot be accurately represented in terms of simulator time steps. When *round_mode* is ``"round"``, ``"ceil"``, or ``"floor"``, the corresponding rounding function from the standard library will be used to round to a simulator time step. .. versionchanged:: 1.5 Support ``'step'`` as the the *units* argument to mean "simulator time step". .. versionchanged:: 1.6 Support rounding modes. """ if units not in (None, "step"): result = _ldexp10(time, _get_log_time_scale(units) - _get_simulator_precision()) else: result = time if units is None: warnings.warn( 'Using units=None is deprecated, use units="step" instead.', DeprecationWarning, stacklevel=2) units="step" # don't propagate deprecated value if round_mode == "error": result_rounded = math.floor(result) if result_rounded != result: precision = _get_simulator_precision() raise ValueError( f"Unable to accurately represent {time}({units}) with the simulator precision of 1e{precision}" ) elif round_mode == "ceil": result_rounded = math.ceil(result) elif round_mode == "round": result_rounded = round(result) elif round_mode == "floor": result_rounded = math.floor(result) else: raise ValueError(f"Invalid round_mode specifier: {round_mode}") return result_rounded
14,125
def _continuous_to_discrete_coords(total_bounds, bounds, p): """ Calculates mid points & ranges of geoms and returns as discrete coords Parameters ---------- total_bounds : Total bounds of geometries - array bounds : Bounds of each geometry - array p : The number of iterations used in constructing the Hilbert curve Returns --------- Discrete two-dimensional numpy array Two-dimensional array Array of hilbert distances for each geom """ # Hilbert Side len side_length = 2 ** p # Calculate x and y range of total bound coords - returns array xmin, ymin, xmax, ymax = total_bounds # Calculate mid points for x and y bound coords - returns array x_mids = (bounds[:, 0] + bounds[:, 2]) / 2.0 y_mids = (bounds[:, 1] + bounds[:, 3]) / 2.0 # Transform continuous int to discrete int for each dimension x_int = _continuous_to_discrete(x_mids, (xmin, xmax), side_length) y_int = _continuous_to_discrete(y_mids, (ymin, ymax), side_length) return x_int, y_int
def _continuous_to_discrete_coords(total_bounds, bounds, p): """ Calculates mid points & ranges of geoms and returns as discrete coords Parameters ---------- total_bounds : Total bounds of geometries - array bounds : Bounds of each geometry - array p : The number of iterations used in constructing the Hilbert curve Returns --------- Discrete two-dimensional numpy array Two-dimensional array Array of hilbert distances for each geom """ # Hilbert Side len side_length = 2 ** p # Calculate x and y range of total bound coords - returns array xmin, ymin, xmax, ymax = total_bounds # Calculate mid points for x and y bound coords - returns array x_mids = (bounds[:, 0] + bounds[:, 2]) / 2.0 y_mids = (bounds[:, 1] + bounds[:, 3]) / 2.0 # Transform continuous value to discrete integer for each dimension x_int = _continuous_to_discrete(x_mids, (xmin, xmax), side_length) y_int = _continuous_to_discrete(y_mids, (ymin, ymax), side_length) return x_int, y_int
6,585
def execute(): click.secho( "E-Invoicing Integration is moved to a separate app and will be removed from ERPNext in version-14.\n" "Please install the app to continue using the integration: https://github.com/frappe/erpnext_gst_compliance", fg="yellow", )
def execute(): click.secho( "Indian E-Invoicing integration is moved to a separate app and will be removed from ERPNext in version-14.\n" "Please install the app to continue using the integration: https://github.com/frappe/erpnext_gst_compliance", fg="yellow", )
20,458
def merge_stock_location_path_stock_rule(env): openupgrade.logged_query( env.cr, """ INSERT INTO stock_rule (name, active, action, sequence, company_id, location_id, location_src_id, route_id, procure_method, route_sequence, picking_type_id, delay, propagate, warehouse_id, auto, create_uid, create_date, write_uid, write_date, %s) SELECT name, active, 'push' AS action, sequence, company_id, location_dest_id, location_from_id, route_id, 'make_to_stock' AS procure_method, route_sequence, picking_type_id, delay, propagate, warehouse_id, auto, create_uid, create_date, write_uid, write_date, id FROM stock_location_path """, (AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) openupgrade.logged_query( env.cr, """ UPDATE ir_model_data imd SET model = 'stock.rule', res_id = sr.id FROM stock_rule sr WHERE imd.res_id = sr.%s AND model = 'stock.location.path' """, (AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) env.cr.execute( """ SELECT DISTINCT sm.rule_id, sr.id FROM stock_move sm INNER JOIN stock_rule sr ON sm.%s = sr.%s WHERE sr.%s IS NOT NULL AND sm.rule_id IS NOT NULL """, ( AsIs(openupgrade.get_legacy_name('push_rule_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) rules_to_merge = env.cr.fetchall() openupgrade.logged_query( env.cr, """ UPDATE stock_move sm SET rule_id = sr.id FROM stock_rule sr WHERE sm.%s = sr.%s AND sr.%s IS NOT NULL AND sm.rule_id IS NULL """, ( AsIs(openupgrade.get_legacy_name('push_rule_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) for row in rules_to_merge: openupgrade_merge_records.merge_records( env, 'stock.rule', [row[1]], row[0], ) pull_push_rule_ids = list(set([r[0] for r in rules_to_merge])) if pull_push_rule_ids: openupgrade.logged_query( env.cr, """ UPDATE stock_rule SET action = 'pull_push' WHERE id in %s""", (tuple(pull_push_rule_ids), ), )
def merge_stock_location_path_stock_rule(env): openupgrade.logged_query( env.cr, """ INSERT INTO stock_rule (name, active, action, sequence, company_id, location_id, location_src_id, route_id, procure_method, route_sequence, picking_type_id, delay, propagate, warehouse_id, auto, create_uid, create_date, write_uid, write_date, %s) SELECT name, active, 'push' AS action, sequence, company_id, location_dest_id, location_from_id, route_id, 'make_to_stock' AS procure_method, route_sequence, picking_type_id, delay, propagate, warehouse_id, auto, create_uid, create_date, write_uid, write_date, id FROM stock_location_path """, (AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) openupgrade.logged_query( env.cr, """ UPDATE ir_model_data imd SET model = 'stock.rule', res_id = sr.id FROM stock_rule sr WHERE imd.res_id = sr.%s AND model = 'stock.location.path' """, (AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) env.cr.execute( """ SELECT DISTINCT sm.rule_id, sr.id FROM stock_move sm INNER JOIN stock_rule sr ON sm.%s = sr.%s WHERE sr.%s IS NOT NULL AND sm.rule_id IS NOT NULL """, ( AsIs(openupgrade.get_legacy_name('push_rule_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) rules_to_merge = env.cr.fetchall() openupgrade.logged_query( env.cr, """ UPDATE stock_move sm SET rule_id = sr.id FROM stock_rule sr WHERE sm.%s = sr.%s AND sr.%s IS NOT NULL AND sm.rule_id IS NULL """, ( AsIs(openupgrade.get_legacy_name('push_rule_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), AsIs(openupgrade.get_legacy_name('loc_path_id')), ), ) for row in rules_to_merge: openupgrade_merge_records.merge_records( env, 'stock.rule', [row[1]], row[0], ) pull_push_rule_ids = tuple(set([r[0] for r in rules_to_merge])) if pull_push_rule_ids: openupgrade.logged_query( env.cr, """ UPDATE stock_rule SET action = 'pull_push' WHERE id in %s""", (tuple(pull_push_rule_ids), ), )
31,722
def get_remote_data_command(client: Client, params: Dict[str, Any], args: Dict) -> GetRemoteDataResponse: """ get-remote-data command: Returns an updated incident and entries If offense's events were updated in the long running container, update the demisto incident. Args: client (Client): QRadar client to perform the API calls. params (Dict): Demisto params. args (Dict): id: Offense id to retrieve. lastUpdate: When was the last time we data was retrieved in Epoch. Returns: GetRemoteDataResponse. """ remote_args = GetRemoteDataArgs(args) ip_enrich, asset_enrich = get_offense_enrichment(params.get('enrichment', 'IPs And Assets')) offense_id = remote_args.remote_incident_id offense = client.offenses_list(offense_id=offense_id) offense_last_update = get_time_parameter(offense.get('last_persisted_time')) mirror_options = params.get('mirror_options') context_data = get_integration_context() processed_offenses = print_mirror_events_stats(context_data, f"Starting Get Remote Data For " f"Offense {str(offense.get('id'))}") # versions below 6.1 compatibility last_update = get_time_parameter(args.get('lastUpdate')) if last_update and last_update > offense_last_update and str(offense.get("id")) not in processed_offenses: demisto.debug('Nothing new in the ticket') return GetRemoteDataResponse({'id': offense_id, 'in_mirror_error': ''}, []) demisto.debug(f'Updating offense. Offense last update was {offense_last_update}') entries = [] if offense.get('status') == 'CLOSED' and argToBoolean(params.get('close_incident', False)): demisto.debug(f'Offense is closed: {offense}') if closing_reason := offense.get('closing_reason_id', ''): closing_reason = client.closing_reasons_list(closing_reason).get('text') offense_close_time = offense.get('close_time', '') closed_offense_notes = client.offense_notes_list(offense_id, f'items={DEFAULT_RANGE_VALUE}', filter_=f'create_time >= {offense_close_time}') # In QRadar UI, when you close a reason, a note is added with the reason and more details. Try to get note # if exists, else fallback to closing reason only, as closing QRadar through an API call does not create a note. close_reason_with_note = next((note.get('note_text') for note in closed_offense_notes if note.get('note_text').startswith('This offense was closed with reason:')), closing_reason) if not close_reason_with_note: print_debug_msg(f'Could not find closing reason or closing note for offense with offense id {offense_id}') close_reason_with_note = 'Unknown closing reason from QRadar' else: close_reason_with_note = f'From QRadar: {close_reason_with_note}' entries.append({ 'Type': EntryType.NOTE, 'Contents': { 'dbotIncidentClose': True, 'closeReason': close_reason_with_note }, 'ContentsFormat': EntryFormat.JSON }) if mirror_options == MIRROR_OFFENSE_AND_EVENTS: offenses_with_updated_events = context_data.get(UPDATED_MIRRORED_OFFENSES_CTX_KEY, []) offenses_waiting_for_update = context_data.get(MIRRORED_OFFENSES_CTX_KEY, []) max_retries = MAX_FETCH_EVENT_RETIRES * (len(offenses_waiting_for_update) + 3) is_waiting_to_be_updated = True evented_offense = None retries = 0 while ((not evented_offense) or is_waiting_to_be_updated) and retries < max_retries: if retries != 0: time.sleep(FAILURE_SLEEP) ctx = get_integration_context() context_data = ctx.copy() print_mirror_events_stats(context_data, f"Get Remote Data Loop for id {offense.get('id')}, retry {retries}") retries += 1 offenses_with_updated_events = context_data.get(UPDATED_MIRRORED_OFFENSES_CTX_KEY, []) offenses_waiting_for_update = context_data.get(MIRRORED_OFFENSES_CTX_KEY, []) evented_offense = [evented_offense for evented_offense in offenses_with_updated_events if str(evented_offense.get('id')) == str(offense.get("id"))] is_waiting_to_be_updated = any([True for waiting_offense in offenses_waiting_for_update if str(waiting_offense.get('id')) == str(offense.get("id"))]) if evented_offense: demisto.debug(f"Mirror Events: Offense {offense.get('id')} events were updated, updating incident.") if evented_offense[0].get('events'): offense['events'] = evented_offense[0].get('events') demisto.debug(f"Mirror Events: Offense {offense.get('id')} now has {offense.get('events')} " f"fetched events.") offenses_with_updated_events.remove(evented_offense[0]) resubmitted_offenses_ids = context_data.get(RESUBMITTED_MIRRORED_OFFENSES_CTX_KEY, []).copy() if offense.get("id") in resubmitted_offenses_ids: resubmitted_offenses_ids.remove(offense.get("id")) context_data[RESUBMITTED_MIRRORED_OFFENSES_CTX_KEY] = resubmitted_offenses_ids context_data[UPDATED_MIRRORED_OFFENSES_CTX_KEY] = offenses_with_updated_events print_mirror_events_stats(context_data, f"Get Remote Data End for id {offense.get('id')}") set_integration_context(context_data) enriched_offense = enrich_offenses_result(client, offense, ip_enrich, asset_enrich) final_offense_data = sanitize_outputs(enriched_offense)[0] return GetRemoteDataResponse(final_offense_data, entries)
def get_remote_data_command(client: Client, params: Dict[str, Any], args: Dict) -> GetRemoteDataResponse: """ get-remote-data command: Returns an updated incident and entries If offense's events were updated in the long running container, update the demisto incident. Args: client (Client): QRadar client to perform the API calls. params (Dict): Demisto params. args (Dict): id: Offense id to retrieve. lastUpdate: When was the last time we data was retrieved in Epoch. Returns: GetRemoteDataResponse. """ remote_args = GetRemoteDataArgs(args) ip_enrich, asset_enrich = get_offense_enrichment(params.get('enrichment', 'IPs And Assets')) offense_id = remote_args.remote_incident_id offense = client.offenses_list(offense_id=offense_id) offense_last_update = get_time_parameter(offense.get('last_persisted_time')) mirror_options = params.get('mirror_options') context_data = get_integration_context() processed_offenses = print_mirror_events_stats(context_data, f"Starting Get Remote Data For " f"Offense {str(offense.get('id'))}") # versions below 6.1 compatibility last_update = get_time_parameter(args.get('lastUpdate')) if last_update and last_update > offense_last_update and str(offense.get("id")) not in processed_offenses: demisto.debug('Nothing new in the ticket') return GetRemoteDataResponse({'id': offense_id, 'in_mirror_error': ''}, []) demisto.debug(f'Updating offense. Offense last update was {offense_last_update}') entries = [] if offense.get('status') == 'CLOSED' and argToBoolean(params.get('close_incident', False)): demisto.debug(f'Offense is closed: {offense}') if closing_reason := offense.get('closing_reason_id', ''): closing_reason = client.closing_reasons_list(closing_reason).get('text') offense_close_time = offense.get('close_time', '') closed_offense_notes = client.offense_notes_list(offense_id, f'items={DEFAULT_RANGE_VALUE}', filter_=f'create_time >= {offense_close_time}') # In QRadar UI, when you close a reason, a note is added with the reason and more details. Try to get note # if exists, else fallback to closing reason only, as closing QRadar through an API call does not create a note. close_reason_with_note = next((note.get('note_text') for note in closed_offense_notes if note.get('note_text').startswith('This offense was closed with reason:')), closing_reason) if not close_reason_with_note: print_debug_msg(f'Could not find closing reason or closing note for offense with offense id {offense_id}') close_reason_with_note = 'Unknown closing reason from QRadar' else: close_reason_with_note = f'From QRadar: {close_reason_with_note}' entries.append({ 'Type': EntryType.NOTE, 'Contents': { 'dbotIncidentClose': True, 'closeReason': close_reason_with_note }, 'ContentsFormat': EntryFormat.JSON }) if mirror_options == MIRROR_OFFENSE_AND_EVENTS: offenses_with_updated_events = context_data.get(UPDATED_MIRRORED_OFFENSES_CTX_KEY, []) offenses_waiting_for_update = context_data.get(MIRRORED_OFFENSES_CTX_KEY, []) max_retries = MAX_FETCH_EVENT_RETIRES * (len(offenses_waiting_for_update) + 3) is_waiting_to_be_updated = True evented_offense = None retries = 0 while ((not evented_offense) or is_waiting_to_be_updated) and retries < max_retries: if retries != 0: time.sleep(FAILURE_SLEEP) context_data = get_integration_context().copy() print_mirror_events_stats(context_data, f"Get Remote Data Loop for id {offense.get('id')}, retry {retries}") retries += 1 offenses_with_updated_events = context_data.get(UPDATED_MIRRORED_OFFENSES_CTX_KEY, []) offenses_waiting_for_update = context_data.get(MIRRORED_OFFENSES_CTX_KEY, []) evented_offense = [evented_offense for evented_offense in offenses_with_updated_events if str(evented_offense.get('id')) == str(offense.get("id"))] is_waiting_to_be_updated = any([True for waiting_offense in offenses_waiting_for_update if str(waiting_offense.get('id')) == str(offense.get("id"))]) if evented_offense: demisto.debug(f"Mirror Events: Offense {offense.get('id')} events were updated, updating incident.") if evented_offense[0].get('events'): offense['events'] = evented_offense[0].get('events') demisto.debug(f"Mirror Events: Offense {offense.get('id')} now has {offense.get('events')} " f"fetched events.") offenses_with_updated_events.remove(evented_offense[0]) resubmitted_offenses_ids = context_data.get(RESUBMITTED_MIRRORED_OFFENSES_CTX_KEY, []).copy() if offense.get("id") in resubmitted_offenses_ids: resubmitted_offenses_ids.remove(offense.get("id")) context_data[RESUBMITTED_MIRRORED_OFFENSES_CTX_KEY] = resubmitted_offenses_ids context_data[UPDATED_MIRRORED_OFFENSES_CTX_KEY] = offenses_with_updated_events print_mirror_events_stats(context_data, f"Get Remote Data End for id {offense.get('id')}") set_integration_context(context_data) enriched_offense = enrich_offenses_result(client, offense, ip_enrich, asset_enrich) final_offense_data = sanitize_outputs(enriched_offense)[0] return GetRemoteDataResponse(final_offense_data, entries)
6,077
def matchQueue(jobJDL, queueDict, fullMatch=False): """ Match the job description to the queue definition :param str job: JDL job description :param bool fullMatch: test matching on all the criteria :param dict queueDict: queue parameters dictionary :return: S_OK/S_ERROR, Value - result of matching, S_OK if matched or S_ERROR with the reason for no match """ # Check the job description validity job = ClassAd(jobJDL) if not job.isOK(): return S_ERROR('Invalid job description') noMatchReasons = [] # Check job requirements to resource # 1. CPUTime cpuTime = job.getAttributeInt('CPUTime') if not cpuTime: cpuTime = 84600 if cpuTime and cpuTime > queueDict.get('CPUTime', 0.): noMatchReasons.append('Job CPUTime requirement not satisfied') if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 2. Multi-value match requirements for parameter in ['Site', 'GridCE', 'Platform', 'GridMiddleware', 'PilotType', 'SubmitPool', 'JobType']: if parameter in queueDict: valueSet = set(job.getListFromExpression(parameter)) if not valueSet: valueSet = set(job.getListFromExpression('%ss' % parameter)) queueSet = set(fromChar(queueDict[parameter])) if valueSet and queueSet and not valueSet.intersection(queueSet): valueToPrint = ','.join(valueSet) if len(valueToPrint) > 20: valueToPrint = "%s..." % valueToPrint[:20] noMatchReasons.append('Job %s %s requirement not satisfied' % (parameter, valueToPrint)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 3. Banned multi-value match requirements for par in ['Site', 'GridCE', 'Platform', 'GridMiddleware', 'PilotType', 'SubmitPool', 'JobType']: parameter = "Banned%s" % par if par in queueDict: valueSet = set(job.getListFromExpression(parameter)) if not valueSet: valueSet = set(job.getListFromExpression('%ss' % parameter)) queueSet = set(fromChar(queueDict[par])) if valueSet and queueSet and valueSet.issubset(queueSet): valueToPrint = ','.join(valueSet) if len(valueToPrint) > 20: valueToPrint = "%s..." % valueToPrint[:20] noMatchReasons.append('Job %s %s requirement not satisfied' % (parameter, valueToPrint)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 4. Tags tags = set(job.getListFromExpression('Tag')) nProc = job.getAttributeInt('NumberOfProcessors') if nProc and nProc > 1: tags.add('MultiProcessor') wholeNode = job.getAttributeString('WholeNode') if wholeNode: tags.add('WholeNode') queueTags = set(queueDict.get('Tags', [])) if not tags.issubset(queueTags): noMatchReasons.append('Job Tag %s not satisfied' % ','.join(tags)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 4. MultiProcessor requirements if nProc and nProc > int(queueDict.get('NumberOfProcessors', 1)): noMatchReasons.append('Job NumberOfProcessors %d requirement not satisfied' % nProc) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 5. RAM ram = job.getAttributeInt('RAM') if ram and ram > int(queueDict['MaxRAM']): noMatchReasons.append('Job RAM %d requirement not satisfied' % ram) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # Check resource requirements to job # 1. OwnerGroup - rare case but still if "OwnerGroup" in queueDict: result = getProxyInfo(disableVOMS=True) if not result['OK']: return S_ERROR('No valid proxy available') ownerGroup = result['Value']['group'] if ownerGroup != queueDict['OwnerGroup']: noMatchReasons.append('Resource OwnerGroup %s requirement not satisfied' % queueDict['OwnerGroup']) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 2. Required tags requiredTags = set(queueDict.get('RequiredTags', [])) if not requiredTags.issubset(tags): noMatchReasons.append('Resource RequiredTags %s not satisfied' % ','.join(requiredTags)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 3. RunningLimit site = queueDict['Site'] opsHelper = Operations() result = opsHelper.getSections('JobScheduling/RunningLimit') if result['OK'] and site in result['Value']: result = opsHelper.getSections('JobScheduling/RunningLimit/%s' % site) if result['OK']: for parameter in result['Value']: value = job.getAttributeString(parameter) if value and opsHelper.getValue('JobScheduling/RunningLimit/%s/%s/%s' % (site, parameter, value), 1) == 0: noMatchReasons.append('Resource operational %s requirement not satisfied' % parameter) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) if noMatchReasons: return S_OK({'Match': False, 'Reason': noMatchReasons}) return S_OK({'Match': True, 'Reason': noMatchReasons})
def matchQueue(jobJDL, queueDict, fullMatch=False): """ Match the job description to the queue definition :param str job: JDL job description :param bool fullMatch: test matching on all the criteria :param dict queueDict: queue parameters dictionary :return: S_OK/S_ERROR, Value - result of matching, S_OK if matched or S_ERROR with the reason for no match """ # Check the job description validity job = ClassAd(jobJDL) if not job.isOK(): return S_ERROR('Invalid job description') noMatchReasons = [] # Check job requirements to resource # 1. CPUTime cpuTime = job.getAttributeInt('CPUTime') if not cpuTime: cpuTime = 84600 if cpuTime and cpuTime > queueDict.get('CPUTime', 0.): noMatchReasons.append('Job CPUTime requirement not satisfied') if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 2. Multi-value match requirements for parameter in ['Site', 'GridCE', 'Platform', 'GridMiddleware', 'PilotType', 'SubmitPool', 'JobType']: if parameter in queueDict: valueSet = set(job.getListFromExpression(parameter)) if not valueSet: valueSet = set(job.getListFromExpression('%ss' % parameter)) queueSet = set(fromChar(queueDict[parameter])) if valueSet and queueSet and not valueSet.intersection(queueSet): valueToPrint = ','.join(valueSet) if len(valueToPrint) > 20: valueToPrint = "%s..." % valueToPrint[:20] noMatchReasons.append('Job %s %s requirement not satisfied' % (parameter, valueToPrint)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 3. Banned multi-value match requirements for par in ['Site', 'GridCE', 'Platform', 'GridMiddleware', 'PilotType', 'SubmitPool', 'JobType']: parameter = "Banned%s" % par if par in queueDict: valueSet = set(job.getListFromExpression(parameter)) if not valueSet: valueSet = set(job.getListFromExpression('%ss' % parameter)) queueSet = set(fromChar(queueDict[par])) if valueSet and queueSet and valueSet.issubset(queueSet): valueToPrint = ','.join(valueSet) if len(valueToPrint) > 20: valueToPrint = "%s..." % valueToPrint[:20] noMatchReasons.append('Job %s %s requirement not satisfied' % (parameter, valueToPrint)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 4. Tags tags = set(job.getListFromExpression('Tag')) nProc = job.getAttributeInt('NumberOfProcessors') if nProc and nProc > 1: tags.add('MultiProcessor') wholeNode = job.getAttributeString('WholeNode') if wholeNode: tags.add('WholeNode') queueTags = set(queueDict.get('Tags', [])) if not tags.issubset(queueTags): noMatchReasons.append('Job Tag %s not satisfied' % ','.join(tags)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 4. MultiProcessor requirements if nProc and nProc > int(queueDict.get('NumberOfProcessors', 1)): noMatchReasons.append('Job NumberOfProcessors %d requirement not satisfied' % nProc) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 5. RAM ram = job.getAttributeInt('RAM') if ram and ram > int(queueDict['MaxRAM']): noMatchReasons.append('Job RAM %d requirement not satisfied' % ram) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # Check resource requirements to job # 1. OwnerGroup - rare case but still if "OwnerGroup" in queueDict: result = getProxyInfo(disableVOMS=True) if not result['OK']: return S_ERROR('No valid proxy available') ownerGroup = result['Value']['group'] if ownerGroup != queueDict['OwnerGroup']: noMatchReasons.append('Resource OwnerGroup %s requirement not satisfied' % queueDict['OwnerGroup']) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 2. Required tags requiredTags = set(queueDict.get('RequiredTags', [])) if not requiredTags.issubset(tags): noMatchReasons.append('Resource RequiredTags %s not satisfied' % ','.join(requiredTags)) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) # 3. RunningLimit site = queueDict['Site'] opsHelper = Operations() result = opsHelper.getSections('JobScheduling/RunningLimit') if result['OK'] and site in result['Value']: result = opsHelper.getSections('JobScheduling/RunningLimit/%s' % site) if result['OK']: for parameter in result['Value']: value = job.getAttributeString(parameter) if value and opsHelper.getValue('JobScheduling/RunningLimit/%s/%s/%s' % (site, parameter, value), 1) == 0: noMatchReasons.append('Resource operational %s requirement not satisfied' % parameter) if not fullMatch: return S_OK({'Match': False, 'Reason': noMatchReasons[0]}) if noMatchReasons: return S_OK({'Match': False, 'Reason': noMatchReasons}) return S_OK({'Match': not bool(noMatchReasons), 'Reason': noMatchReasons})
25,968
def get_data_service_client(cli_ctx, service_type, account_name, account_key, connection_string=None, sas_token=None, socket_timeout=None, token_credential=None, endpoint_suffix=None, location_mode=None): logger.debug('Getting data service client service_type=%s', service_type.__name__) try: if account_name: account_name = account_name.split('.', 2)[0] client_kwargs = {'account_name': account_name, 'account_key': account_key, 'connection_string': connection_string, 'sas_token': sas_token} if socket_timeout: client_kwargs['socket_timeout'] = socket_timeout if token_credential: client_kwargs['token_credential'] = token_credential if endpoint_suffix: client_kwargs['endpoint_suffix'] = endpoint_suffix client = service_type(**client_kwargs) if location_mode: client.location_mode = location_mode if 'Blob' in service_type.__name__: service = 'blob' elif 'File' in service_type.__name__: service = 'file' elif 'Queue' in service_type.__name__: service = 'queue' elif 'Table' in service_type.__name__: service = 'table' else: raise CLIError("Invalid service type.") if account_name and len(account_name.split('.', 2)) == 2: dns = account_name.split('.', 2)[1] client.primary_endpoint = "{}.{}.{}.{}".format(client.primary_endpoint.split('.', 1)[0], dns, service, endpoint_suffix) client.secondary_endpoint = "{}.{}.{}.{}".format(client.secondary_endpoint.split('.', 1)[0], dns, service, endpoint_suffix) except ValueError as exc: _ERROR_STORAGE_MISSING_INFO = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'common._error#_ERROR_STORAGE_MISSING_INFO') if _ERROR_STORAGE_MISSING_INFO in str(exc): raise ValueError(exc) raise CLIError('Unable to obtain data client. Check your connection parameters.') # TODO: enable Fiddler client.request_callback = _get_add_headers_callback(cli_ctx) return client
def get_data_service_client(cli_ctx, service_type, account_name, account_key, connection_string=None, sas_token=None, socket_timeout=None, token_credential=None, endpoint_suffix=None, location_mode=None): logger.debug('Getting data service client service_type=%s', service_type.__name__) try: client_kwargs = {'account_name': account_name.split('.', 2)[0] if account_name else account_name, 'account_key': account_key, 'connection_string': connection_string, 'sas_token': sas_token} if socket_timeout: client_kwargs['socket_timeout'] = socket_timeout if token_credential: client_kwargs['token_credential'] = token_credential if endpoint_suffix: client_kwargs['endpoint_suffix'] = endpoint_suffix client = service_type(**client_kwargs) if location_mode: client.location_mode = location_mode if 'Blob' in service_type.__name__: service = 'blob' elif 'File' in service_type.__name__: service = 'file' elif 'Queue' in service_type.__name__: service = 'queue' elif 'Table' in service_type.__name__: service = 'table' else: raise CLIError("Invalid service type.") if account_name and len(account_name.split('.', 2)) == 2: dns = account_name.split('.', 2)[1] client.primary_endpoint = "{}.{}.{}.{}".format(client.primary_endpoint.split('.', 1)[0], dns, service, endpoint_suffix) client.secondary_endpoint = "{}.{}.{}.{}".format(client.secondary_endpoint.split('.', 1)[0], dns, service, endpoint_suffix) except ValueError as exc: _ERROR_STORAGE_MISSING_INFO = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'common._error#_ERROR_STORAGE_MISSING_INFO') if _ERROR_STORAGE_MISSING_INFO in str(exc): raise ValueError(exc) raise CLIError('Unable to obtain data client. Check your connection parameters.') # TODO: enable Fiddler client.request_callback = _get_add_headers_callback(cli_ctx) return client
54,216
def group_settings_greedy(settings: Iterable[InitObsSetting]) \ -> Dict[InitObsSetting, List[InitObsSetting]]: """ Group a list of settings which can be simultaneously measured via a greedy algorithm. We construct a dictionary keyed by `max_setting` (see docstrings for `_max_weight_state` and `_max_weight_observable`) where the value is a list of settings compatible with `max_setting`. For each new setting, we try to find an existing group to add it and update `max_setting` for that group if necessary. Otherwise, we make a new group. In practice, this greedy algorithm performs comparably to something more complicated by solving the clique cover problem on a graph of simultaneously-measurable settings. Args: settings: The settings to group. Returns: A dictionary keyed by `max_setting` which need not exist in the input list of settings. Each dictionary value is a list of settings compatible with `max_setting`. """ grouped_settings = {} # type: Dict[InitObsSetting, List[InitObsSetting]] for setting in settings: for max_setting, simul_settings in grouped_settings.items(): trial_grouped_settings = simul_settings + [setting] new_max_weight_state = _max_weight_state( stg.init_state for stg in trial_grouped_settings) new_max_weight_obs = _max_weight_observable( stg.observable for stg in trial_grouped_settings) # max_weight_xxx returns None if the set of xxx's aren't compatible, # so the following conditional is True if setting can # be inserted into the current group. if (new_max_weight_state is not None and new_max_weight_obs is not None): del grouped_settings[max_setting] new_max_setting = InitObsSetting(new_max_weight_state, new_max_weight_obs) grouped_settings[new_max_setting] = trial_grouped_settings break else: # made it through entire dict without finding an existing group # Strip coefficients before using as key new_max_weight_obs = setting.observable.with_coefficient(1.0) new_max_setting = InitObsSetting(setting.init_state, new_max_weight_obs) grouped_settings[new_max_setting] = [setting] return grouped_settings
def group_settings_greedy(settings: Iterable[InitObsSetting]) \ -> Dict[InitObsSetting, List[InitObsSetting]]: """ Group a list of settings which can be simultaneously measured via a greedy algorithm. We construct a dictionary keyed by `max_setting` (see docstrings for `_max_weight_state` and `_max_weight_observable`) where the value is a list of settings compatible with `max_setting`. For each new setting, we try to find an existing group to add it and update `max_setting` for that group if necessary. Otherwise, we make a new group. In practice, this greedy algorithm performs comparably to something more complicated by solving the clique cover problem on a graph of simultaneously-measurable settings. Args: settings: The settings to group. Returns: A dictionary keyed by `max_setting` which need not exist in the input list of settings. Each dictionary value is a list of settings compatible with `max_setting`. """ grouped_settings = {} # type: Dict[InitObsSetting, List[InitObsSetting]] for setting in settings: for max_setting, simul_settings in grouped_settings.items(): trial_grouped_settings = simul_settings + [setting] new_max_weight_state = _max_weight_state( stg.init_state for stg in trial_grouped_settings) new_max_weight_obs = _max_weight_observable( stg.observable for stg in trial_grouped_settings) # max_weight_xxx returns None if the set of xxx's aren't compatible, # so the following conditional is True if setting can # be inserted into the current group. if (new_max_weight_state is not None and new_max_weight_obs is not None): del grouped_settings[max_setting] new_max_setting = InitObsSetting(new_max_weight_state, new_max_weight_obs) grouped_settings[new_max_setting] = trial_grouped_settings break else: # made it through entire dict without finding a compatible group, # thus a new group needs to be created # Strip coefficients before using as key new_max_weight_obs = setting.observable.with_coefficient(1.0) new_max_setting = InitObsSetting(setting.init_state, new_max_weight_obs) grouped_settings[new_max_setting] = [setting] return grouped_settings
20,273
def unholder(item): """Get the held itme of an object holder of list of object holers.""" if isinstance(item, list): return [i.held_object if hasattr(i, 'held_object') else i for i in item] if hasattr(item, 'held_object'): return item.held_object return item
def unholder(item): """Get the held item of an object holder or list of object holders.""" if isinstance(item, list): return [i.held_object if hasattr(i, 'held_object') else i for i in item] if hasattr(item, 'held_object'): return item.held_object return item
40,426
def test_graph_store_conversion(): graph_store = MyGraphStore() edge_index = get_edge_index(100, 100, 300) edge_index = sort_edge_index(edge_index, sort_by_row=False) adj = SparseTensor.from_edge_index(edge_index, sparse_sizes=(100, 100)) coo = (edge_index[0], edge_index[1]) csr = adj.csr()[:2] csc = adj.csc()[-2::-1] # Put all edge indices: graph_store.put_edge_index(edge_index=coo, edge_type=('v', '1', 'v'), layout='coo', num_nodes=(100, 100), is_sorted=True) graph_store.put_edge_index(edge_index=csr, edge_type=('v', '2', 'v'), layout='csr', num_nodes=(100, 100)) graph_store.put_edge_index(edge_index=csc, edge_type=('v', '3', 'v'), layout='csc', num_nodes=(100, 100)) def assert_edge_index_equal(expected: torch.Tensor, actual: torch.Tensor): assert torch.equal(sort_edge_index(expected), sort_edge_index(actual)) # Convert to COO: row_dict, col_dict, perm_dict = graph_store.coo() assert len(row_dict) == len(col_dict) == len(perm_dict) == 3 for key in row_dict.keys(): actual = torch.stack((row_dict[key], col_dict[key])) assert_edge_index_equal(actual, edge_index) assert perm_dict[key] is None # Convert to CSR: row_dict, col_dict, perm_dict = graph_store.csr() assert len(row_dict) == len(col_dict) == len(perm_dict) == 3 for key in row_dict: assert torch.equal(row_dict[key], csr[0]) assert torch.equal(col_dict[key], csr[1]) if key == ('v', '1', 'v'): assert perm_dict[key] is not None # Convert to CSC: row_dict, col_dict, perm_dict = graph_store.csc() assert len(row_dict) == len(col_dict) == len(perm_dict) == 3 for key in row_dict: assert torch.equal(row_dict[key], csc[0]) assert torch.equal(col_dict[key], csc[1]) assert perm_dict[key] is None
def test_graph_store_conversion(): graph_store = MyGraphStore() edge_index = get_edge_index(100, 100, 300) edge_index = sort_edge_index(edge_index, sort_by_row=False) adj = SparseTensor.from_edge_index(edge_index, sparse_sizes=(100, 100)) coo = (edge_index[0], edge_index[1]) csr = adj.csr()[:2] csc = adj.csc()[-2::-1] # Put all edge indices: graph_store.put_edge_index(edge_index=coo, edge_type=('v', '1', 'v'), layout='coo', num_nodes=(100, 100), is_sorted=True) graph_store.put_edge_index(edge_index=csr, edge_type=('v', '2', 'v'), layout='csr', num_nodes=(100, 100)) graph_store.put_edge_index(edge_index=csc, edge_type=('v', '3', 'v'), layout='csc', num_nodes=(100, 100)) def assert_edge_index_equal(expected: torch.Tensor, actual: torch.Tensor): assert torch.equal(sort_edge_index(expected), sort_edge_index(actual)) # Convert to COO: row_dict, col_dict, perm_dict = graph_store.coo() assert len(row_dict) == len(col_dict) == len(perm_dict) == 3 for key in row_dict.keys(): actual = torch.stack((row_dict[key], col_dict[key])) assert_edge_index_equal(actual, edge_index) assert perm_dict[key] is None # Convert to CSR: row_dict, col_dict, perm_dict = graph_store.csr() assert len(row_dict) == len(col_dict) == len(perm_dict) == 3 for key in row_dict: assert torch.equal(row_dict[key], csr[0]) assert torch.equal(col_dict[key], csr[1]) if key == ('v', '1', 'v'): assert perm_dict[key] is not None # Convert to CSC: row_dict, colptr_dict, perm_dict = graph_store.csc() assert len(row_dict) == len(col_dict) == len(perm_dict) == 3 for key in row_dict: assert torch.equal(row_dict[key], csc[0]) assert torch.equal(col_dict[key], csc[1]) assert perm_dict[key] is None
58,329
def rk4(f, x, t, dt, stages=4, s=0.0): """Runge-Kutta (explicit, non-adaptive) numerical (S)ODE solvers. The rule has strong / weak convergence order 1.0 for generic SDEs and order 4.0 convergence for ODEs when stages=4. For stages=1, this becomes the Euler-Maruyama schemefor SDEs (s > 0.0) with strong / weak convergence order 1.0 for SDEs with additive noise as defined in the below. See `bib.grudzien2020numerical`. Parameters ---------- f : function The time derivative of the dynamical system. Must be of the form `f(t, x)` x : ndarray or float State vector of the forcing term t : float Starting time of the integration dt : float Integration time step. stages : int, optional The number of stages of the RK method. Default: 4. When stages=1, this becomes Euler / Euler-Maruyama. s : float The diffusion coeffient for models with additive noise. Default: 0 for deterministic integration. Returns ------- ndarray State vector at the new time, `t+dt` """ if s > 0.0: # non-trivial diffusion, this defines the SDE integration with additive noise # generate perturbation for Brownian motion dims = np.shape(x) if len(dims) > 1: N_e, N_x , = dims W = np.sqrt(dt) * np.random.standard_normal(N_e, N_x) else: N_x , = dims W = np.sqrt(dt) * np.random.standard_normal(N_x) if stages >=1: k1 = dt * f(t , x) + s * W # noqa if stages >=2: k2 = dt * f(t+dt/2.0, x+k1/2.0) + s * W # noqa if stages ==3: k3 = dt * f(t+dt , x+k2*2.0-k1) + s * W # noqa if stages ==4: # noqa k3 = dt * f(t+dt/2.0, x+k2/2.0) + s * W # noqa k4 = dt * f(t+dt , x+k3) + s * W # noqa if stages ==1: return x + k1 # noqa elif stages ==2: return x + k2 # noqa elif stages ==3: return x + (k1 + 4.0*k2 + k3)/6.0 # noqa elif stages ==4: return x + (k1 + 2.0*(k2 + k3) + k4)/6.0 # noqa else: raise NotImplementedError # noqa else: # deterministic integration if stages >=1: k1 = dt * f(t , x) # noqa if stages >=2: k2 = dt * f(t+dt/2.0, x+k1/2.0) # noqa if stages ==3: k3 = dt * f(t+dt , x+k2*2.0-k1) # noqa if stages ==4: # noqa k3 = dt * f(t+dt/2.0, x+k2/2.0) # noqa k4 = dt * f(t+dt , x+k3) # noqa if stages ==1: return x + k1 # noqa elif stages ==2: return x + k2 # noqa elif stages ==3: return x + (k1 + 4.0*k2 + k3)/6.0 # noqa elif stages ==4: return x + (k1 + 2.0*(k2 + k3) + k4)/6.0 # noqa else: raise NotImplementedError # noqa # fmt: on
def rk4(f, x, t, dt, stages=4, s=0.0): """Runge-Kutta (explicit, non-adaptive) numerical (S)ODE solvers. The rule has strong / weak convergence order 1.0 for generic SDEs and order 4.0 convergence for ODEs when stages=4. For stages=1, this becomes the Euler-Maruyama schemefor SDEs (s > 0.0) with strong / weak convergence order 1.0 for SDEs with additive noise as defined in the below. See `bib.grudzien2020numerical`. Parameters ---------- f : function The time derivative of the dynamical system. Must be of the form `f(t, x)` x : ndarray or float State vector of the forcing term t : float Starting time of the integration dt : float Integration time step. stages : int, optional The number of stages of the RK method. When stages=1, this becomes the Euler (-Maruyama) scheme. Default: 4. s : float The diffusion coeffient for models with additive noise. Default: 0 for deterministic integration. Returns ------- ndarray State vector at the new time, `t+dt` """ if s > 0.0: # non-trivial diffusion, this defines the SDE integration with additive noise # generate perturbation for Brownian motion dims = np.shape(x) if len(dims) > 1: N_e, N_x , = dims W = np.sqrt(dt) * np.random.standard_normal(N_e, N_x) else: N_x , = dims W = np.sqrt(dt) * np.random.standard_normal(N_x) if stages >=1: k1 = dt * f(t , x) + s * W # noqa if stages >=2: k2 = dt * f(t+dt/2.0, x+k1/2.0) + s * W # noqa if stages ==3: k3 = dt * f(t+dt , x+k2*2.0-k1) + s * W # noqa if stages ==4: # noqa k3 = dt * f(t+dt/2.0, x+k2/2.0) + s * W # noqa k4 = dt * f(t+dt , x+k3) + s * W # noqa if stages ==1: return x + k1 # noqa elif stages ==2: return x + k2 # noqa elif stages ==3: return x + (k1 + 4.0*k2 + k3)/6.0 # noqa elif stages ==4: return x + (k1 + 2.0*(k2 + k3) + k4)/6.0 # noqa else: raise NotImplementedError # noqa else: # deterministic integration if stages >=1: k1 = dt * f(t , x) # noqa if stages >=2: k2 = dt * f(t+dt/2.0, x+k1/2.0) # noqa if stages ==3: k3 = dt * f(t+dt , x+k2*2.0-k1) # noqa if stages ==4: # noqa k3 = dt * f(t+dt/2.0, x+k2/2.0) # noqa k4 = dt * f(t+dt , x+k3) # noqa if stages ==1: return x + k1 # noqa elif stages ==2: return x + k2 # noqa elif stages ==3: return x + (k1 + 4.0*k2 + k3)/6.0 # noqa elif stages ==4: return x + (k1 + 2.0*(k2 + k3) + k4)/6.0 # noqa else: raise NotImplementedError # noqa # fmt: on
53,266
def boris_push_relativistic(x, v, B, E, q, m, dt): r""" The explicit Boris pusher, including realtivistic corrections. Parameters ---------- x : np.ndarray particle position at full timestep, in SI (meter) units. v : np.ndarray particle velocity at half timestep, in SI (meter/second) units. B : np.ndarray magnetic field at full timestep, in SI (tesla) units. E : float electric field at full timestep, in SI (V/m) units. q : float particle charge, in SI (Coulomb) units. m : float particle mass, in SI (kg) units. dt : float timestep, in SI (second) units. Notes ---------- The Boris algorithm is the standard energy conserving algorithm for particle movement in plasma physics. See [1]_ for more details, and [2]_ for a nice overview. Conceptually, the algorithm has three phases: 1. Add half the impulse from electric field. 2. Rotate the particle velocity about the direction of the magnetic field. 3. Add the second half of the impulse from the electric field. This ends up causing the magnetic field action to be properly "centered" in time, and the algorithm, being a symplectic integrator, conserves energy. References ---------- .. [1] C. K. Birdsall, A. B. Langdon, "Plasma Physics via Computer Simulation", 2004, p. 58-63 .. [2] L. Brieda, "Particle Push in Magnetic Field (Boris Method)", https://www.particleincell.com/2011/vxb-rotation/ """ c = constants.c.si.value γ = 1 / np.sqrt(1 - (v / c) ** 2) uvel = v * γ uvel_minus = uvel + q * E * dt / (2 * m) γ1 = np.sqrt(1 + (uvel_minus / c) ** 2) # Birdsall has a factor of c incorrect in the definiton of t? # See this source: https://www.sciencedirect.com/science/article/pii/S163107211400148X t = q * B * dt / (2 * γ1 * m) s = 2 * t / (1 + (t * t).sum(axis=1, keepdims=True)) uvel_prime = uvel_minus + np.cross(uvel_minus.si.value, t) uvel_plus = uvel_minus + np.cross(uvel_prime.si.value, s) uvel_new = uvel_plus + +q * E * dt / (2 * m) # You can show that this expression is equivalent to calculating # v_new then calculating γnew using the usual formula γ2 = np.sqrt(1 + (uvel_new / c) ** 2) # Update the velocities of the particles that are being pushed v[...] = uvel_new / γ2 x += v * dt
def boris_push_relativistic(x, v, B, E, q, m, dt): r""" The explicit Boris pusher, including realtivistic corrections. Parameters ---------- x : np.ndarray particle position at full timestep, in SI (meter) units. v : np.ndarray particle velocity at half timestep, in SI (meter/second) units. B : np.ndarray magnetic field at full timestep, in SI (tesla) units. E : float electric field at full timestep, in SI (V/m) units. q : float particle charge, in SI (Coulomb) units. m : float particle mass, in SI (kg) units. dt : float timestep, in SI (second) units. Notes ---------- For the basic overview of this algorithm, see `boris_push`. This version, based on [1]_, applies relativistic corrections such as TODO. Keep in mind that the non-relativistic version will be slightly faster if you don't encounter velocities in relativistic regimes. References ---------- .. [1] C. K. Birdsall, A. B. Langdon, "Plasma Physics via Computer Simulation", 2004, p. 58-63 """ c = constants.c.si.value γ = 1 / np.sqrt(1 - (v / c) ** 2) uvel = v * γ uvel_minus = uvel + q * E * dt / (2 * m) γ1 = np.sqrt(1 + (uvel_minus / c) ** 2) # Birdsall has a factor of c incorrect in the definiton of t? # See this source: https://www.sciencedirect.com/science/article/pii/S163107211400148X t = q * B * dt / (2 * γ1 * m) s = 2 * t / (1 + (t * t).sum(axis=1, keepdims=True)) uvel_prime = uvel_minus + np.cross(uvel_minus.si.value, t) uvel_plus = uvel_minus + np.cross(uvel_prime.si.value, s) uvel_new = uvel_plus + +q * E * dt / (2 * m) # You can show that this expression is equivalent to calculating # v_new then calculating γnew using the usual formula γ2 = np.sqrt(1 + (uvel_new / c) ** 2) # Update the velocities of the particles that are being pushed v[...] = uvel_new / γ2 x += v * dt
1,217
def needs_nibabel_data(subdir=None): """ Decorator for tests needing nibabel-data Parameters ---------- subdir : None or str Subdirectory we need in nibabel-data directory. If None, only require nibabel-data directory itself. Returns ------- skip_dec : decorator Decorator skipping tests if required directory not present """ nibabel_data = get_nibabel_data() if nibabel_data == '': return pytest.mark.skipif(True, reason="Need nibabel-data directory for this test") if subdir is None: return pytest.mark.skipif(False, reason="todo") required_path = pjoin(nibabel_data, subdir) # Path should not be empty (as is the case for not-updated submodules) have_files = exists(required_path) and len(listdir(required_path)) > 0 return pytest.mark.skipif(not have_files, reason="Need files in {0} for these tests".format(required_path))
def needs_nibabel_data(subdir=None): """ Decorator for tests needing nibabel-data Parameters ---------- subdir : None or str Subdirectory we need in nibabel-data directory. If None, only require nibabel-data directory itself. Returns ------- skip_dec : decorator Decorator skipping tests if required directory not present """ nibabel_data = get_nibabel_data() if nibabel_data == '': return pytest.mark.skipif(True, reason="Need nibabel-data directory for this test") if subdir is None: return pytest.mark.skipif(False, reason="todo") required_path = pjoin(nibabel_data, subdir) # Path should not be empty (as is the case for not-updated submodules) have_files = exists(required_path) and len(listdir(required_path)) > 0 return pytest.mark.skipif(not have_files, reason="Need files in {0} for these tests".format(required_path))
57,843
def main() -> None: try: arguments = demisto.args() api_key = demisto.params().get('apikey') base_url = urljoin(demisto.params()['url'], '/api/') verify_certificate = not demisto.params().get('insecure', False) first_fetch_time = arg_to_timestamp( arg=demisto.params().get('first_fetch', '1 days'), arg_name='First fetch time', required=True ) assert isinstance(first_fetch_time, int) proxy = demisto.params().get('proxy', False) page = arguments.get('page', "1") page_count_no = arguments.get('max', "25") demisto.debug(f'Command being called is {demisto.command()}') params = {'page': page, 'max': page_count_no} headers = { 'Authorization': f'Bearer {api_key}' } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if demisto.command() == 'test-module': result = test_module_command(client) return_results(result) elif demisto.command() == 'fetch-incidents': # Set and define the fetch incidents command to run after activated via integration settings. fetch_incident_command = demisto.params().get('fetch_incident_command') max_results = arg_to_int( arg=demisto.params().get('max_fetch'), arg_name='max_fetch', required=False ) if not max_results or max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH next_run, incidents = fetch_incidents( client=client, max_results=max_results, last_run=demisto.getLastRun(), # getLastRun() gets the last run dict first_fetch_time=first_fetch_time, command_type=fetch_incident_command ) demisto.setLastRun(next_run) demisto.incidents(incidents) elif demisto.command() == 'gra-fetch-users': fetch_records(client, '/users', 'Gra.Users', 'employeeId', params) elif demisto.command() == 'gra-fetch-accounts': fetch_records(client, '/accounts', 'Gra.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-active-resource-accounts': resource_name = arguments.get('resource_name', 'Windows Security') active_resource_url = '/resources/' + resource_name + '/accounts' fetch_records(client, active_resource_url, 'Gra.Active.Resource.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-user-accounts': employee_id = arguments.get('employee_id') user_account_url = '/users/' + employee_id + '/accounts' fetch_records(client, user_account_url, 'Gra.User.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-resource-highrisk-accounts': res_name = arguments.get('Resource_name', 'Windows Security') high_risk_account_resource_url = '/resources/' + res_name + '/accounts/highrisk' fetch_records(client, high_risk_account_resource_url, 'Gra.Resource.Highrisk.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-hpa': fetch_records(client, '/accounts/highprivileged', 'Gra.Hpa', 'id', params) elif demisto.command() == 'gra-fetch-resource-hpa': resource_name = arguments.get('Resource_name', 'Windows Security') resource_hpa = '/resources/' + resource_name + '/accounts/highprivileged' fetch_records(client, resource_hpa, 'Gra.Resource.Hpa', 'id', params) elif demisto.command() == 'gra-fetch-orphan-accounts': fetch_records(client, '/accounts/orphan', 'Gra.Orphan.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-resource-orphan-accounts': resource_name = arguments.get('resource_name', 'Windows Security') resource_orphan = '/resources/' + resource_name + '/accounts/orphan' fetch_records(client, resource_orphan, 'Gra.Resource.Orphan.Accounts', 'id', params) elif demisto.command() == 'gra-user-activities': employee_id = arguments.get('employee_id') user_activities_url = '/user/' + employee_id + '/activity' fetch_records(client, user_activities_url, 'Gra.User.Activity', 'employee_id', params) elif demisto.command() == 'gra-fetch-users-details': employee_id = arguments.get('employee_id') fetch_records(client, '/users/' + employee_id, 'Gra.User', 'employeeId', params) elif demisto.command() == 'gra-highRisk-users': fetch_records(client, '/users/highrisk', 'Gra.Highrisk.Users', 'employeeId', params) elif demisto.command() == 'gra-cases': status = arguments.get('status') cases_url = '/cases/' + status fetch_records(client, cases_url, 'Gra.Cases', 'caseId', params) elif demisto.command() == 'gra-user-anomalies': employee_id = arguments.get('employee_id') anomaly_url = '/users/' + employee_id + '/anomalies/' fetch_records(client, anomaly_url, 'Gra.User.Anomalies', 'anomaly_name', params) elif demisto.command() == 'gra-case-action': action = arguments.get('action') caseId = arguments.get('caseId') subOption = arguments.get('subOption') caseComment = arguments.get('caseComment') riskAcceptDate = arguments.get('riskAcceptDate') cases_url = '/cases/' + action if action == 'riskManageCase': post_url = '{"caseId":' + caseId + ',"subOption":"' + subOption + '","caseComment":"' + caseComment +\ '","riskAcceptDate":"' + riskAcceptDate + '"}' else: post_url = '{"caseId":' + caseId + ',"subOption":"' + subOption + '","caseComment":"' + \ caseComment + '"}' fetch_post_records(client, cases_url, 'Gra.Case.Action', 'caseId', params, post_url) elif demisto.command() == 'gra-case-action-anomaly': action = arguments.get('action') caseId = arguments.get('caseId') anomalyNames = arguments.get('anomalyNames') subOption = arguments.get('subOption') caseComment = arguments.get('caseComment') riskAcceptDate = arguments.get('riskAcceptDate') cases_url = '/cases/' + action if action == 'riskAcceptCaseAnomaly': post_url = '{"caseId":' + caseId + ',"anomalyNames":' + anomalyNames + ',"subOption":"' + subOption +\ '","caseComment":"' + caseComment + '","riskAcceptDate":"' + riskAcceptDate + '"}' else: post_url = '{"caseId":' + caseId + ',"anomalyNames":"' + anomalyNames + '","subOption":"' + \ subOption + '","caseComment":"' + caseComment + '"}' fetch_post_records(client, cases_url, 'Gra.Cases.Action.Anomaly', 'caseId', params, post_url) elif demisto.command() == 'gra-investigate-anomaly-summary': fromDate = arguments.get('fromDate') toDate = arguments.get('toDate') modelName = arguments.get('modelName') if fromDate is not None and toDate is not None: investigateAnomaly_url = '/investigateAnomaly/anomalySummary/' + modelName + '?fromDate=' + fromDate \ + ' 00:00:00&toDate=' + toDate + ' 23:59:59' else: investigateAnomaly_url = '/investigateAnomaly/anomalySummary/' + modelName fetch_records(client, investigateAnomaly_url, 'Gra.Investigate.Anomaly.Summary', 'modelId', params) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
def main() -> None: try: arguments = demisto.args() api_key = demisto.params().get('apikey') base_url = urljoin(demisto.params()['url'], '/api/') verify_certificate = not demisto.params().get('insecure', False) first_fetch_time = arg_to_timestamp( arg=demisto.params().get('first_fetch', '1 days'), arg_name='First fetch time', required=True ) assert isinstance(first_fetch_time, int) proxy = demisto.params().get('proxy', False) page = arguments.get('page', "1") page_count_no = arguments.get('max', "25") demisto.debug(f'Command being called is {demisto.command()}') params = {'page': page, 'max': page_count_no} headers = { 'Authorization': f'Bearer {api_key}' } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if demisto.command() == 'test-module': result = test_module_command(client) return_results(result) elif demisto.command() == 'fetch-incidents': # Set and define the fetch incidents command to run after activated via integration settings. fetch_incident_command = demisto.params().get('fetch_incident_command') max_results = arg_to_int( arg=demisto.params().get('max_fetch'), arg_name='max_fetch', required=False ) if not max_results or max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH next_run, incidents = fetch_incidents( client=client, max_results=max_results, last_run=demisto.getLastRun(), # getLastRun() gets the last run dict first_fetch_time=first_fetch_time, command_type=fetch_incident_command ) demisto.setLastRun(next_run) demisto.incidents(incidents) elif demisto.command() == 'gra-fetch-users': fetch_records(client, '/users', 'Gra.Users', 'employeeId', params) elif demisto.command() == 'gra-fetch-accounts': fetch_records(client, '/accounts', 'Gra.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-active-resource-accounts': resource_name = arguments.get('resource_name', 'Windows Security') active_resource_url = '/resources/' + resource_name + '/accounts' fetch_records(client, active_resource_url, 'Gra.Active.Resource.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-user-accounts': employee_id = arguments.get('employee_id') user_account_url = '/users/' + employee_id + '/accounts' fetch_records(client, user_account_url, 'Gra.User.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-resource-highrisk-accounts': res_name = arguments.get('Resource_name', 'Windows Security') high_risk_account_resource_url = '/resources/' + res_name + '/accounts/highrisk' fetch_records(client, high_risk_account_resource_url, 'Gra.Resource.Highrisk.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-hpa': fetch_records(client, '/accounts/highprivileged', 'Gra.Hpa', 'id', params) elif demisto.command() == 'gra-fetch-resource-hpa': resource_name = arguments.get('Resource_name', 'Windows Security') resource_hpa = '/resources/' + resource_name + '/accounts/highprivileged' fetch_records(client, resource_hpa, 'Gra.Resource.Hpa', 'id', params) elif demisto.command() == 'gra-fetch-orphan-accounts': fetch_records(client, '/accounts/orphan', 'Gra.Orphan.Accounts', 'id', params) elif demisto.command() == 'gra-fetch-resource-orphan-accounts': resource_name = arguments.get('resource_name', 'Windows Security') resource_orphan = '/resources/' + resource_name + '/accounts/orphan' fetch_records(client, resource_orphan, 'Gra.Resource.Orphan.Accounts', 'id', params) elif demisto.command() == 'gra-user-activities': employee_id = arguments.get('employee_id') user_activities_url = '/user/' + employee_id + '/activity' fetch_records(client, user_activities_url, 'Gra.User.Activity', 'employee_id', params) elif demisto.command() == 'gra-fetch-users-details': employee_id = arguments.get('employee_id') fetch_records(client, '/users/' + employee_id, 'Gra.User', 'employeeId', params) elif demisto.command() == 'gra-highRisk-users': fetch_records(client, '/users/highrisk', 'Gra.Highrisk.Users', 'employeeId', params) elif demisto.command() == 'gra-cases': status = arguments.get('status') cases_url = '/cases/' + status fetch_records(client, cases_url, 'Gra.Cases', 'caseId', params) elif demisto.command() == 'gra-user-anomalies': employee_id = arguments.get('employee_id') anomaly_url = '/users/' + employee_id + '/anomalies/' fetch_records(client, anomaly_url, 'Gra.User.Anomalies', 'anomaly_name', params) elif demisto.command() == 'gra-case-action': action = arguments.get('action') caseId = arguments.get('caseId') subOption = arguments.get('subOption') caseComment = arguments.get('caseComment') riskAcceptDate = arguments.get('riskAcceptDate') cases_url = '/cases/' + action post_url = { "caseId": caseId, "subOption": subOption, "caseComment": caseComment, } if action == 'riskManageCase': post_url["riskAcceptDate"] = riskAcceptDate fetch_post_records(client, cases_url, 'Gra.Case.Action', 'caseId', params, json.dumps(post_url)) elif demisto.command() == 'gra-case-action-anomaly': action = arguments.get('action') caseId = arguments.get('caseId') anomalyNames = arguments.get('anomalyNames') subOption = arguments.get('subOption') caseComment = arguments.get('caseComment') riskAcceptDate = arguments.get('riskAcceptDate') cases_url = '/cases/' + action if action == 'riskAcceptCaseAnomaly': post_url = '{"caseId":' + caseId + ',"anomalyNames":' + anomalyNames + ',"subOption":"' + subOption +\ '","caseComment":"' + caseComment + '","riskAcceptDate":"' + riskAcceptDate + '"}' else: post_url = '{"caseId":' + caseId + ',"anomalyNames":"' + anomalyNames + '","subOption":"' + \ subOption + '","caseComment":"' + caseComment + '"}' fetch_post_records(client, cases_url, 'Gra.Cases.Action.Anomaly', 'caseId', params, post_url) elif demisto.command() == 'gra-investigate-anomaly-summary': fromDate = arguments.get('fromDate') toDate = arguments.get('toDate') modelName = arguments.get('modelName') if fromDate is not None and toDate is not None: investigateAnomaly_url = '/investigateAnomaly/anomalySummary/' + modelName + '?fromDate=' + fromDate \ + ' 00:00:00&toDate=' + toDate + ' 23:59:59' else: investigateAnomaly_url = '/investigateAnomaly/anomalySummary/' + modelName fetch_records(client, investigateAnomaly_url, 'Gra.Investigate.Anomaly.Summary', 'modelId', params) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
57,765
def test_module(client: Client) -> str: """Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. :type client: ``Client`` :param Client: GreatHorn client to use :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ try: client.get_policy() except DemistoException as e: if 'Forbidden' in str(e): return 'Authorization Error: make sure API Key is correctly set' else: raise e return 'ok'
def test_module(client: Client) -> str: """Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. :type client: ``Client`` :param Client: GreatHorn client to use :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ try: client.get_policy() except DemistoException as e: if 'Forbidden' in str(e): raise 'Authorization Error: make sure API Key is correctly set' else: raise e return 'ok'
31,228
def get_connector_runs(client: Client, *_) -> Tuple[str, Dict[str, Any], List[Dict[str, Any]]]: """Get Connector Runs command. Args: client: Client which connects to api Returns: Human Readable Entry Context Raw Data """ connector_id = demisto.getArg("connector_id") url_suffix = '/connectors/%s/connector_runs' % connector_id human_readable = [] context: Dict[str, Any] = {} connectors: List[Dict[str, Any]] = client.http_request(message='GET', suffix=url_suffix) if connectors: keys = [ "id", "start_time", "end_time", "success", "total_payload_count", "processed_palyoad_count", "failed_payload_count", "processed_assets_count", "assets_with_tags_reset_count", "processed_scanner_vuln_count", "created_scanner_vuln_count", "closed_scanner_vuln_count", "autoclosed_scanner_vuln_count", "reopened_scanner_vuln_count", "closed_vuln_count", "autoclosed_vuln_count", "reopened_vuln_count" ] context_list = parse_response(connectors, keys, keys) for connector in connectors: curr_dict = { "id": connector.get("id"), "start_time": connector.get("start_time"), "end_time": connector.get("end_time"), "success": connector.get("success"), "total_payload_count": connector.get("total_payload_count"), "processed_payload_count": connector.get("total_payload_count"), "failed_payload_count": connector.get("failed_payload_count"), "processed_assets_count": connector.get("processed_assets_count"), "assets_with_tags_reset_count": connector.get("assets_with_tags_reset_count"), "processed_scanner_vuln_count": connector.get("processed_scanner_vuln_count"), "updated_scanner_vuln_count": connector.get("updated_scanner_vuln_count"), "created_scanner_vuln_count": connector.get("created_scanner_vuln_count"), "closed_scanner_vuln_count": connector.get("closed_scanner_vuln_count"), "autoclosed_scanner_vuln_count": connector.get("autoclosed_scanner_vuln_count"), "reopened_scanner_vuln_count": connector.get("reopened_scanner_vuln_count"), "closed_vuln_count": connector.get("closed_vuln_count"), "autoclosed_vuln_count": connector.get("closed_vuln_count"), "reopened_vuln_count": connector.get("reopened_vuln_count") } human_readable.append(curr_dict) context = { 'Kenna.ConnectorRunsList(val.ID === obj.ID)': context_list } human_readable_markdown = tableToMarkdown('Kenna Connector Runs', human_readable, removeNull=True) else: human_readable_markdown = "no connectors in get response." return human_readable_markdown, context, connectors
def get_connector_runs(client: Client, *_) -> Tuple[str, Dict[str, Any], List[Dict[str, Any]]]: """Get Connector Runs command. Args: client: Client which connects to api Returns: Human Readable Entry Context Raw Data """ connector_id = str(args.get("connector_id")) url_suffix = '/connectors/%s/connector_runs' % connector_id human_readable = [] context: Dict[str, Any] = {} connectors: List[Dict[str, Any]] = client.http_request(message='GET', suffix=url_suffix) if connectors: keys = [ "id", "start_time", "end_time", "success", "total_payload_count", "processed_palyoad_count", "failed_payload_count", "processed_assets_count", "assets_with_tags_reset_count", "processed_scanner_vuln_count", "created_scanner_vuln_count", "closed_scanner_vuln_count", "autoclosed_scanner_vuln_count", "reopened_scanner_vuln_count", "closed_vuln_count", "autoclosed_vuln_count", "reopened_vuln_count" ] context_list = parse_response(connectors, keys, keys) for connector in connectors: curr_dict = { "id": connector.get("id"), "start_time": connector.get("start_time"), "end_time": connector.get("end_time"), "success": connector.get("success"), "total_payload_count": connector.get("total_payload_count"), "processed_payload_count": connector.get("total_payload_count"), "failed_payload_count": connector.get("failed_payload_count"), "processed_assets_count": connector.get("processed_assets_count"), "assets_with_tags_reset_count": connector.get("assets_with_tags_reset_count"), "processed_scanner_vuln_count": connector.get("processed_scanner_vuln_count"), "updated_scanner_vuln_count": connector.get("updated_scanner_vuln_count"), "created_scanner_vuln_count": connector.get("created_scanner_vuln_count"), "closed_scanner_vuln_count": connector.get("closed_scanner_vuln_count"), "autoclosed_scanner_vuln_count": connector.get("autoclosed_scanner_vuln_count"), "reopened_scanner_vuln_count": connector.get("reopened_scanner_vuln_count"), "closed_vuln_count": connector.get("closed_vuln_count"), "autoclosed_vuln_count": connector.get("closed_vuln_count"), "reopened_vuln_count": connector.get("reopened_vuln_count") } human_readable.append(curr_dict) context = { 'Kenna.ConnectorRunsList(val.ID === obj.ID)': context_list } human_readable_markdown = tableToMarkdown('Kenna Connector Runs', human_readable, removeNull=True) else: human_readable_markdown = "no connectors in get response." return human_readable_markdown, context, connectors
31,366
def is_there_private_packs_to_upload(public_index_json, private_index_path): """ Checks if there are private packs that should be uploaded. The check compares the private index with the public one to verify if Content commit hash of each private pack in those files (private and public index files) are equal. If there is one private pack that has a different content commit hash, it tells us that this pack was updated and should be uploaded. So, an upload flow should NOT be skipped. Args: public_index_json (dict) : The public index file. private_index_path : Path to where the private index is located. Returns: (bool) True is there is at least one private pack that should be upload. False otherwise (i.e there are no private packs that should upload) """ logging.debug("Checking if there are private packs to upload") with open(os.path.join(private_index_path, f"{GCPConfig.INDEX_NAME}.json")) as private_index_file: private_index_json = json.load(private_index_file) if was_private_pack_updated(private_index_json, public_index_json): logging.debug(f"There is at least one private pack that was updated, upload should not be skipped") return True return False
def is_there_private_packs_to_upload(public_index_json, private_index_path): """ Checks if there are private packs that should be uploaded. The check compares the private index with the public one to verify if Content commit hash of each private pack in those files (private and public index files) are equal. If there is one private pack that has a different content commit hash, it tells us that this pack was updated and should be uploaded. So, an upload flow should NOT be skipped. Args: public_index_json (dict) : The public index file. private_index_path : Path to where the private index.zip is located. Returns: (bool) True is there is at least one private pack that should be upload. False otherwise (i.e there are no private packs that should upload) """ logging.debug("Checking if there are private packs to upload") with open(os.path.join(private_index_path, f"{GCPConfig.INDEX_NAME}.json")) as private_index_file: private_index_json = json.load(private_index_file) if was_private_pack_updated(private_index_json, public_index_json): logging.debug(f"There is at least one private pack that was updated, upload should not be skipped") return True return False
5,862
def _dirstats_preprocessing(samples, normalize, axis): """ Preprocessing of input for directional stats functions. Performs input validation and if necesssary normalization. Used by directionalvar and directionalmean. Parameters ---------- samples : array Input array. Must be at least two-dimensional, and the last axis of the input must correspond with the dimensionality of the vector space. axis : int Axis along which the directional mean is computed. normalize: boolean If True, normalize the input to ensure that each observation is a unit vector. It the observations are already unit vectors, consider setting this to False to avoid unnecessary computation. """ samples = np.asarray(samples) if samples.ndim < 2: raise ValueError("samples must at least be two-dimensional. " f"Instead samples has shape: {samples.shape!r}") samples = np.moveaxis(samples, axis, 0) if normalize: samples = samples/np.linalg.norm(samples, axis=-1, keepdims=True) return samples
def _dirstats_preprocessing(samples, normalize, axis): """ Preprocessing of input for directional stats functions. Performs input validation and if necesssary normalization. Used by directionalvar and directionalmean. Parameters ---------- samples : array Input array. Must be at least two-dimensional, and the last axis of the input must correspond with the dimensionality of the vector space. axis : int Axis along which the directional statistic is computed. normalize: boolean If True, normalize the input to ensure that each observation is a unit vector. It the observations are already unit vectors, consider setting this to False to avoid unnecessary computation. """ samples = np.asarray(samples) if samples.ndim < 2: raise ValueError("samples must at least be two-dimensional. " f"Instead samples has shape: {samples.shape!r}") samples = np.moveaxis(samples, axis, 0) if normalize: samples = samples/np.linalg.norm(samples, axis=-1, keepdims=True) return samples
42,827
def backup_packages(backup_path, dry_run: bool = False, skip=False): """ Creates `packages` directory and places install list text files there. """ def run_cmd_if_no_dry_run(command, dest, dry_run) -> int: if dry_run: print_dry_run_copy_info(f"$ {command}", dest) # Return -1 for any processes depending on chained successful commands (npm) return -1 else: return run_cmd_write_stdout(command, dest) print_section_header("PACKAGES", Fore.BLUE) if not dry_run: overwrite_dir_prompt_if_needed(backup_path, skip) for mgr in ["gem"]: # deal with package managers that have spaces in them. print_pkg_mgr_backup(mgr) command = f"{mgr} list" dest = f"{backup_path}/{mgr.replace(' ', '-')}_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # brew print_pkg_mgr_backup("brew") command = f"brew bundle dump --file {backup_path}/brew_list.txt" dest = f"{backup_path}/brew_list.txt" if not dry_run: ret = run_cmd(command) if not ret: print_yellow("Package manager not present.") # cargo print_pkg_mgr_backup("cargo") command = "ls {}".format(home_prefix(".cargo/bin/")) dest = f"{backup_path}/cargo_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # pip print_pkg_mgr_backup("pip") command = "pip list --format=freeze" dest = f"{backup_path}/pip_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # pip3 print_pkg_mgr_backup("pip3") command = "pip3 list --format=freeze" dest = f"{backup_path}/pip3_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # npm print_pkg_mgr_backup("npm") command = "npm ls --global --parseable=true --depth=0" temp_file_path = f"{backup_path}/npm_temp_list.txt" # If command is successful, go to the next parsing step. npm_backup_cmd_success = run_cmd_if_no_dry_run(command, temp_file_path, dry_run) == 0 if npm_backup_cmd_success: npm_dest_file = f"{backup_path}/npm_list.txt" # Parse npm output with open(temp_file_path, mode="r+") as temp_file: # Skip first line of file temp_file.seek(1) with open(npm_dest_file, mode="w+") as dest: for line in temp_file: dest.write(line.split("/")[-1]) os.remove(temp_file_path) # atom package manager print_pkg_mgr_backup("Atom") command = "apm list --installed --bare" dest = f"{backup_path}/apm_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # vscode extensions print_pkg_mgr_backup("VSCode") command = "code --list-extensions --show-versions" dest = f"{backup_path}/vscode_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # macports print_pkg_mgr_backup("macports") command = "port installed requested" dest = f"{backup_path}/macports_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # system installs print_pkg_mgr_backup("System Applications") applications_path = get_applications_dir() command = "ls {}".format(applications_path) dest = f"{backup_path}/system_apps_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run)
def backup_packages(backup_path, dry_run: bool = False, skip=False): """ Creates `packages` directory and places install list text files there. """ def run_cmd_if_no_dry_run(command, dest, dry_run) -> int: if dry_run: print_dry_run_copy_info(f"$ {command}", dest) # Return -1 for any processes depending on chained successful commands (npm) return -1 else: return run_cmd_write_stdout(command, dest) print_section_header("PACKAGES", Fore.BLUE) if not dry_run: overwrite_dir_prompt_if_needed(backup_path, skip) for mgr in ["gem"]: # deal with package managers that have spaces in them. print_pkg_mgr_backup(mgr) command = f"{mgr} list" dest = f"{backup_path}/{mgr.replace(' ', '-')}_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # brew print_pkg_mgr_backup("brew") command = f"brew bundle dump --file {backup_path}/brew_list.txt" dest = f"{backup_path}/brew_list.txt" if not dry_run: ret = run_cmd(command) if not ret: print_yellow("brew package manager not found.") # cargo print_pkg_mgr_backup("cargo") command = "ls {}".format(home_prefix(".cargo/bin/")) dest = f"{backup_path}/cargo_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # pip print_pkg_mgr_backup("pip") command = "pip list --format=freeze" dest = f"{backup_path}/pip_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # pip3 print_pkg_mgr_backup("pip3") command = "pip3 list --format=freeze" dest = f"{backup_path}/pip3_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # npm print_pkg_mgr_backup("npm") command = "npm ls --global --parseable=true --depth=0" temp_file_path = f"{backup_path}/npm_temp_list.txt" # If command is successful, go to the next parsing step. npm_backup_cmd_success = run_cmd_if_no_dry_run(command, temp_file_path, dry_run) == 0 if npm_backup_cmd_success: npm_dest_file = f"{backup_path}/npm_list.txt" # Parse npm output with open(temp_file_path, mode="r+") as temp_file: # Skip first line of file temp_file.seek(1) with open(npm_dest_file, mode="w+") as dest: for line in temp_file: dest.write(line.split("/")[-1]) os.remove(temp_file_path) # atom package manager print_pkg_mgr_backup("Atom") command = "apm list --installed --bare" dest = f"{backup_path}/apm_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # vscode extensions print_pkg_mgr_backup("VSCode") command = "code --list-extensions --show-versions" dest = f"{backup_path}/vscode_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # macports print_pkg_mgr_backup("macports") command = "port installed requested" dest = f"{backup_path}/macports_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run) # system installs print_pkg_mgr_backup("System Applications") applications_path = get_applications_dir() command = "ls {}".format(applications_path) dest = f"{backup_path}/system_apps_list.txt" run_cmd_if_no_dry_run(command, dest, dry_run)
38,427
def register_keys(web3: Web3, keys: Optional[list]): def not_none(x): return x if x is not None else [] for key in not_none(keys): register_key(web3, key)
def register_keys(web3: Web3, keys: Optional[list]): def not_none(x): return x if x is not None else [] for key in keys or []: register_key(web3, key)
39,301
def vtk_points(points, deep=True): """Convert numpy or list of points to a vtkPoints object.""" if not isinstance(points, np.ndarray): points = np.array(points) # verify is numeric if not np.issubdtype(points.dtype, np.number): raise TypeError('Points must be a numeric type') # check dimensionality if points.ndim == 1: points = points.reshape((-1, 3)) elif points.ndim > 2: raise ValueError('Dimension of ``points`` should be 1 or 2, not ' f'{points.ndim}') # verify shape if points.shape[1] != 3: raise ValueError('Points array must contain three values per point. \n' f'Shape is {points.shape} and should be (X, 3)') # points must be contiguous if not points.flags['C_CONTIGUOUS']: points = np.ascontiguousarray(points) vtkpts = _vtk.vtkPoints() vtkpts.SetData(_vtk.numpy_to_vtk(points, deep=deep)) return vtkpts
def vtk_points(points, deep=True): """Convert numpy array or array-like to a vtkPoints object.""" if not isinstance(points, np.ndarray): points = np.array(points) # verify is numeric if not np.issubdtype(points.dtype, np.number): raise TypeError('Points must be a numeric type') # check dimensionality if points.ndim == 1: points = points.reshape((-1, 3)) elif points.ndim > 2: raise ValueError('Dimension of ``points`` should be 1 or 2, not ' f'{points.ndim}') # verify shape if points.shape[1] != 3: raise ValueError('Points array must contain three values per point. \n' f'Shape is {points.shape} and should be (X, 3)') # points must be contiguous if not points.flags['C_CONTIGUOUS']: points = np.ascontiguousarray(points) vtkpts = _vtk.vtkPoints() vtkpts.SetData(_vtk.numpy_to_vtk(points, deep=deep)) return vtkpts
2,233
def fastica( X, n_components=None, *, algorithm="parallel", whiten=None, fun="logcosh", fun_args=None, max_iter=200, tol=1e-04, w_init=None, random_state=None, return_X_mean=False, compute_sources=True, return_n_iter=False, ): """Perform Fast Independent Component Analysis. The implementation is based on [1]_. Read more in the :ref:`User Guide <ICA>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. n_components : int, default=None Number of components to extract. If None no dimension reduction is performed. algorithm : {'parallel', 'deflation'}, default='parallel' Apply a parallel or deflational FASTICA algorithm. whiten : str or bool, default=None Specify the whitening strategy to use. If 'arbitrary-variance', a whitening with variance arbitrary is used. If 'unit-variance', the whitening variance is adjusted to be unitary. If False, the data is already considered to be whitened, and no whitening is performed. If None (default), 'arbitrary-variance' is used. .. deprecated:: 1.1 From version 1.3 whiten='unit-variance' will be used by default. `whiten=True` is deprecated from 1.1 and will be removed in 1.3. Use `whiten=arbitrary-variance` instead. fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh' The functional form of the G function used in the approximation to neg-entropy. Could be either 'logcosh', 'exp', or 'cube'. You can also provide your own function. It should return a tuple containing the value of the function, and of its derivative, in the point. The derivative should be averaged along its last dimension. Example: def my_g(x): return x ** 3, np.mean(3 * x ** 2, axis=-1) fun_args : dict, default=None Arguments to send to the functional form. If empty or None and if fun='logcosh', fun_args will take value {'alpha' : 1.0} max_iter : int, default=200 Maximum number of iterations to perform. tol : float, default=1e-04 A positive scalar giving the tolerance at which the un-mixing matrix is considered to have converged. w_init : ndarray of shape (n_components, n_components), default=None Initial un-mixing array of dimension (n.comp,n.comp). If None (default) then an array of normal r.v.'s is used. random_state : int, RandomState instance or None, default=None Used to initialize ``w_init`` when not specified, with a normal distribution. Pass an int, for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. return_X_mean : bool, default=False If True, X_mean is returned too. compute_sources : bool, default=True If False, sources are not computed, but only the rotation matrix. This can save memory when working with big data. Defaults to True. return_n_iter : bool, default=False Whether or not to return the number of iterations. Returns ------- K : ndarray of shape (n_components, n_features) or None If whiten is 'True', K is the pre-whitening matrix that projects data onto the first n_components principal components. If whiten is 'False', K is 'None'. W : ndarray of shape (n_components, n_components) The square matrix that unmixes the data after whitening. The mixing matrix is the pseudo-inverse of matrix ``W K`` if K is not None, else it is the inverse of W. S : ndarray of shape (n_samples, n_components) or None Estimated source matrix X_mean : ndarray of shape (n_features,) The mean over features. Returned only if return_X_mean is True. n_iter : int If the algorithm is "deflation", n_iter is the maximum number of iterations run across all components. Else they are just the number of iterations taken to converge. This is returned only when return_n_iter is set to `True`. Notes ----- The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X = AS where columns of S contain the independent components and A is a linear mixing matrix. In short ICA attempts to `un-mix' the data by estimating an un-mixing matrix W where ``S = W K X.`` While FastICA was proposed to estimate as many sources as features, it is possible to estimate less by setting n_components < n_features. It this case K is not a square matrix and the estimated A is the pseudo-inverse of ``W K``. This implementation was originally made for data of shape [n_features, n_samples]. Now the input is transposed before the algorithm is applied. This makes it slightly faster for Fortran-ordered input. References ---------- .. [1] A. Hyvarinen and E. Oja, "Fast Independent Component Analysis", Algorithms and Applications, Neural Networks, 13(4-5), 2000, pp. 411-430. """ est = FastICA( n_components=n_components, algorithm=algorithm, whiten=whiten, fun=fun, fun_args=fun_args, max_iter=max_iter, tol=tol, w_init=w_init, random_state=random_state, ) S = est._fit(X, compute_sources=compute_sources) if est.whiten_ in ["unitary-variance", "arbitrary-variance"]: K = est.whitening_ X_mean = est.mean_ else: K = None X_mean = None returned_values = [K, est._unmixing, S] if return_X_mean: returned_values.append(X_mean) if return_n_iter: returned_values.append(est.n_iter_) return returned_values
def fastica( X, n_components=None, *, algorithm="parallel", whiten="warn", fun="logcosh", fun_args=None, max_iter=200, tol=1e-04, w_init=None, random_state=None, return_X_mean=False, compute_sources=True, return_n_iter=False, ): """Perform Fast Independent Component Analysis. The implementation is based on [1]_. Read more in the :ref:`User Guide <ICA>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. n_components : int, default=None Number of components to extract. If None no dimension reduction is performed. algorithm : {'parallel', 'deflation'}, default='parallel' Apply a parallel or deflational FASTICA algorithm. whiten : str or bool, default=None Specify the whitening strategy to use. If 'arbitrary-variance', a whitening with variance arbitrary is used. If 'unit-variance', the whitening variance is adjusted to be unitary. If False, the data is already considered to be whitened, and no whitening is performed. If None (default), 'arbitrary-variance' is used. .. deprecated:: 1.1 From version 1.3 whiten='unit-variance' will be used by default. `whiten=True` is deprecated from 1.1 and will be removed in 1.3. Use `whiten=arbitrary-variance` instead. fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh' The functional form of the G function used in the approximation to neg-entropy. Could be either 'logcosh', 'exp', or 'cube'. You can also provide your own function. It should return a tuple containing the value of the function, and of its derivative, in the point. The derivative should be averaged along its last dimension. Example: def my_g(x): return x ** 3, np.mean(3 * x ** 2, axis=-1) fun_args : dict, default=None Arguments to send to the functional form. If empty or None and if fun='logcosh', fun_args will take value {'alpha' : 1.0} max_iter : int, default=200 Maximum number of iterations to perform. tol : float, default=1e-04 A positive scalar giving the tolerance at which the un-mixing matrix is considered to have converged. w_init : ndarray of shape (n_components, n_components), default=None Initial un-mixing array of dimension (n.comp,n.comp). If None (default) then an array of normal r.v.'s is used. random_state : int, RandomState instance or None, default=None Used to initialize ``w_init`` when not specified, with a normal distribution. Pass an int, for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. return_X_mean : bool, default=False If True, X_mean is returned too. compute_sources : bool, default=True If False, sources are not computed, but only the rotation matrix. This can save memory when working with big data. Defaults to True. return_n_iter : bool, default=False Whether or not to return the number of iterations. Returns ------- K : ndarray of shape (n_components, n_features) or None If whiten is 'True', K is the pre-whitening matrix that projects data onto the first n_components principal components. If whiten is 'False', K is 'None'. W : ndarray of shape (n_components, n_components) The square matrix that unmixes the data after whitening. The mixing matrix is the pseudo-inverse of matrix ``W K`` if K is not None, else it is the inverse of W. S : ndarray of shape (n_samples, n_components) or None Estimated source matrix X_mean : ndarray of shape (n_features,) The mean over features. Returned only if return_X_mean is True. n_iter : int If the algorithm is "deflation", n_iter is the maximum number of iterations run across all components. Else they are just the number of iterations taken to converge. This is returned only when return_n_iter is set to `True`. Notes ----- The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X = AS where columns of S contain the independent components and A is a linear mixing matrix. In short ICA attempts to `un-mix' the data by estimating an un-mixing matrix W where ``S = W K X.`` While FastICA was proposed to estimate as many sources as features, it is possible to estimate less by setting n_components < n_features. It this case K is not a square matrix and the estimated A is the pseudo-inverse of ``W K``. This implementation was originally made for data of shape [n_features, n_samples]. Now the input is transposed before the algorithm is applied. This makes it slightly faster for Fortran-ordered input. References ---------- .. [1] A. Hyvarinen and E. Oja, "Fast Independent Component Analysis", Algorithms and Applications, Neural Networks, 13(4-5), 2000, pp. 411-430. """ est = FastICA( n_components=n_components, algorithm=algorithm, whiten=whiten, fun=fun, fun_args=fun_args, max_iter=max_iter, tol=tol, w_init=w_init, random_state=random_state, ) S = est._fit(X, compute_sources=compute_sources) if est.whiten_ in ["unitary-variance", "arbitrary-variance"]: K = est.whitening_ X_mean = est.mean_ else: K = None X_mean = None returned_values = [K, est._unmixing, S] if return_X_mean: returned_values.append(X_mean) if return_n_iter: returned_values.append(est.n_iter_) return returned_values
27,900
def copy(x, dst): """Copies the input variable onto the specified device. This function copies the array of input variable onto the device specified by ``dst``. When ``dst == -1``, it copies the array onto the host memory. This function supports copies from host to host, from host to device, from device to device and from device to host. Args: x (:class:`~chainer.Variable` or :ref:`ndarray`): Variable to be copied. dst: Target device specifier. Returns: ~chainer.Variable: Output variable. .. admonition:: Example >>> import chainer.backends.cuda as cuda >>> x_arr = np.random.uniform(-1, 1, (5, 10)) >>> x = chainer.Variable(x_arr) >>> x.device '@numpy' >>> y = F.copy(x, '@cupy:0') # from CPU (NumPy) to GPU 0 (CuPy) >>> y.device '@cupy:0' .. note:: Copies between non-ChainerX devices and ChainerX devices are not supported. """ in_device = backend.get_device_from_array( x.array if isinstance(x, chainer.Variable) else x) out_device = chainer.get_device(dst) is_chainerx = in_device.xp is chainerx if is_chainerx != (out_device.xp is chainerx): raise RuntimeError( 'F.copy does not support a copy between a non-ChainerX device and ' 'a ChainerX device.\n' 'From: {}\n' 'To: {}'.format(in_device, out_device)) y, = Copy(in_device, out_device).apply((x,)) return y
def copy(x, dst): """Copies the input variable onto the specified device. This function copies the array of input variable onto the device specified by ``dst``. When ``dst == -1``, it copies the array onto the host memory. This function supports copies from host to host, from host to device, from device to device and from device to host. Args: x (:class:`~chainer.Variable` or :ref:`ndarray`): Variable to be copied. dst: Target device specifier. Returns: ~chainer.Variable: Output variable. .. admonition:: Example >>> import chainer.backends.cuda as cuda >>> x_arr = np.random.uniform(-1, 1, (5, 10)) >>> x = chainer.Variable(x_arr) >>> x.device '@numpy' >>> y = F.copy(x, '@cupy:0') # from CPU (NumPy) to GPU 0 (CuPy) >>> y.device '@cupy:0' .. note:: Copies between non-ChainerX devices and ChainerX devices are not supported. """ in_device = backend.get_device_from_array( x.array if isinstance(x, chainer.Variable) else x) out_device = chainer.get_device(dst) is_chainerx = in_device.xp is chainerx if is_chainerx != (out_device.xp is chainerx): raise RuntimeError( 'F.copy does not support copies between non-ChainerX devices and ' 'a ChainerX device.\n' 'From: {}\n' 'To: {}'.format(in_device, out_device)) y, = Copy(in_device, out_device).apply((x,)) return y
35,864
def fetch_nearest_dataset_names(X,y=None, **kwargs): """ X: numpy array an n_samples x n_features array of independent variables y: numpy array or None (default: None) a n_samples array of dependent variables """ df = pd.DataFrame({**{'x_'+str(i):x for i,x in enumerate(X.transpose)} **{'target':y}}) return fetch_nearest_dataset_names(df, **kwargs)
def nearest_datasets(X, y=None, **kwargs): """ X: numpy array an n_samples x n_features array of independent variables y: numpy array or None (default: None) a n_samples array of dependent variables """ df = pd.DataFrame({**{'x_'+str(i):x for i,x in enumerate(X.transpose)} **{'target':y}}) return fetch_nearest_dataset_names(df, **kwargs)
57,213
def regenerate_missing_stats_for_exploration( exp_id: str ) -> Tuple[list[str], list[str], int, int]: """Regenerates missing ExplorationStats models and entries for all corresponding states in an exploration. Args: exp_id: str. The ID of the exp. Returns: 4-tuple(missing_exp_stats, missing_state_stats, num_valid_exp_stats, num_valid_state_stats). where: missing_exp_stats: list(str). List of missing exploration stats. missing_state_stats: list(str). List of missing state stats. num_valid_exp_stats: int. Number of valid exploration stats. num_valid_state_stats: int. Number of valid state stats. Raises: Exception. Fetching exploration versions failed. Exception. No ExplorationStatsModels found. Exception. Exploration snapshots contain invalid commit_cmds. Exception. Exploration does not have a given state. """ exploration = exp_fetchers.get_exploration_by_id(exp_id) num_valid_state_stats = 0 num_valid_exp_stats = 0 exp_versions = list(range(1, exploration.version + 1)) missing_exp_stats_indices = [] exp_stats_list = stats_services.get_multiple_exploration_stats_by_version( exp_id, exp_versions) exp_list = ( exp_fetchers .get_multiple_versioned_exp_interaction_ids_mapping_by_version( exp_id, exp_versions)) if all(exp_stats is None for exp_stats in exp_stats_list): for index, version in enumerate(exp_versions): exp_stats_for_version = ( stats_services.get_stats_for_new_exploration( exp_id, version, list(exp_list[index].state_interaction_ids_dict.keys()))) stats_services.create_stats_model(exp_stats_for_version) raise Exception('No ExplorationStatsModels found') snapshots = exp_models.ExplorationModel.get_snapshots_metadata( exp_id, exp_versions) change_lists = [] for snapshot in snapshots: try: change_lists.append([ exp_domain.ExplorationChange(commit_cmd) for commit_cmd in snapshot['commit_cmds'] ]) except utils.ValidationError as e: raise Exception( 'Exploration(id=%r) snapshots contain invalid commit_cmds: %r' % (exp_id, snapshot['commit_cmds'])) from e missing_exp_stats = [] missing_state_stats = [] zipped_items = list( zip(exp_stats_list, exp_list, change_lists)) revert_commit_cmd = exp_models.ExplorationModel.CMD_REVERT_COMMIT for i, (exp_stats, exp, change_list) in enumerate(zipped_items): revert_to_version = next( ( int(change.version_number) for change in change_list if change.cmd == revert_commit_cmd ), None) new_exp_version = None if revert_to_version is not None: exp_versions_diff = None # We subtract 2 from revert_to_version to get the index of the # previous exploration version because exp_stats_list and # prev_exp start with version 1 in the 0th index. prev_exp_version_index = revert_to_version - 2 prev_exp_stats = exp_stats_list[prev_exp_version_index] prev_exp = exp_list[prev_exp_version_index] new_exp_version = revert_to_version else: exp_versions_diff = exp_domain.ExplorationVersionsDiff( change_list) # We subtract 2 from exp.version to get the index of the # previous exploration version because exp_stats_list and # prev_exp start with version 1 in the 0th index. prev_exp_version_index = exp.version - 2 prev_exp_stats = exp_stats_list[prev_exp_version_index] prev_exp = exp_list[prev_exp_version_index] new_exp_version = exp.version # Fill missing Exploration-level stats. if exp_stats: num_valid_exp_stats += 1 elif exp.version == 1: new_exploration_stats = ( stats_services.get_stats_for_new_exploration( exp_id, exp.version, list(exp.state_interaction_ids_dict.keys()))) stats_services.create_stats_model(new_exploration_stats) missing_exp_stats_indices.append(i) missing_exp_stats.append( 'ExplorationStats(exp_id=%r, exp_version=%r)' % (exp_id, exp.version)) num_valid_state_stats += len( new_exploration_stats.state_stats_mapping) continue else: exp_stats = prev_exp_stats and prev_exp_stats.clone() if exp_stats is None: new_exploration_stats = ( stats_services.get_stats_for_new_exploration( exp_id, exp.version, list(exp.state_interaction_ids_dict.keys()))) stats_services.create_stats_model(new_exploration_stats) missing_exp_stats_indices.append(i) missing_exp_stats.append( 'ExplorationStats(exp_id=%r, exp_version=%r)' % (exp_id, exp.version)) num_valid_state_stats += len( new_exploration_stats.state_stats_mapping) continue if exp_versions_diff: exp_stats = stats_services.advance_version_of_exp_stats( new_exp_version, exp_versions_diff, exp_stats, None, None) else: exp_stats.exp_version = exp.version stats_services.create_stats_model(exp_stats) missing_exp_stats_indices.append(i) missing_exp_stats.append( 'ExplorationStats(exp_id=%r, exp_version=%r)' % (exp_id, exp.version)) # Fill missing State-level stats. state_stats_mapping = exp_stats.state_stats_mapping for state_name in exp.state_interaction_ids_dict.keys(): if state_name in state_stats_mapping: num_valid_state_stats += 1 continue if exp_versions_diff: prev_state_name = ( exp_versions_diff.new_to_old_state_names.get( state_name, state_name)) else: prev_state_name = state_name try: prev_interaction_id = ( prev_exp.state_interaction_ids_dict[prev_state_name] if prev_state_name in prev_exp.state_interaction_ids_dict else None) current_interaction_id = ( exp.state_interaction_ids_dict[state_name]) exp_stats_list_item = exp_stats_list[i] assert exp_stats_list_item is not None # In early schema versions of ExplorationModel, the END # card was a persistant, implicit state present in every # exploration. The snapshots of these old explorations have # since been migrated but they do not have corresponding state # stats models for the END state. So for such versions, a # default state stats model should be created. if current_interaction_id != prev_interaction_id or ( current_interaction_id == 'EndExploration' and prev_state_name == 'END'): exp_stats_list_item.state_stats_mapping[state_name] = ( stats_domain.StateStats.create_default() ) else: assert prev_exp_stats is not None exp_stats_list_item.state_stats_mapping[state_name] = ( prev_exp_stats.state_stats_mapping[ prev_state_name].clone() ) missing_state_stats.append( 'StateStats(exp_id=%r, exp_version=%r, ' 'state_name=%r)' % (exp_id, exp.version, state_name)) except Exception as e: assert exp_versions_diff is not None raise Exception( 'Exploration(id=%r, exp_version=%r) has no ' 'State(name=%r): %r' % ( exp_id, exp_stats.exp_version, prev_state_name, { 'added_state_names': ( exp_versions_diff.added_state_names), 'deleted_state_names': ( exp_versions_diff.deleted_state_names), 'new_to_old_state_names': ( exp_versions_diff.new_to_old_state_names), 'old_to_new_state_names': ( exp_versions_diff.old_to_new_state_names), 'prev_exp.states': ( prev_exp.state_interaction_ids_dict.keys()), 'prev_exp_stats': prev_exp_stats })) from e for index, exp_stats in enumerate(exp_stats_list): if index not in missing_exp_stats_indices: assert exp_stats is not None stats_services.save_stats_model(exp_stats) return ( missing_exp_stats, missing_state_stats, num_valid_exp_stats, num_valid_state_stats )
def regenerate_missing_stats_for_exploration( exp_id: str ) -> Tuple[list[str], list[str], int, int]: """Regenerates missing ExplorationStats models and entries for all corresponding states in an exploration. Args: exp_id: str. The ID of the exp. Returns: 4-tuple(missing_exp_stats, missing_state_stats, num_valid_exp_stats, num_valid_state_stats). where: missing_exp_stats: list(str). List of missing exploration stats. missing_state_stats: list(str). List of missing state stats. num_valid_exp_stats: int. Number of valid exploration stats. num_valid_state_stats: int. Number of valid state stats. Raises: Exception. Fetching exploration versions failed. Exception. No ExplorationStatsModels found. Exception. Exploration snapshots contain invalid commit_cmds. Exception. Exploration does not have a given state. """ exploration = exp_fetchers.get_exploration_by_id(exp_id) num_valid_state_stats = 0 num_valid_exp_stats = 0 exp_versions = list(range(1, exploration.version + 1)) missing_exp_stats_indices = [] exp_stats_list = stats_services.get_multiple_exploration_stats_by_version( exp_id, exp_versions) exp_list = ( exp_fetchers .get_multiple_versioned_exp_interaction_ids_mapping_by_version( exp_id, exp_versions)) if all(exp_stats is None for exp_stats in exp_stats_list): for index, version in enumerate(exp_versions): exp_stats_for_version = ( stats_services.get_stats_for_new_exploration( exp_id, version, list(exp_list[index].state_interaction_ids_dict.keys()))) stats_services.create_stats_model(exp_stats_for_version) raise Exception('No ExplorationStatsModels found') snapshots = exp_models.ExplorationModel.get_snapshots_metadata( exp_id, exp_versions) change_lists = [] for snapshot in snapshots: try: change_lists.append([ exp_domain.ExplorationChange(commit_cmd) for commit_cmd in snapshot['commit_cmds'] ]) except utils.ValidationError as e: raise Exception( 'Exploration(id=%r) snapshots contain invalid commit_cmds: %r' % (exp_id, snapshot['commit_cmds'])) from e missing_exp_stats = [] missing_state_stats = [] zipped_items = list( zip(exp_stats_list, exp_list, change_lists)) revert_commit_cmd = exp_models.ExplorationModel.CMD_REVERT_COMMIT for i, (exp_stats, exp, change_list) in enumerate(zipped_items): revert_to_version = next( ( int(change.version_number) for change in change_list if change.cmd == revert_commit_cmd ), None) new_exp_version = None if revert_to_version is not None: exp_versions_diff = None # We subtract 2 from revert_to_version to get the index of the # previous exploration version because exp_stats_list and # prev_exp start with version 1 in the 0th index. prev_exp_version_index = revert_to_version - 2 prev_exp_stats = exp_stats_list[prev_exp_version_index] prev_exp = exp_list[prev_exp_version_index] new_exp_version = revert_to_version else: exp_versions_diff = exp_domain.ExplorationVersionsDiff( change_list) # We subtract 2 from exp.version to get the index of the # previous exploration version because exp_stats_list and # prev_exp start with version 1 in the 0th index. prev_exp_version_index = exp.version - 2 prev_exp_stats = exp_stats_list[prev_exp_version_index] prev_exp = exp_list[prev_exp_version_index] new_exp_version = exp.version # Fill missing Exploration-level stats. if exp_stats: num_valid_exp_stats += 1 elif exp.version == 1: new_exploration_stats = ( stats_services.get_stats_for_new_exploration( exp_id, exp.version, list(exp.state_interaction_ids_dict.keys()))) stats_services.create_stats_model(new_exploration_stats) missing_exp_stats_indices.append(i) missing_exp_stats.append( 'ExplorationStats(exp_id=%r, exp_version=%r)' % (exp_id, exp.version)) num_valid_state_stats += len( new_exploration_stats.state_stats_mapping) continue else: exp_stats = prev_exp_stats and prev_exp_stats.clone() if exp_stats is None: new_exploration_stats = ( stats_services.get_stats_for_new_exploration( exp_id, exp.version, list(exp.state_interaction_ids_dict.keys()))) stats_services.create_stats_model(new_exploration_stats) missing_exp_stats_indices.append(i) missing_exp_stats.append( 'ExplorationStats(exp_id=%r, exp_version=%r)' % (exp_id, exp.version)) num_valid_state_stats += len( new_exploration_stats.state_stats_mapping) continue if exp_versions_diff: exp_stats = stats_services.advance_version_of_exp_stats( new_exp_version, exp_versions_diff, exp_stats, None, None) else: exp_stats.exp_version = exp.version stats_services.create_stats_model(exp_stats) missing_exp_stats_indices.append(i) missing_exp_stats.append( 'ExplorationStats(exp_id=%r, exp_version=%r)' % (exp_id, exp.version)) # Fill missing State-level stats. state_stats_mapping = exp_stats.state_stats_mapping for state_name in exp.state_interaction_ids_dict.keys(): if state_name in state_stats_mapping: num_valid_state_stats += 1 continue if exp_versions_diff: prev_state_name = ( exp_versions_diff.new_to_old_state_names.get( state_name, state_name)) else: prev_state_name = state_name try: prev_interaction_id = ( prev_exp.state_interaction_ids_dict[prev_state_name] if prev_state_name in prev_exp.state_interaction_ids_dict else None) current_interaction_id = ( exp.state_interaction_ids_dict[state_name]) exp_stats_list_item = exp_stats_list[i] assert exp_stats_list_item is not None # In early schema versions of ExplorationModel, the END # card was a persistant, implicit state present in every # exploration. The snapshots of these old explorations have # since been migrated but they do not have corresponding state # stats models for the END state. So for such versions, a # default state stats model should be created. if ( current_interaction_id != prev_interaction_id or ( current_interaction_id == 'EndExploration' and prev_state_name == 'END' ) ): exp_stats_list_item.state_stats_mapping[state_name] = ( stats_domain.StateStats.create_default() ) else: assert prev_exp_stats is not None exp_stats_list_item.state_stats_mapping[state_name] = ( prev_exp_stats.state_stats_mapping[ prev_state_name].clone() ) missing_state_stats.append( 'StateStats(exp_id=%r, exp_version=%r, ' 'state_name=%r)' % (exp_id, exp.version, state_name)) except Exception as e: assert exp_versions_diff is not None raise Exception( 'Exploration(id=%r, exp_version=%r) has no ' 'State(name=%r): %r' % ( exp_id, exp_stats.exp_version, prev_state_name, { 'added_state_names': ( exp_versions_diff.added_state_names), 'deleted_state_names': ( exp_versions_diff.deleted_state_names), 'new_to_old_state_names': ( exp_versions_diff.new_to_old_state_names), 'old_to_new_state_names': ( exp_versions_diff.old_to_new_state_names), 'prev_exp.states': ( prev_exp.state_interaction_ids_dict.keys()), 'prev_exp_stats': prev_exp_stats })) from e for index, exp_stats in enumerate(exp_stats_list): if index not in missing_exp_stats_indices: assert exp_stats is not None stats_services.save_stats_model(exp_stats) return ( missing_exp_stats, missing_state_stats, num_valid_exp_stats, num_valid_state_stats )
44,200
def factorize(two, tol): r"""Return double-factorized form of a two-electron tensor. The second quantized electronic Hamiltonian is constructed in terms of fermionic creation, :math:`a^{\dagger}` , and annihilation, :math:`a`, operators as [`arXiv:1902.02134 <https://arxiv.org/pdf/1902.02134.pdf>`_] .. math:: H = \sum_{\alpha \in \{\uparrow, \downarrow \} } \sum_{pq} h_{pq} a_{p,\alpha}^{\dagger} a_{q, \alpha} + \frac{1}{2} \sum_{\alpha, \beta \in \{\uparrow, \downarrow \} } \sum_{pqrs} h_{pqrs} a_{p, \alpha}^{\dagger} a_{q, \beta}^{\dagger} a_{r, \beta} a_{s, \alpha}, where :math:`h_{pq}` and :math:`h_{pqrs}` are the one- and two-electron integrals computed as .. math:: h_{pq} = \int \phi_p(r)^* \left ( -\frac{\nabla_r^2}{2} - \sum_i \frac{Z_i}{|r-R_i|} \right) \phi_q(r) dr, and .. math:: h_{pqrs} = \int \frac{\phi_p(r_1)^* \phi_q(r_2)^* \phi_r(r_2) \phi_s(r_1)}{|r_1 - r_2|} dr_1 dr_2. Rearranging the integrals in the chemist notation, [11|22], gives .. math:: H = \sum_{\alpha \in \{\uparrow, \downarrow \} } \sum_{pq} T_{pq} a_{p,\alpha}^{\dagger} a_{q, \alpha} + \frac{1}{2} \sum_{\alpha, \beta \in \{\uparrow, \downarrow \} } \sum_{pqrs} V_{pqrs} a_{p, \alpha}^{\dagger} a_{q, \alpha} a_{r, \beta}^{\dagger} a_{s, \beta}. with .. math:: T_{pq} = h_{ij} - \frac{1}{2} \sum_s h_{pssq}. and :math:`V` is the two-electron tensor in chemist notation. The objective of the factorization is to find a set of symmetric matrices, :math:`L`, such that .. math:: V_{ijkl} = \sum_r L_{ij}^{(r)} L_{kl}^{(r) T}. with the rank :math:`r \in \mathcal{O}(n)`. The matrices :math:`L` are further diagonalized and truncated in a second level of factorization. The algorithm has the following steps [`arXiv:1902.02134 <https://arxiv.org/pdf/1902.02134.pdf>`_]. 1. Matricize the :math:`n \times n \times n \times n` two-electron tensor to a \ :math:`n^2 \times n^2` matrix where n is the number of orbitals. 2. Diagonalize the resulting matrix and keep the :math:`r` eigenvectors that have \ corresponding eigenvalues larger than a threshold. 3. Reshape the selected eigenvectors to :math:`n \times n` matrices. 4. Diagonalize the :math:`n \times n` matrices and keep those that the norm of their \ eigenvalues is larger than a threshold. Args: two (array[array[float]]): the two-electron repulsion tensor in the molecular orbital basis arranged in chemist notation [11|22] tol (float): cutoff value for discarding the negligible factors Returns: tuple(array[float]): array of symmetric matrices (factors) approximating the two-electron tensor, eigenvalues of the generated factors, eigenvectors of the generated factors **Example** >>> symbols = ['H', 'H'] >>> geometry = np.array([[0.0, 0.0, 0.0], [0.74, 0.0, 0.0]], requires_grad = False) / 0.5291772 >>> mol = qml.qchem.Molecule(symbols, geometry) >>> core, one, two = qml.qchem.electron_integrals(mol)() >>> two = np.swapaxes(two, 1, 3) # convert to chemist's notation >>> l, w, v = factorize(two, 1e-5) >>> print(l) [[[ 1.06723440e-01 9.73575768e-15] [ 8.36288956e-15 -1.04898533e-01]] [[-2.20945401e-13 -4.25688222e-01] [-4.25688222e-01 -2.98228790e-13]] [[-8.14472856e-01 5.01669019e-13] [ 5.01689072e-13 -8.28642140e-01]]] """ n = two.shape[0] two = two.reshape(n * n, n * n) eigvals, eigvecs = np.linalg.eigh(two) eigvals = np.array([val for val in eigvals if abs(val) > tol]) eigvecs = eigvecs[:, -len(eigvals) :] vectors = eigvecs @ np.diag(np.sqrt(abs(eigvals))) factors = np.array([vectors.reshape(n, n, len(eigvals))[:, :, r] for r in range(len(eigvals))]) eigvals, eigvecs = np.linalg.eigh(factors) eigvals = np.array([val for val in eigvals if np.sum(abs(eigvals)) > tol]) eigvecs = eigvecs[:, -len(eigvals) :] return factors, eigvals, eigvecs
def factorize(two, tol): r"""Return double-factorized form of a two-electron tensor. The second quantized electronic Hamiltonian is constructed in terms of fermionic creation, :math:`a^{\dagger}` , and annihilation, :math:`a`, operators as [`arXiv:1902.02134 <https://arxiv.org/pdf/1902.02134.pdf>`_] .. math:: H = \sum_{\alpha \in \{\uparrow, \downarrow \} } \sum_{pq} h_{pq} a_{p,\alpha}^{\dagger} a_{q, \alpha} + \frac{1}{2} \sum_{\alpha, \beta \in \{\uparrow, \downarrow \} } \sum_{pqrs} h_{pqrs} a_{p, \alpha}^{\dagger} a_{q, \beta}^{\dagger} a_{r, \beta} a_{s, \alpha}, where :math:`h_{pq}` and :math:`h_{pqrs}` are the one- and two-electron integrals computed as .. math:: h_{pq} = \int \phi_p(r)^* \left ( -\frac{\nabla_r^2}{2} - \sum_i \frac{Z_i}{|r-R_i|} \right) \phi_q(r) dr, and .. math:: h_{pqrs} = \int \frac{\phi_p(r_1)^* \phi_q(r_2)^* \phi_r(r_2) \phi_s(r_1)}{|r_1 - r_2|} dr_1 dr_2. Rearranging the integrals in the chemist notation, [11|22], gives .. math:: H = \sum_{\alpha \in \{\uparrow, \downarrow \} } \sum_{pq} T_{pq} a_{p,\alpha}^{\dagger} a_{q, \alpha} + \frac{1}{2} \sum_{\alpha, \beta \in \{\uparrow, \downarrow \} } \sum_{pqrs} V_{pqrs} a_{p, \alpha}^{\dagger} a_{q, \alpha} a_{r, \beta}^{\dagger} a_{s, \beta}. with .. math:: T_{pq} = h_{ij} - \frac{1}{2} \sum_s h_{pssq}. and :math:`V` is the two-electron tensor in chemist notation. The objective of the factorization is to find a set of symmetric matrices, :math:`L`, such that .. math:: V_{ijkl} = \sum_r L_{ij}^{(r)} L_{kl}^{(r) T}. with the rank :math:`r \in \mathcal{O}(n)`. The matrices :math:`L` are further diagonalized and truncated in a second level of factorization. The algorithm has the following steps [`arXiv:1902.02134 <https://arxiv.org/pdf/1902.02134.pdf>`_]. 1. Reshape the :math:`n \times n \times n \times n` two-electron tensor to a \ :math:`n^2 \times n^2` matrix where n is the number of orbitals. 2. Diagonalize the resulting matrix and keep the :math:`r` eigenvectors that have \ corresponding eigenvalues larger than a threshold. 3. Reshape the selected eigenvectors to :math:`n \times n` matrices. 4. Diagonalize the :math:`n \times n` matrices and keep those that the norm of their \ eigenvalues is larger than a threshold. Args: two (array[array[float]]): the two-electron repulsion tensor in the molecular orbital basis arranged in chemist notation [11|22] tol (float): cutoff value for discarding the negligible factors Returns: tuple(array[float]): array of symmetric matrices (factors) approximating the two-electron tensor, eigenvalues of the generated factors, eigenvectors of the generated factors **Example** >>> symbols = ['H', 'H'] >>> geometry = np.array([[0.0, 0.0, 0.0], [0.74, 0.0, 0.0]], requires_grad = False) / 0.5291772 >>> mol = qml.qchem.Molecule(symbols, geometry) >>> core, one, two = qml.qchem.electron_integrals(mol)() >>> two = np.swapaxes(two, 1, 3) # convert to chemist's notation >>> l, w, v = factorize(two, 1e-5) >>> print(l) [[[ 1.06723440e-01 9.73575768e-15] [ 8.36288956e-15 -1.04898533e-01]] [[-2.20945401e-13 -4.25688222e-01] [-4.25688222e-01 -2.98228790e-13]] [[-8.14472856e-01 5.01669019e-13] [ 5.01689072e-13 -8.28642140e-01]]] """ n = two.shape[0] two = two.reshape(n * n, n * n) eigvals, eigvecs = np.linalg.eigh(two) eigvals = np.array([val for val in eigvals if abs(val) > tol]) eigvecs = eigvecs[:, -len(eigvals) :] vectors = eigvecs @ np.diag(np.sqrt(abs(eigvals))) factors = np.array([vectors.reshape(n, n, len(eigvals))[:, :, r] for r in range(len(eigvals))]) eigvals, eigvecs = np.linalg.eigh(factors) eigvals = np.array([val for val in eigvals if np.sum(abs(eigvals)) > tol]) eigvecs = eigvecs[:, -len(eigvals) :] return factors, eigvals, eigvecs
13,161
def wait_for_deleted( *, pg_manager: gitlab.base.RESTManager, object_id: int, description: str, hard_delete: bool = False, ) -> None: """Ensure the object specified can not be retrieved. If object still exists after timeout period, fail the test""" max_iterations = int(TIMEOUT / SLEEP_INTERVAL) for _ in range(max_iterations): try: object = pg_manager.get(object_id) except gitlab.exceptions.GitlabGetError: return try: if hard_delete: object.delete(hard_delete=True) else: object.delete() except gitlab.exceptions.GitlabDeleteError: pass time.sleep(SLEEP_INTERVAL) pytest.fail(f"{description} {object_id} was not deleted")
def wait_for_deleted( *, manager: gitlab.base.RESTManager, object_id: int, description: str, hard_delete: bool = False, ) -> None: """Ensure the object specified can not be retrieved. If object still exists after timeout period, fail the test""" max_iterations = int(TIMEOUT / SLEEP_INTERVAL) for _ in range(max_iterations): try: object = pg_manager.get(object_id) except gitlab.exceptions.GitlabGetError: return try: if hard_delete: object.delete(hard_delete=True) else: object.delete() except gitlab.exceptions.GitlabDeleteError: pass time.sleep(SLEEP_INTERVAL) pytest.fail(f"{description} {object_id} was not deleted")
41,702
def test_generate_packages_json(tmp_path): # Set up directory to store dummy package files for SHA-256 hash verification if not os.path.exists(tmp_path): os.makedirs(tmp_path) pkg_map = buildall.generate_dependency_graph(PACKAGES_DIR, {"pkg_1", "pkg_2"}) for pkg in pkg_map.values(): pkg.file_name = pkg.file_name or pkg.name + ".file" # Write dummy package file for SHA-256 hash verification with open(os.path.join(tmp_path, pkg.file_name), "w") as f: f.write(pkg.name) package_data = buildall.generate_packages_json(tmp_path, pkg_map) assert set(package_data.keys()) == {"info", "packages"} assert package_data["info"] == {"arch": "wasm32", "platform": "Emscripten-1.0"} assert set(package_data["packages"]) == { "pkg_1", "pkg_1_1", "pkg_2", "pkg_3", "pkg_3_1", } assert package_data["packages"]["pkg_1"] == { "name": "pkg_1", "version": "1.0.0", "file_name": "pkg_1.file", "depends": ["pkg_1_1", "pkg_3"], "imports": ["pkg_1"], "install_dir": "site", "sha_256": "c1e38241013b5663e902fff97eb8585e98e6df446585da1dcf2ad121b52c2143", }
def test_generate_packages_json(tmp_path): # Set up directory to store dummy package files for SHA-256 hash verification if not os.path.exists(tmp_path): os.makedirs(tmp_path) pkg_map = buildall.generate_dependency_graph(PACKAGES_DIR, {"pkg_1", "pkg_2"}) for pkg in pkg_map.values(): pkg.file_name = pkg.file_name or pkg.name + ".file" # Write dummy package file for SHA-256 hash verification with open(tmp_path / pkg.file_name, "w") as f: f.write(pkg.name) package_data = buildall.generate_packages_json(tmp_path, pkg_map) assert set(package_data.keys()) == {"info", "packages"} assert package_data["info"] == {"arch": "wasm32", "platform": "Emscripten-1.0"} assert set(package_data["packages"]) == { "pkg_1", "pkg_1_1", "pkg_2", "pkg_3", "pkg_3_1", } assert package_data["packages"]["pkg_1"] == { "name": "pkg_1", "version": "1.0.0", "file_name": "pkg_1.file", "depends": ["pkg_1_1", "pkg_3"], "imports": ["pkg_1"], "install_dir": "site", "sha_256": "c1e38241013b5663e902fff97eb8585e98e6df446585da1dcf2ad121b52c2143", }
40,165
def compute_library_size_batch( adata, batch_key: str, local_l_mean_key: str = None, local_l_var_key: str = None, X_layers_key=None, copy: bool = False, ): """Computes the library size Parameters ---------- adata anndata object containing counts batch_key key in obs for batch information local_l_mean_key key in obs to save the local log mean local_l_var_key key in obs to save the local log variance X_layers_key if not None, will use this in adata.layers[] for X copy if True, returns a copy of the adata Returns ------- type anndata.AnnData if copy was True, else None """ assert batch_key in adata.obs_keys(), "batch_key not valid key in obs dataframe" local_means = np.zeros((adata.shape[0], 1)) local_vars = np.zeros((adata.shape[0], 1)) batch_indices = adata.obs[batch_key] for i_batch in np.unique(batch_indices): idx_batch = np.squeeze(batch_indices == i_batch) if X_layers_key is not None: assert ( X_layers_key in adata.layers.keys() ), "X_layers_key not a valid key for adata.layers" data = adata[idx_batch].layers[X_layers_key] else: data = adata[idx_batch].X (local_means[idx_batch], local_vars[idx_batch],) = compute_library_size(data) if local_l_mean_key is None: local_l_mean_key = "_scvi_local_l_mean" if local_l_var_key is None: local_l_var_key = "_scvi_local_l_var" if copy: copy = adata.copy() copy.obs[local_l_mean_key] = local_means copy.obs[local_l_var_key] = local_vars return copy else: adata.obs[local_l_mean_key] = local_means adata.obs[local_l_var_key] = local_vars
def compute_library_size_batch( adata, batch_key: str, local_l_mean_key_added: str = None, local_l_var_key: str = None, X_layers_key=None, copy: bool = False, ): """Computes the library size Parameters ---------- adata anndata object containing counts batch_key key in obs for batch information local_l_mean_key key in obs to save the local log mean local_l_var_key key in obs to save the local log variance X_layers_key if not None, will use this in adata.layers[] for X copy if True, returns a copy of the adata Returns ------- type anndata.AnnData if copy was True, else None """ assert batch_key in adata.obs_keys(), "batch_key not valid key in obs dataframe" local_means = np.zeros((adata.shape[0], 1)) local_vars = np.zeros((adata.shape[0], 1)) batch_indices = adata.obs[batch_key] for i_batch in np.unique(batch_indices): idx_batch = np.squeeze(batch_indices == i_batch) if X_layers_key is not None: assert ( X_layers_key in adata.layers.keys() ), "X_layers_key not a valid key for adata.layers" data = adata[idx_batch].layers[X_layers_key] else: data = adata[idx_batch].X (local_means[idx_batch], local_vars[idx_batch],) = compute_library_size(data) if local_l_mean_key is None: local_l_mean_key = "_scvi_local_l_mean" if local_l_var_key is None: local_l_var_key = "_scvi_local_l_var" if copy: copy = adata.copy() copy.obs[local_l_mean_key] = local_means copy.obs[local_l_var_key] = local_vars return copy else: adata.obs[local_l_mean_key] = local_means adata.obs[local_l_var_key] = local_vars
23,742
def _get_lvm_cmdline(cmd): ''' Build command line for :program:`lvm` call. The purpose of this function is to keep all the detailed lvm options in one place. :param cmd: array of str, where cmd[0] is action and the rest are arguments :return array of str appropriate for subprocess.Popen ''' action = cmd[0] if action == 'remove': assert len(cmd) == 2, 'wrong number of arguments for remove' assert not cmd[1].startswith('/'), 'absolute path to ‘remove’???' lvm_cmd = ['lvremove', '--force', '--', cmd[1]] elif action == 'clone': assert len(cmd) == 3, 'wrong number of arguments for clone' lvm_cmd = ['lvcreate', '--setactivationskip=n', '--activate=y', '--snapshot', '--type=thin', '--name=' + cmd[2], '--', cmd[1]] elif action == 'create': assert len(cmd) == 4, 'wrong number of arguments for create' lvm_cmd = ['lvcreate', '--thin', '--setactivationskip=n', '--activate=y', '--name=' + cmd[2], '--virtualsize=' + cmd[3] + 'B', '--', cmd[1]] elif action == 'resize': assert len(cmd) == 3, 'wrong number of arguments for extend' lvm_cmd = ["lvresize", "--force", "--size=" + cmd[2] + 'B', '--', cmd[1]] elif action == 'activate': assert len(cmd) == 2, 'wrong number of arguments for activate' lvm_cmd = ['lvchange', '--activate=y', '--', cmd[1]] elif action == 'rename': assert len(cmd) == 3, 'wrong number of arguments for rename' lvm_cmd = ['lvrename', '--', cmd[1], cmd[2]] else: raise NotImplementedError('unsupported action: ' + action) if os.getuid() != 0: cmd = [_sudo, _lvm] + lvm_cmd else: cmd = [_lvm] + lvm_cmd return cmd
def _get_lvm_cmdline(cmd): ''' Build command line for :program:`lvm` call. The purpose of this function is to keep all the detailed lvm options in one place. :param cmd: array of str, where cmd[0] is action and the rest are arguments :return array of str appropriate for subprocess.Popen ''' action = cmd[0] if action == 'remove': assert len(cmd) == 2, 'wrong number of arguments for remove' assert not cmd[1].startswith('/'), 'absolute path to ‘remove’???' lvm_cmd = ['lvremove', '--force', '--', cmd[1]] elif action == 'clone': assert len(cmd) == 3, 'wrong number of arguments for clone' lvm_cmd = ['lvcreate', '--setactivationskip=n', '--activate=y', '--snapshot', '--type=thin', '--name=' + cmd[2], '--', cmd[1]] elif action == 'create': assert len(cmd) == 4, 'wrong number of arguments for create' lvm_cmd = ['lvcreate', '--thin', '--setactivationskip=n', '--activate=y', '--name=' + cmd[2], '--virtualsize=' + cmd[3] + 'B', '--', cmd[1]] elif action == 'resize': assert len(cmd) == 3, 'wrong number of arguments for resize' lvm_cmd = ["lvresize", "--force", "--size=" + cmd[2] + 'B', '--', cmd[1]] elif action == 'activate': assert len(cmd) == 2, 'wrong number of arguments for activate' lvm_cmd = ['lvchange', '--activate=y', '--', cmd[1]] elif action == 'rename': assert len(cmd) == 3, 'wrong number of arguments for rename' lvm_cmd = ['lvrename', '--', cmd[1], cmd[2]] else: raise NotImplementedError('unsupported action: ' + action) if os.getuid() != 0: cmd = [_sudo, _lvm] + lvm_cmd else: cmd = [_lvm] + lvm_cmd return cmd
1,795
def test_permutation_importance_sample_weight(): # Creating data with 2 features and 1000 samples, where the target # variable is a linear combination of the two features, such that # in half of the samples the impact of feature 1 is twice the impact of # feature 2, and vice versa on the other half of the samples. np.random.seed(1) n_samples = 1000 n_features = 2 n_half_samples = int(n_samples / 2) x = np.random.normal(0.0, 0.001, (n_samples, n_features)) y = np.zeros(n_samples) y[:n_half_samples] = 2 * x[:n_half_samples, 0] + x[:n_half_samples, 1] y[n_half_samples:] = x[n_half_samples:, 0] + 2 * x[n_half_samples:, 1] # Fitting linear regression with perfect prediction lr = LinearRegression(fit_intercept=False) lr.fit(x, y) # When all samples are weighted with the same weights, the ratio of # the two features importance should equal to 1 on expectation (when using # mean absolutes error as the loss function). pi = permutation_importance(lr, x, y, random_state=1, scoring='neg_mean_absolute_error', n_repeats=1000) x1_x2_imp_ratio_w_none = pi.importances_mean[0] / pi.importances_mean[1] assert np.round(x1_x2_imp_ratio_w_none, 2) == 1.00 # When passing a vector of ones as the sample_weight, results should be # the same as in the case that sample_weight=None. w = np.ones(n_samples) pi = permutation_importance(lr, x, y, random_state=1, scoring='neg_mean_absolute_error', n_repeats=1000, sample_weight=w) x1_x2_imp_ratio_w_ones = pi.importances_mean[0] / pi.importances_mean[1] assert x1_x2_imp_ratio_w_ones == x1_x2_imp_ratio_w_none # When the ratio between the weights of the first half of the samples and # the second half of the samples approaches to infinity, the ratio of # the two features importance should equal to 2 on expectation (when using # mean absolutes error as the loss function). w = np.hstack([np.repeat(10.0 ** 10, n_half_samples), np.repeat(1.0, n_half_samples)]) lr.fit(x, y, w) pi = permutation_importance(lr, x, y, random_state=1, scoring='neg_mean_absolute_error', n_repeats=1000, sample_weight=w) x1_x2_imp_ratio_w = pi.importances_mean[0] / pi.importances_mean[1] assert np.round(x1_x2_imp_ratio_w / x1_x2_imp_ratio_w_none, 2) == 2.00
def test_permutation_importance_sample_weight(): # Creating data with 2 features and 1000 samples, where the target # variable is a linear combination of the two features, such that # in half of the samples the impact of feature 1 is twice the impact of # feature 2, and vice versa on the other half of the samples. np.random.seed(1) n_samples = 1000 n_features = 2 n_half_samples = n_samples // 2 x = np.random.normal(0.0, 0.001, (n_samples, n_features)) y = np.zeros(n_samples) y[:n_half_samples] = 2 * x[:n_half_samples, 0] + x[:n_half_samples, 1] y[n_half_samples:] = x[n_half_samples:, 0] + 2 * x[n_half_samples:, 1] # Fitting linear regression with perfect prediction lr = LinearRegression(fit_intercept=False) lr.fit(x, y) # When all samples are weighted with the same weights, the ratio of # the two features importance should equal to 1 on expectation (when using # mean absolutes error as the loss function). pi = permutation_importance(lr, x, y, random_state=1, scoring='neg_mean_absolute_error', n_repeats=1000) x1_x2_imp_ratio_w_none = pi.importances_mean[0] / pi.importances_mean[1] assert np.round(x1_x2_imp_ratio_w_none, 2) == 1.00 # When passing a vector of ones as the sample_weight, results should be # the same as in the case that sample_weight=None. w = np.ones(n_samples) pi = permutation_importance(lr, x, y, random_state=1, scoring='neg_mean_absolute_error', n_repeats=1000, sample_weight=w) x1_x2_imp_ratio_w_ones = pi.importances_mean[0] / pi.importances_mean[1] assert x1_x2_imp_ratio_w_ones == x1_x2_imp_ratio_w_none # When the ratio between the weights of the first half of the samples and # the second half of the samples approaches to infinity, the ratio of # the two features importance should equal to 2 on expectation (when using # mean absolutes error as the loss function). w = np.hstack([np.repeat(10.0 ** 10, n_half_samples), np.repeat(1.0, n_half_samples)]) lr.fit(x, y, w) pi = permutation_importance(lr, x, y, random_state=1, scoring='neg_mean_absolute_error', n_repeats=1000, sample_weight=w) x1_x2_imp_ratio_w = pi.importances_mean[0] / pi.importances_mean[1] assert np.round(x1_x2_imp_ratio_w / x1_x2_imp_ratio_w_none, 2) == 2.00
32,146
def get_vulnerability_command(): vuln_id = demisto.args()['vulnerability_id'] scan_results_id = demisto.args()['scan_results_id'] page = int(demisto.args().get('page')) limit = int(demisto.args().get('limit')) if limit > 200: limit = 200 vuln_filter = [{ 'filterName': 'pluginID', 'operator': '=', 'value': vuln_id }] query = { 'scanID': scan_results_id, 'filters': vuln_filter, 'tool': 'vulndetails', 'type': 'vuln', 'startOffset': page, # Lower bound for the results list (must be specified) 'endOffset': page + limit # Upper bound for the results list (must be specified) } analysis = get_analysis(query, scan_results_id) if not analysis or 'response' not in analysis: return_error('Error: Could not get vulnerability analysis') results = analysis['response']['results'] if not results or len(results) == 0: return_error('Error: Vulnerability not found in the scan results') vuln_response = get_vulnerability(vuln_id) if not vuln_response or 'response' not in vuln_response: return_message('Vulnerability not found') vuln = vuln_response['response'] vuln['severity'] = results[0]['severity'] # The vulnerability severity is the same in all the results hosts = get_vulnerability_hosts_from_analysis(results) cves = None cves_output = [] # type: List[dict] if vuln.get('xrefs'): # Extract CVE cve_filter = list(filter(lambda x: x.strip().startswith('CVE'), vuln['xrefs'].split(','))) if cve_filter and len(cve_filter) > 0: cves = list(map(lambda c: c.replace('CVE:', '').strip(), cve_filter)) cves_output += map(lambda c: { 'ID': c }, cves) mapped_vuln = { 'ID': vuln['id'], 'Name': vuln['name'], 'Description': vuln['description'], 'Type': vuln['type'], 'Severity': vuln['severity'].get('name'), 'Synopsis': vuln['synopsis'], 'Solution': vuln['solution'] } vuln_info = { 'Published': timestamp_to_utc(vuln['vulnPubDate']), 'CPE': vuln['cpe'], 'CVE': cves } exploit_info = { 'ExploitAvailable': vuln['exploitAvailable'], 'ExploitEase': vuln['exploitEase'] } risk_info = { 'RiskFactor': vuln['riskFactor'], 'CVSSBaseScore': vuln['baseScore'], 'CVSSTemporalScore': vuln['temporalScore'], 'CVSSVector': vuln['cvssVector'] } plugin_details = { 'Family': vuln['family'].get('name'), 'Published': timestamp_to_utc(vuln['pluginPubDate']), 'Modified': timestamp_to_utc(vuln['pluginModDate']), 'CheckType': vuln['checkType'] } hr = '## Vulnerability: {} ({})\n'.format(mapped_vuln['Name'], mapped_vuln['ID']) hr += '### Synopsis\n{}\n### Description\n{}\n### Solution\n{}\n'.format( mapped_vuln['Synopsis'], mapped_vuln['Description'], mapped_vuln['Solution']) hr += tableToMarkdown('Hosts', hosts, removeNull=True) hr += tableToMarkdown('Risk Information', risk_info, removeNull=True) hr += tableToMarkdown('Exploit Information', exploit_info, removeNull=True) hr += tableToMarkdown('Plugin Details', plugin_details, removeNull=True) hr += tableToMarkdown('Vulnerability Information', vuln_info, removeNull=True) mapped_vuln.update(vuln_info) mapped_vuln.update(exploit_info) mapped_vuln.update(risk_info) mapped_vuln['PluginDetails'] = plugin_details mapped_vuln['Host'] = hosts scan_result = { 'ID': scan_results_id, 'Vulnerability': mapped_vuln, } context = {} context['TenableSC.ScanResults.Vulnerability(val.ID=={})'.format(vuln_id)] = createContext(scan_result['Vulnerability'], removeNull=True) if len(cves_output) > 0: context['CVE(val.ID===obj.ID)'] = createContext(cves_output) demisto.results({ 'Type': entryTypes['note'], 'Contents': vuln_response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': hr, 'EntryContext': context })
def get_vulnerability_command(): vuln_id = demisto.args()['vulnerability_id'] scan_results_id = demisto.args()['scan_results_id'] page = int(demisto.args().get('page')) limit = int(demisto.args().get('limit')) if limit > 200: limit = 200 vuln_filter = [{ 'filterName': 'pluginID', 'operator': '=', 'value': vuln_id }] query = { 'scanID': scan_results_id, 'filters': vuln_filter, 'tool': 'vulndetails', 'type': 'vuln', 'startOffset': page, # Lower bound for the results list (must be specified) 'endOffset': page + limit # Upper bound for the results list (must be specified) } analysis = get_analysis(query, scan_results_id) if not analysis or 'response' not in analysis: return_error('Error: Could not get vulnerability analysis') results = analysis['response']['results'] if not results or len(results) == 0: return_error('Error: Vulnerability not found in the scan results') vuln_response = get_vulnerability(vuln_id) if not vuln_response or 'response' not in vuln_response: return_message('Vulnerability not found') vuln = vuln_response['response'] vuln['severity'] = results[0]['severity'] # The vulnerability severity is the same in all the results hosts = get_vulnerability_hosts_from_analysis(results) cves = None cves_output = [] # type: List[dict] if vuln.get('xrefs'): # Extract CVE cve_filter = list(filter(lambda x: x.strip().startswith('CVE'), vuln['xrefs'].split(','))) if cve_filter and len(cve_filter) > 0: cves = list(map(lambda c: c.replace('CVE:', '').strip(), cve_filter)) cves_output += map(lambda c: { 'ID': c }, cves) mapped_vuln = { 'ID': vuln['id'], 'Name': vuln['name'], 'Description': vuln['description'], 'Type': vuln['type'], 'Severity': vuln['severity'].get('name'), 'Synopsis': vuln['synopsis'], 'Solution': vuln['solution'] } vuln_info = { 'Published': timestamp_to_utc(vuln['vulnPubDate']), 'CPE': vuln['cpe'], 'CVE': cves } exploit_info = { 'ExploitAvailable': vuln['exploitAvailable'], 'ExploitEase': vuln['exploitEase'] } risk_info = { 'RiskFactor': vuln['riskFactor'], 'CVSSBaseScore': vuln['baseScore'], 'CVSSTemporalScore': vuln['temporalScore'], 'CVSSVector': vuln['cvssVector'] } plugin_details = { 'Family': vuln['family'].get('name'), 'Published': timestamp_to_utc(vuln['pluginPubDate']), 'Modified': timestamp_to_utc(vuln['pluginModDate']), 'CheckType': vuln['checkType'] } hr = '## Vulnerability: {} ({})\n'.format(mapped_vuln['Name'], mapped_vuln['ID']) hr += '### Synopsis\n{}\n### Description\n{}\n### Solution\n{}\n'.format( mapped_vuln['Synopsis'], mapped_vuln['Description'], mapped_vuln['Solution']) hr += tableToMarkdown('Hosts', hosts, removeNull=True) hr += tableToMarkdown('Risk Information', risk_info, removeNull=True) hr += tableToMarkdown('Exploit Information', exploit_info, removeNull=True) hr += tableToMarkdown('Plugin Details', plugin_details, removeNull=True) hr += tableToMarkdown('Vulnerability Information', vuln_info, removeNull=True) mapped_vuln.update(vuln_info) mapped_vuln.update(exploit_info) mapped_vuln.update(risk_info) mapped_vuln['PluginDetails'] = plugin_details mapped_vuln['Host'] = hosts scan_result = { 'ID': scan_results_id, 'Vulnerability': mapped_vuln, } context = {} context['TenableSC.ScanResults.Vulnerability(val.ID===obj.ID)'] = createContext(scan_result['Vulnerability'], removeNull=True) if len(cves_output) > 0: context['CVE(val.ID===obj.ID)'] = createContext(cves_output) demisto.results({ 'Type': entryTypes['note'], 'Contents': vuln_response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': hr, 'EntryContext': context })
23,830
def _capture_scm_auto_fields(conanfile, conanfile_dir, recipe_layout, ignore_dirty): """Deduce the values for the scm auto fields or functions assigned to 'url' or 'revision' and replace the conanfile.py contents. Returns a tuple with (scm_data, path_to_scm_local_directory)""" scm_data = get_scm_data(conanfile) if not scm_data: return None, None # Resolve SCMData in the user workspace (someone may want to access CVS or import some py) scm = SCM(scm_data, conanfile_dir, conanfile.output) captured = scm_data.capture_origin or scm_data.capture_revision if not captured: # We replace not only "auto" values, also evaluated functions (e.g from a python_require) _add_scmdata_to_conandata_yml(recipe_layout, scm_data) return scm_data, None if not scm.is_pristine() and not ignore_dirty: conanfile.output.warning("There are uncommitted changes, skipping the replacement of 'scm.url' and " "'scm.revision' auto fields. Use --ignore-dirty to force it. The 'conan " "upload' command will prevent uploading recipes with 'auto' values in these " "fields.") origin = scm.get_qualified_remote_url(remove_credentials=True) local_src_path = scm.get_local_path_to_url(origin) return scm_data, local_src_path if scm_data.url == "auto": origin = scm.get_qualified_remote_url(remove_credentials=True) if not origin: conanfile.output.warning( "Repo origin cannot be deduced, 'auto' fields won't be replaced." " 'conan upload' command will prevent uploading recipes with 'auto'" " values in these fields.") local_src_path = scm.get_local_path_to_url(origin) return scm_data, local_src_path if scm.is_local_repository(): conanfile.output.warning("Repo origin looks like a local path: %s" % origin) conanfile.output.success("Repo origin deduced by 'auto': %s" % origin) scm_data.url = origin if scm_data.revision == "auto": # If it is pristine by default we don't replace the "auto" unless forcing # This prevents the recipe to get uploaded pointing to an invalid commit scm_data.revision = scm.get_revision() conanfile.output.success("Revision deduced by 'auto': %s" % scm_data.revision) local_src_path = scm.get_local_path_to_url(scm_data.url) _add_scmdata_to_conandata_yml(recipe_layout, scm_data) return scm_data, local_src_path
def _capture_scm_auto_fields(conanfile, conanfile_dir, recipe_layout, ignore_dirty): """Deduce the values for the scm auto fields or functions assigned to 'url' or 'revision' and replace the conanfile.py contents. Returns a tuple with (scm_data, path_to_scm_local_directory)""" scm_data = get_scm_data(conanfile) if not scm_data: return None, None # Resolve SCMData in the user workspace (someone may want to access CVS or import some py) scm = SCM(scm_data, conanfile_dir, conanfile.output) captured = scm_data.capture_origin or scm_data.capture_revision if not captured: _add_scmdata_to_conandata_yml(recipe_layout, scm_data) return scm_data, None if not scm.is_pristine() and not ignore_dirty: conanfile.output.warning("There are uncommitted changes, skipping the replacement of 'scm.url' and " "'scm.revision' auto fields. Use --ignore-dirty to force it. The 'conan " "upload' command will prevent uploading recipes with 'auto' values in these " "fields.") origin = scm.get_qualified_remote_url(remove_credentials=True) local_src_path = scm.get_local_path_to_url(origin) return scm_data, local_src_path if scm_data.url == "auto": origin = scm.get_qualified_remote_url(remove_credentials=True) if not origin: conanfile.output.warning( "Repo origin cannot be deduced, 'auto' fields won't be replaced." " 'conan upload' command will prevent uploading recipes with 'auto'" " values in these fields.") local_src_path = scm.get_local_path_to_url(origin) return scm_data, local_src_path if scm.is_local_repository(): conanfile.output.warning("Repo origin looks like a local path: %s" % origin) conanfile.output.success("Repo origin deduced by 'auto': %s" % origin) scm_data.url = origin if scm_data.revision == "auto": # If it is pristine by default we don't replace the "auto" unless forcing # This prevents the recipe to get uploaded pointing to an invalid commit scm_data.revision = scm.get_revision() conanfile.output.success("Revision deduced by 'auto': %s" % scm_data.revision) local_src_path = scm.get_local_path_to_url(scm_data.url) _add_scmdata_to_conandata_yml(recipe_layout, scm_data) return scm_data, local_src_path
56,277
def export( w: Union[Shape, Workplane], fname: str, exportType: Optional[ExportLiterals] = None, tolerance: float = 0.1, angularTolerance: float = 0.1, opt=None, ): """ Export Workplane or Shape to file. Multiple entities are converted to compound. :param w: Shape or Workplane to be exported. :param fname: output filename. :param exportType: the exportFormat to use. If None will be inferred from the extension. Default: None. :param tolerance: the deflection tolerance, in model units. Default 0.1. :param angularTolerance: the angular tolerance, in radians. Default 0.1. :param opt: additional options passed to the specific exporter. Default None. """ shape: Shape f: IO if isinstance(w, Workplane): shape = toCompound(w) else: shape = w if exportType is None: t = fname.split(".")[-1].upper() if t in ExportTypes.__dict__.values(): exportType = cast(ExportLiterals, t) else: raise ValueError("Unknown extensions, specify export type explicitly") if exportType == ExportTypes.TJS: tess = shape.tessellate(tolerance, angularTolerance) mesher = JsonMesh() # add vertices for v in tess[0]: mesher.addVertex(v.x, v.y, v.z) # add triangles for ixs in tess[1]: mesher.addTriangleFace(*ixs) with open(fname, "w") as f: f.write(mesher.toJson()) elif exportType == ExportTypes.SVG: with open(fname, "w") as f: f.write(getSVG(shape, opt)) elif exportType == ExportTypes.AMF: tess = shape.tessellate(tolerance, angularTolerance) aw = AmfWriter(tess) with open(fname, "wb") as f: aw.writeAmf(f) elif exportType == ExportTypes.DXF: if isinstance(w, Workplane): exportDXF(w, fname) else: raise ValueError("Only Workplanes can be exported as DXF") elif exportType == ExportTypes.STEP: if opt: shape.exportStep(fname, **opt) else: shape.exportStep(fname) elif exportType == ExportTypes.STL: if hasascii := [ opt.get(k) for k in ["ascii", "ASCII"] if opt is not None and k in opt ]: shape.exportStl(fname, tolerance, angularTolerance, hasascii.pop()) else: shape.exportStl(fname, tolerance, angularTolerance) elif exportType == ExportTypes.VRML: shape.mesh(tolerance, angularTolerance) VrmlAPI.Write_s(shape.wrapped, fname) elif exportType == ExportTypes.VTP: exportVTP(shape, fname, tolerance, angularTolerance) else: raise ValueError("Unknown export type")
def export( w: Union[Shape, Workplane], fname: str, exportType: Optional[ExportLiterals] = None, tolerance: float = 0.1, angularTolerance: float = 0.1, opt=None, ): """ Export Workplane or Shape to file. Multiple entities are converted to compound. :param w: Shape or Workplane to be exported. :param fname: output filename. :param exportType: the exportFormat to use. If None will be inferred from the extension. Default: None. :param tolerance: the deflection tolerance, in model units. Default 0.1. :param angularTolerance: the angular tolerance, in radians. Default 0.1. :param opt: additional options passed to the specific exporter. Default None. """ shape: Shape f: IO if isinstance(w, Workplane): shape = toCompound(w) else: shape = w if exportType is None: t = fname.split(".")[-1].upper() if t in ExportTypes.__dict__.values(): exportType = cast(ExportLiterals, t) else: raise ValueError("Unknown extensions, specify export type explicitly") if exportType == ExportTypes.TJS: tess = shape.tessellate(tolerance, angularTolerance) mesher = JsonMesh() # add vertices for v in tess[0]: mesher.addVertex(v.x, v.y, v.z) # add triangles for ixs in tess[1]: mesher.addTriangleFace(*ixs) with open(fname, "w") as f: f.write(mesher.toJson()) elif exportType == ExportTypes.SVG: with open(fname, "w") as f: f.write(getSVG(shape, opt)) elif exportType == ExportTypes.AMF: tess = shape.tessellate(tolerance, angularTolerance) aw = AmfWriter(tess) with open(fname, "wb") as f: aw.writeAmf(f) elif exportType == ExportTypes.DXF: if isinstance(w, Workplane): exportDXF(w, fname) else: raise ValueError("Only Workplanes can be exported as DXF") elif exportType == ExportTypes.STEP: if opt: shape.exportStep(fname, **opt) else: shape.exportStep(fname) elif exportType == ExportTypes.STL: if opt: useascii = opt.get("ascii", False) or opt.get("ASCII", False) else: useascii = False shape.exportStl(fname, tolerance, angularTolerance, useascii) elif exportType == ExportTypes.VRML: shape.mesh(tolerance, angularTolerance) VrmlAPI.Write_s(shape.wrapped, fname) elif exportType == ExportTypes.VTP: exportVTP(shape, fname, tolerance, angularTolerance) else: raise ValueError("Unknown export type")
24,851
def my_func(self): # [missing-return-doc] """This is a docstring. Returns: bool: """ return False
def my_func(self): # [missing-return-doc] """warn_partial_google_returns_type Returns: bool: """ return False
7,867
def test_get_atoms(res): """Tests evaluating single nuclide concentration.""" t, n = res.get_atoms("1", "Xe135") t_ref = np.array([0.0, 1296000.0, 2592000.0, 3888000.0]) n_ref = np.array( [6.67473282e+08, 3.76986925e+14, 3.68587383e+14, 3.91338675e+14]) np.testing.assert_allclose(t, t_ref) np.testing.assert_allclose(n, n_ref) # Check alternate units volume = res[0].volume["1"] t_days, n_cm3 = res.get_atoms("1", "Xe135", nuc_units="atoms/cm^3", time_units="d") assert t_days == pytest.approx(t_ref / (60 * 60 * 24)) assert n_cm3 == pytest.approx(n_ref / volume) _t, n_bcm = res.get_atoms("1", "Xe135", nuc_units="atoms/b/cm") assert n_bcm == pytest.approx(n_cm3 * 1e-24)
def test_get_atoms(res): """Tests evaluating single nuclide concentration.""" t, n = res.get_atoms("1", "Xe135") t_ref = np.array([0.0, 1296000.0, 2592000.0, 3888000.0]) n_ref = np.array( [6.67473282e+08, 3.76986925e+14, 3.68587383e+14, 3.91338675e+14]) np.testing.assert_allclose(t, t_ref) np.testing.assert_allclose(n, n_ref) # Check alternate units volume = res[0].volume["1"] t_days, n_cm3 = res.get_atoms("1", "Xe135", nuc_units="atom/cm3", time_units="d") assert t_days == pytest.approx(t_ref / (60 * 60 * 24)) assert n_cm3 == pytest.approx(n_ref / volume) _t, n_bcm = res.get_atoms("1", "Xe135", nuc_units="atoms/b/cm") assert n_bcm == pytest.approx(n_cm3 * 1e-24)
12,030
def recombine_regions( full_mesh_cube: Cube, region_cubes: Iterable[Cube], index_coord_name: AnyStr = "i_mesh_index", ) -> Cube: """ Put data from regional sub-meshes back onto the original full mesh. The result is a region_cube identical to 'full_mesh_cube', but with its data replaced by a combination of data from the provided 'region_cubes'. The result metadata, including name and units, are also replaced by those of the 'region_cubes' (which must all be the same). Args: * full_mesh_cube Describes the full mesh and mesh-location to which the region data refers, and acts as a template for the result. Must have a :class:`~iris.experimental.ugrid.mesh.Mesh`. * region_cubes Contain data on a subset of the 'full_mesh_cube' mesh locations. The region cubes do not need to have a mesh. There must be at least 1 of them, to determine the result phenomenon. Their shapes and dimension-coords must all match those of 'full_mesh_cube', except in the mesh dimension, which can have different sizes between the regions, and from the 'full_mesh_cube'. The mesh dimension of each region cube must have a 1-D coord named by 'index_coord_name'. Although these region index coords can vary in length, they must all have matching metadata (names, units and attributes), and must also match the coord of that name in the 'full_mesh_cube', if there is one. The ".points" values of the region index coords specify, for each datapoint, its location in the original mesh -- i.e. they are indices into the relevant mesh-location dimension. * index_coord_name Coord name of the index coords in each region cubes, containing the mesh location indices. Result: * result_cube An unstructured region_cube identical to 'full_mesh_cube', and with the same mesh and location, but with its data and ".metadata" replaced by that from the 'region_cubes'. Where regions overlap, the result data comes from the last-listed of the original region cubes which contain that location. Where no region contains a datapoint, it will be masked in the result. HINT: alternatively, values covered by no region can be taken from the original 'full_mesh_cube' data, if 'full_mesh_cube' is *also* passed as the first of the 'region_cubes'. """ if not region_cubes: raise ValueError("'region_cubes' must be non-empty.") mesh_dim = full_mesh_cube.mesh_dim() if mesh_dim is None: raise ValueError("'full_mesh_cube' has no \".mesh\".") # Check the basic required properties of the input. mesh_dim_coords = full_mesh_cube.coords( dim_coords=True, dimensions=(mesh_dim,) ) if not mesh_dim_coords: err = ( "'full_mesh_cube' has no dim-coord on the mesh dimension, " f"(dimension {mesh_dim})." ) raise ValueError(err) # # Perform consistency checks on all the region-cubes. # def metadata_no_varname(cube_or_coord): # Get a metadata object but omit any var_name. metadata = cube_or_coord.metadata fields = metadata._asdict() fields["var_name"] = None result = metadata.__class__(**fields) return result n_regions = len(region_cubes) n_dims = full_mesh_cube.ndim regioncube_metadata = None indexcoord_metadata = None for i_region, region_cube in enumerate(region_cubes): reg_cube_str = ( f'Region cube #{i_region}/{n_regions}, "{region_cube.name()}"' ) reg_ndims = region_cube.ndim # Check dimensionality. if reg_ndims != n_dims: err = ( f"{reg_cube_str} has {reg_ndims} dimensions, but " f"'full_mesh_cube' has {n_dims}." ) raise ValueError(err) # Get region_cube metadata, which will apply to the result.. region_cube_metadata = metadata_no_varname(region_cube) if regioncube_metadata is None: # Store the first region-cube metadata as a reference regioncube_metadata = region_cube_metadata elif region_cube_metadata != regioncube_metadata: # Check subsequent region-cubes metadata against the first. err = ( f"{reg_cube_str} has metadata {region_cube_metadata}, " "which does not match that of the first region region_cube, " f'"{region_cubes[0].name()}", ' f"which is {regioncube_metadata}." ) raise ValueError(err) # For each dim, check that coords match other regions, and full-cube. for i_dim in range(full_mesh_cube.ndim): if i_dim == mesh_dim: # mesh dim : look for index coords (by name). fulldim = full_mesh_cube.coords( name_or_coord=index_coord_name, dimensions=(i_dim,) ) regdim = region_cube.coords( name_or_coord=index_coord_name, dimensions=(i_dim,) ) else: # non-mesh dims : look for dim-coords (only) fulldim = full_mesh_cube.coords( dim_coords=True, dimensions=(i_dim,) ) regdim = region_cube.coords( dim_coords=True, dimensions=(i_dim,) ) if fulldim: (fulldim,) = fulldim full_dimname = fulldim.name() fulldim_metadata = metadata_no_varname(fulldim) if regdim: (regdim,) = regdim reg_dimname = regdim.name() regdim_metadata = metadata_no_varname(regdim) err = None # N.B. checks for mesh- and non-mesh-dims are different. if i_dim != mesh_dim: # i_dim == mesh_dim : checks for non-mesh dims. if fulldim and not regdim: err = ( f"{reg_cube_str} has no dim-coord for dimension " "{i_dim}, to match the 'full_mesh_cube' dimension " f'"{full_dimname}".' ) elif regdim and not fulldim: err = ( f'{reg_cube_str} has a dim-coord "{reg_dimname}" for ' f"dimension {i_dim}, but 'full_mesh_cube' has none." ) elif regdim != fulldim: err = ( f'{reg_cube_str} has a dim-coord "{reg_dimname}" for ' f"dimension {i_dim}, which does not match that " f"of 'full_mesh_cube', \"{full_dimname}\"." ) else: # i_dim == mesh_dim : different rules for this one if not regdim: # Must have an index coord on the mesh dimension err = ( f'{reg_cube_str} has no "{index_coord_name}" coord on ' f"the mesh dimension (dimension {mesh_dim})." ) elif fulldim and regdim_metadata != fulldim_metadata: # May *not* have full-cube index, but if so it must match err = ( f"{reg_cube_str} has an index coord " f'"{index_coord_name}" whose ".metadata" does not ' "match that on 'full_mesh_cube' : " f"{regdim_metadata} != {fulldim_metadata}." ) # At this point, we know we *have* an index coord, and it does not # conflict with the one on 'full_mesh_cube' (if any). # Now check for matches between the region cubes. if indexcoord_metadata is None: # Store first occurrence (from first region-cube) indexcoord_metadata = regdim_metadata elif regdim_metadata != indexcoord_metadata: # Compare subsequent occurences (from other region-cubes) err = ( f"{reg_cube_str} has an index coord " f'"{index_coord_name}" whose ".metadata" does not ' f"match that of the first region-cube : " f"{regdim_metadata} != {indexcoord_metadata}." ) if err: raise ValueError(err) # Use the mesh_dim to transpose inputs + outputs, if required, as it is # simpler for all the array operations to always have the mesh dim *last*. if mesh_dim == full_mesh_cube.ndim - 1: # Mesh dim is already the last one : no tranposes required untranspose_dims = None else: dim_range = np.arange(full_mesh_cube.ndim, dtype=int) # Transpose all inputs to mesh-last order. tranpose_dims = [i_dim for i_dim in dim_range if i_dim != mesh_dim] + [ mesh_dim ] # chop out mesh_dim + put it at the end. def transposed_copy(cube, dim_order): cube = cube.copy() cube.transpose() return cube full_mesh_cube = transposed_copy(full_mesh_cube, tranpose_dims) region_cubes = [ transposed_copy(region_cube, tranpose_dims) for region_cube in region_cubes ] # Also prepare for transforming the output back to the original order. untranspose_dims = dim_range.copy() # Neat trick to produce the reverse operation. untranspose_dims[tranpose_dims] = dim_range # # Here's the core operation.. # def fill_region(target, regiondata, regioninds): if not target.flags.writeable: # The initial input can be a section of a da.zeros(), which has no # real array "behind" it. This means that real arrays created in # memory are only chunk-sized, but it also means that 'target' may # not be writeable. So take a copy to fix that, where needed. target = target.copy() # N.B. Indices are basically 1D, but may have leading *1 dims for # alignment, to satisfy da.map_blocks assert all(size == 1 for size in regioninds.shape[:-1]) inds = regioninds.flatten() # Assign blocks with indexing on the last dim only. target[..., inds] = regiondata return target # Create an initially 'empty' (all-masked) dask array matching the input. # N.B. this does not use the full_mesh_cube.lazy_data() array, but only its # shape and dtype, since the data itself is not used in the calculation. # N.B. chunking matches the input cube, allowing performance control. input_data = full_mesh_cube.lazy_data() result_array = da.ma.masked_array( da.zeros( input_data.shape, dtype=input_data.dtype, chunks=input_data.chunksize, ), True, ) # Wrap this repeatedly with a lazy operation to assign each region. # It is done this way because we couldn't get map_blocks to correctly wrap # a function which does all regions in a single operation. # TODO: replace with a single-stage solution: Probably better, if possible. # Notes on resultant calculation properties: # 1. map_blocks is chunk-mapped, so it is parallelisable and space-saving # 2. However, fetching less than a whole chunk is not efficient for region_cube in region_cubes: # Lazy data array from the region cube datarr = region_cube.lazy_data() # Lazy indices from the mesh-dim coord. mesh_dimcoord = region_cube.coord( name_or_coord=index_coord_name, dimensions=region_cube.ndim - 1 ) indarr = mesh_dimcoord.lazy_points() # Extend indarr dimensions to align it with the 'target' array dims. assert indarr.ndim == 1 shape = (1,) * (region_cube.ndim - 1) + indarr.shape indarr = indarr.reshape(shape) # Apply the operation to paste from one region into the target. # N.B. replacing 'result_array' each time around the loop. result_array = da.map_blocks( fill_region, result_array, datarr, indarr, dtype=result_array.dtype, meta=np.ndarray, ) # Construct the result cube. result_cube = full_mesh_cube.copy() result_cube.data = result_array # Copy names, units + attributes from region data (N.B. but not var_name) result_cube.metadata = regioncube_metadata if untranspose_dims: # Re-order dims as in the original input. result_cube.transpose(untranspose_dims) return result_cube
def recombine_regions( full_mesh_cube: Cube, region_cubes: Iterable[Cube], index_coord_name: AnyStr = "i_mesh_index", ) -> Cube: """ Put data from regional sub-meshes back onto the original full mesh. The result is a region_cube identical to 'full_mesh_cube', but with its data replaced by a combination of data from the provided 'region_cubes'. The result metadata, including name and units, are also replaced by those of the 'region_cubes' (which must all be the same). Args: * full_mesh_cube Describes the full mesh and mesh-location to which the region data refers, and acts as a template for the result. Must have a :class:`~iris.experimental.ugrid.mesh.Mesh`. * region_cubes Contain data on a subset of the 'full_mesh_cube' mesh locations. The region cubes do not need to have a mesh. There must be at least 1 of them, to determine the result phenomenon. Their shapes and dimension-coords must all match those of 'full_mesh_cube', except in the mesh dimension, which can have different sizes between the regions, and from the 'full_mesh_cube'. The mesh dimension of each region cube must have a 1-D coord named by 'index_coord_name'. Although these region index coords can vary in length, they must all have matching metadata (names, units and attributes), and must also match the coord of that name in the 'full_mesh_cube', if there is one. The ".points" values of the region index coords specify, for each datapoint, its location in the original mesh -- i.e. they are indices into the relevant mesh-location dimension. * index_coord_name Coord name of the index coords in each region cubes, containing the mesh location indices. Result: * result_cube An unstructured region_cube identical to 'full_mesh_cube', and with the same mesh and location, but with its data and ".metadata" replaced by that from the 'region_cubes'. Where regions overlap, the result data comes from the last-listed of the original region cubes which contain that location. Where no region contains a datapoint, it will be masked in the result. HINT: alternatively, values covered by no region can be taken from the original 'full_mesh_cube' data, if 'full_mesh_cube' is *also* passed as the first of the 'region_cubes'. """ if not region_cubes: raise ValueError("'region_cubes' must be non-empty.") mesh_dim = full_mesh_cube.mesh_dim() if mesh_dim is None: raise ValueError("'full_mesh_cube' has no \".mesh\".") # Check the basic required properties of the input. mesh_dim_coords = full_mesh_cube.coords( dim_coords=True, dimensions=(mesh_dim,) ) if not mesh_dim_coords: err = ( "'full_mesh_cube' has no dim-coord on the mesh dimension, " f"(dimension {mesh_dim})." ) raise ValueError(err) # # Perform consistency checks on all the region-cubes. # def metadata_no_varname(cube_or_coord): # Get a metadata object but omit any var_name. metadata = cube_or_coord.metadata fields = metadata._asdict() fields["var_name"] = None result = metadata.__class__(**fields) return result n_regions = len(region_cubes) n_dims = full_mesh_cube.ndim regioncube_metadata = None indexcoord_metadata = None for i_region, region_cube in enumerate(region_cubes): reg_cube_str = ( f'Region cube #{i_region + 1}/{n_regions}, "{region_cube.name()}"' ) reg_ndims = region_cube.ndim # Check dimensionality. if reg_ndims != n_dims: err = ( f"{reg_cube_str} has {reg_ndims} dimensions, but " f"'full_mesh_cube' has {n_dims}." ) raise ValueError(err) # Get region_cube metadata, which will apply to the result.. region_cube_metadata = metadata_no_varname(region_cube) if regioncube_metadata is None: # Store the first region-cube metadata as a reference regioncube_metadata = region_cube_metadata elif region_cube_metadata != regioncube_metadata: # Check subsequent region-cubes metadata against the first. err = ( f"{reg_cube_str} has metadata {region_cube_metadata}, " "which does not match that of the first region region_cube, " f'"{region_cubes[0].name()}", ' f"which is {regioncube_metadata}." ) raise ValueError(err) # For each dim, check that coords match other regions, and full-cube. for i_dim in range(full_mesh_cube.ndim): if i_dim == mesh_dim: # mesh dim : look for index coords (by name). fulldim = full_mesh_cube.coords( name_or_coord=index_coord_name, dimensions=(i_dim,) ) regdim = region_cube.coords( name_or_coord=index_coord_name, dimensions=(i_dim,) ) else: # non-mesh dims : look for dim-coords (only) fulldim = full_mesh_cube.coords( dim_coords=True, dimensions=(i_dim,) ) regdim = region_cube.coords( dim_coords=True, dimensions=(i_dim,) ) if fulldim: (fulldim,) = fulldim full_dimname = fulldim.name() fulldim_metadata = metadata_no_varname(fulldim) if regdim: (regdim,) = regdim reg_dimname = regdim.name() regdim_metadata = metadata_no_varname(regdim) err = None # N.B. checks for mesh- and non-mesh-dims are different. if i_dim != mesh_dim: # i_dim == mesh_dim : checks for non-mesh dims. if fulldim and not regdim: err = ( f"{reg_cube_str} has no dim-coord for dimension " "{i_dim}, to match the 'full_mesh_cube' dimension " f'"{full_dimname}".' ) elif regdim and not fulldim: err = ( f'{reg_cube_str} has a dim-coord "{reg_dimname}" for ' f"dimension {i_dim}, but 'full_mesh_cube' has none." ) elif regdim != fulldim: err = ( f'{reg_cube_str} has a dim-coord "{reg_dimname}" for ' f"dimension {i_dim}, which does not match that " f"of 'full_mesh_cube', \"{full_dimname}\"." ) else: # i_dim == mesh_dim : different rules for this one if not regdim: # Must have an index coord on the mesh dimension err = ( f'{reg_cube_str} has no "{index_coord_name}" coord on ' f"the mesh dimension (dimension {mesh_dim})." ) elif fulldim and regdim_metadata != fulldim_metadata: # May *not* have full-cube index, but if so it must match err = ( f"{reg_cube_str} has an index coord " f'"{index_coord_name}" whose ".metadata" does not ' "match that on 'full_mesh_cube' : " f"{regdim_metadata} != {fulldim_metadata}." ) # At this point, we know we *have* an index coord, and it does not # conflict with the one on 'full_mesh_cube' (if any). # Now check for matches between the region cubes. if indexcoord_metadata is None: # Store first occurrence (from first region-cube) indexcoord_metadata = regdim_metadata elif regdim_metadata != indexcoord_metadata: # Compare subsequent occurences (from other region-cubes) err = ( f"{reg_cube_str} has an index coord " f'"{index_coord_name}" whose ".metadata" does not ' f"match that of the first region-cube : " f"{regdim_metadata} != {indexcoord_metadata}." ) if err: raise ValueError(err) # Use the mesh_dim to transpose inputs + outputs, if required, as it is # simpler for all the array operations to always have the mesh dim *last*. if mesh_dim == full_mesh_cube.ndim - 1: # Mesh dim is already the last one : no tranposes required untranspose_dims = None else: dim_range = np.arange(full_mesh_cube.ndim, dtype=int) # Transpose all inputs to mesh-last order. tranpose_dims = [i_dim for i_dim in dim_range if i_dim != mesh_dim] + [ mesh_dim ] # chop out mesh_dim + put it at the end. def transposed_copy(cube, dim_order): cube = cube.copy() cube.transpose() return cube full_mesh_cube = transposed_copy(full_mesh_cube, tranpose_dims) region_cubes = [ transposed_copy(region_cube, tranpose_dims) for region_cube in region_cubes ] # Also prepare for transforming the output back to the original order. untranspose_dims = dim_range.copy() # Neat trick to produce the reverse operation. untranspose_dims[tranpose_dims] = dim_range # # Here's the core operation.. # def fill_region(target, regiondata, regioninds): if not target.flags.writeable: # The initial input can be a section of a da.zeros(), which has no # real array "behind" it. This means that real arrays created in # memory are only chunk-sized, but it also means that 'target' may # not be writeable. So take a copy to fix that, where needed. target = target.copy() # N.B. Indices are basically 1D, but may have leading *1 dims for # alignment, to satisfy da.map_blocks assert all(size == 1 for size in regioninds.shape[:-1]) inds = regioninds.flatten() # Assign blocks with indexing on the last dim only. target[..., inds] = regiondata return target # Create an initially 'empty' (all-masked) dask array matching the input. # N.B. this does not use the full_mesh_cube.lazy_data() array, but only its # shape and dtype, since the data itself is not used in the calculation. # N.B. chunking matches the input cube, allowing performance control. input_data = full_mesh_cube.lazy_data() result_array = da.ma.masked_array( da.zeros( input_data.shape, dtype=input_data.dtype, chunks=input_data.chunksize, ), True, ) # Wrap this repeatedly with a lazy operation to assign each region. # It is done this way because we couldn't get map_blocks to correctly wrap # a function which does all regions in a single operation. # TODO: replace with a single-stage solution: Probably better, if possible. # Notes on resultant calculation properties: # 1. map_blocks is chunk-mapped, so it is parallelisable and space-saving # 2. However, fetching less than a whole chunk is not efficient for region_cube in region_cubes: # Lazy data array from the region cube datarr = region_cube.lazy_data() # Lazy indices from the mesh-dim coord. mesh_dimcoord = region_cube.coord( name_or_coord=index_coord_name, dimensions=region_cube.ndim - 1 ) indarr = mesh_dimcoord.lazy_points() # Extend indarr dimensions to align it with the 'target' array dims. assert indarr.ndim == 1 shape = (1,) * (region_cube.ndim - 1) + indarr.shape indarr = indarr.reshape(shape) # Apply the operation to paste from one region into the target. # N.B. replacing 'result_array' each time around the loop. result_array = da.map_blocks( fill_region, result_array, datarr, indarr, dtype=result_array.dtype, meta=np.ndarray, ) # Construct the result cube. result_cube = full_mesh_cube.copy() result_cube.data = result_array # Copy names, units + attributes from region data (N.B. but not var_name) result_cube.metadata = regioncube_metadata if untranspose_dims: # Re-order dims as in the original input. result_cube.transpose(untranspose_dims) return result_cube
22,389
def lint_inputs(tool_xml, lint_ctx): """Lint parameters in a tool's inputs block.""" datasource = is_datasource(tool_xml) inputs = tool_xml.findall("./inputs//param") num_inputs = 0 for param in inputs: num_inputs += 1 param_attrib = param.attrib has_errors = False if "type" not in param_attrib: lint_ctx.error("Found param input with no type specified.") has_errors = True if "name" not in param_attrib and "argument" not in param_attrib: lint_ctx.error("Found param input with no name specified.") has_errors = True if has_errors: continue param_type = param_attrib["type"] param_name = _parse_name(param_attrib.get("name"), param_attrib.get("argument")) if not is_valid_cheetah_placeholder(param_name): lint_ctx.warn("Param input [%s] is not a valid Cheetah placeholder.", param_name) if param_type == "data": if "format" not in param_attrib: lint_ctx.warn("Param input [%s] with no format specified - 'data' format will be assumed.", param_name) elif param_type == "select": dynamic_options = param.get("dynamic_options", None) if dynamic_options is None: dynamic_options = param.find("options") select_options = param.findall('./option') if any(['value' not in option.attrib for option in select_options]): lint_ctx.error("Select [%s] has option without value", param_name) if dynamic_options is None and len(select_options) == 0: message = "No options defined for select [%s]" % param_name lint_ctx.warn(message) if param_attrib["display"] == "radio": if param_attrib["optional"] == "true": lint_ctx.error('Select [%s] display="radio" is incompatible with optional="true"', param_name) if param_attrib["multiple"] == "true": lint_ctx.error('Select [%s] display="radio" is incompatible with multiple="true"', param_name) # TODO: Validate type, much more... conditional_selects = tool_xml.findall("./inputs//conditional") for conditional in conditional_selects: conditional_name = conditional.get('name') if not conditional_name: lint_ctx.error("Conditional without a name") if conditional.get("value_from"): # Probably only the upload tool use this, no children elements continue first_param = conditional.find("param") if first_param is None: lint_ctx.error("Conditional '%s' has no child <param>" % conditional_name) continue first_param_type = first_param.get('type') if first_param_type not in ['select', 'boolean']: lint_ctx.warn("Conditional '%s' first param should have type=\"select\" /> or type=\"boolean\"" % conditional_name) continue if first_param_type == 'select': select_options = _find_with_attribute(first_param, 'option', 'value') option_ids = [option.get('value') for option in select_options] else: # boolean option_ids = [ first_param.get('truevalue', 'true'), first_param.get('falsevalue', 'false') ] if string_as_bool(first_param.get('optional', False)): lint_ctx.warn("Conditional test parameter cannot be optional") whens = conditional.findall('./when') if any('value' not in when.attrib for when in whens): lint_ctx.error("When without value") when_ids = [w.get('value') for w in whens] for option_id in option_ids: if option_id not in when_ids: lint_ctx.warn(f"No <when /> block found for {first_param_type} option '{option_id}' inside conditional '{conditional_name}'") for when_id in when_ids: if when_id not in option_ids: if first_param_type == 'select': lint_ctx.warn(f"No <option /> found for when block '{when_id}' inside conditional '{conditional_name}'") else: lint_ctx.warn(f"No truevalue/falsevalue found for when block '{when_id}' inside conditional '{conditional_name}'") if datasource: for datasource_tag in ('display', 'uihints'): if not any([param.tag == datasource_tag for param in inputs]): lint_ctx.info("%s tag usually present in data sources" % datasource_tag) if num_inputs: lint_ctx.info("Found %d input parameters.", num_inputs) else: if datasource: lint_ctx.info("No input parameters, OK for data sources") else: lint_ctx.warn("Found no input parameters.")
def lint_inputs(tool_xml, lint_ctx): """Lint parameters in a tool's inputs block.""" datasource = is_datasource(tool_xml) inputs = tool_xml.findall("./inputs//param") num_inputs = 0 for param in inputs: num_inputs += 1 param_attrib = param.attrib has_errors = False if "type" not in param_attrib: lint_ctx.error("Found param input with no type specified.") has_errors = True if "name" not in param_attrib and "argument" not in param_attrib: lint_ctx.error("Found param input with no name specified.") has_errors = True if has_errors: continue param_type = param_attrib["type"] param_name = _parse_name(param_attrib.get("name"), param_attrib.get("argument")) if not is_valid_cheetah_placeholder(param_name): lint_ctx.warn("Param input [%s] is not a valid Cheetah placeholder.", param_name) if param_type == "data": if "format" not in param_attrib: lint_ctx.warn("Param input [%s] with no format specified - 'data' format will be assumed.", param_name) elif param_type == "select": dynamic_options = param.get("dynamic_options", None) if dynamic_options is None: dynamic_options = param.find("options") select_options = param.findall('./option') if any(['value' not in option.attrib for option in select_options]): lint_ctx.error("Select [%s] has option without value", param_name) if dynamic_options is None and len(select_options) == 0: message = "No options defined for select [%s]" % param_name lint_ctx.warn(message) if param_attrib.get("display", "checkboxes") == "radio": if param_attrib["optional"] == "true": lint_ctx.error('Select [%s] display="radio" is incompatible with optional="true"', param_name) if param_attrib["multiple"] == "true": lint_ctx.error('Select [%s] display="radio" is incompatible with multiple="true"', param_name) # TODO: Validate type, much more... conditional_selects = tool_xml.findall("./inputs//conditional") for conditional in conditional_selects: conditional_name = conditional.get('name') if not conditional_name: lint_ctx.error("Conditional without a name") if conditional.get("value_from"): # Probably only the upload tool use this, no children elements continue first_param = conditional.find("param") if first_param is None: lint_ctx.error("Conditional '%s' has no child <param>" % conditional_name) continue first_param_type = first_param.get('type') if first_param_type not in ['select', 'boolean']: lint_ctx.warn("Conditional '%s' first param should have type=\"select\" /> or type=\"boolean\"" % conditional_name) continue if first_param_type == 'select': select_options = _find_with_attribute(first_param, 'option', 'value') option_ids = [option.get('value') for option in select_options] else: # boolean option_ids = [ first_param.get('truevalue', 'true'), first_param.get('falsevalue', 'false') ] if string_as_bool(first_param.get('optional', False)): lint_ctx.warn("Conditional test parameter cannot be optional") whens = conditional.findall('./when') if any('value' not in when.attrib for when in whens): lint_ctx.error("When without value") when_ids = [w.get('value') for w in whens] for option_id in option_ids: if option_id not in when_ids: lint_ctx.warn(f"No <when /> block found for {first_param_type} option '{option_id}' inside conditional '{conditional_name}'") for when_id in when_ids: if when_id not in option_ids: if first_param_type == 'select': lint_ctx.warn(f"No <option /> found for when block '{when_id}' inside conditional '{conditional_name}'") else: lint_ctx.warn(f"No truevalue/falsevalue found for when block '{when_id}' inside conditional '{conditional_name}'") if datasource: for datasource_tag in ('display', 'uihints'): if not any([param.tag == datasource_tag for param in inputs]): lint_ctx.info("%s tag usually present in data sources" % datasource_tag) if num_inputs: lint_ctx.info("Found %d input parameters.", num_inputs) else: if datasource: lint_ctx.info("No input parameters, OK for data sources") else: lint_ctx.warn("Found no input parameters.")
1,342
def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. If True, for binary y_true, the score function is supposed to accpet 1d y_pred (i.e., probability of the positive class, shape ``(n_samples,)``). needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. If True, for binary y_true, the score function is supposed to accpet 1d y_pred (i.e., probability of the positive class or the decision function, shape ``(n_samples,)``). For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs)
def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. If True, for binary y_true, the score function is supposed to accept 1d y_pred (i.e., probability of the positive class, shape ``(n_samples,)``). needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. If True, for binary y_true, the score function is supposed to accpet 1d y_pred (i.e., probability of the positive class or the decision function, shape ``(n_samples,)``). For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs)
2,714
def inplace_swap_column(X, m, n): """ To swap two columns of a CSC/CSR matrix in-place. Parameters ---------- X : sparse matrix of shape (n_samples, n_features) Matrix whose two columns are to be swapped. It should be of CSR or CSC format. m : int Index of the column of X to be swapped. n : int Index of the column of X to be swapped. """ if m < 0: m += X.shape[1] if n < 0: n += X.shape[1] if isinstance(X, sp.csc_matrix): inplace_swap_row_csr(X, m, n) elif isinstance(X, sp.csr_matrix): inplace_swap_row_csc(X, m, n) else: _raise_typeerror(X)
def inplace_swap_column(X, m, n): """ Swap two columns of a CSC/CSR matrix in-place. Parameters ---------- X : sparse matrix of shape (n_samples, n_features) Matrix whose two columns are to be swapped. It should be of CSR or CSC format. m : int Index of the column of X to be swapped. n : int Index of the column of X to be swapped. """ if m < 0: m += X.shape[1] if n < 0: n += X.shape[1] if isinstance(X, sp.csc_matrix): inplace_swap_row_csr(X, m, n) elif isinstance(X, sp.csr_matrix): inplace_swap_row_csc(X, m, n) else: _raise_typeerror(X)
20,523
def get_parser(): # Initialize the parser parser = argparse.ArgumentParser( description=( "This function extracts the spinal cord centerline. Three methods are available: OptiC (automatic), " "Viewer (manual) and Fitseg (applied on segmented image). These functions output (i) a NIFTI file with " "labels corresponding to the discrete centerline, and (ii) a csv file containing the float (more precise) " "coordinates of the centerline in the RPI orientation. \n" "\n" "Reference: C Gros, B De Leener, et al. Automatic spinal cord localization, robust to MRI contrast using " "global curve optimization (2017). doi.org/10.1016/j.media.2017.12.001" ), formatter_class=SmartFormatter, add_help=None, prog=os.path.basename(__file__).strip(".py") ) mandatory = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatory.add_argument( '-i', metavar=Metavar.file, required=True, help="Input image. Example: ti.nii.gz" ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( "-h", "--help", action="help", help="Show this help message and exit." ) optional.add_argument( "-c", choices=['t1', 't2', 't2s', 'dwi'], help="Type of image contrast. Only with method=optic." ) optional.add_argument( "-method", choices=['optic', 'viewer', 'fitseg'], default='optic', help=("Method used for extracting the centerline.\n" " - optic: automatic spinal cord detection method\n" " - viewer: manual selection a few points followed by interpolation\n" " - fitseg: fit a regularized centerline on an already-existing cord segmentation. It will " "interpolate if slices are missing and extrapolate beyond the segmentation boundaries (i.e., every " "axial slice will exhibit a centerline pixel).") ) optional.add_argument( "-centerline-algo", choices=['polyfit', 'bspline', 'linear', 'nurbs'], default='bspline', help="Show this help message and exit." ) optional.add_argument( "-centerline-smooth", metavar=Metavar.int, type=int, default=30, help="Degree of smoothing for centerline fitting. Only for -centerline-algo {bspline, linear}." ) optional.add_argument( "-o", metavar=Metavar.file, help=("File name (without extension) for the centerline output files. By default, output file will be the " "input with suffix '_centerline'. Example: 'centerline_optic'") ) optional.add_argument( "-gap", metavar=Metavar.float, type=float, default=20.0, help="Gap in mm between manually selected points. Only with method=viewer." ) optional.add_argument( "-igt", metavar=Metavar.file, help="File name of ground-truth centerline or segmentation (binary nifti)." ) optional.add_argument( "-v", choices=['0', '1'], default='1', help="Verbose. 1: display on, 0: display off (default)" ) optional.add_argument( "-qc", metavar=Metavar.folder, action=ActionCreateFolder, help="The path where the quality control generated content will be saved." ) optional.add_argument( "-qc-dataset", metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the dataset the process was run on." ) optional.add_argument( "-qc-subject", metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the subject the process was run on." ) return parser
def get_parser(): # Initialize the parser parser = argparse.ArgumentParser( description=( "This function extracts the spinal cord centerline. Three methods are available: OptiC (automatic), " "Viewer (manual) and Fitseg (applied on segmented image). These functions output (i) a NIFTI file with " "labels corresponding to the discrete centerline, and (ii) a csv file containing the float (more precise) " "coordinates of the centerline in the RPI orientation. \n" "\n" "Reference: C Gros, B De Leener, et al. Automatic spinal cord localization, robust to MRI contrast using " "global curve optimization (2017). doi.org/10.1016/j.media.2017.12.001" ), formatter_class=SmartFormatter, add_help=None, prog=os.path.basename(__file__).strip(".py") ) mandatory = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatory.add_argument( '-i', metavar=Metavar.file, required=True, help="Input image. Example: ti.nii.gz" ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( "-h", "--help", action="help", help="Show this help message and exit." ) optional.add_argument( "-c", choices=['t1', 't2', 't2s', 'dwi'], help="Type of image contrast. Only with method=optic." ) optional.add_argument( "-method", choices=['optic', 'viewer', 'fitseg'], default='optic', help=("Method used for extracting the centerline.\n" " - optic: automatic spinal cord detection method\n" " - viewer: manual selection a few points followed by interpolation\n" " - fitseg: fit a regularized centerline on an already-existing cord segmentation. It will " "interpolate if slices are missing and extrapolate beyond the segmentation boundaries (i.e., every " "axial slice will exhibit a centerline pixel).") ) optional.add_argument( "-centerline-algo", choices=['polyfit', 'bspline', 'linear', 'nurbs'], default='bspline', help="Show this help message and exit." ) optional.add_argument( "-centerline-smooth", metavar=Metavar.int, type=int, default=30, help="Degree of smoothing for centerline fitting. Only for -centerline-algo {bspline, linear}." ) optional.add_argument( "-o", metavar=Metavar.file, help=("File name (without extension) for the centerline output files. By default, output file will be the " "input with suffix '_centerline'. Example: 'centerline_optic'") ) optional.add_argument( "-gap", metavar=Metavar.float, type=float, default=20.0, help="Gap in mm between manually selected points. Only with method=viewer." ) optional.add_argument( "-igt", metavar=Metavar.file, help="File name of ground-truth centerline or segmentation (binary nifti)." ) optional.add_argument( "-v", choices=['0', '1'], default='1', help="Verbose. 1: display on, 0: display off (default)" ) optional.add_argument( "-qc", metavar=Metavar.folder, action=ActionCreateFolder, help="The path where the quality control generated content will be saved." ) optional.add_argument( "-qc-dataset", metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the dataset the process was run on." ) optional.add_argument( "-qc-subject", help="If provided, this string will be mentioned in the QC report as the subject the process was run on." ) return parser
51,564
def merge(datasets, bounds=None, res=None, nodata=None, precision=7, indexes=None, method='first'): """Copy valid pixels from input files to an output file. All files must have the same number of bands, data type, and coordinate reference system. Input files are merged in their listed order using the reverse painter's algorithm. If the output file exists, its values will be overwritten by input values. Geospatial bounds and resolution of a new output file in the units of the input file coordinate reference system may be provided and are otherwise taken from the first input file. Parameters ---------- datasets: list of dataset objects opened in 'r' mode source datasets to be merged. bounds: tuple, optional Bounds of the output image (left, bottom, right, top). If not set, bounds are determined from bounds of input rasters. res: tuple, optional Output resolution in units of coordinate reference system. If not set, the resolution of the first raster is used. If a single value is passed, output pixels will be square. nodata: float, optional nodata value to use in output file. If not set, uses the nodata value in the first input raster. indexes : list of ints or a single int, optional bands to read and merge method : str or callable pre-defined or custom merging method callable must have signature (old_data, new_data, old_nodata, new_nodata) Returns ------- tuple Two elements: dest: numpy ndarray Contents of all input rasters in single array out_transform: affine.Affine() Information for mapping pixel coordinates in `dest` to another coordinate system """ first = datasets[0] first_res = first.res nodataval = first.nodatavals[0] dtype = first.dtypes[0] if method not in MERGE_METHODS and not callable(method): raise ValueError('Unknown method {0}, must be one of {1} or callable' .format(method, MERGE_METHODS)) # Determine output band count if indexes is None: output_count = first.count elif isinstance(indexes, int): output_count = 1 else: output_count = len(indexes) # Extent from option or extent of all inputs if bounds: dst_w, dst_s, dst_e, dst_n = bounds else: # scan input files xs = [] ys = [] for src in datasets: left, bottom, right, top = src.bounds xs.extend([left, right]) ys.extend([bottom, top]) dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys) logger.debug("Output bounds: %r", (dst_w, dst_s, dst_e, dst_n)) output_transform = Affine.translation(dst_w, dst_n) logger.debug("Output transform, before scaling: %r", output_transform) # Resolution/pixel size if not res: res = first_res elif not np.iterable(res): res = (res, res) elif len(res) == 1: res = (res[0], res[0]) output_transform *= Affine.scale(res[0], -res[1]) logger.debug("Output transform, after scaling: %r", output_transform) # Compute output array shape. We guarantee it will cover the output # bounds completely output_width = int(math.ceil((dst_e - dst_w) / res[0])) output_height = int(math.ceil((dst_n - dst_s) / res[1])) # Adjust bounds to fit dst_e, dst_s = output_transform * (output_width, output_height) logger.debug("Output width: %d, height: %d", output_width, output_height) logger.debug("Adjusted bounds: %r", (dst_w, dst_s, dst_e, dst_n)) # create destination array dest = np.zeros((output_count, output_height, output_width), dtype=dtype) if nodata is not None: nodataval = nodata logger.debug("Set nodataval: %r", nodataval) if nodataval is not None: # Only fill if the nodataval is within dtype's range inrange = False if np.dtype(dtype).kind in ('i', 'u'): info = np.iinfo(dtype) inrange = (info.min <= nodataval <= info.max) elif np.dtype(dtype).kind == 'f': info = np.finfo(dtype) if np.isnan(nodataval): inrange = True else: inrange = (info.min <= nodataval <= info.max) if inrange: dest.fill(nodataval) else: warnings.warn( "Input file's nodata value, %s, is beyond the valid " "range of its data type, %s. Consider overriding it " "using the --nodata option for better results." % ( nodataval, dtype)) else: nodataval = 0 if method == 'first': def copyto(old_data, new_data, old_nodata, new_nodata): mask = np.logical_and(old_nodata, ~new_nodata) old_data[mask] = new_data[mask] elif method == 'last': def copyto(old_data, new_data, old_nodata, new_nodata): mask = ~new_nodata old_data[mask] = new_data[mask] elif method == 'min': def copyto(old_data, new_data, old_nodata, new_nodata): mask = np.logical_and(~old_nodata, ~new_nodata) old_data[mask] = np.minimum(old_data[mask], new_data[mask]) mask = np.logical_and(old_nodata, ~new_nodata) old_data[mask] = new_data[mask] elif method == 'max': def copyto(old_data, new_data, old_nodata, new_nodata): mask = np.logical_and(~old_nodata, ~new_nodata) old_data[mask] = np.maximum(old_data[mask], new_data[mask]) mask = np.logical_and(old_nodata, ~new_nodata) old_data[mask] = new_data[mask] elif callable(method): copyto = method else: raise ValueError(method) for src in datasets: # Real World (tm) use of boundless reads. # This approach uses the maximum amount of memory to solve the # problem. Making it more efficient is a TODO. # 1. Compute spatial intersection of destination and source src_w, src_s, src_e, src_n = src.bounds int_w = src_w if src_w > dst_w else dst_w int_s = src_s if src_s > dst_s else dst_s int_e = src_e if src_e < dst_e else dst_e int_n = src_n if src_n < dst_n else dst_n # 2. Compute the source window src_window = windows.from_bounds( int_w, int_s, int_e, int_n, src.transform, precision=precision) logger.debug("Src %s window: %r", src.name, src_window) src_window = src_window.round_shape() # 3. Compute the destination window dst_window = windows.from_bounds( int_w, int_s, int_e, int_n, output_transform, precision=precision) # 4. Read data in source window into temp trows, tcols = ( int(round(dst_window.height)), int(round(dst_window.width))) temp_shape = (output_count, trows, tcols) temp = src.read(out_shape=temp_shape, window=src_window, boundless=False, masked=True, indexes=indexes) # 5. Copy elements of temp into dest roff, coff = ( int(round(dst_window.row_off)), int(round(dst_window.col_off))) region = dest[:, roff:roff + trows, coff:coff + tcols] if np.isnan(nodataval): region_nodata = np.isnan(region) temp_nodata = np.isnan(temp) else: region_nodata = region == nodataval temp_nodata = temp.mask copyto(region, temp, region_nodata, temp_nodata) return dest, output_transform
def merge(datasets, bounds=None, res=None, nodata=None, precision=7, indexes=None, method='first'): """Copy valid pixels from input files to an output file. All files must have the same number of bands, data type, and coordinate reference system. Input files are merged in their listed order using the reverse painter's algorithm. If the output file exists, its values will be overwritten by input values. Geospatial bounds and resolution of a new output file in the units of the input file coordinate reference system may be provided and are otherwise taken from the first input file. Parameters ---------- datasets: list of dataset objects opened in 'r' mode source datasets to be merged. bounds: tuple, optional Bounds of the output image (left, bottom, right, top). If not set, bounds are determined from bounds of input rasters. res: tuple, optional Output resolution in units of coordinate reference system. If not set, the resolution of the first raster is used. If a single value is passed, output pixels will be square. nodata: float, optional nodata value to use in output file. If not set, uses the nodata value in the first input raster. indexes : list of ints or a single int, optional bands to read and merge method : str or callable pre-defined or custom merging method callable must have signature function(old_data, new_data, old_nodata, new_nodata) Parameters ----------- old_data : array_like ... Returns ------- tuple Two elements: dest: numpy ndarray Contents of all input rasters in single array out_transform: affine.Affine() Information for mapping pixel coordinates in `dest` to another coordinate system """ first = datasets[0] first_res = first.res nodataval = first.nodatavals[0] dtype = first.dtypes[0] if method not in MERGE_METHODS and not callable(method): raise ValueError('Unknown method {0}, must be one of {1} or callable' .format(method, MERGE_METHODS)) # Determine output band count if indexes is None: output_count = first.count elif isinstance(indexes, int): output_count = 1 else: output_count = len(indexes) # Extent from option or extent of all inputs if bounds: dst_w, dst_s, dst_e, dst_n = bounds else: # scan input files xs = [] ys = [] for src in datasets: left, bottom, right, top = src.bounds xs.extend([left, right]) ys.extend([bottom, top]) dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys) logger.debug("Output bounds: %r", (dst_w, dst_s, dst_e, dst_n)) output_transform = Affine.translation(dst_w, dst_n) logger.debug("Output transform, before scaling: %r", output_transform) # Resolution/pixel size if not res: res = first_res elif not np.iterable(res): res = (res, res) elif len(res) == 1: res = (res[0], res[0]) output_transform *= Affine.scale(res[0], -res[1]) logger.debug("Output transform, after scaling: %r", output_transform) # Compute output array shape. We guarantee it will cover the output # bounds completely output_width = int(math.ceil((dst_e - dst_w) / res[0])) output_height = int(math.ceil((dst_n - dst_s) / res[1])) # Adjust bounds to fit dst_e, dst_s = output_transform * (output_width, output_height) logger.debug("Output width: %d, height: %d", output_width, output_height) logger.debug("Adjusted bounds: %r", (dst_w, dst_s, dst_e, dst_n)) # create destination array dest = np.zeros((output_count, output_height, output_width), dtype=dtype) if nodata is not None: nodataval = nodata logger.debug("Set nodataval: %r", nodataval) if nodataval is not None: # Only fill if the nodataval is within dtype's range inrange = False if np.dtype(dtype).kind in ('i', 'u'): info = np.iinfo(dtype) inrange = (info.min <= nodataval <= info.max) elif np.dtype(dtype).kind == 'f': info = np.finfo(dtype) if np.isnan(nodataval): inrange = True else: inrange = (info.min <= nodataval <= info.max) if inrange: dest.fill(nodataval) else: warnings.warn( "Input file's nodata value, %s, is beyond the valid " "range of its data type, %s. Consider overriding it " "using the --nodata option for better results." % ( nodataval, dtype)) else: nodataval = 0 if method == 'first': def copyto(old_data, new_data, old_nodata, new_nodata): mask = np.logical_and(old_nodata, ~new_nodata) old_data[mask] = new_data[mask] elif method == 'last': def copyto(old_data, new_data, old_nodata, new_nodata): mask = ~new_nodata old_data[mask] = new_data[mask] elif method == 'min': def copyto(old_data, new_data, old_nodata, new_nodata): mask = np.logical_and(~old_nodata, ~new_nodata) old_data[mask] = np.minimum(old_data[mask], new_data[mask]) mask = np.logical_and(old_nodata, ~new_nodata) old_data[mask] = new_data[mask] elif method == 'max': def copyto(old_data, new_data, old_nodata, new_nodata): mask = np.logical_and(~old_nodata, ~new_nodata) old_data[mask] = np.maximum(old_data[mask], new_data[mask]) mask = np.logical_and(old_nodata, ~new_nodata) old_data[mask] = new_data[mask] elif callable(method): copyto = method else: raise ValueError(method) for src in datasets: # Real World (tm) use of boundless reads. # This approach uses the maximum amount of memory to solve the # problem. Making it more efficient is a TODO. # 1. Compute spatial intersection of destination and source src_w, src_s, src_e, src_n = src.bounds int_w = src_w if src_w > dst_w else dst_w int_s = src_s if src_s > dst_s else dst_s int_e = src_e if src_e < dst_e else dst_e int_n = src_n if src_n < dst_n else dst_n # 2. Compute the source window src_window = windows.from_bounds( int_w, int_s, int_e, int_n, src.transform, precision=precision) logger.debug("Src %s window: %r", src.name, src_window) src_window = src_window.round_shape() # 3. Compute the destination window dst_window = windows.from_bounds( int_w, int_s, int_e, int_n, output_transform, precision=precision) # 4. Read data in source window into temp trows, tcols = ( int(round(dst_window.height)), int(round(dst_window.width))) temp_shape = (output_count, trows, tcols) temp = src.read(out_shape=temp_shape, window=src_window, boundless=False, masked=True, indexes=indexes) # 5. Copy elements of temp into dest roff, coff = ( int(round(dst_window.row_off)), int(round(dst_window.col_off))) region = dest[:, roff:roff + trows, coff:coff + tcols] if np.isnan(nodataval): region_nodata = np.isnan(region) temp_nodata = np.isnan(temp) else: region_nodata = region == nodataval temp_nodata = temp.mask copyto(region, temp, region_nodata, temp_nodata) return dest, output_transform
478
def form_session_handler(v, text, msg): """ The form session handler will use the inbound text to answer the next question in the open SQLXformsSession for the associated contact. If no session is open, the handler passes. If multiple sessions are open, they are all closed and an error message is displayed to the user. """ with critical_section_for_smsforms_sessions(v.owner_id): if toggles.ONE_PHONE_NUMBER_MULTIPLE_CONTACTS.enabled(v.domain): channel = get_channel_for_contact(v.owner_id, v.phone_number) running_session_info = XFormsSessionSynchronization.get_running_session_info_for_channel(channel) if running_session_info.session_id: session = SQLXFormsSession.by_session_id(running_session_info.session_id) if not session.session_is_open: # This should never happen. But if it does we should set the channel free # and act like there was no available session notify_error("The supposedly running session was not open and was released. " 'No known way for this to happen, so worth investigating.') XFormsSessionSynchronization.clear_stale_channel_claim(channel) session = None else: session = None else: multiple, session = get_single_open_session_or_close_multiple(v.domain, v.owner_id) if multiple: send_sms_to_verified_number(v, get_message(MSG_MULTIPLE_SESSIONS, v)) return True if session: session.phone_number = v.phone_number session.modified_time = datetime.utcnow() session.save() # fetch subevent pk to link inbound sms to try: subevent_id = MessagingSubEvent.objects.get(xforms_session_id=session.pk).pk except MessagingSubEvent.DoesNotExist: subevent_id = None # Metadata to be applied to the inbound message inbound_metadata = MessageMetadata( workflow=session.workflow, reminder_id=session.reminder_id, xforms_session_couch_id=session._id, messaging_subevent_id=subevent_id, ) add_msg_tags(msg, inbound_metadata) msg.save() try: answer_next_question(v, text, msg, session, subevent_id) except Exception: # Catch any touchforms errors log_sms_exception(msg) send_sms_to_verified_number(v, get_message(MSG_TOUCHFORMS_DOWN, v)) return True else: return False
def form_session_handler(v, text, msg): """ The form session handler will use the inbound text to answer the next question in the open SQLXformsSession for the associated contact. If no session is open, the handler passes. If multiple sessions are open, they are all closed and an error message is displayed to the user. """ with critical_section_for_smsforms_sessions(v.owner_id): if toggles.ONE_PHONE_NUMBER_MULTIPLE_CONTACTS.enabled(v.domain): channel = get_channel_for_contact(v.owner_id, v.phone_number) running_session_info = XFormsSessionSynchronization.get_running_session_info_for_channel(channel) if running_session_info.session_id: session = SQLXFormsSession.by_session_id(running_session_info.session_id) if not session.session_is_open: # This should never happen. But if it does we should set the channel free # and act like there was no available session notify_error("The supposedly running session was not open and was released. " 'No known way for this to happen, so worth investigating.') XFormsSessionSynchronization.clear_stale_channel_claim(channel) session = None else: session = None else: multiple, session = get_single_open_session_or_close_multiple(v.domain, v.owner_id) if multiple: send_sms_to_verified_number(v, get_message(MSG_MULTIPLE_SESSIONS, v)) return True if session: session.phone_number = v.phone_number session.modified_time = datetime.utcnow() session.save() # fetch subevent pk to link inbound sms to try: subevent_id = MessagingSubEvent.objects.values_list("id", flat=True).get(xforms_session_id=session.pk) except MessagingSubEvent.DoesNotExist: subevent_id = None # Metadata to be applied to the inbound message inbound_metadata = MessageMetadata( workflow=session.workflow, reminder_id=session.reminder_id, xforms_session_couch_id=session._id, messaging_subevent_id=subevent_id, ) add_msg_tags(msg, inbound_metadata) msg.save() try: answer_next_question(v, text, msg, session, subevent_id) except Exception: # Catch any touchforms errors log_sms_exception(msg) send_sms_to_verified_number(v, get_message(MSG_TOUCHFORMS_DOWN, v)) return True else: return False
30,344
def make_edit_request_for_an_object(obj_id, obj_type, params): # Remove items with empty values: params = {k: v for k, v in params.items() if v is not None} url_suffix = '/{0}/{1}?with=attributes,sources'.format(OBJ_DIRECTORY[obj_type], obj_id) if obj_type == 'indicator': url_suffix += ',score' res = tq_request('PUT', url_suffix, params) raw = data_to_demisto_format(res['data'], obj_type) entry_context = {CONTEXT_PATH[obj_type]: createContext(raw, removeNull=True)} readable_title = 'Successfully edited {0} with ID {1}'.format(obj_type, obj_id) readable = build_readable(readable_title, obj_type, raw) return_outputs(readable, entry_context, raw)
def make_edit_request_for_an_object(obj_id, obj_type, params): # Remove items with empty values. params = {k: v for k, v in params.items() if v is not None} url_suffix = '/{0}/{1}?with=attributes,sources'.format(OBJ_DIRECTORY[obj_type], obj_id) if obj_type == 'indicator': url_suffix += ',score' res = tq_request('PUT', url_suffix, params) raw = data_to_demisto_format(res['data'], obj_type) entry_context = {CONTEXT_PATH[obj_type]: createContext(raw, removeNull=True)} readable_title = 'Successfully edited {0} with ID {1}'.format(obj_type, obj_id) readable = build_readable(readable_title, obj_type, raw) return_outputs(readable, entry_context, raw)
31,865
def get_assignee(client: Client, args) -> str: return client.live_assign_get(args)
def get_assignee(client: Client, args) -> CommandResults: return client.live_assign_get(args)
30,639
def get_report_command(client: Client, args: dict) -> CommandResults: report_id = args.get('report_id') result = client.get_report_request(report_id) headers = ['ID', 'Title', 'Timestamp', 'Description', 'Severity', 'Link', 'IOCs_v2', 'Tags', 'Visibility'] ioc_contents = [] contents = { 'ID': result.get('id'), 'Timestamp': convert_unix_to_timestamp(result.get('timestamp')), 'Title': result.get('title'), 'Description': result.get('description'), 'Severity': result.get('severity'), 'Link': result.get('link'), 'Tags': result.get('tags'), 'Visibility': result.get('visibility') } context = { 'ID': result.get('id'), 'Timestamp': convert_unix_to_timestamp(result.get('timestamp')), 'Title': result.get('title'), 'Description': result.get('description'), 'Severity': result.get('severity'), 'Link': result.get('link'), 'Tags': result.get('tags'), 'IOCs': result.get('iocs_v2'), 'Visibility': result.get('visibility') } iocs = result.get('iocs_v2') for ioc in iocs: ioc_contents.append({ 'ID': ioc.get('id'), 'Match_type': ioc.get('match_type'), 'Values': ioc.get('values'), 'Field': ioc.get('field'), 'Link': ioc.get('link') }) readable_output = tableToMarkdown(f'Report "{report_id}" information', contents, headers, removeNull=True) ioc_output = tableToMarkdown(f'The IOCs for the report', ioc_contents, removeNull=True) results = CommandResults( outputs_prefix='CarbonBlackEEDR.Report', outputs_key_field='id', outputs=context, readable_output=readable_output + ioc_output, raw_response=result ) return results
def get_report_command(client: Client, args: dict) -> CommandResults: report_id = args.get('report_id') result = client.get_report_request(report_id) headers = ['ID', 'Title', 'Timestamp', 'Description', 'Severity', 'Link', 'IOCs_v2', 'Tags', 'Visibility'] ioc_contents = [] contents = { 'ID': result.get('id'), 'Timestamp': convert_unix_to_timestamp(result.get('timestamp')), 'Title': result.get('title'), 'Description': result.get('description'), 'Severity': result.get('severity'), 'Link': result.get('link'), 'Tags': result.get('tags'), 'Visibility': result.get('visibility') } context = { 'ID': result.get('id'), 'Timestamp': convert_unix_to_timestamp(result.get('timestamp')), 'Title': result.get('title'), 'Description': result.get('description'), 'Severity': result.get('severity'), 'Link': result.get('link'), 'Tags': result.get('tags'), 'IOCs': result.get('iocs_v2'), 'Visibility': result.get('visibility') } iocs = result.get('iocs_v2', []) for ioc in iocs: ioc_contents.append({ 'ID': ioc.get('id'), 'Match_type': ioc.get('match_type'), 'Values': ioc.get('values'), 'Field': ioc.get('field'), 'Link': ioc.get('link') }) readable_output = tableToMarkdown(f'Report "{report_id}" information', contents, headers, removeNull=True) ioc_output = tableToMarkdown(f'The IOCs for the report', ioc_contents, removeNull=True) results = CommandResults( outputs_prefix='CarbonBlackEEDR.Report', outputs_key_field='id', outputs=context, readable_output=readable_output + ioc_output, raw_response=result ) return results
32,403
def main() -> None: """main function, parses params and runs command_func functions :return: :rtype: """ params: Dict[str, Any] = demisto.params() args: Dict[str, Any] = demisto.args() verify_certificate = not params.get('insecure', False) SERVER_URL = params.get('serverUrl', '') + '/api/v2' proxy = params.get('proxy', False) demisto_command = demisto.command() demisto.debug(f'Command being called is {demisto_command}') try: headers: Dict = { 'api-key': demisto.params().get('credentials', {}).get('password'), 'User-Agent': 'Falcon Sandbox' } client = Client( base_url=SERVER_URL, verify=verify_certificate, headers=headers, proxy=proxy) command_func: Callable if demisto_command in ['test-module']: command_func = test_module elif demisto_command in ['cs-falcon-sandbox-search', 'crowdstrike-search']: command_func = crowdstrike_search_command elif demisto_command in ['cs-falcon-sandbox-scan', 'crowdstrike-scan', 'file']: command_func = crowdstrike_scan_command elif demisto_command in ['crowdstrike-get-environments', 'cs-falcon-sandbox-get-environments']: command_func = crowdstrike_get_environments_command elif demisto_command in ['cs-falcon-sandbox-get-screenshots', 'crowdstrike-get-screenshots']: command_func = crowdstrike_get_screenshots_command elif demisto_command in ['cs-falcon-sandbox-result', 'crowdstrike-result']: command_func = crowdstrike_result_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview']: command_func = crowdstrike_analysis_overview_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview-summary']: command_func = crowdstrike_analysis_overview_summary_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview-refresh']: command_func = crowdstrike_analysis_overview_refresh_command elif demisto_command in ['crowdstrike-submit-sample', 'cs-falcon-sandbox-submit-sample']: command_func = crowdstrike_submit_sample_command elif demisto_command in ['cs-falcon-sandbox-submit-url', 'crowdstrike-submit-url']: command_func = crowdstrike_submit_url_command elif demisto_command in ['cs-falcon-sandbox-sample-download']: command_func = crowdstrike_sample_download_command elif demisto_command in ['cs-falcon-sandbox-report-state']: command_func = crowdstrike_report_state_command else: raise NotImplementedError(f'Command not implemented: {demisto_command}') return_results(command_func(client, args)) except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto_command} command_func.\nError:\n{str(e)}')
def main() -> None: """main function, parses params and runs command_func functions :return: :rtype: """ params: Dict[str, Any] = demisto.params() args: Dict[str, Any] = demisto.args() verify_certificate = not params.get('insecure', False) server_url = params.get('serverUrl', '') + '/api/v2' proxy = params.get('proxy', False) demisto_command = demisto.command() demisto.debug(f'Command being called is {demisto_command}') try: headers: Dict = { 'api-key': demisto.params().get('credentials', {}).get('password'), 'User-Agent': 'Falcon Sandbox' } client = Client( base_url=SERVER_URL, verify=verify_certificate, headers=headers, proxy=proxy) command_func: Callable if demisto_command in ['test-module']: command_func = test_module elif demisto_command in ['cs-falcon-sandbox-search', 'crowdstrike-search']: command_func = crowdstrike_search_command elif demisto_command in ['cs-falcon-sandbox-scan', 'crowdstrike-scan', 'file']: command_func = crowdstrike_scan_command elif demisto_command in ['crowdstrike-get-environments', 'cs-falcon-sandbox-get-environments']: command_func = crowdstrike_get_environments_command elif demisto_command in ['cs-falcon-sandbox-get-screenshots', 'crowdstrike-get-screenshots']: command_func = crowdstrike_get_screenshots_command elif demisto_command in ['cs-falcon-sandbox-result', 'crowdstrike-result']: command_func = crowdstrike_result_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview']: command_func = crowdstrike_analysis_overview_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview-summary']: command_func = crowdstrike_analysis_overview_summary_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview-refresh']: command_func = crowdstrike_analysis_overview_refresh_command elif demisto_command in ['crowdstrike-submit-sample', 'cs-falcon-sandbox-submit-sample']: command_func = crowdstrike_submit_sample_command elif demisto_command in ['cs-falcon-sandbox-submit-url', 'crowdstrike-submit-url']: command_func = crowdstrike_submit_url_command elif demisto_command in ['cs-falcon-sandbox-sample-download']: command_func = crowdstrike_sample_download_command elif demisto_command in ['cs-falcon-sandbox-report-state']: command_func = crowdstrike_report_state_command else: raise NotImplementedError(f'Command not implemented: {demisto_command}') return_results(command_func(client, args)) except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto_command} command_func.\nError:\n{str(e)}')
20,522
def get_parser(): # Initialize the parser parser = argparse.ArgumentParser( description=( "This function extracts the spinal cord centerline. Three methods are available: OptiC (automatic), " "Viewer (manual) and Fitseg (applied on segmented image). These functions output (i) a NIFTI file with " "labels corresponding to the discrete centerline, and (ii) a csv file containing the float (more precise) " "coordinates of the centerline in the RPI orientation. \n" "\n" "Reference: C Gros, B De Leener, et al. Automatic spinal cord localization, robust to MRI contrast using " "global curve optimization (2017). doi.org/10.1016/j.media.2017.12.001" ), formatter_class=SmartFormatter, add_help=None, prog=os.path.basename(__file__).strip(".py") ) mandatory = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatory.add_argument( '-i', metavar=Metavar.file, required=True, help="Input image. Example: ti.nii.gz" ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( "-h", "--help", action="help", help="Show this help message and exit." ) optional.add_argument( "-c", choices=['t1', 't2', 't2s', 'dwi'], help="Type of image contrast. Only with method=optic." ) optional.add_argument( "-method", choices=['optic', 'viewer', 'fitseg'], default='optic', help=("Method used for extracting the centerline.\n" " - optic: automatic spinal cord detection method\n" " - viewer: manual selection a few points followed by interpolation\n" " - fitseg: fit a regularized centerline on an already-existing cord segmentation. It will " "interpolate if slices are missing and extrapolate beyond the segmentation boundaries (i.e., every " "axial slice will exhibit a centerline pixel).") ) optional.add_argument( "-centerline-algo", choices=['polyfit', 'bspline', 'linear', 'nurbs'], default='bspline', help="Show this help message and exit." ) optional.add_argument( "-centerline-smooth", metavar=Metavar.int, type=int, default=30, help="Degree of smoothing for centerline fitting. Only for -centerline-algo {bspline, linear}." ) optional.add_argument( "-o", metavar=Metavar.file, help=("File name (without extension) for the centerline output files. By default, output file will be the " "input with suffix '_centerline'. Example: 'centerline_optic'") ) optional.add_argument( "-gap", metavar=Metavar.float, type=float, default=20.0, help="Gap in mm between manually selected points. Only with method=viewer." ) optional.add_argument( "-igt", metavar=Metavar.file, help="File name of ground-truth centerline or segmentation (binary nifti)." ) optional.add_argument( "-v", choices=['0', '1'], default='1', help="Verbose. 1: display on, 0: display off (default)" ) optional.add_argument( "-qc", metavar=Metavar.folder, action=ActionCreateFolder, help="The path where the quality control generated content will be saved." ) optional.add_argument( "-qc-dataset", metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the dataset the process was run on." ) optional.add_argument( "-qc-subject", metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the subject the process was run on." ) return parser
def get_parser(): # Initialize the parser parser = argparse.ArgumentParser( description=( "This function extracts the spinal cord centerline. Three methods are available: OptiC (automatic), " "Viewer (manual) and Fitseg (applied on segmented image). These functions output (i) a NIFTI file with " "labels corresponding to the discrete centerline, and (ii) a csv file containing the float (more precise) " "coordinates of the centerline in the RPI orientation. \n" "\n" "Reference: C Gros, B De Leener, et al. Automatic spinal cord localization, robust to MRI contrast using " "global curve optimization (2017). doi.org/10.1016/j.media.2017.12.001" ), formatter_class=SmartFormatter, add_help=None, prog=os.path.basename(__file__).strip(".py") ) mandatory = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatory.add_argument( '-i', metavar=Metavar.file, required=True, help="Input image. Example: ti.nii.gz" ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( "-h", "--help", action="help", help="Show this help message and exit." ) optional.add_argument( "-c", choices=['t1', 't2', 't2s', 'dwi'], help="Type of image contrast. Only with method=optic." ) optional.add_argument( "-method", choices=['optic', 'viewer', 'fitseg'], default='optic', help=("Method used for extracting the centerline.\n" " - optic: automatic spinal cord detection method\n" " - viewer: manual selection a few points followed by interpolation\n" " - fitseg: fit a regularized centerline on an already-existing cord segmentation. It will " "interpolate if slices are missing and extrapolate beyond the segmentation boundaries (i.e., every " "axial slice will exhibit a centerline pixel).") ) optional.add_argument( "-centerline-algo", choices=['polyfit', 'bspline', 'linear', 'nurbs'], default='bspline', help='Algorithm for centerline fitting. Only relevant with -method fitseg' ) optional.add_argument( "-centerline-smooth", metavar=Metavar.int, type=int, default=30, help="Degree of smoothing for centerline fitting. Only for -centerline-algo {bspline, linear}." ) optional.add_argument( "-o", metavar=Metavar.file, help=("File name (without extension) for the centerline output files. By default, output file will be the " "input with suffix '_centerline'. Example: 'centerline_optic'") ) optional.add_argument( "-gap", metavar=Metavar.float, type=float, default=20.0, help="Gap in mm between manually selected points. Only with method=viewer." ) optional.add_argument( "-igt", metavar=Metavar.file, help="File name of ground-truth centerline or segmentation (binary nifti)." ) optional.add_argument( "-v", choices=['0', '1'], default='1', help="Verbose. 1: display on, 0: display off (default)" ) optional.add_argument( "-qc", metavar=Metavar.folder, action=ActionCreateFolder, help="The path where the quality control generated content will be saved." ) optional.add_argument( "-qc-dataset", metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the dataset the process was run on." ) optional.add_argument( "-qc-subject", metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the subject the process was run on." ) return parser
3,534
def prepare_build( project, version=None, commit=None, record=True, force=False, immutable=True, ): """ Prepare a build in a Celery task for project and version. If project has a ``build_queue``, execute the task on this build queue. If project has ``skip=True``, the build is not triggered. :param project: project's documentation to be built :param version: version of the project to be built. Default: ``project.get_default_version()`` :param commit: commit sha of the version required for sending build status reports :param record: whether or not record the build in a new Build object :param force: build the HTML documentation even if the files haven't changed :param immutable: whether or not create an immutable Celery signature :returns: Celery signature of update_docs_task and Build instance :rtype: tuple """ # Avoid circular import from readthedocs.builds.models import Build from readthedocs.projects.models import Project from readthedocs.projects.tasks import ( update_docs_task, send_external_build_status, send_notifications, ) build = None if not Project.objects.is_active(project): log.warning( 'Build not triggered because Project is not active: project=%s', project.slug, ) return (None, None) if not version: default_version = project.get_default_version() version = project.versions.get(slug=default_version) kwargs = { 'record': record, 'force': force, 'commit': commit, } if record: build = Build.objects.create( project=project, version=version, type='html', state=BUILD_STATE_TRIGGERED, success=True, commit=commit ) kwargs['build_pk'] = build.pk options = {} if project.build_queue: options['queue'] = project.build_queue # Set per-task time limit time_limit = DOCKER_LIMITS['time'] try: if project.container_time_limit: time_limit = int(project.container_time_limit) except ValueError: log.warning('Invalid time_limit for project: %s', project.slug) # Add 20% overhead to task, to ensure the build can timeout and the task # will cleanly finish. options['soft_time_limit'] = time_limit options['time_limit'] = int(time_limit * 1.2) if build and commit: # Send pending Build Status using Git Status API for External Builds. send_external_build_status( version_type=version.type, build_pk=build.id, commit=commit, status=BUILD_STATUS_PENDING ) if build and version.type != EXTERNAL: # Send Webhook notification for build triggered. send_notifications.delay(version.pk, build_pk=build.pk, email=False) if version.type == EXTERNAL: # External builds should be lower priority. # We only support [1,2] currently, so set it to 2 (higher number being higher priority) options['priority'] = 1 return ( update_docs_task.signature( args=(version.pk,), kwargs=kwargs, options=options, immutable=True, ), build, )
def prepare_build( project, version=None, commit=None, record=True, force=False, immutable=True, ): """ Prepare a build in a Celery task for project and version. If project has a ``build_queue``, execute the task on this build queue. If project has ``skip=True``, the build is not triggered. :param project: project's documentation to be built :param version: version of the project to be built. Default: ``project.get_default_version()`` :param commit: commit sha of the version required for sending build status reports :param record: whether or not record the build in a new Build object :param force: build the HTML documentation even if the files haven't changed :param immutable: whether or not create an immutable Celery signature :returns: Celery signature of update_docs_task and Build instance :rtype: tuple """ # Avoid circular import from readthedocs.builds.models import Build from readthedocs.projects.models import Project from readthedocs.projects.tasks import ( update_docs_task, send_external_build_status, send_notifications, ) build = None if not Project.objects.is_active(project): log.warning( 'Build not triggered because Project is not active: project=%s', project.slug, ) return (None, None) if not version: default_version = project.get_default_version() version = project.versions.get(slug=default_version) kwargs = { 'record': record, 'force': force, 'commit': commit, } if record: build = Build.objects.create( project=project, version=version, type='html', state=BUILD_STATE_TRIGGERED, success=True, commit=commit ) kwargs['build_pk'] = build.pk options = {} if project.build_queue: options['queue'] = project.build_queue # Set per-task time limit time_limit = DOCKER_LIMITS['time'] try: if project.container_time_limit: time_limit = int(project.container_time_limit) except ValueError: log.warning('Invalid time_limit for project: %s', project.slug) # Add 20% overhead to task, to ensure the build can timeout and the task # will cleanly finish. options['soft_time_limit'] = time_limit options['time_limit'] = int(time_limit * 1.2) if build and commit: # Send pending Build Status using Git Status API for External Builds. send_external_build_status( version_type=version.type, build_pk=build.id, commit=commit, status=BUILD_STATUS_PENDING ) if build and version.type != EXTERNAL: # Send Webhook notification for build triggered. send_notifications.delay(version.pk, build_pk=build.pk, email=False) if version.type == EXTERNAL: # External builds should be lower priority. # We only support [1,2] currently, so set it to 1 (higher number being higher priority) options['priority'] = 1 return ( update_docs_task.signature( args=(version.pk,), kwargs=kwargs, options=options, immutable=True, ), build, )
29,818
def get_flink_job_name(flink_job: FlinkJobDetails): return flink_job["name"].split(".", 2)[-1]
def get_flink_job_name(flink_job: FlinkJobDetails) -> str: return flink_job["name"].split(".", 2)[-1]
4,558
def test_check_second_level_input(): from nilearn.glm.second_level.second_level import _check_second_level_input with pytest.raises(ValueError, match="A second level model requires a list with at " "least two first level models or niimgs"): _check_second_level_input([FirstLevelModel()], pd.DataFrame()) with pytest.raises(ValueError, match="Model sub_1 at index 0 has not been fit yet"): _check_second_level_input([FirstLevelModel(subject_label="sub_{}".format(i)) for i in range(1,3)], pd.DataFrame()) with InTemporaryDirectory(): shapes, rk = [(7, 8, 9, 15)], 3 mask, fmri_data, design_matrices = generate_fake_fmri_data_and_design(shapes, rk) input_models = [FirstLevelModel(mask_img=mask).fit(fmri_data[0], design_matrices=design_matrices[0])] obj = lambda: None obj.results_ = "foo" obj.labels_ = "bar" with pytest.raises(ValueError, match=" object at idx 1 is <class 'function'> " "instead of FirstLevelModel object"): _check_second_level_input(input_models + [obj], pd.DataFrame()) with pytest.raises(ValueError, match="In case confounds are provided, first level " "objects need to provide the attribute subject_label"): _check_second_level_input(input_models * 2, pd.DataFrame(), confounds=pd.DataFrame()) with pytest.raises(ValueError, match="List of niimgs as second_level_input " "require a design matrix to be provided"): _check_second_level_input(fmri_data * 2, None) _check_second_level_input(fmri_data[0], pd.DataFrame()) with pytest.raises(ValueError, match=" object at idx 1 is <class 'int'> instead"): _check_second_level_input(["foo", 1], pd.DataFrame()) with pytest.raises(ValueError, match="second_level_input DataFrame must have columns " "subject_label, map_name and effects_map_path"): _check_second_level_input(pd.DataFrame(columns=["foo", "bar"]), pd.DataFrame()) with pytest.raises(ValueError, match="subject_label column must contain only strings"): _check_second_level_input(pd.DataFrame({"subject_label": [1, 2], "map_name": ["a", "b"], "effects_map_path": ["c", "d"]}), pd.DataFrame()) with pytest.raises(ValueError, match="List of niimgs as second_level_input " "require a design matrix to be provided"): _check_second_level_input("foo", None) with pytest.raises(ValueError, match="second_level_input must be a list of"): _check_second_level_input(1, None) with pytest.raises(ValueError, match="second_level_input must be a list"): _check_second_level_input(1, None, flm_object=False)
def test_check_second_level_input(): from nilearn.glm.second_level.second_level import _check_second_level_input with pytest.raises(ValueError, match="A second level model requires a list with at " "least two first level models or niimgs"): _check_second_level_input([FirstLevelModel()], pd.DataFrame()) with pytest.raises(ValueError, match="Model sub_1 at index 0 has not been fit yet"): _check_second_level_input([FirstLevelModel(subject_label="sub_{}".format(i)) for i in range(1, 3)], pd.DataFrame()) with InTemporaryDirectory(): shapes, rk = [(7, 8, 9, 15)], 3 mask, fmri_data, design_matrices = generate_fake_fmri_data_and_design(shapes, rk) input_models = [FirstLevelModel(mask_img=mask).fit(fmri_data[0], design_matrices=design_matrices[0])] obj = lambda: None obj.results_ = "foo" obj.labels_ = "bar" with pytest.raises(ValueError, match=" object at idx 1 is <class 'function'> " "instead of FirstLevelModel object"): _check_second_level_input(input_models + [obj], pd.DataFrame()) with pytest.raises(ValueError, match="In case confounds are provided, first level " "objects need to provide the attribute subject_label"): _check_second_level_input(input_models * 2, pd.DataFrame(), confounds=pd.DataFrame()) with pytest.raises(ValueError, match="List of niimgs as second_level_input " "require a design matrix to be provided"): _check_second_level_input(fmri_data * 2, None) _check_second_level_input(fmri_data[0], pd.DataFrame()) with pytest.raises(ValueError, match=" object at idx 1 is <class 'int'> instead"): _check_second_level_input(["foo", 1], pd.DataFrame()) with pytest.raises(ValueError, match="second_level_input DataFrame must have columns " "subject_label, map_name and effects_map_path"): _check_second_level_input(pd.DataFrame(columns=["foo", "bar"]), pd.DataFrame()) with pytest.raises(ValueError, match="subject_label column must contain only strings"): _check_second_level_input(pd.DataFrame({"subject_label": [1, 2], "map_name": ["a", "b"], "effects_map_path": ["c", "d"]}), pd.DataFrame()) with pytest.raises(ValueError, match="List of niimgs as second_level_input " "require a design matrix to be provided"): _check_second_level_input("foo", None) with pytest.raises(ValueError, match="second_level_input must be a list of"): _check_second_level_input(1, None) with pytest.raises(ValueError, match="second_level_input must be a list"): _check_second_level_input(1, None, flm_object=False)
47,986
def main(): all_passed = True index_file_paths = ( OMZ_ROOT / 'models/intel/index.md', OMZ_ROOT / 'models/public/index.md', OMZ_ROOT / 'demos/README.md', ) all_md_files = tuple(find_md_files()) def complain(message): nonlocal all_passed all_passed = False print(message, file=sys.stderr) index_child_md_links = {} for index_file_path in index_file_paths: if not index_file_path.exists(): complain(f'{index_file_path}: file not found') continue required_md_links = [] for md_file in all_md_files: if md_file.name == "README.md" and md_file.parent != index_file_path.parent: try: md_rel_path = md_file.relative_to(index_file_path.parent) except ValueError: continue md_intermediate_parents = list(md_rel_path.parents)[1:-1] # removed root and first parent dirs if not any((index_file_path.parent / parent_dir / 'README.md').exists() for parent_dir in md_intermediate_parents): required_md_links.append(md_file) index_child_md_links[index_file_path] = sorted(required_md_links) for md_path in sorted(all_md_files): referenced_md_files = set() md_path_rel = md_path.relative_to(OMZ_ROOT) doc_page = omzdocs.DocumentationPage(md_path.read_text(encoding='UTF-8')) # check local link validity for url in sorted([ref.url for ref in doc_page.external_references()]): try: components = urllib.parse.urlparse(url) except ValueError: complain(f'{md_path_rel}: invalid URL reference {url!r}') continue if components.scheme: # non-local URLs continue if components.netloc or components.path.startswith('/'): complain(f'{md_path_rel}: non-relative local URL reference "{url}"') continue if not components.path: # self-link continue target_path = (md_path.parent / urllib.request.url2pathname(components.path)).resolve() if OMZ_ROOT not in target_path.parents: complain(f'{md_path_rel}: URL reference "{url}" points outside the OMZ directory') continue if not target_path.is_file(): complain(f'{md_path_rel}: URL reference "{url}" target' ' does not exist or is not a file') continue if md_path in index_child_md_links: referenced_md_files.add(target_path) # check <omz_dir> link validity for link in sorted([link for link in doc_page.omz_references() if link.startswith('<omz_dir>')]): file_path = Path(link.replace('<omz_dir>', str(OMZ_ROOT))) try: file_relative_path = file_path.relative_to(OMZ_ROOT) except ValueError: complain(f'{md_path_rel}: invalid OMZ reference {file_path!r}') continue if str(file_relative_path) == md_path_rel: # self-link continue if not (file_path.is_file() or file_path.is_dir()): complain(f'{md_path_rel}: OMZ reference "{file_relative_path}" target' ' does not exist') # check for existence of links to README.md files of models and demos if md_path in index_child_md_links: for md_file in index_child_md_links[md_path]: if md_file not in referenced_md_files: complain(f"{md_path_rel}: {md_file.relative_to(OMZ_ROOT)} is not referenced") # check for HTML fragments that are unsupported by Doxygen for html_fragment in doc_page.html_fragments(): match = HTML_FRAGMENT_RE.match(html_fragment) if not match: complain(f'{md_path_rel}: cannot parse HTML fragment {html_fragment!r}') continue if match.group(1).lower() not in ALLOWED_HTML_ELEMENTS: complain(f'{md_path_rel}: unknown/disallowed HTML element in {html_fragment!r}') continue sys.exit(0 if all_passed else 1)
def main(): all_passed = True index_file_paths = ( OMZ_ROOT / 'models/intel/index.md', OMZ_ROOT / 'models/public/index.md', OMZ_ROOT / 'demos/README.md', ) all_md_files = tuple(find_md_files()) def complain(message): nonlocal all_passed all_passed = False print(message, file=sys.stderr) index_child_md_links = {} for index_file_path in index_file_paths: if not index_file_path.exists(): complain(f'{index_file_path}: file not found') continue required_md_links = [] for md_file in all_md_files: if md_file.name == "README.md" and md_file.parent != index_file_path.parent: try: md_rel_path = md_file.relative_to(index_file_path.parent) except ValueError: continue md_intermediate_parents = list(md_rel_path.parents)[1:-1] # removed root and first parent dirs if not any((index_file_path.parent / parent_dir / 'README.md').exists() for parent_dir in md_intermediate_parents): required_md_links.append(md_file) index_child_md_links[index_file_path] = sorted(required_md_links) for md_path in sorted(all_md_files): referenced_md_files = set() md_path_rel = md_path.relative_to(OMZ_ROOT) doc_page = omzdocs.DocumentationPage(md_path.read_text(encoding='UTF-8')) # check local link validity for url in sorted([ref.url for ref in doc_page.external_references()]): try: components = urllib.parse.urlparse(url) except ValueError: complain(f'{md_path_rel}: invalid URL reference {url!r}') continue if components.scheme: # non-local URLs continue if components.netloc or components.path.startswith('/'): complain(f'{md_path_rel}: non-relative local URL reference "{url}"') continue if not components.path: # self-link continue target_path = (md_path.parent / urllib.request.url2pathname(components.path)).resolve() if OMZ_ROOT not in target_path.parents: complain(f'{md_path_rel}: URL reference "{url}" points outside the OMZ directory') continue if not target_path.is_file(): complain(f'{md_path_rel}: URL reference "{url}" target' ' does not exist or is not a file') continue if md_path in index_child_md_links: referenced_md_files.add(target_path) # check <omz_dir> link validity for link in sorted([link for link in doc_page.omz_references() if link.startswith('<omz_dir>')]): file_path = Path(link.replace('<omz_dir>', str(OMZ_ROOT))) try: file_relative_path = file_path.relative_to(OMZ_ROOT) except ValueError: complain(f'{md_path_rel}: invalid OMZ reference {file_path!r}') continue if str(file_relative_path) == md_path_rel: # self-link continue if not file_path.exists(): complain(f'{md_path_rel}: OMZ reference "{file_relative_path}" target' ' does not exist') # check for existence of links to README.md files of models and demos if md_path in index_child_md_links: for md_file in index_child_md_links[md_path]: if md_file not in referenced_md_files: complain(f"{md_path_rel}: {md_file.relative_to(OMZ_ROOT)} is not referenced") # check for HTML fragments that are unsupported by Doxygen for html_fragment in doc_page.html_fragments(): match = HTML_FRAGMENT_RE.match(html_fragment) if not match: complain(f'{md_path_rel}: cannot parse HTML fragment {html_fragment!r}') continue if match.group(1).lower() not in ALLOWED_HTML_ELEMENTS: complain(f'{md_path_rel}: unknown/disallowed HTML element in {html_fragment!r}') continue sys.exit(0 if all_passed else 1)
55,638
def homography_warp( patch_src: torch.Tensor, src_homo_dst: torch.Tensor, dsize: Tuple[int, int], mode: str = 'bilinear', padding_mode: str = 'zeros', align_corners: bool = False, normalized_coordinates: bool = True, normalized_homography: bool = True, ) -> torch.Tensor: r"""Warp image patches or tensors by normalized 2D homographies. See :class:`~kornia.geometry.warp.HomographyWarper` for details. Args: patch_src: The image or tensor to warp. Should be from source of shape if homography normalized :math:`(N, C, H, W)`. if homography not normalized :math:`(B, C, H, W)` src_homo_dst: The homography or stack of homographies from destination to source of shape if homography normalized :math:`(N, 3, 3)` if homography not normalized :math:`(B, 3, 3)`. dsize: if homography normalized: The height and width of the image to warp. if homography not normalized: size of the output image (height, width). mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``. padding_mode: padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``. align_corners: interpolation flag. normalized_coordinates: Whether the homography assumes [-1, 1] normalized coordinates or not. normalized_homography: show is homography normalized. Return: Patch sampled at locations from source to destination. Example_1: >>> input = torch.rand(1, 3, 32, 32) >>> homography = torch.eye(3).view(1, 3, 3) >>> output = homography_warp(input, homography, (32, 32)) Example_2 >>> img = torch.rand(1, 4, 5, 6) >>> H = torch.eye(3)[None] >>> out = homography_warp(img, H, (4, 2), align_corners=True, normalized_homography=False) >>> print(out.shape) torch.Size([1, 4, 4, 2]) """ if normalized_homography: if not src_homo_dst.device == patch_src.device: raise TypeError( "Patch and homography must be on the same device. \ Got patch.device: {} src_H_dst.device: {}.".format( patch_src.device, src_homo_dst.device ) ) height, width = dsize grid = create_meshgrid(height, width, normalized_coordinates=normalized_coordinates) warped_grid = warp_grid(grid, src_homo_dst) return F.grid_sample(patch_src, warped_grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners) else: mode = 'bilinear' align_corners = True if not isinstance(patch_src, torch.Tensor): raise TypeError(f"Input src type is not a torch.Tensor. Got {type(patch_src)}") if not isinstance(src_homo_dst, torch.Tensor): raise TypeError(f"Input M type is not a torch.Tensor. Got {type(src_homo_dst)}") if not len(patch_src.shape) == 4: raise ValueError(f"Input src must be a BxCxHxW tensor. Got {patch_src.shape}") if not (len(src_homo_dst.shape) == 3 and src_homo_dst.shape[-2:] == (3, 3)): raise ValueError(f"Input M must be a Bx3x3 tensor. Got {src_homo_dst.shape}") B, _, H, W = patch_src.size() h_out, w_out = dsize # we normalize the 3x3 transformation matrix and convert to 3x4 dst_norm_trans_src_norm: torch.Tensor = normalize_homography(src_homo_dst, (H, W), (h_out, w_out)) # Bx3x3 src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm) # Bx3x3 # this piece of code substitutes F.affine_grid since it does not support 3x3 grid = ( create_meshgrid(h_out, w_out, normalized_coordinates=True, device=patch_src.device).to(patch_src.dtype).repeat(B, 1, 1, 1)) grid = transform_points(src_norm_trans_dst_norm[:, None, None], grid) return F.grid_sample(patch_src, grid, align_corners=align_corners, mode=mode, padding_mode=padding_mode)
def homography_warp( patch_src: torch.Tensor, src_homo_dst: torch.Tensor, dsize: Tuple[int, int], mode: str = 'bilinear', padding_mode: str = 'zeros', align_corners: bool = False, normalized_coordinates: bool = True, normalized_homography: bool = True, ) -> torch.Tensor: r"""Warp image patches or tensors by normalized 2D homographies. See :class:`~kornia.geometry.warp.HomographyWarper` for details. Args: patch_src: The image or tensor to warp. Should be from source of shape if homography normalized :math:`(N, C, H, W)`. if homography not normalized :math:`(B, C, H, W)` src_homo_dst: The homography or stack of homographies from destination to source of shape if homography normalized :math:`(N, 3, 3)` if homography not normalized :math:`(B, 3, 3)`. dsize: if homography normalized: The height and width of the image to warp. if homography not normalized: size of the output image (height, width). mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``. padding_mode: padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``. align_corners: interpolation flag. normalized_coordinates: Whether the homography assumes [-1, 1] normalized coordinates or not. normalized_homography: show is homography normalized. Return: Patch sampled at locations from source to destination. Example_1: >>> input = torch.rand(1, 3, 32, 32) >>> homography = torch.eye(3).view(1, 3, 3) >>> output = homography_warp(input, homography, (32, 32)) Example >>> img = torch.rand(1, 4, 5, 6) >>> H = torch.eye(3)[None] >>> out = homography_warp(img, H, (4, 2), align_corners=True, normalized_homography=False) >>> print(out.shape) torch.Size([1, 4, 4, 2]) """ if normalized_homography: if not src_homo_dst.device == patch_src.device: raise TypeError( "Patch and homography must be on the same device. \ Got patch.device: {} src_H_dst.device: {}.".format( patch_src.device, src_homo_dst.device ) ) height, width = dsize grid = create_meshgrid(height, width, normalized_coordinates=normalized_coordinates) warped_grid = warp_grid(grid, src_homo_dst) return F.grid_sample(patch_src, warped_grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners) else: mode = 'bilinear' align_corners = True if not isinstance(patch_src, torch.Tensor): raise TypeError(f"Input src type is not a torch.Tensor. Got {type(patch_src)}") if not isinstance(src_homo_dst, torch.Tensor): raise TypeError(f"Input M type is not a torch.Tensor. Got {type(src_homo_dst)}") if not len(patch_src.shape) == 4: raise ValueError(f"Input src must be a BxCxHxW tensor. Got {patch_src.shape}") if not (len(src_homo_dst.shape) == 3 and src_homo_dst.shape[-2:] == (3, 3)): raise ValueError(f"Input M must be a Bx3x3 tensor. Got {src_homo_dst.shape}") B, _, H, W = patch_src.size() h_out, w_out = dsize # we normalize the 3x3 transformation matrix and convert to 3x4 dst_norm_trans_src_norm: torch.Tensor = normalize_homography(src_homo_dst, (H, W), (h_out, w_out)) # Bx3x3 src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm) # Bx3x3 # this piece of code substitutes F.affine_grid since it does not support 3x3 grid = ( create_meshgrid(h_out, w_out, normalized_coordinates=True, device=patch_src.device).to(patch_src.dtype).repeat(B, 1, 1, 1)) grid = transform_points(src_norm_trans_dst_norm[:, None, None], grid) return F.grid_sample(patch_src, grid, align_corners=align_corners, mode=mode, padding_mode=padding_mode)
54,064
def add_random_edge(edge_index, p: float = 0.2, force_undirected: bool = False, num_nodes: Optional[Union[Tuple[int], int]] = None, training: bool = True) -> Tuple[Tensor, Tensor]: r"""Randomly adds edges of ratio :obj:`p` into the existing edges :obj:`edge_index`. The method returns (1) the retained :obj:`edge_index`, (2) the added edge indices. Args: edge_index (LongTensor): The edge indices. p (float, optional): Ratio of added edges to the existing edges. (default: :obj:`0.2`) force_undirected (bool, optional): If set to :obj:`True`, will either drop or keep both edges of an undirected edge. (default: :obj:`False`) num_nodes (int, Tuple[int], optional): The overall number of nodes, *i.e.* :obj:`max_val + 1`, or the number of source and destination nodes, *i.e.* :obj:`(max_src_val + 1, max_dst_val + 1)` of :attr:`edge_index`. (default: :obj:`None`) training (bool, optional): If set to :obj:`False`, this operation is a no-op. (default: :obj:`True`) :rtype: (:class:`LongTensor`, :class:`LongTensor`) Examples: >>> # Standard case >>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3], [1, 0, 2, 1, 3, 2, 0, 2, 1]]) >>> added_edges tensor([[2, 1, 3], [0, 2, 1]]) >>> # The returned graph is kept undirected >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... force_undirected=True) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3, 0, 2, 1], [1, 0, 2, 1, 3, 2, 0, 2, 1, 2, 1, 3]]) >>> added_edges tensor([[2, 1, 3, 0, 2, 1], [0, 2, 1, 2, 1, 3]]) >>> # For bipartite graphs >>> edge_index = torch.tensor([[0, 1, 2, 3, 4, 5], ... [2, 3, 1, 4, 2, 1]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... num_nodes=(6, 5)) >>> edge_index tensor([[0, 1, 2, 3, 4, 5, 3, 4, 1], [2, 3, 1, 4, 2, 1, 1, 3, 2]]) >>> added_edges tensor([[3, 4, 1], [1, 3, 2]]) """ if p < 0. or p > 1.: raise ValueError(f'Ratio of added edges has to be between 0 and 1 ' f'(got {p}') device = edge_index.device if not training or p == 0.0: edge_index_to_add = torch.tensor([], device=device).view(2, 0) return edge_index, edge_index_to_add num_nodes = (num_nodes, num_nodes) if not isinstance(num_nodes, tuple) else num_nodes num_src_nodes = num_nodes[0] or edge_index[0].max().item() + 1 num_dst_nodes = num_nodes[1] or edge_index[1].max().item() + 1 num_edges_to_add = round(edge_index.size(1) * p) row = torch.randint(0, num_src_nodes, size=(num_edges_to_add, )) col = torch.randint(0, num_dst_nodes, size=(num_edges_to_add, )) if force_undirected: edge_index_to_add = torch.stack( [torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)], dim=0).to(device) else: edge_index_to_add = torch.stack([row, col], dim=0).to(device) edge_index = torch.cat([edge_index, edge_index_to_add], dim=1) return edge_index, edge_index_to_add
def add_random_edge(edge_index, p: float = 0.2, force_undirected: bool = False, num_nodes: Optional[Union[Tuple[int], int]] = None, training: bool = True) -> Tuple[Tensor, Tensor]: r"""Randomly adds edges of ratio :obj:`p` into the existing edges :obj:`edge_index`. The method returns (1) the retained :obj:`edge_index`, (2) the added edge indices. Args: edge_index (LongTensor): The edge indices. p (float, optional): Ratio of added edges to the existing edges. (default: :obj:`0.2`) force_undirected (bool, optional): If set to :obj:`True` added edges will be undirected. (default: :obj:`False`) (default: :obj:`False`) num_nodes (int, Tuple[int], optional): The overall number of nodes, *i.e.* :obj:`max_val + 1`, or the number of source and destination nodes, *i.e.* :obj:`(max_src_val + 1, max_dst_val + 1)` of :attr:`edge_index`. (default: :obj:`None`) training (bool, optional): If set to :obj:`False`, this operation is a no-op. (default: :obj:`True`) :rtype: (:class:`LongTensor`, :class:`LongTensor`) Examples: >>> # Standard case >>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3], [1, 0, 2, 1, 3, 2, 0, 2, 1]]) >>> added_edges tensor([[2, 1, 3], [0, 2, 1]]) >>> # The returned graph is kept undirected >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... force_undirected=True) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3, 0, 2, 1], [1, 0, 2, 1, 3, 2, 0, 2, 1, 2, 1, 3]]) >>> added_edges tensor([[2, 1, 3, 0, 2, 1], [0, 2, 1, 2, 1, 3]]) >>> # For bipartite graphs >>> edge_index = torch.tensor([[0, 1, 2, 3, 4, 5], ... [2, 3, 1, 4, 2, 1]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... num_nodes=(6, 5)) >>> edge_index tensor([[0, 1, 2, 3, 4, 5, 3, 4, 1], [2, 3, 1, 4, 2, 1, 1, 3, 2]]) >>> added_edges tensor([[3, 4, 1], [1, 3, 2]]) """ if p < 0. or p > 1.: raise ValueError(f'Ratio of added edges has to be between 0 and 1 ' f'(got {p}') device = edge_index.device if not training or p == 0.0: edge_index_to_add = torch.tensor([], device=device).view(2, 0) return edge_index, edge_index_to_add num_nodes = (num_nodes, num_nodes) if not isinstance(num_nodes, tuple) else num_nodes num_src_nodes = num_nodes[0] or edge_index[0].max().item() + 1 num_dst_nodes = num_nodes[1] or edge_index[1].max().item() + 1 num_edges_to_add = round(edge_index.size(1) * p) row = torch.randint(0, num_src_nodes, size=(num_edges_to_add, )) col = torch.randint(0, num_dst_nodes, size=(num_edges_to_add, )) if force_undirected: edge_index_to_add = torch.stack( [torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)], dim=0).to(device) else: edge_index_to_add = torch.stack([row, col], dim=0).to(device) edge_index = torch.cat([edge_index, edge_index_to_add], dim=1) return edge_index, edge_index_to_add
46,590
def test_supported_chars() -> None: supported_chars = "abc123_/:-\\+.$%*@" c = OmegaConf.create({"dir1": "${copy:" + supported_chars + "}"}) OmegaConf.register_new_resolver("copy", lambda x: x) assert c.dir1 == supported_chars
def test_custom_resolver_param_supported_chars() -> None: supported_chars = "abc123_/:-\\+.$%*@" c = OmegaConf.create({"dir1": "${copy:" + supported_chars + "}"}) OmegaConf.register_new_resolver("copy", lambda x: x) assert c.dir1 == supported_chars
23,588
def dirindex(ghi, ghi_clearsky, dni_clearsky, zenith, times, pressure=101325., use_delta_kt_prime=True, temp_dew=None, min_cos_zenith=0.065, max_zenith=87): """ Determine DNI from GHI using the DIRINDEX model. The DIRINDEX model [1] modifies the DIRINT model implemented in ``pvlib.irradiance.dirint`` by taking into account information from a clear sky model. It is recommended that ``ghi_clearsky`` be calculated using the Ineichen clear sky model ``pvlib.clearsky.ineichen`` with ``perez_enhancement=True``. The pvlib implementation limits the clearness index to 1. Parameters ---------- ghi : array-like Global horizontal irradiance in W/m^2. ghi_clearsky : array-like Global horizontal irradiance from clear sky model, in W/m^2. dni_clearsky : array-like Direct normal irradiance from clear sky model, in W/m^2. zenith : array-like True (not refraction-corrected) zenith angles in decimal degrees. If Z is a vector it must be of the same size as all other vector inputs. Z must be >=0 and <=180. times : DatetimeIndex pressure : float or array-like, default 101325.0 The site pressure in Pascal. Pressure may be measured or an average pressure may be calculated from site altitude. use_delta_kt_prime : bool, default True If True, indicates that the stability index delta_kt_prime is included in the model. The stability index adjusts the estimated DNI in response to dynamics in the time series of GHI. It is recommended that delta_kt_prime is not used if the time between GHI points is 1.5 hours or greater. If use_delta_kt_prime=True, input data must be Series. temp_dew : None, float, or array-like, default None Surface dew point temperatures, in degrees C. Values of temp_dew may be numeric or NaN. Any single time period point with a temp_dew=NaN does not have dew point improvements applied. If temp_dew is not provided, then dew point improvements are not applied. min_cos_zenith : numeric, default 0.065 Minimum value of cos(zenith) to allow when calculating global clearness index `kt`. Equivalent to zenith = 86.273 degrees. max_zenith : numeric, default 87 Maximum value of zenith to allow in DNI calculation. DNI will be set to 0 for times with zenith values greater than `max_zenith`. Returns ------- dni : array-like The modeled direct normal irradiance in W/m^2. Notes ----- DIRINDEX model requires time series data (ie. one of the inputs must be a vector of length > 2). References ---------- [1] Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., & Vignola, F. (2002). A new operational model for satellite-derived irradiances: description and validation. Solar Energy, 73(5), 307-317. """ dni_dirint = dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew, min_cos_zenith=min_cos_zenith, max_zenith=max_zenith) dni_dirint_clearsky = dirint(ghi_clearsky, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew, min_cos_zenith=min_cos_zenith, max_zenith=max_zenith) dni_dirindex = dni_clearsky * dni_dirint / dni_dirint_clearsky dni_dirindex[dni_dirindex < 0] = 0. return dni_dirindex
def dirindex(ghi, ghi_clearsky, dni_clearsky, zenith, times, pressure=101325., use_delta_kt_prime=True, temp_dew=None, min_cos_zenith=0.065, max_zenith=87): """ Determine DNI from GHI using the DIRINDEX model. The DIRINDEX model [1] modifies the DIRINT model implemented in ``pvlib.irradiance.dirint`` by taking into account information from a clear sky model. It is recommended that ``ghi_clearsky`` be calculated using the Ineichen clear sky model :py:func:`pvlib.clearsky.ineichen` with ``perez_enhancement=True``. The pvlib implementation limits the clearness index to 1. Parameters ---------- ghi : array-like Global horizontal irradiance in W/m^2. ghi_clearsky : array-like Global horizontal irradiance from clear sky model, in W/m^2. dni_clearsky : array-like Direct normal irradiance from clear sky model, in W/m^2. zenith : array-like True (not refraction-corrected) zenith angles in decimal degrees. If Z is a vector it must be of the same size as all other vector inputs. Z must be >=0 and <=180. times : DatetimeIndex pressure : float or array-like, default 101325.0 The site pressure in Pascal. Pressure may be measured or an average pressure may be calculated from site altitude. use_delta_kt_prime : bool, default True If True, indicates that the stability index delta_kt_prime is included in the model. The stability index adjusts the estimated DNI in response to dynamics in the time series of GHI. It is recommended that delta_kt_prime is not used if the time between GHI points is 1.5 hours or greater. If use_delta_kt_prime=True, input data must be Series. temp_dew : None, float, or array-like, default None Surface dew point temperatures, in degrees C. Values of temp_dew may be numeric or NaN. Any single time period point with a temp_dew=NaN does not have dew point improvements applied. If temp_dew is not provided, then dew point improvements are not applied. min_cos_zenith : numeric, default 0.065 Minimum value of cos(zenith) to allow when calculating global clearness index `kt`. Equivalent to zenith = 86.273 degrees. max_zenith : numeric, default 87 Maximum value of zenith to allow in DNI calculation. DNI will be set to 0 for times with zenith values greater than `max_zenith`. Returns ------- dni : array-like The modeled direct normal irradiance in W/m^2. Notes ----- DIRINDEX model requires time series data (ie. one of the inputs must be a vector of length > 2). References ---------- [1] Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., & Vignola, F. (2002). A new operational model for satellite-derived irradiances: description and validation. Solar Energy, 73(5), 307-317. """ dni_dirint = dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew, min_cos_zenith=min_cos_zenith, max_zenith=max_zenith) dni_dirint_clearsky = dirint(ghi_clearsky, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew, min_cos_zenith=min_cos_zenith, max_zenith=max_zenith) dni_dirindex = dni_clearsky * dni_dirint / dni_dirint_clearsky dni_dirindex[dni_dirindex < 0] = 0. return dni_dirindex
3,368
def parse_sources(config, filter_appconnect=True): """ Parses the given sources in the config string (from JSON). """ if not config: return [] try: sources = json.loads(config) except Exception as e: raise InvalidSourcesError(f"{e}") try: jsonschema.validate(sources, SOURCES_SCHEMA) except jsonschema.ValidationError as e: raise InvalidSourcesError(f"{e}") # remove App Store Connect sources (we don't need them in Symbolicator) if filter_appconnect: filter(lambda src: src.get("type") != "AppStoreConnect", sources) ids = set() for source in sources: if is_internal_source_id(source["id"]): raise InvalidSourcesError('Source ids must not start with "sentry:"') if source["id"] in ids: raise InvalidSourcesError("Duplicate source id: {}".format(source["id"])) ids.add(source["id"]) return sources
def parse_sources(config, filter_appconnect=True): """ Parses the given sources in the config string (from JSON). """ if not config: return [] try: sources = json.loads(config) except Exception as e: raise InvalidSourcesError(f"{e}") try: jsonschema.validate(sources, SOURCES_SCHEMA) except jsonschema.ValidationError as e: raise InvalidSourcesError(f"{e}") # remove App Store Connect sources (we don't need them in Symbolicator) if filter_appconnect: filter(lambda src: src.get("type") != SYMBOL_SOURCE_TYPE_NAME, sources) ids = set() for source in sources: if is_internal_source_id(source["id"]): raise InvalidSourcesError('Source ids must not start with "sentry:"') if source["id"] in ids: raise InvalidSourcesError("Duplicate source id: {}".format(source["id"])) ids.add(source["id"]) return sources
29,875
def run_combiner(sample_paths: List[str], out_file: str, tmp_path: str, intervals: Optional[List[hl.utils.Interval]] = None, header: Optional[str] = None, sample_names: Optional[List[str]] = None, branch_factor: int = CombinerConfig.default_branch_factor, batch_size: int = CombinerConfig.default_batch_size, target_records: int = CombinerConfig.default_target_records, import_interval_size: Optional[int] = None, use_genome_default_intervals: bool = False, use_exome_default_intervals: bool = False, overwrite: bool = False, reference_genome: str = 'default', contig_recoding: Optional[Dict[str, str]] = None, key_by_locus_and_alleles: bool = False): """Run the Hail VCF combiner, performing a hierarchical merge to create a combined sparse matrix table. **Partitioning** The partitioning of input GVCFs is determined the four parameters below, one of which must be passed to this function: - `intervals` -- User-supplied intervals. - `import_interval_size` -- Use intervals of this uniform size across the genome. - `use_genome_default_intervals` -- Use intervals of typical uniform size for whole genome GVCFs. - `use_exome_default_intervals` -- Use intervals of typical uniform size for exome GVCFs. It is recommended that new users include either `use_genome_default_intervals` or `use_exome_default_intervals`. Parameters ---------- sample_paths : :obj:`list` of :obj:`str` Paths to individual GVCFs. out_file : :obj:`str` Path to final combined matrix table. tmp_path : :obj:`str` Path for intermediate output. intervals : list of :class:`.Interval` or None Partitioning with which to import GVCFs in first phase of combiner. header : :obj:`str` or None External header file to use as GVCF header for all inputs. If defined, `sample_names` must be defined as well. sample_names: list of :obj:`str` or None Sample names, to be used with `header`. branch_factor : :obj:`int` Combiner branch factor. batch_size : :obj:`int` Combiner batch size. target_records : :obj:`int` Target records per partition in each combiner phase after the first. import_interval_size : :obj:`int` or None The target interval size to partition the reference into intervals for importing GVCFs. use_genome_default_intervals : :obj:`bool` The input GVCFs are genomes, if this is false, they are assumed to be exomes. If `import_interval_size` is not None, this parameter is ignored. use_exome_default_intervals : :obj:`bool` The input GVCFs are genomes, if this is false, they are assumed to be exomes. If `import_interval_size` is not None, this parameter is ignored. overwrite : :obj:`bool` Overwrite output file, if it exists. reference_genome : :obj:`str` Reference genome for GVCF import. contig_recoding: :obj:`dict` of (:obj:`str`, :obj:`str`), optional Mapping from contig name in gVCFs to contig name the reference genome. All contigs must be present in the `reference_genome`, so this is useful for mapping differently-formatted data onto known references. key_by_locus_and_alleles : :obj:`bool` Key by both locus and alleles in the final output. Returns ------- None """ tmp_path += f'/combiner-temporary/{uuid.uuid4()}/' if header is not None: assert sample_names is not None assert len(sample_names) == len(sample_paths) n_partition_args = (int(intervals is not None) + int(import_interval_size is not None) + int(use_genome_default_intervals) + int(use_exome_default_intervals)) if n_partition_args == 0: raise ValueError("'run_combiner': require one argument from 'intervals', 'import_interval_size', " "'use_genome_default_intervals', or 'use_exome_default_intervals' to choose GVCF partitioning") if n_partition_args > 0: warning("'run_combiner': multiple colliding arguments found from 'intervals', 'import_interval_size', " "'use_genome_default_intervals', or 'use_exome_default_intervals'." "\n The argument found first in the list in this warning will be used, and others ignored.") if intervals is not None: info(f"Using {len(intervals)} user-supplied intervals as partitioning for GVCF import") elif import_interval_size is not None: intervals = calculate_even_genome_partitioning(reference_genome, import_interval_size) info(f"Using {len(intervals)} intervals with user-supplied size" f" {import_interval_size} as partitioning for GVCF import") elif use_genome_default_intervals: size = CombinerConfig.default_genome_interval_size intervals = calculate_even_genome_partitioning(reference_genome, size) info(f"Using {len(intervals)} intervals with default whole-genome size" f" {import_interval_size} as partitioning for GVCF import") elif use_exome_default_intervals: size = CombinerConfig.default_exome_interval_size intervals = calculate_even_genome_partitioning(reference_genome, size) info(f"Using {len(intervals)} intervals with default exome size" f" {import_interval_size} as partitioning for GVCF import") assert intervals is not None config = CombinerConfig(branch_factor=branch_factor, batch_size=batch_size, target_records=target_records) plan = config.plan(len(sample_paths)) files_to_merge = sample_paths n_phases = len(plan.phases) total_ops = len(files_to_merge) * n_phases total_work_done = 0 for phase_i, phase in enumerate(plan.phases): phase_i += 1 # used for info messages, 1-indexed for readability n_jobs = len(phase.jobs) merge_str = 'input GVCFs' if phase_i == 1 else 'intermediate sparse matrix tables' job_str = hl.utils.misc.plural('job', n_jobs) info(f"Starting phase {phase_i}/{n_phases}, merging {len(files_to_merge)} {merge_str} in {n_jobs} {job_str}.") if phase_i > 1: intervals = calculate_new_intervals(hl.read_matrix_table(files_to_merge[0]).rows(), config.target_records, reference_genome=reference_genome) new_files_to_merge = [] for job_i, job in enumerate(phase.jobs): job_i += 1 # used for info messages, 1-indexed for readability n_merges = len(job.merges) merge_str = hl.utils.misc.plural('file', n_merges) pct_total = 100 * job.input_total_size / total_ops info( f"Starting phase {phase_i}/{n_phases}, job {job_i}/{len(phase.jobs)} to create {n_merges} merged {merge_str}, corresponding to ~{pct_total:.1f}% of total I/O.") merge_mts: List[MatrixTable] = [] for merge in job.merges: inputs = [files_to_merge[i] for i in merge.inputs] if phase_i == 1: mts = [transform_gvcf(vcf) for vcf in hl.import_gvcfs(inputs, intervals, array_elements_required=False, _external_header=header, _external_sample_ids=[sample_names[i] for i in merge.inputs] if header is not None else None, reference_genome=reference_genome, contig_recoding=contig_recoding)] else: mts = [hl.read_matrix_table(path, _intervals=intervals) for path in inputs] merge_mts.append(combine_gvcfs(mts)) if phase_i == n_phases: # final merge! assert n_jobs == 1 assert len(merge_mts) == 1 [final_mt] = merge_mts if key_by_locus_and_alleles: final_mt = MatrixTable(MatrixKeyRowsBy(final_mt._mir, ['locus', 'alleles'], is_sorted=True)) final_mt.write(out_file, overwrite=overwrite) new_files_to_merge = [out_file] info(f"Finished phase {phase_i}/{n_phases}, job {job_i}/{len(phase.jobs)}, 100% of total I/O finished.") break tmp = f'{tmp_path}_phase{phase_i}_job{job_i}/' hl.experimental.write_matrix_tables(merge_mts, tmp, overwrite=True) pad = len(str(len(merge_mts))) new_files_to_merge.extend(tmp + str(n).zfill(pad) + '.mt' for n in range(len(merge_mts))) total_work_done += job.input_total_size info( f"Finished {phase_i}/{n_phases}, job {job_i}/{len(phase.jobs)}, {100 * total_work_done / total_ops:.1f}% of total I/O finished.") info(f"Finished phase {phase_i}/{n_phases}.") files_to_merge = new_files_to_merge assert files_to_merge == [out_file] info("Finished!")
def run_combiner(sample_paths: List[str], out_file: str, tmp_path: str, intervals: Optional[List[hl.utils.Interval]] = None, header: Optional[str] = None, sample_names: Optional[List[str]] = None, branch_factor: int = CombinerConfig.default_branch_factor, batch_size: int = CombinerConfig.default_batch_size, target_records: int = CombinerConfig.default_target_records, import_interval_size: Optional[int] = None, use_genome_default_intervals: bool = False, use_exome_default_intervals: bool = False, overwrite: bool = False, reference_genome: str = 'default', contig_recoding: Optional[Dict[str, str]] = None, key_by_locus_and_alleles: bool = False): """Run the Hail VCF combiner, performing a hierarchical merge to create a combined sparse matrix table. **Partitioning** The partitioning of input GVCFs is determined the four parameters below, one of which must be passed to this function: - `intervals` -- User-supplied intervals. - `import_interval_size` -- Use intervals of this uniform size across the genome. - `use_genome_default_intervals` -- Use intervals of typical uniform size for whole genome GVCFs. - `use_exome_default_intervals` -- Use intervals of typical uniform size for exome GVCFs. It is recommended that new users include either `use_genome_default_intervals` or `use_exome_default_intervals`. Parameters ---------- sample_paths : :obj:`list` of :obj:`str` Paths to individual GVCFs. out_file : :obj:`str` Path to final combined matrix table. tmp_path : :obj:`str` Path for intermediate output. intervals : list of :class:`.Interval` or None Partitioning with which to import GVCFs in first phase of combiner. header : :obj:`str` or None External header file to use as GVCF header for all inputs. If defined, `sample_names` must be defined as well. sample_names: list of :obj:`str` or None Sample names, to be used with `header`. branch_factor : :obj:`int` Combiner branch factor. batch_size : :obj:`int` Combiner batch size. target_records : :obj:`int` Target records per partition in each combiner phase after the first. import_interval_size : :obj:`int` or None The target interval size to partition the reference into intervals for importing GVCFs. use_genome_default_intervals : :obj:`bool` The input GVCFs are genomes, if this is false, they are assumed to be exomes. If `import_interval_size` is not None, this parameter is ignored. use_exome_default_intervals : :obj:`bool` The input GVCFs are genomes, if this is false, they are assumed to be exomes. If `import_interval_size` is not None, this parameter is ignored. overwrite : :obj:`bool` Overwrite output file, if it exists. reference_genome : :obj:`str` Reference genome for GVCF import. contig_recoding: :obj:`dict` of (:obj:`str`, :obj:`str`), optional Mapping from contig name in gVCFs to contig name the reference genome. All contigs must be present in the `reference_genome`, so this is useful for mapping differently-formatted data onto known references. key_by_locus_and_alleles : :obj:`bool` Key by both locus and alleles in the final output. Returns ------- None """ tmp_path += f'/combiner-temporary/{uuid.uuid4()}/' if header is not None: assert sample_names is not None assert len(sample_names) == len(sample_paths) n_partition_args = (int(intervals is not None) + int(import_interval_size is not None) + int(use_genome_default_intervals) + int(use_exome_default_intervals)) if n_partition_args == 0: raise ValueError("'run_combiner': require one argument from 'intervals', 'import_interval_size', " "'use_genome_default_intervals', or 'use_exome_default_intervals' to choose GVCF partitioning") if n_partition_args > 0: warning("'run_combiner': multiple colliding arguments found from 'intervals', 'import_interval_size', " "'use_genome_default_intervals', or 'use_exome_default_intervals'." "\n The argument found first in the list in this warning will be used, and others ignored.") if intervals is not None: info(f"Using {len(intervals)} user-supplied intervals as partitioning for GVCF import") elif import_interval_size is not None: intervals = calculate_even_genome_partitioning(reference_genome, import_interval_size) info(f"Using {len(intervals)} intervals with user-supplied size" f" {import_interval_size} as partitioning for GVCF import") elif use_genome_default_intervals: size = CombinerConfig.default_genome_interval_size intervals = calculate_even_genome_partitioning(reference_genome, size) info(f"Using {len(intervals)} intervals with default whole-genome size" f" {import_interval_size} as partitioning for GVCF import") elif use_exome_default_intervals: size = CombinerConfig.default_exome_interval_size intervals = calculate_even_genome_partitioning(reference_genome, size) info(f"Using {len(intervals)} intervals with default exome size" f" {size} as partitioning for GVCF import") assert intervals is not None config = CombinerConfig(branch_factor=branch_factor, batch_size=batch_size, target_records=target_records) plan = config.plan(len(sample_paths)) files_to_merge = sample_paths n_phases = len(plan.phases) total_ops = len(files_to_merge) * n_phases total_work_done = 0 for phase_i, phase in enumerate(plan.phases): phase_i += 1 # used for info messages, 1-indexed for readability n_jobs = len(phase.jobs) merge_str = 'input GVCFs' if phase_i == 1 else 'intermediate sparse matrix tables' job_str = hl.utils.misc.plural('job', n_jobs) info(f"Starting phase {phase_i}/{n_phases}, merging {len(files_to_merge)} {merge_str} in {n_jobs} {job_str}.") if phase_i > 1: intervals = calculate_new_intervals(hl.read_matrix_table(files_to_merge[0]).rows(), config.target_records, reference_genome=reference_genome) new_files_to_merge = [] for job_i, job in enumerate(phase.jobs): job_i += 1 # used for info messages, 1-indexed for readability n_merges = len(job.merges) merge_str = hl.utils.misc.plural('file', n_merges) pct_total = 100 * job.input_total_size / total_ops info( f"Starting phase {phase_i}/{n_phases}, job {job_i}/{len(phase.jobs)} to create {n_merges} merged {merge_str}, corresponding to ~{pct_total:.1f}% of total I/O.") merge_mts: List[MatrixTable] = [] for merge in job.merges: inputs = [files_to_merge[i] for i in merge.inputs] if phase_i == 1: mts = [transform_gvcf(vcf) for vcf in hl.import_gvcfs(inputs, intervals, array_elements_required=False, _external_header=header, _external_sample_ids=[sample_names[i] for i in merge.inputs] if header is not None else None, reference_genome=reference_genome, contig_recoding=contig_recoding)] else: mts = [hl.read_matrix_table(path, _intervals=intervals) for path in inputs] merge_mts.append(combine_gvcfs(mts)) if phase_i == n_phases: # final merge! assert n_jobs == 1 assert len(merge_mts) == 1 [final_mt] = merge_mts if key_by_locus_and_alleles: final_mt = MatrixTable(MatrixKeyRowsBy(final_mt._mir, ['locus', 'alleles'], is_sorted=True)) final_mt.write(out_file, overwrite=overwrite) new_files_to_merge = [out_file] info(f"Finished phase {phase_i}/{n_phases}, job {job_i}/{len(phase.jobs)}, 100% of total I/O finished.") break tmp = f'{tmp_path}_phase{phase_i}_job{job_i}/' hl.experimental.write_matrix_tables(merge_mts, tmp, overwrite=True) pad = len(str(len(merge_mts))) new_files_to_merge.extend(tmp + str(n).zfill(pad) + '.mt' for n in range(len(merge_mts))) total_work_done += job.input_total_size info( f"Finished {phase_i}/{n_phases}, job {job_i}/{len(phase.jobs)}, {100 * total_work_done / total_ops:.1f}% of total I/O finished.") info(f"Finished phase {phase_i}/{n_phases}.") files_to_merge = new_files_to_merge assert files_to_merge == [out_file] info("Finished!")
54,596
def blackify(base_branch, black_command): current_branch = git("branch", "--show-current") if not current_branch or base_branch == current_branch: print("You need to check out a feature brach to work on") return 1 if not os.path.exists(".git"): print("Run me in the root of your repo") return 1 merge_base = git("merge-base", "HEAD", base_branch) if not merge_base: print("Could not find a common commit for current head and %s" % base_branch) return 1 commits = git( "log", "--reverse", "--pretty=format:%H", "%s~1..HEAD" % merge_base ).split() for commit in commits: git("checkout", commit, "-b" "%s-black" % commit) check_output(black_command, shell=True) git("commit", "-aqm", "blackify") git("checkout", base_branch, "-b" "%s-black" % current_branch) for last_commit, commit in zip(commits, commits[1:]): allow_empty = ( b"--allow-empty" in run(["git", "apply", "-h"], stdout=PIPE).stdout ) quiet = ( b"--quiet" in run(["git", "apply", "-h"], stdout=PIPE).stdout ) git_diff = Popen( ["git", "diff", "--find-copies", "%s-black..%s-black" % (last_commit, commit)], stdout=PIPE, ) git_apply = Popen( [ "git", "apply", ] + (["--quiet"] if quiet else []) + [ "-3", "--intent-to-add", ] + (["--allow-empty"] if allow_empty else []) + [ "-", ], stdin=git_diff.stdout, stdout=PIPE, ) git_diff.stdout.close() git_apply.communicate() git("commit", "--allow-empty", "-aqC", commit) for commit in commits: git("branch", "-qD", "%s-black" % commit)
def blackify(base_branch, black_command): current_branch = git("branch", "--show-current") if not current_branch or base_branch == current_branch: print("You need to check out a feature brach to work on") return 1 if not os.path.exists(".git"): print("Run me in the root of your repo") return 1 merge_base = git("merge-base", "HEAD", base_branch) if not merge_base: print("Could not find a common commit for current head and %s" % base_branch) return 1 commits = git( "log", "--reverse", "--pretty=format:%H", "%s~1..HEAD" % merge_base ).split() for commit in commits: git("checkout", commit, "-b" "%s-black" % commit) check_output(black_command, shell=True) git("commit", "-aqm", "blackify") import shlex check_output(shlex.split(black_command)) for last_commit, commit in zip(commits, commits[1:]): allow_empty = ( b"--allow-empty" in run(["git", "apply", "-h"], stdout=PIPE).stdout ) quiet = ( b"--quiet" in run(["git", "apply", "-h"], stdout=PIPE).stdout ) git_diff = Popen( ["git", "diff", "--find-copies", "%s-black..%s-black" % (last_commit, commit)], stdout=PIPE, ) git_apply = Popen( [ "git", "apply", ] + (["--quiet"] if quiet else []) + [ "-3", "--intent-to-add", ] + (["--allow-empty"] if allow_empty else []) + [ "-", ], stdin=git_diff.stdout, stdout=PIPE, ) git_diff.stdout.close() git_apply.communicate() git("commit", "--allow-empty", "-aqC", commit) for commit in commits: git("branch", "-qD", "%s-black" % commit)
33,325
def test_run_script(setup_test_data): """ Test that the populate_reporting_agency_tas script acts as expected """ connection = get_connection(read_only=False) sql_path = str(settings.APP_DIR / "reporting/management/sql/populate_reporting_agency_tas.sql") with open(sql_path) as f: test_sql = f.read() # Executing the SQL and testing the entry with only one record for the period/fiscal year/tas per table with connection.cursor() as cursor: cursor.execute(test_sql) cursor.execute( """ SELECT appropriation_obligated_amount, object_class_pa_obligated_amount, diff_approp_ocpa_obligated_amounts FROM reporting_agency_tas WHERE fiscal_period = 3 AND fiscal_year = 2019 AND tas_rendering_label = 'tas-1' """ ) results = cursor.fetchall() assert len(results) == 1 for result in results: assert result[0] == 50 assert result[1] == 20.5 assert result[2] == 29.5 # Testing an entry with multiple rows that roll up into a single period/fiscal year/tas with connection.cursor() as cursor: cursor.execute( """ SELECT appropriation_obligated_amount, object_class_pa_obligated_amount, diff_approp_ocpa_obligated_amounts FROM reporting_agency_tas WHERE fiscal_period = 3 AND fiscal_year = 2019 AND tas_rendering_label = 'tas-2' """ ) results = cursor.fetchall() assert len(results) == 1 for result in results: assert result[0] == 41 assert result[1] == Decimal("42.30") assert result[2] == Decimal("-1.30")
def test_run_script(setup_test_data): """ Test that the populate_reporting_agency_tas script acts as expected """ connection = get_connection(read_only=False) sql_path = str(settings.APP_DIR / "reporting" / "management" / "sql" / "populate_reporting_agency_tas.sql") with open(sql_path) as f: test_sql = f.read() # Executing the SQL and testing the entry with only one record for the period/fiscal year/tas per table with connection.cursor() as cursor: cursor.execute(test_sql) cursor.execute( """ SELECT appropriation_obligated_amount, object_class_pa_obligated_amount, diff_approp_ocpa_obligated_amounts FROM reporting_agency_tas WHERE fiscal_period = 3 AND fiscal_year = 2019 AND tas_rendering_label = 'tas-1' """ ) results = cursor.fetchall() assert len(results) == 1 for result in results: assert result[0] == 50 assert result[1] == 20.5 assert result[2] == 29.5 # Testing an entry with multiple rows that roll up into a single period/fiscal year/tas with connection.cursor() as cursor: cursor.execute( """ SELECT appropriation_obligated_amount, object_class_pa_obligated_amount, diff_approp_ocpa_obligated_amounts FROM reporting_agency_tas WHERE fiscal_period = 3 AND fiscal_year = 2019 AND tas_rendering_label = 'tas-2' """ ) results = cursor.fetchall() assert len(results) == 1 for result in results: assert result[0] == 41 assert result[1] == Decimal("42.30") assert result[2] == Decimal("-1.30")
14,701
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the access to Netatmo binary sensor.""" home = config.get(CONF_HOME) timeout = config.get(CONF_TIMEOUT) if timeout is None: timeout = DEFAULT_TIMEOUT module_name = None import pyatmo conf = hass.data.get(DATA_NETATMO_CONFIG, {}) try: data = CameraData(hass, conf, home) if not data.get_camera_names(): return None except pyatmo.NoDevice: return None welcome_sensors = config.get( CONF_WELCOME_SENSORS, WELCOME_SENSOR_TYPES) presence_sensors = config.get( CONF_PRESENCE_SENSORS, PRESENCE_SENSOR_TYPES) tag_sensors = config.get(CONF_TAG_SENSORS, TAG_SENSOR_TYPES) for camera_name in data.get_camera_names(): camera_type = data.get_camera_type(camera=camera_name, home=home) if camera_type == 'NACamera': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in welcome_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) if camera_type == 'NOC': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in presence_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) for module_name in data.get_module_names(camera_name): for variable in tag_sensors: camera_type = None add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True)
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the access to Netatmo binary sensor.""" home = config.get(CONF_HOME) timeout = config.get(CONF_TIMEOUT) if timeout is None: timeout = DEFAULT_TIMEOUT module_name = None import pyatmo auth = hass.data[DATA_NETATMO_AUTH] try: data = CameraData(hass, conf, home) if not data.get_camera_names(): return None except pyatmo.NoDevice: return None welcome_sensors = config.get( CONF_WELCOME_SENSORS, WELCOME_SENSOR_TYPES) presence_sensors = config.get( CONF_PRESENCE_SENSORS, PRESENCE_SENSOR_TYPES) tag_sensors = config.get(CONF_TAG_SENSORS, TAG_SENSOR_TYPES) for camera_name in data.get_camera_names(): camera_type = data.get_camera_type(camera=camera_name, home=home) if camera_type == 'NACamera': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in welcome_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) if camera_type == 'NOC': if CONF_CAMERAS in config: if config[CONF_CAMERAS] != [] and \ camera_name not in config[CONF_CAMERAS]: continue for variable in presence_sensors: add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True) for module_name in data.get_module_names(camera_name): for variable in tag_sensors: camera_type = None add_entities([NetatmoBinarySensor( data, camera_name, module_name, home, timeout, camera_type, variable)], True)
31,630
def is_valid_attack_pattern(items): try: results = demisto.executeCommand('mitre-get-attack-pattern-value', {'attack_ids': items}) list_contents = results[0]['Contents'] values = [content.get('value') for content in list_contents] return values if values else False except ValueError as e: if 'verify you have proper integration enabled to support it' in e: demisto.info('Unsupported Command : mitre-get-attack-pattern-value, ' 'verify you have proper integration (MITRE ATTACK v2) enabled to support it.') return False
def is_valid_attack_pattern(items): try: results = demisto.executeCommand('mitre-get-attack-pattern-value', {'attack_ids': items}) list_contents = results[0]['Contents'] values = [content.get('value') for content in list_contents] return values if values else False except ValueError as e: if 'verify you have proper integration enabled to support it' in e: demisto.info('Unsupported Command : mitre-get-attack-pattern-value, ' 'verify you have proper integration (MITRE ATTACK v2) enabled to support it. This Is needed in order to auto extract MITRE IDs and translate them to Attack Pattern IOCs') return False
58,818
def gels(a, b): """Solves over/well/under-determined linear systems. Computes least-square solution to equation ``ax = b` by QR factorization using cusolverDn<t>geqrf(). Args: a (cupy.ndarray): The matrix with dimension ``(M, N)``. b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``. Returns: cupy.ndarray: The matrix with dimension ``(N)`` or ``(N, K)``. """ if a.ndim != 2: raise ValueError('a.ndim must be 2 (actual: {})'.format(a.ndim)) if b.ndim not in (1, 2): raise ValueError('b.ndim must be 1 or 2 (actual: {})'.format(b.ndim)) if a.shape[0] != b.shape[0]: raise ValueError('shape mismatch (a: {}, b: {}).'. format(a.shape, b.shape)) dtype = numpy.promote_types(a.dtype.char, 'f') if dtype == 'f': t = 's' elif dtype == 'd': t = 'd' elif dtype == 'F': t = 'c' elif dtype == 'D': t = 'z' else: raise ValueError('unsupported dtype (actual:{})'.format(a.dtype)) geqrf_helper = getattr(cusolver, t + 'geqrf_bufferSize') geqrf = getattr(cusolver, t + 'geqrf') trsm = getattr(cublas, t + 'trsm') if t in 'sd': ormqr_helper = getattr(cusolver, t + 'ormqr_bufferSize') ormqr = getattr(cusolver, t + 'ormqr') else: ormqr_helper = getattr(cusolver, t + 'unmqr_bufferSize') ormqr = getattr(cusolver, t + 'unmqr') no_trans = cublas.CUBLAS_OP_N if dtype.char in 'fd': trans = cublas.CUBLAS_OP_T else: trans = cublas.CUBLAS_OP_C m, n = a.shape mn_min = min(m, n) nrhs = b.shape[1] if b.ndim == 2 else 1 dev_info = cupy.empty(1, dtype=numpy.int32) tau = cupy.empty(mn_min, dtype=dtype) cusolver_handle = device.get_cusolver_handle() cublas_handle = device.get_cublas_handle() a_data_ptr = a.data.ptr b_data_ptr = b.data.ptr a = cupy.asfortranarray(a, dtype=dtype) b = cupy.asfortranarray(b, dtype=dtype) if a.data.ptr == a_data_ptr: a = a.copy() if b.data.ptr == b_data_ptr: b = b.copy() if m >= n: # over/well-determined systems # geqrf (QR decomposition, A = Q * R) ws_size = geqrf_helper(cusolver_handle, m, n, a.data.ptr, m) workspace = cupy.empty(ws_size, dtype=dtype) geqrf(cusolver_handle, m, n, a.data.ptr, m, tau.data.ptr, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( geqrf, dev_info) # ormqr (Computes Q^T * B) ws_size = ormqr_helper( cusolver_handle, cublas.CUBLAS_SIDE_LEFT, trans, m, nrhs, mn_min, a.data.ptr, m, tau.data.ptr, b.data.ptr, m) workspace = cupy.empty(ws_size, dtype=dtype) ormqr(cusolver_handle, cublas.CUBLAS_SIDE_LEFT, trans, m, nrhs, mn_min, a.data.ptr, m, tau.data.ptr, b.data.ptr, m, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( ormqr, dev_info) # trsm (Solves R * X = (Q^T * B)) trsm(cublas_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_FILL_MODE_UPPER, no_trans, cublas.CUBLAS_DIAG_NON_UNIT, mn_min, nrhs, 1, a.data.ptr, m, b.data.ptr, m) if b.ndim == 1: return b[:n] else: return b[:n, :] else: # under-determined systems a = cupy.asfortranarray(a.conj().T) if b.ndim == 1: bb = cupy.empty((n,), dtype=dtype, order='F') bb[:m] = b else: bb = cupy.empty((n, nrhs), dtype=dtype, order='F') bb[:m, :] = b b = bb # geqrf (QR decomposition, A^T = Q * R) ws_size = geqrf_helper(cusolver_handle, n, m, a.data.ptr, n) workspace = cupy.empty(ws_size, dtype=dtype) geqrf(cusolver_handle, n, m, a.data.ptr, n, tau.data.ptr, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( geqrf, dev_info) # trsm (Solves R^T * Z = B) trsm(cublas_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_FILL_MODE_UPPER, trans, cublas.CUBLAS_DIAG_NON_UNIT, m, nrhs, 1, a.data.ptr, n, b.data.ptr, n) # ormqr (Computes Q * Z) ws_size = ormqr_helper( cusolver_handle, cublas.CUBLAS_SIDE_LEFT, no_trans, n, nrhs, mn_min, a.data.ptr, n, tau.data.ptr, b.data.ptr, n) workspace = cupy.empty(ws_size, dtype=dtype) ormqr(cusolver_handle, cublas.CUBLAS_SIDE_LEFT, no_trans, n, nrhs, mn_min, a.data.ptr, n, tau.data.ptr, b.data.ptr, n, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( ormqr, dev_info) return b
def gels(a, b): """Solves over/well/under-determined linear systems. Computes least-square solution to equation ``ax = b` by QR factorization using cusolverDn<t>geqrf(). Args: a (cupy.ndarray): The matrix with dimension ``(M, N)``. b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``. Returns: cupy.ndarray: The matrix with dimension ``(N)`` or ``(N, K)``. """ if a.ndim != 2: raise ValueError('a.ndim must be 2 (actual: {})'.format(a.ndim)) if b.ndim not in (1, 2): raise ValueError('b.ndim must be 1 or 2 (actual: {})'.format(b.ndim)) if a.shape[0] != b.shape[0]: raise ValueError('shape mismatch (a: {}, b: {}).'. format(a.shape, b.shape)) dtype = numpy.promote_types(a.dtype.char, 'f') if dtype == 'f': t = 's' elif dtype == 'd': t = 'd' elif dtype == 'F': t = 'c' elif dtype == 'D': t = 'z' else: raise ValueError('unsupported dtype (actual:{})'.format(a.dtype)) geqrf_helper = getattr(cusolver, t + 'geqrf_bufferSize') geqrf = getattr(cusolver, t + 'geqrf') trsm = getattr(cublas, t + 'trsm') if t in 'sd': ormqr_helper = getattr(cusolver, t + 'ormqr_bufferSize') ormqr = getattr(cusolver, t + 'ormqr') else: ormqr_helper = getattr(cusolver, t + 'unmqr_bufferSize') ormqr = getattr(cusolver, t + 'unmqr') no_trans = cublas.CUBLAS_OP_N if dtype.char in 'fd': trans = cublas.CUBLAS_OP_T else: trans = cublas.CUBLAS_OP_C m, n = a.shape mn_min = min(m, n) nrhs = b.shape[1] if b.ndim == 2 else 1 dev_info = cupy.empty(1, dtype=numpy.int32) tau = cupy.empty(mn_min, dtype=dtype) cusolver_handle = device.get_cusolver_handle() cublas_handle = device.get_cublas_handle() a = a.copy(order='F') b = b.copy(order='F') if m >= n: # over/well-determined systems # geqrf (QR decomposition, A = Q * R) ws_size = geqrf_helper(cusolver_handle, m, n, a.data.ptr, m) workspace = cupy.empty(ws_size, dtype=dtype) geqrf(cusolver_handle, m, n, a.data.ptr, m, tau.data.ptr, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( geqrf, dev_info) # ormqr (Computes Q^T * B) ws_size = ormqr_helper( cusolver_handle, cublas.CUBLAS_SIDE_LEFT, trans, m, nrhs, mn_min, a.data.ptr, m, tau.data.ptr, b.data.ptr, m) workspace = cupy.empty(ws_size, dtype=dtype) ormqr(cusolver_handle, cublas.CUBLAS_SIDE_LEFT, trans, m, nrhs, mn_min, a.data.ptr, m, tau.data.ptr, b.data.ptr, m, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( ormqr, dev_info) # trsm (Solves R * X = (Q^T * B)) trsm(cublas_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_FILL_MODE_UPPER, no_trans, cublas.CUBLAS_DIAG_NON_UNIT, mn_min, nrhs, 1, a.data.ptr, m, b.data.ptr, m) if b.ndim == 1: return b[:n] else: return b[:n, :] else: # under-determined systems a = cupy.asfortranarray(a.conj().T) if b.ndim == 1: bb = cupy.empty((n,), dtype=dtype, order='F') bb[:m] = b else: bb = cupy.empty((n, nrhs), dtype=dtype, order='F') bb[:m, :] = b b = bb # geqrf (QR decomposition, A^T = Q * R) ws_size = geqrf_helper(cusolver_handle, n, m, a.data.ptr, n) workspace = cupy.empty(ws_size, dtype=dtype) geqrf(cusolver_handle, n, m, a.data.ptr, n, tau.data.ptr, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( geqrf, dev_info) # trsm (Solves R^T * Z = B) trsm(cublas_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_FILL_MODE_UPPER, trans, cublas.CUBLAS_DIAG_NON_UNIT, m, nrhs, 1, a.data.ptr, n, b.data.ptr, n) # ormqr (Computes Q * Z) ws_size = ormqr_helper( cusolver_handle, cublas.CUBLAS_SIDE_LEFT, no_trans, n, nrhs, mn_min, a.data.ptr, n, tau.data.ptr, b.data.ptr, n) workspace = cupy.empty(ws_size, dtype=dtype) ormqr(cusolver_handle, cublas.CUBLAS_SIDE_LEFT, no_trans, n, nrhs, mn_min, a.data.ptr, n, tau.data.ptr, b.data.ptr, n, workspace.data.ptr, ws_size, dev_info.data.ptr) cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed( ormqr, dev_info) return b
48,868
def __getattr__(name): # PEP-562: Lazy loaded attributes on python modules path = __lazy_imports.get(name) if path: import operator # Strip of the "airflow." prefix because of how `__import__` works (it always returns the top level # module) without_prefix = path.split('.', 1)[-1] getter = operator.attrgetter(f'{without_prefix}.{name}') val = getter(__import__(path)) # Store for next time globals()[name] = val return val raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
def __getattr__(name): # PEP-562: Lazy loaded attributes on python modules path = __lazy_imports.get(name) if path: import operator # Strip of the "airflow." prefix because of how `__import__` works (it always returns the top level # module) without_prefix = path.split('.', 1)[-1] getter = operator.attrgetter(f'{without_prefix}.{name}') val = getter(__import__(path)) # Store for next time globals()[name] = val return val
55,636
def raw_to_rgb(image: torch.Tensor, cfa: CFA) -> torch.Tensor: r"""Convert a raw bayer image to RGB version of image. We are assuming a CFA with 2 green, 1 red, 1 blue. A bilinear interpolation is used for R/G and a fix convolution for the green pixels. To simplify calculations we expect the Height Widht to be evenly divisible by 2 The image data is assumed to be in the range of (0, 1). Image H/W is assumed to be evenly divisible by 2 for simplicity reasons Args: image: raw image to be converted to RGB with shape :math:`(*,1,H,W)`. cfa: The configuration of the color filter. Returns: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> rawinput = torch.randn(2, 1, 4, 6) >>> rgb = raw_to_rgb(rawinput) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. " f"Got {type(image)}") if image.dim() < 3 or image.size(-3) != 1: raise ValueError(f"Input size must have a shape of (*, 1, H, W). " f"Got {image.shape}.") if len(image.shape) < 2 or image.shape[-2] % 2 == 1 or image.shape[-1] % 2 == 1: raise ValueError(f"Input H&W must be evenly disible by 2. Got {image.shape}") dosqueeze = False # for compatibility with pytorch funcitons, make sure we are always 4 dimensions and # strip the extra at the end, if necessary if len(image.shape) == 3: image = image.unsqueeze(0) dosqueeze = True # BG is defined as pel 1,1 being blue, that is the top left is actually green. This matches # opencv naming so makes sense to keep if cfa == CFA.BG: r = image[..., :, ::2, ::2] b = image[..., :, 1::2, 1::2] rpad = (0, 1, 0, 1) bpad = (1, 0, 1, 0) elif cfa == CFA.GB: r = image[..., :, ::2, 1::2] b = image[..., :, 1::2, ::2] rpad = (1, 0, 0, 1) bpad = (0, 1, 1, 0) elif cfa == CFA.RG: r = image[..., :, 1::2, 1::2] b = image[..., :, ::2, ::2] rpad = (1, 0, 1, 0) bpad = (0, 1, 0, 1) elif cfa == CFA.GR: r = image[..., :, 1::2, ::2] b = image[..., :, ::2, 1::2] rpad = (0, 1, 1, 0) bpad = (1, 0, 0, 1) else: raise ValueError(f"Unsupported CFA " f"Got {cfa}.") # upscaling r and b with bi-linear gives reasonable quality # Note that depending on where these are sampled we need to pad appropriately # the bilinear filter will pretty much be based on for example this layout (RG) # (which needs to be padded bottom right) # +-+-+ # |B| | # | | | # +-+-+ # While in this layout we need to pad with additional B samples top left to # make sure we interpolate from the correct position # +-+-+ # | | | # | |B| # +-+-+ # For an image like this (3x2 blue pixels) # +------+ # |B B B | # | | # |B B B | # | | # +------+ # It needs to be expanded to this (4x3 pixels scaled to 7x5 for correct interpolation) # +-------+ # |B B B b| # | | # |B B B b| # | | # |b b b b| # +-------+ # and we crop the area afterwards. This is since the interpolation will be between first and last pixel # evenly spaced between them while the B/R samples will be missing in the corners were they are assumed to exist # Further we need to do align_corners to start the interpolation from the middle of the samples in the corners, that # way we get to keep the knwon blue samples across the whole image rpadded = torch.nn.functional.pad(r, rpad, 'replicate') bpadded = torch.nn.functional.pad(b, bpad, 'replicate') # use explicit padding instead of conv2d padding to be able to use reflect which mirror the correct colors # for a 2x2 bayer filter gpadded = torch.nn.functional.pad(image, (1, 1, 1, 1), 'reflect') ru = torch.nn.functional.interpolate(rpadded, size=(image.shape[-2] + 1, image.shape[-1] + 1), mode='bilinear', align_corners=True) bu = torch.nn.functional.interpolate(bpadded, size=(image.shape[-2] + 1, image.shape[-1] + 1), mode='bilinear', align_corners=True) # remove the extra padding ru = torch.nn.functional.pad(ru, [-x for x in rpad]) bu = torch.nn.functional.pad(bu, [-x for x in bpad]) # all unknown pixels are the average of the nearby green samples kernel = torch.tensor([[[[0.0, 0.25, 0.0], [0.25, 0.0, 0.25], [0.0, 0.25, 0.0]]]], dtype=image.dtype, device=image.device) # This is done on all samples but result for the known green samples is then overwritten by the input gu = torch.nn.functional.conv2d(gpadded, kernel, padding='valid') # overwrite the already known samples which otherwise have values from r/b # this depends on the CFA configuration if cfa == CFA.BG: gu[:, :, ::2, 1::2] = image[:, :, ::2, 1::2] gu[:, :, 1::2, ::2] = image[:, :, 1::2, ::2] elif cfa == CFA.GB: gu[:, :, ::2, ::2] = image[:, :, ::2, ::2] gu[:, :, 1::2, 1::2] = image[:, :, 1::2, 1::2] elif cfa == CFA.RG: gu[:, :, 1::2, ::2] = image[:, :, 1::2, ::2] gu[:, :, ::2, 1::2] = image[:, :, ::2, 1::2] elif cfa == CFA.GR: gu[:, :, 1::2, 1::2] = image[:, :, 1::2, 1::2] gu[:, :, ::2, ::2] = image[:, :, ::2, ::2] else: raise ValueError(f"Unsupported CFA " f"Got {cfa}.") rgb: torch.Tensor = torch.cat([ru, gu, bu], dim=-3) # return possibly missing batch dim if dosqueeze: rgb = rgb.squeeze(0) return rgb
def raw_to_rgb(image: torch.Tensor, cfa: CFA) -> torch.Tensor: r"""Convert a raw bayer image to RGB version of image. We are assuming a CFA with 2 green, 1 red, 1 blue. A bilinear interpolation is used for R/G and a fix convolution for the green pixels. To simplify calculations we expect the Height Widht to be evenly divisible by 2 The image data is assumed to be in the range of (0, 1). Image H/W is assumed to be evenly divisible by 2 for simplicity reasons Args: image: raw image to be converted to RGB with shape :math:`(*,1,H,W)`. cfa: The configuration of the color filter. Returns: RGB version of the image with shape :math:`(*,3,H,W)`. Example: >>> rawinput = torch.randn(2, 1, 4, 6) >>> rgb = raw_to_rgb(rawinput) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. " f"Got {type(image)}") if image.dim() < 3 or image.size(-3) != 1: raise ValueError(f"Input size must have a shape of (*, 1, H, W). " f"Got {image.shape}.") if len(image.shape) < 2 or image.shape[-2] % 2 == 1 or image.shape[-1] % 2 == 1: raise ValueError(f"Input H&W must be evenly disible by 2. Got {image.shape}") dosqueeze = False # for compatibility with pytorch funcitons, make sure we are always 4 dimensions and # strip the extra at the end, if necessary if len(image.shape) == 3: image = image.unsqueeze(0) dosqueeze = True # BG is defined as pel 1,1 being blue, that is the top left is actually green. This matches # opencv naming so makes sense to keep if cfa == CFA.BG: r = image[..., :, ::2, ::2] b = image[..., :, 1::2, 1::2] rpad = (0, 1, 0, 1) bpad = (1, 0, 1, 0) elif cfa == CFA.GB: r = image[..., :, ::2, 1::2] b = image[..., :, 1::2, ::2] rpad = (1, 0, 0, 1) bpad = (0, 1, 1, 0) elif cfa == CFA.RG: r = image[..., :, 1::2, 1::2] b = image[..., :, ::2, ::2] rpad = (1, 0, 1, 0) bpad = (0, 1, 0, 1) elif cfa == CFA.GR: r = image[..., :, 1::2, ::2] b = image[..., :, ::2, 1::2] rpad = (0, 1, 1, 0) bpad = (1, 0, 0, 1) else: raise ValueError(f"Unsupported CFA " f"Got {cfa}.") # upscaling r and b with bi-linear gives reasonable quality # Note that depending on where these are sampled we need to pad appropriately # the bilinear filter will pretty much be based on for example this layout (RG) # (which needs to be padded bottom right) # +-+-+ # |B| | # | | | # +-+-+ # While in this layout we need to pad with additional B samples top left to # make sure we interpolate from the correct position # +-+-+ # | | | # | |B| # +-+-+ # For an image like this (3x2 blue pixels) # +------+ # |B B B | # | | # |B B B | # | | # +------+ # It needs to be expanded to this (4x3 pixels scaled to 7x5 for correct interpolation) # +-------+ # |B B B b| # | | # |B B B b| # | | # |b b b b| # +-------+ # and we crop the area afterwards. This is since the interpolation will be between first and last pixel # evenly spaced between them while the B/R samples will be missing in the corners were they are assumed to exist # Further we need to do align_corners to start the interpolation from the middle of the samples in the corners, that # way we get to keep the knwon blue samples across the whole image rpadded = torch.nn.functional.pad(r, rpad, 'replicate') bpadded = torch.nn.functional.pad(b, bpad, 'replicate') # use explicit padding instead of conv2d padding to be able to use reflect which mirror the correct colors # for a 2x2 bayer filter gpadded = torch.nn.functional.pad(image, (1, 1, 1, 1), 'reflect') ru = torch.nn.functional.interpolate(rpadded, size=(image.shape[-2] + 1, image.shape[-1] + 1), mode='bilinear', align_corners=True) bu = torch.nn.functional.interpolate(bpadded, size=(image.shape[-2] + 1, image.shape[-1] + 1), mode='bilinear', align_corners=True) # remove the extra padding ru = torch.nn.functional.pad(ru, [-x for x in rpad]) bu = torch.nn.functional.pad(bu, [-x for x in bpad]) # all unknown pixels are the average of the nearby green samples kernel = torch.tensor([[[[0.0, 0.25, 0.0], [0.25, 0.0, 0.25], [0.0, 0.25, 0.0]]]], dtype=image.dtype, device=image.device) # This is done on all samples but result for the known green samples is then overwritten by the input gu = torch.nn.functional.conv2d(gpadded, kernel, padding='valid') # overwrite the already known samples which otherwise have values from r/b # this depends on the CFA configuration if cfa == CFA.BG: gu[:, :, ::2, 1::2] = image[:, :, ::2, 1::2] gu[:, :, 1::2, ::2] = image[:, :, 1::2, ::2] elif cfa == CFA.GB: gu[:, :, ::2, ::2] = image[:, :, ::2, ::2] gu[:, :, 1::2, 1::2] = image[:, :, 1::2, 1::2] elif cfa == CFA.RG: gu[:, :, 1::2, ::2] = image[:, :, 1::2, ::2] gu[:, :, ::2, 1::2] = image[:, :, ::2, 1::2] elif cfa == CFA.GR: gu[:, :, 1::2, 1::2] = image[:, :, 1::2, 1::2] gu[:, :, ::2, ::2] = image[:, :, ::2, ::2] else: raise ValueError(f"Unsupported CFA " f"Got {cfa}.") rgb: torch.Tensor = torch.cat([ru, gu, bu], dim=-3) # return possibly missing batch dim if dosqueeze: rgb = rgb.squeeze(0) return rgb
57,676
def fetch_incidents(client, last_run: Dict[str, int], first_fetch_time: Optional[int]): max_results = arg_to_int( arg=demisto.params().get('max_fetch'), arg_name='max_fetch', required=False ) if not max_results or max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH last_fetch = last_run.get('last_fetch', None) subscription = demisto.params().get('incident_type', ["event", "alert"]) if last_fetch is None: last_fetch = first_fetch_time else: last_fetch = int(last_fetch) latest_created_time = cast(int, last_fetch) incidents: List[Dict[str, Any]] = [] args = { 'limit': max_results, 'offset': last_fetch } alerts = infinipoint_command(client, args, COMMANDS_CONFIG['infinipoint-get-events']) if alerts: for alert in alerts.outputs: if alert.get("subscription") in subscription: incident_created_time = int(alert.get('timestamp', '0')) incident_created_time_ms = incident_created_time * 1000 incident = { 'name': f'Infinipoint {alert.get("name")}', 'type': f'Infinipoint {alert.get("type")}', 'occurred': timestamp_to_datestring(incident_created_time_ms), 'rawJSON': json.dumps(alert.get('rawJSON')) } incidents.append(incident) if incident_created_time > latest_created_time: latest_created_time = incident_created_time next_run = {'last_fetch': latest_created_time} demisto.setLastRun(next_run) demisto.incidents(incidents)
def fetch_incidents(client, last_run: Dict[str, int], first_fetch_time: Optional[int]): max_results = arg_to_int( arg=demisto.params().get('max_fetch'), arg_name='max_fetch', required=False ) if not max_results or max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH last_fetch = last_run.get('last_fetch', None) subscription = demisto.params().get('incident_type', ["event", "alert"]) if last_fetch is None: last_fetch = first_fetch_time else: last_fetch = int(last_fetch) latest_created_time = cast(int, last_fetch) incidents: List[Dict[str, Any]] = [] args = { 'limit': max_results, 'offset': last_fetch } alerts = infinipoint_command(client, args, COMMANDS_CONFIG['infinipoint-get-events']) if alerts: for alert in alerts.outputs: if alert.get("subscription") in subscription: incident_created_time = datetime.fromtimestamp(int(alert.get('timestamp', '0')), timezone.utc) incident = { 'name': f'Infinipoint {alert.get("name")}', 'type': f'Infinipoint {alert.get("type")}', 'occurred': incident_created_time.isoformat(), 'rawJSON': json.dumps(alert.get('rawJSON')) } incidents.append(incident) if incident_created_time > latest_created_time: latest_created_time = incident_created_time next_run = {'last_fetch': latest_created_time} demisto.setLastRun(next_run) demisto.incidents(incidents)
11,444
def resolve_tenant(default_tenant, tenant_id=None, **_): # type: (str, Optional[str], **Any) -> str """Returns the correct tenant for a token request given a credential's configuration""" if tenant_id is None: return default_tenant if (default_tenant == "adfs" or os.environ.get(EnvironmentVariables.AZURE_IDENTITY_DISABLE_MULTITENANTAUTH) ): _LOGGER.info("A token was request for a different tenant than was configured on the credential, " "but the configured value was used since multi tenant authentication has been disabled. " "Configured TenantId: {}, Requested TenantId {}".format(default_tenant, tenant_id)) return default_tenant _LOGGER.info("A token was requested for a different tenant than was configured on the credential, " "and the requested tenant id was used to authenticate. Configured TenantId: {}, " "Requested TenantId {}".format(default_tenant, tenant_id)) return tenant_id
def resolve_tenant(default_tenant, tenant_id=None, **_): # type: (str, Optional[str], **Any) -> str """Returns the correct tenant for a token request given a credential's configuration""" if tenant_id is None: return default_tenant if (default_tenant == "adfs" or os.environ.get(EnvironmentVariables.AZURE_IDENTITY_DISABLE_MULTITENANTAUTH) ): _LOGGER.info("A token was request for a different tenant than was configured on the credential, " "but the configured value was used since multi tenant authentication has been disabled. " "Configured TenantId: {}, Requested TenantId {}".format(default_tenant, tenant_id)) return default_tenant _LOGGER.info("A token was requested for a different tenant than was configured on the credential, " "and the requested tenant ID was used to authenticate. Configured TenantId: {}, " "Requested TenantId {}".format(default_tenant, tenant_id)) return tenant_id
41,899
def _get_edf_plot(studies: List[Study]) -> Axes: # Set up the graph style. plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly. fig, ax = plt.subplots() ax.set_title("Empirical Distribution Function Plot") ax.set_xlabel("Objective Value") ax.set_ylabel("Cumulative Probability") ax.set_ylim(0, 1) cmap = plt.get_cmap("tab20") # Use tab20 colormap for multiple line plots. # Prepare data for plotting. if len(studies) == 0: _logger.warning("There are no studies.") return ax all_trials = list( itertools.chain.from_iterable( ( trial for trial in study.get_trials(deepcopy=False) if trial.state == TrialState.COMPLETE ) for study in studies ) ) if len(all_trials) == 0: _logger.warning("There are no complete trials.") return ax min_x_value = min(trial.value for trial in all_trials) max_x_value = max(trial.value for trial in all_trials) x_values = np.linspace(min_x_value, max_x_value, 100) # Draw multiple line plots. for i, study in enumerate(studies): values = np.asarray( [ trial.value for trial in study.get_trials(deepcopy=False) if trial.state == TrialState.COMPLETE ] ) y_values = np.sum(values[:, np.newaxis] <= x_values, axis=0) / values.size ax.plot(x_values, y_values, color=cmap(i), alpha=0.7, label=study.study_name) return ax
def _get_edf_plot(studies: List[Study]) -> Axes: # Set up the graph style. plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly. ax = plt.subplot() ax.set_title("Empirical Distribution Function Plot") ax.set_xlabel("Objective Value") ax.set_ylabel("Cumulative Probability") ax.set_ylim(0, 1) cmap = plt.get_cmap("tab20") # Use tab20 colormap for multiple line plots. # Prepare data for plotting. if len(studies) == 0: _logger.warning("There are no studies.") return ax all_trials = list( itertools.chain.from_iterable( ( trial for trial in study.get_trials(deepcopy=False) if trial.state == TrialState.COMPLETE ) for study in studies ) ) if len(all_trials) == 0: _logger.warning("There are no complete trials.") return ax min_x_value = min(trial.value for trial in all_trials) max_x_value = max(trial.value for trial in all_trials) x_values = np.linspace(min_x_value, max_x_value, 100) # Draw multiple line plots. for i, study in enumerate(studies): values = np.asarray( [ trial.value for trial in study.get_trials(deepcopy=False) if trial.state == TrialState.COMPLETE ] ) y_values = np.sum(values[:, np.newaxis] <= x_values, axis=0) / values.size ax.plot(x_values, y_values, color=cmap(i), alpha=0.7, label=study.study_name) return ax
52,291
def get_parser(): parser = SCTArgumentParser( description=( "This function takes an anatomical image and its cord segmentation (binary file), and outputs the " "cord segmentation labeled with vertebral level. The algorithm requires an initialization (first disc) and " "then performs a disc search in the superior, then inferior direction, using template disc matching based " "on mutual information score. The automatic method uses the module implemented in " "'spinalcordtoolbox/vertebrae/detect_c2c3.py' to detect the C2-C3 disc." ) ) mandatory = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatory.add_argument( '-i', metavar=Metavar.file, required=True, help="Input image. Example: t2.nii.gz" ) mandatory.add_argument( '-s', metavar=Metavar.file, required=True, help="Segmentation of the spinal cord. Example: t2_seg.nii.gz" ) mandatory.add_argument( '-c', choices=['t1', 't2'], required=True, help="Type of image contrast. 't2': cord dark / CSF bright. 't1': cord bright / CSF dark" ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( "-h", "--help", action="help", help="Show this help message and exit." ) optional.add_argument( '-t', metavar=Metavar.folder, default=os.path.join(__data_dir__, "PAM50"), help="Path to template." ) optional.add_argument( '-initz', metavar=Metavar.list, type=parse_initz, help="Initialize using slice number and disc value. Example: 68,4 (slice 68 corresponds to disc C3/C4).\n" "WARNING: Slice number should correspond to superior-inferior direction (i.e. Z in RPI orientation, but " "Y in LIP orientation)." ) optional.add_argument( '-initcenter', metavar=Metavar.int, type=int, help="Initialize using disc value centered in the rostro-caudal direction. If the spine is curved, then " "consider the disc that projects onto the cord at the center of the z-FOV." ) optional.add_argument( '-initfile', metavar=Metavar.file, action=InitFileAction, dest=argparse.SUPPRESS, help="Initialize labeling by providing a text file which includes either -initz or -initcenter flag." ) optional.add_argument( '-initlabel', metavar=Metavar.file, help="Initialize vertebral labeling by providing a nifti file that has a single disc label. An example of " "such file is a single voxel with value '3', which would be located at the posterior tip of C2-C3 disc. " "Such label file can be created using: sct_label_utils -i IMAGE_REF -create-viewer 3 ; or by using the " "Python module 'detect_c2c3' implemented in 'spinalcordtoolbox/vertebrae/detect_c2c3.py'." ) optional.add_argument( '-discfile', metavar=Metavar.file, help="File with disc labels, which will be used to transform the input segmentation into a vertebral level " "file. In that case, there will be no disc detection. The convention for disc labels is the following: " "value=3 -> disc C2/C3, value=4 -> disc C3/C4, etc." ) optional.add_argument( '-ofolder', metavar=Metavar.file, action=ActionCreateFolder, default='', help="Output folder." ) optional.add_argument( '-laplacian', metavar=Metavar.int, type=int, choices=[0, 1], default=0, help="Apply Laplacian filtering. More accurate but could mistake disc depending on anatomy." ) optional.add_argument( '-clean-labels', metavar=Metavar.int, type=int, choices=[0, 1, 2], default=1, help="Clean output labeled segmentation to resemble original segmentation. " "0: no cleaning, " "1: remove labels that fall outside the original segmentation, " "2: also fill in labels to cover the entire original segmentation." ) optional.add_argument( '-scale-dist', metavar=Metavar.float, type=float, default=1., help="Scaling factor to adjust the average distance between two adjacent intervertebral discs. For example, " "if you are dealing with images from pediatric population, the distance should be reduced, so you can " "try a scaling factor of about 0.7." ) optional.add_argument( '-param', metavar=Metavar.list, type=vertebral_detection_param, default=','.join(f'{key}={value}' for key, value in param_default.items()), help='Advanced parameters. Assign value with "="; Separate arguments with ","\n' ' - shift_AP [mm]: AP shift of centerline for disc search\n' ' - size_AP [mm]: AP window size for disc search\n' ' - size_RL [mm]: RL window size for disc search\n' ' - size_IS [mm]: IS window size for disc search\n', ) optional.add_argument( '-r', metavar=Metavar.int, type=int, choices=[0, 1], default=1, help="Remove temporary files." ) optional.add_argument( '-v', metavar=Metavar.int, type=int, choices=[0, 1, 2], default=1, # Values [0, 1, 2] map to logging levels [WARNING, INFO, DEBUG], but are also used as "if verbose == #" in API help="Verbosity. 0: Display only errors/warnings, 1: Errors/warnings + info messages, 2: Debug mode" ) optional.add_argument( '-qc', metavar=Metavar.folder, action=ActionCreateFolder, help="The path where the quality control generated content will be saved." ) optional.add_argument( '-qc-dataset', metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the dataset the process was run on." ) optional.add_argument( '-qc-subject', metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the subject the process was run on." ) return parser
def get_parser(): parser = SCTArgumentParser( description=( "This function takes an anatomical image and its cord segmentation (binary file), and outputs the " "cord segmentation labeled with vertebral level. The algorithm requires an initialization (first disc) and " "then performs a disc search in the superior, then inferior direction, using template disc matching based " "on mutual information score. The automatic method uses the module implemented in " "'spinalcordtoolbox/vertebrae/detect_c2c3.py' to detect the C2-C3 disc." ) ) mandatory = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatory.add_argument( '-i', metavar=Metavar.file, required=True, help="Input image. Example: t2.nii.gz" ) mandatory.add_argument( '-s', metavar=Metavar.file, required=True, help="Segmentation of the spinal cord. Example: t2_seg.nii.gz" ) mandatory.add_argument( '-c', choices=['t1', 't2'], required=True, help="Type of image contrast. 't2': cord dark / CSF bright. 't1': cord bright / CSF dark" ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( "-h", "--help", action="help", help="Show this help message and exit." ) optional.add_argument( '-t', metavar=Metavar.folder, default=os.path.join(__data_dir__, "PAM50"), help="Path to template." ) optional.add_argument( '-initz', metavar=Metavar.list, type=parse_initz, help="Initialize using slice number and disc value. Example: 68,4 (slice 68 corresponds to disc C3/C4).\n" "WARNING: Slice number should correspond to superior-inferior direction (i.e. Z in RPI orientation, but " "Y in LIP orientation)." ) optional.add_argument( '-initcenter', metavar=Metavar.int, type=int, help="Initialize using disc value centered in the rostro-caudal direction. If the spine is curved, then " "consider the disc that projects onto the cord at the center of the z-FOV." ) optional.add_argument( '-initfile', metavar=Metavar.file, action=InitFileAction, dest=argparse.SUPPRESS, help="Initialize labeling by providing a text file which includes either -initz or -initcenter flag." ) optional.add_argument( '-initlabel', metavar=Metavar.file, help="Initialize vertebral labeling by providing a nifti file that has a single disc label. An example of " "such file is a single voxel with value '3', which would be located at the posterior tip of C2-C3 disc. " "Such label file can be created using: sct_label_utils -i IMAGE_REF -create-viewer 3 ; or by using the " "Python module 'detect_c2c3' implemented in 'spinalcordtoolbox/vertebrae/detect_c2c3.py'." ) optional.add_argument( '-discfile', metavar=Metavar.file, help="File with disc labels, which will be used to transform the input segmentation into a vertebral level " "file. In that case, there will be no disc detection. The convention for disc labels is the following: " "value=3 -> disc C2/C3, value=4 -> disc C3/C4, etc." ) optional.add_argument( '-ofolder', metavar=Metavar.file, action=ActionCreateFolder, default='', help="Output folder." ) optional.add_argument( '-laplacian', metavar=Metavar.int, type=int, choices=[0, 1], default=0, help="Apply Laplacian filtering. More accurate but could mistake disc depending on anatomy." ) optional.add_argument( '-clean-labels', metavar=Metavar.int, type=int, choices=[0, 1, 2], default=1, help="Clean output labeled segmentation to resemble original segmentation. " "0: no cleaning, " "1: remove labeled voxels that fall outside the original segmentation, " "2: `-clean-labels 1`, plus also fill in voxels so that the labels cover " "the entire original segmentation." ) optional.add_argument( '-scale-dist', metavar=Metavar.float, type=float, default=1., help="Scaling factor to adjust the average distance between two adjacent intervertebral discs. For example, " "if you are dealing with images from pediatric population, the distance should be reduced, so you can " "try a scaling factor of about 0.7." ) optional.add_argument( '-param', metavar=Metavar.list, type=vertebral_detection_param, default=','.join(f'{key}={value}' for key, value in param_default.items()), help='Advanced parameters. Assign value with "="; Separate arguments with ","\n' ' - shift_AP [mm]: AP shift of centerline for disc search\n' ' - size_AP [mm]: AP window size for disc search\n' ' - size_RL [mm]: RL window size for disc search\n' ' - size_IS [mm]: IS window size for disc search\n', ) optional.add_argument( '-r', metavar=Metavar.int, type=int, choices=[0, 1], default=1, help="Remove temporary files." ) optional.add_argument( '-v', metavar=Metavar.int, type=int, choices=[0, 1, 2], default=1, # Values [0, 1, 2] map to logging levels [WARNING, INFO, DEBUG], but are also used as "if verbose == #" in API help="Verbosity. 0: Display only errors/warnings, 1: Errors/warnings + info messages, 2: Debug mode" ) optional.add_argument( '-qc', metavar=Metavar.folder, action=ActionCreateFolder, help="The path where the quality control generated content will be saved." ) optional.add_argument( '-qc-dataset', metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the dataset the process was run on." ) optional.add_argument( '-qc-subject', metavar=Metavar.str, help="If provided, this string will be mentioned in the QC report as the subject the process was run on." ) return parser
47,101
def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ("blocks." + str(i) + ".norm1.weight", "vit.encoder.layer." + str(i) + ".layernorm_before.weight") ) rename_keys.append( ("blocks." + str(i) + ".norm1.bias", "vit.encoder.layer." + str(i) + ".layernorm_before.bias") ) rename_keys.append( ( "blocks." + str(i) + ".attn.proj.weight", "vit.encoder.layer." + str(i) + ".attention.output.dense.weight", ) ) rename_keys.append( ("blocks." + str(i) + ".attn.proj.bias", "vit.encoder.layer." + str(i) + ".attention.output.dense.bias") ) rename_keys.append( ("blocks." + str(i) + ".norm2.weight", "vit.encoder.layer." + str(i) + ".layernorm_after.weight") ) rename_keys.append( ("blocks." + str(i) + ".norm2.bias", "vit.encoder.layer." + str(i) + ".layernorm_after.bias") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc1.weight", "vit.encoder.layer." + str(i) + ".intermediate.dense.weight") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc1.bias", "vit.encoder.layer." + str(i) + ".intermediate.dense.bias") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc2.weight", "vit.encoder.layer." + str(i) + ".output.dense.weight") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc2.bias", "vit.encoder.layer." + str(i) + ".output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) # pooler if config.use_pooler: rename_keys.extend( [ ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # classification head rename_keys.extend( [ ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # to do: add base model support # if just the base model, we should remove "vit" from all keys if base_model: pass return rename_keys
def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append( ("blocks." + str(i) + ".norm1.bias", "vit.encoder.layer." + str(i) + ".layernorm_before.bias") ) rename_keys.append( ( "blocks." + str(i) + ".attn.proj.weight", "vit.encoder.layer." + str(i) + ".attention.output.dense.weight", ) ) rename_keys.append( ("blocks." + str(i) + ".attn.proj.bias", "vit.encoder.layer." + str(i) + ".attention.output.dense.bias") ) rename_keys.append( ("blocks." + str(i) + ".norm2.weight", "vit.encoder.layer." + str(i) + ".layernorm_after.weight") ) rename_keys.append( ("blocks." + str(i) + ".norm2.bias", "vit.encoder.layer." + str(i) + ".layernorm_after.bias") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc1.weight", "vit.encoder.layer." + str(i) + ".intermediate.dense.weight") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc1.bias", "vit.encoder.layer." + str(i) + ".intermediate.dense.bias") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc2.weight", "vit.encoder.layer." + str(i) + ".output.dense.weight") ) rename_keys.append( ("blocks." + str(i) + ".mlp.fc2.bias", "vit.encoder.layer." + str(i) + ".output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) # pooler if config.use_pooler: rename_keys.extend( [ ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # classification head rename_keys.extend( [ ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # to do: add base model support # if just the base model, we should remove "vit" from all keys if base_model: pass return rename_keys
57,775
def arduino_set_pin_command(server: Server, args: any) -> str: pin_type: str = args.get('pin_type') prefix: str = "Arduino.DigitalPins" if pin_type == "digital" else "Arduino.AnalogPins" pin_number: int = int(args.get('pin_number')) value: int = int(args.get('value')) result: int = int(server.send_data(f"set:{pin_type}:{pin_number},{value}")) results = [{ "PinType": "Digital" if pin_type == "digital" else "Analog", "PinNumber": pin_number, "PinValue": result }] command_results = CommandResults( outputs_prefix=prefix, outputs_key_field=['PinNumber', 'PinType'], outputs=results, readable_output=tableToMarkdown(f"Set pin {pin_number} on {server.host}({server.port}):", results) ) return command_results
def arduino_set_pin_command(server: Server, args: any) -> str: pin_type: str = args.get('pin_type') prefix: str = "Arduino.DigitalPins" if pin_type == "digital" else "Arduino.AnalogPins" pin_number = int(args.get('pin_number')) value = int(args.get('value')) result = int(server.send_data(f"set:{pin_type}:{pin_number},{value}")) results = [{ "PinType": "Digital" if pin_type == "digital" else "Analog", "PinNumber": pin_number, "PinValue": result }] command_results = CommandResults( outputs_prefix=prefix, outputs_key_field=['PinNumber', 'PinType'], outputs=results, readable_output=tableToMarkdown(f"Set pin {pin_number} on {server.host}({server.port}):", results) ) return command_results
30,483
def add(num1, num2): """ Adds two integers. Known limitations: - The sum of both numbers cannot exceed 300. - May take some time to count. :param num1: First number. :param num2: Second number. :return: result of two numbers """ start = time() sleep(num1) sleep(num2) return int(time() - start)
def add(num1, num2): """ Adds two integers. Known limitations: - The sum of both numbers cannot exceed 300. - May take some time to count. :param num1: First number. :param num2: Second number. :return: result of two numbers """ start = time() sleep(num1*num2) sleep(num2) return int(time() - start)
31,909
def url_reputation_command(): """ Execute SlashNext's url/reputation API against the requested url reputation command with the given parameters @:return: None """ # 1. Get input url from Demisto url = demisto.args().get('url') # 2. Get the url reputation from SlashNext API response = url_reputation(url=url) if response.get('errorNo') != 0: return # 3. Parse and format the response url_data = response.get('urlData') snx_ioc_cont, dbot_score_cont, url_cont = get_snx_url_ioc_context(url_data) ec = { 'SlashNext.URL(val.Value === obj.Value)': snx_ioc_cont[0], 'DBotScore': dbot_score_cont, 'URL': url_cont } title = 'SlashNext Phishing Incident Response - URL Reputation\n'\ '##### url = {}'.format(url_data.get('url')) if response.get('normalizeData').get('normalizeStatus') == 1: title += ' *\n*' + response.get('normalizeData').get('normalizeMessage') md = tableToMarkdown( title, snx_ioc_cont, ['Value', 'Type', 'Verdict', 'ThreatStatus', 'ThreatName', 'ThreatType', 'FirstSeen', 'LastSeen'] ) return_outputs(md, ec, snx_ioc_cont)
def url_reputation_command(): """ Execute SlashNext's url/reputation API against the requested url reputation command with the given parameters @:return: None """ # 1. Get input url from Demisto url = demisto.args().get('url') # 2. Get the url reputation from SlashNext API response = url_lookup(url=url) if response.get('errorNo') != 0: return # 3. Parse and format the response url_data = response.get('urlData') snx_ioc_cont, dbot_score_cont, url_cont = get_snx_url_ioc_context(url_data) ec = { 'SlashNext.URL(val.Value === obj.Value)': snx_ioc_cont[0], 'DBotScore': dbot_score_cont, 'URL': url_cont } title = 'SlashNext Phishing Incident Response - URL Reputation\n'\ '##### url = {}'.format(url_data.get('url')) if response.get('normalizeData').get('normalizeStatus') == 1: title += ' *\n*' + response.get('normalizeData').get('normalizeMessage') md = tableToMarkdown( title, snx_ioc_cont, ['Value', 'Type', 'Verdict', 'ThreatStatus', 'ThreatName', 'ThreatType', 'FirstSeen', 'LastSeen'] ) return_outputs(md, ec, snx_ioc_cont)
23,020
def test_pathlib_path(tmpdir): import pathlib path = pathlib.Path(tmpdir) ddf.to_parquet(path) ddf2 = dd.read_parquet(path) assert_eq(ddf, ddf2, check_divisions=False, check_index=False)
def test_pathlib_path(tmpdir): import pathlib path = pathlib.Path(tmpdir) ddf.to_parquet(path, engine=engine) ddf2 = dd.read_parquet(path) assert_eq(ddf, ddf2, check_divisions=False, check_index=False)
52,939
def read_certificate(cert_path): """ Load the certificate from the provided path, and return a human readable version of it (TEXT mode). :param str cert_path: the path to the certificate :return: the TEXT version of the certificate, as it would be displayed by openssl binary """ with open(cert_path, 'r') as file: data = file.read() cert = crypto.load_certificate(crypto.FILETYPE_PEM, data.encode('utf-8')) return crypto.dump_certificate(crypto.FILETYPE_TEXT, cert).decode('utf-8')
def read_certificate(cert_path): """ Load the certificate from the provided path, and return a human readable version of it (TEXT mode). :param str cert_path: the path to the certificate :returns: the TEXT version of the certificate, as it would be displayed by openssl binary :rtype: str """ with open(cert_path, 'r') as file: data = file.read() cert = crypto.load_certificate(crypto.FILETYPE_PEM, data.encode('utf-8')) return crypto.dump_certificate(crypto.FILETYPE_TEXT, cert).decode('utf-8')
30,704
def get_conversation_by_name(conversation_name: str) -> dict: """ Get a slack conversation by its name :param conversation_name: The conversation name :return: The slack conversation """ integration_context = demisto.getIntegrationContext() conversation_to_search = conversation_name.lower() # Find conversation in the cache conversations = integration_context.get('conversations') if conversations: conversations = json.loads(conversations) conversation_filter = list( filter( lambda u: conversation_to_search == u.get('name', '').lower(), conversations ) ) if conversation_filter: return conversation_filter[0] # If not found in cache, search for it body = { 'types': 'private_channel,public_channel', 'limit': PAGINATED_COUNT } response = send_slack_request_sync(CLIENT, 'conversations.list', http_verb='GET', body=body) conversation: dict = {} while True: conversations = response['channels'] if response and response.get('channels') else [] cursor = response.get('response_metadata', {}).get('next_cursor') conversation_filter = list(filter(lambda c: c.get('name') == conversation_name, conversations)) if conversation_filter: break if not cursor: break body = body.copy() body.update({'cursor': cursor}) response = send_slack_request_sync(CLIENT, 'conversations.list', http_verb='GET', body=body) if conversation_filter: conversation = conversation_filter[0] # Save conversations to cache set_to_latest_integration_context({'conversations': conversations}) return conversation
def get_conversation_by_name(conversation_name: str) -> dict: """ Get a slack conversation by its name :param conversation_name: The conversation name :return: The slack conversation """ integration_context = demisto.getIntegrationContext() conversation_to_search = conversation_name.lower() # Find conversation in the cache conversations = integration_context.get('conversations') if conversations: conversations = json.loads(conversations) conversation_filter = list( filter( lambda c: conversation_to_search == c.get('name', '').lower(), conversations ) ) if conversation_filter: return conversation_filter[0] # If not found in cache, search for it body = { 'types': 'private_channel,public_channel', 'limit': PAGINATED_COUNT } response = send_slack_request_sync(CLIENT, 'conversations.list', http_verb='GET', body=body) conversation: dict = {} while True: conversations = response['channels'] if response and response.get('channels') else [] cursor = response.get('response_metadata', {}).get('next_cursor') conversation_filter = list(filter(lambda c: c.get('name') == conversation_name, conversations)) if conversation_filter: break if not cursor: break body = body.copy() body.update({'cursor': cursor}) response = send_slack_request_sync(CLIENT, 'conversations.list', http_verb='GET', body=body) if conversation_filter: conversation = conversation_filter[0] # Save conversations to cache set_to_latest_integration_context({'conversations': conversations}) return conversation
28,980
def verify_proof(proof, rootHash, name): previous_computed_hash = None reverse_computed_name = '' verified_value = False for i, node in enumerate(proof['nodes'][::-1]): found_child_in_chain = False to_hash = b'' previous_child_character = None for child in node['children']: if child['character'] < 0 or child['character'] > 255: raise InvalidProofError("child character not int between 0 and 255") if previous_child_character: if previous_child_character >= child['character']: raise InvalidProofError("children not in increasing order") previous_child_character = child['character'] to_hash += six.int2byte(child['character']) if 'nodeHash' in child: if len(child['nodeHash']) != 64: raise InvalidProofError("invalid child nodeHash") to_hash += binascii.unhexlify(child['nodeHash'])[::-1] else: if previous_computed_hash is None: raise InvalidProofError("previous computed hash is None") if found_child_in_chain is True: raise InvalidProofError("already found the next child in the chain") found_child_in_chain = True reverse_computed_name += chr(child['character']) to_hash += previous_computed_hash if not found_child_in_chain: if i != 0: raise InvalidProofError("did not find the alleged child") if i == 0 and 'txhash' in proof and 'nOut' in proof and 'last takeover height' in proof: if len(proof['txhash']) != 64: raise InvalidProofError("txhash was invalid: {}".format(proof['txhash'])) if not isinstance(proof['nOut'], (int,)): raise InvalidProofError("nOut was invalid: {}".format(proof['nOut'])) if not isinstance(proof['last takeover height'], (int,)): raise InvalidProofError( 'last takeover height was invalid: {}'.format(proof['last takeover height'])) to_hash += get_hash_for_outpoint( binascii.unhexlify(proof['txhash'])[::-1], proof['nOut'], proof['last takeover height'] ) verified_value = True elif 'valueHash' in node: if len(node['valueHash']) != 64: raise InvalidProofError("valueHash was invalid") to_hash += binascii.unhexlify(node['valueHash'])[::-1] previous_computed_hash = double_sha256(to_hash) if previous_computed_hash != binascii.unhexlify(rootHash)[::-1]: raise InvalidProofError("computed hash does not match roothash") if 'txhash' in proof and 'nOut' in proof: if not verified_value: raise InvalidProofError("mismatch between proof claim and outcome") if 'txhash' in proof and 'nOut' in proof: if name != reverse_computed_name[::-1]: raise InvalidProofError("name did not match proof") if not name.startswith(reverse_computed_name[::-1]): raise InvalidProofError("name fragment does not match proof") return True
def verify_proof(proof, rootHash, name): previous_computed_hash = None reverse_computed_name = '' verified_value = False for i, node in enumerate(proof['nodes'][::-1]): found_child_in_chain = False to_hash = b'' previous_child_character = None for child in node['children']: if child['character'] < 0 or child['character'] > 255: raise InvalidProofError("child character not int between 0 and 255") if previous_child_character: if previous_child_character >= child['character']: raise InvalidProofError("children not in increasing order") previous_child_character = child['character'] to_hash += six.int2byte(child['character']) if 'nodeHash' in child: if len(child['nodeHash']) != 64: raise InvalidProofError("invalid child nodeHash") to_hash += binascii.unhexlify(child['nodeHash'])[::-1] else: if previous_computed_hash is None: raise InvalidProofError("previous computed hash is None") if found_child_in_chain is True: raise InvalidProofError("already found the next child in the chain") found_child_in_chain = True reverse_computed_name += chr(child['character']) to_hash += previous_computed_hash if not found_child_in_chain: if i != 0: raise InvalidProofError("did not find the alleged child") if i == 0 and 'txhash' in proof and 'nOut' in proof and 'last takeover height' in proof: if len(proof['txhash']) != 64: raise InvalidProofError("txhash was invalid: {}".format(proof['txhash'])) if not isinstance(proof['nOut'], (int,)): raise InvalidProofError("nOut was invalid: {}".format(proof['nOut'])) if not isinstance(proof['last takeover height'], int): raise InvalidProofError( 'last takeover height was invalid: {}'.format(proof['last takeover height'])) to_hash += get_hash_for_outpoint( binascii.unhexlify(proof['txhash'])[::-1], proof['nOut'], proof['last takeover height'] ) verified_value = True elif 'valueHash' in node: if len(node['valueHash']) != 64: raise InvalidProofError("valueHash was invalid") to_hash += binascii.unhexlify(node['valueHash'])[::-1] previous_computed_hash = double_sha256(to_hash) if previous_computed_hash != binascii.unhexlify(rootHash)[::-1]: raise InvalidProofError("computed hash does not match roothash") if 'txhash' in proof and 'nOut' in proof: if not verified_value: raise InvalidProofError("mismatch between proof claim and outcome") if 'txhash' in proof and 'nOut' in proof: if name != reverse_computed_name[::-1]: raise InvalidProofError("name did not match proof") if not name.startswith(reverse_computed_name[::-1]): raise InvalidProofError("name fragment does not match proof") return True
44,484
def use_gcp_secret(secret_name='user-gcp-sa', secret_file_path_in_volume=None, volume_name=None, secret_volume_mount_path='/secret/gcp-credentials'): """An operator that configures the container to use GCP service account. The user-gcp-sa secret is created as part of the kubeflow deployment that stores the access token for kubeflow user service account. With this service account, the container has a range of GCP APIs to access to. This service account is automatically created as part of the kubeflow deployment. For the list of the GCP APIs this service account can access to, check https://github.com/kubeflow/kubeflow/blob/7b0db0d92d65c0746ac52b000cbc290dac7c62b1/deployment/gke/deployment_manager_configs/iam_bindings_template.yaml#L18 If you want to call the GCP APIs in a different project, grant the kf-user service account access permission. """ # permitted values for secret_name = ['admin-gcp-sa', 'user-gcp-sa'] if secret_file_path_in_volume == None: secret_file_path_in_volume = '/' + secret_name + '.json' if volume_name == None: volume_name = 'gcp-credentials-' + secret_name else: import warnings warnings.warn('The volume_name parameter is deprecated and will be removed in next release. The volume names are now generated automatically.', DeprecationWarning) def _use_gcp_secret(task): from kubernetes import client as k8s_client return ( task .add_volume( k8s_client.V1Volume( name=volume_name, secret=k8s_client.V1SecretVolumeSource( secret_name=secret_name, ) ) ) .add_volume_mount( k8s_client.V1VolumeMount( name=volume_name, mount_path=secret_volume_mount_path, ) ) .add_env_variable( k8s_client.V1EnvVar( name='GOOGLE_APPLICATION_CREDENTIALS', value=secret_volume_mount_path + secret_file_path_in_volume, ) ) .add_env_variable( k8s_client.V1EnvVar( name='CLOUDSDK_AUTH_CREDENTIAL_FILE_OVERRIDE', value=secret_volume_mount_path + secret_file_path_in_volume, ) ) # Set GCloud Credentials by using the env var override. # TODO: Is there a better way for GCloud to pick up the credential? ) return _use_gcp_secret
def use_gcp_secret(secret_name='user-gcp-sa', secret_file_path_in_volume=None, volume_name=None, secret_volume_mount_path='/secret/gcp-credentials'): """An operator that configures the container to use GCP service account. The user-gcp-sa secret is created as part of the kubeflow deployment that stores the access token for kubeflow user service account. With this service account, the container has a range of GCP APIs to access to. This service account is automatically created as part of the kubeflow deployment. For the list of the GCP APIs this service account can access to, check https://github.com/kubeflow/kubeflow/blob/7b0db0d92d65c0746ac52b000cbc290dac7c62b1/deployment/gke/deployment_manager_configs/iam_bindings_template.yaml#L18 If you want to call the GCP APIs in a different project, grant the kf-user service account access permission. """ # permitted values for secret_name = ['admin-gcp-sa', 'user-gcp-sa'] if secret_file_path_in_volume == None: secret_file_path_in_volume = '/' + secret_name + '.json' if volume_name is None: volume_name = 'gcp-credentials-' + secret_name else: import warnings warnings.warn('The volume_name parameter is deprecated and will be removed in next release. The volume names are now generated automatically.', DeprecationWarning) def _use_gcp_secret(task): from kubernetes import client as k8s_client return ( task .add_volume( k8s_client.V1Volume( name=volume_name, secret=k8s_client.V1SecretVolumeSource( secret_name=secret_name, ) ) ) .add_volume_mount( k8s_client.V1VolumeMount( name=volume_name, mount_path=secret_volume_mount_path, ) ) .add_env_variable( k8s_client.V1EnvVar( name='GOOGLE_APPLICATION_CREDENTIALS', value=secret_volume_mount_path + secret_file_path_in_volume, ) ) .add_env_variable( k8s_client.V1EnvVar( name='CLOUDSDK_AUTH_CREDENTIAL_FILE_OVERRIDE', value=secret_volume_mount_path + secret_file_path_in_volume, ) ) # Set GCloud Credentials by using the env var override. # TODO: Is there a better way for GCloud to pick up the credential? ) return _use_gcp_secret
25,079
def _colorize(agg, color_key, how, span, min_alpha, name): if cupy and isinstance(agg.data, cupy.ndarray): from ._cuda_utils import interp array = cupy.array else: interp = np.interp array = np.array if not agg.ndim == 3: raise ValueError("agg must be 3D") cats = agg.indexes[agg.dims[-1]] if color_key is None: raise ValueError("Color key must be provided, with at least as many " + "colors as there are categorical fields") if not isinstance(color_key, dict): color_key = dict(zip(cats, color_key)) if len(color_key) < len(cats): raise ValueError("Insufficient colors provided ({}) for the categorical fields available ({})" .format(len(color_key), len(cats))) if not (0 <= min_alpha <= 255): raise ValueError("min_alpha ({}) must be between 0 and 255".format(min_alpha)) colors = [rgb(color_key[c]) for c in cats] rs, gs, bs = map(array, zip(*colors)) # Reorient array (transposing the category dimension first) agg_t = agg.transpose(*((agg.dims[-1],)+agg.dims[:2])) data = orient_array(agg_t).transpose([1, 2, 0]) total = data.sum(axis=2) # zero-count pixels will be 0/0, but it's safe to ignore that when dividing with np.errstate(divide='ignore', invalid='ignore'): r = (data.dot(rs)/total).astype(np.uint8) g = (data.dot(gs)/total).astype(np.uint8) b = (data.dot(bs)/total).astype(np.uint8) mask = np.isnan(total) # if span is provided, use it, otherwise produce it a span based off the # min/max of the data if span is None: # Currently masks out zero or negative values, but will need fixing offset = np.nanmin(total) if offset <= 0 and total.dtype.kind == 'u': mask = mask | (total <= 0) # If at least one element is not masked, use the minimum as the offset # otherwise the offset remains at zero if not np.all(mask): offset = total[total > 0].min() a_scaled = _normalize_interpolate_how(how)(total - offset, mask) norm_span = [np.nanmin(a_scaled).item(), np.nanmax(a_scaled).item()] else: if how == 'eq_hist': # For eq_hist to work with span, we'll need to store the histogram # from the data and then apply it to the span argument. raise ValueError("span is not (yet) valid to use with eq_hist") # even in fixed-span mode cells with 0 should remain fully transparent # i.e. a 0 will be fully transparent, but any non-zero number will # be clipped to the span range and have min-alpha applied offset = np.array(span, dtype=data.dtype)[0] if offset <= 0 and total.dtype.kind == 'u': mask = mask | (total <= 0) a_scaled = _normalize_interpolate_how(how)(total - offset, mask) norm_span = _normalize_interpolate_how(how)([0, span[1] - span[0]], 0) # Interpolate the alpha values a = interp(a_scaled, array(norm_span), array([min_alpha, 255]), left=0, right=255).astype(np.uint8) r[mask] = g[mask] = b[mask] = 255 values = np.dstack([r, g, b, a]).view(np.uint32).reshape(a.shape) if cupy and isinstance(values, cupy.ndarray): # Convert cupy array to numpy for final image values = cupy.asnumpy(values) return Image(values, dims=agg.dims[:-1], coords=OrderedDict([ (agg.dims[1], agg.coords[agg.dims[1]]), (agg.dims[0], agg.coords[agg.dims[0]]), ]), name=name)
def _colorize(agg, color_key, how, span, min_alpha, name): if cupy and isinstance(agg.data, cupy.ndarray): from ._cuda_utils import interp array = cupy.array else: interp = np.interp array = np.array if not agg.ndim == 3: raise ValueError("agg must be 3D") cats = agg.indexes[agg.dims[-1]] if color_key is None: raise ValueError("Color key must be provided, with at least as many " + "colors as there are categorical fields") if not isinstance(color_key, dict): color_key = dict(zip(cats, color_key)) if len(color_key) < len(cats): raise ValueError("Insufficient colors provided ({}) for the categorical fields available ({})" .format(len(color_key), len(cats))) if not (0 <= min_alpha <= 255): raise ValueError("min_alpha ({}) must be between 0 and 255".format(min_alpha)) colors = [rgb(color_key[c]) for c in cats] rs, gs, bs = map(array, zip(*colors)) # Reorient array (transposing the category dimension first) agg_t = agg.transpose(*((agg.dims[-1],)+agg.dims[:2])) data = orient_array(agg_t).transpose([1, 2, 0]) total = data.sum(axis=2) # zero-count pixels will be 0/0, but it's safe to ignore that when dividing with np.errstate(divide='ignore', invalid='ignore'): r = (data.dot(rs)/total).astype(np.uint8) g = (data.dot(gs)/total).astype(np.uint8) b = (data.dot(bs)/total).astype(np.uint8) mask = np.isnan(total) # if span is provided, use it, otherwise produce it a span based off the # min/max of the data if span is None: # Currently masks out zero or negative values, but will need fixing offset = np.nanmin(total) if offset == 0 and total.dtype.kind == 'u': mask = mask | (total <= 0) # If at least one element is not masked, use the minimum as the offset # otherwise the offset remains at zero if not np.all(mask): offset = total[total > 0].min() a_scaled = _normalize_interpolate_how(how)(total - offset, mask) norm_span = [np.nanmin(a_scaled).item(), np.nanmax(a_scaled).item()] else: if how == 'eq_hist': # For eq_hist to work with span, we'll need to store the histogram # from the data and then apply it to the span argument. raise ValueError("span is not (yet) valid to use with eq_hist") # even in fixed-span mode cells with 0 should remain fully transparent # i.e. a 0 will be fully transparent, but any non-zero number will # be clipped to the span range and have min-alpha applied offset = np.array(span, dtype=data.dtype)[0] if offset <= 0 and total.dtype.kind == 'u': mask = mask | (total <= 0) a_scaled = _normalize_interpolate_how(how)(total - offset, mask) norm_span = _normalize_interpolate_how(how)([0, span[1] - span[0]], 0) # Interpolate the alpha values a = interp(a_scaled, array(norm_span), array([min_alpha, 255]), left=0, right=255).astype(np.uint8) r[mask] = g[mask] = b[mask] = 255 values = np.dstack([r, g, b, a]).view(np.uint32).reshape(a.shape) if cupy and isinstance(values, cupy.ndarray): # Convert cupy array to numpy for final image values = cupy.asnumpy(values) return Image(values, dims=agg.dims[:-1], coords=OrderedDict([ (agg.dims[1], agg.coords[agg.dims[1]]), (agg.dims[0], agg.coords[agg.dims[0]]), ]), name=name)
6,793
def get_contacts(email_strings): email_addrs = [] for email_string in email_strings: if email_string: for email in email_string.split(","): parsed_email = parseaddr(email)[1] if parsed_email: email_addrs.append(parsed_email) contacts = [] for email in email_addrs: email = get_email_without_link(email) contact_name = get_contact_name(email) if not contact_name and email: email_parts = email.split("@") first_name = frappe.unscrub(email_parts[0]) try: contact = frappe.get_doc({ "doctype": "Contact", "first_name": first_name, }) contact.add_email(email_id=email, is_primary=True) contact.name = ('{0}-{1}'.format(first_name, email_parts[1]) if first_name in ['Contact'] else first_name) contact.insert(ignore_permissions=True) contact_name = contact.name except Exception: traceback = frappe.get_traceback() frappe.log_error(traceback) if contact_name: contacts.append(contact_name) return contacts
def get_contacts(email_strings): email_addrs = [] for email_string in email_strings: if email_string: for email in email_string.split(","): parsed_email = parseaddr(email)[1] if parsed_email: email_addrs.append(parsed_email) contacts = [] for email in email_addrs: email = get_email_without_link(email) contact_name = get_contact_name(email) if not contact_name and email: email_parts = email.split("@") first_name = frappe.unscrub(email_parts[0]) try: contact = frappe.get_doc({ "doctype": "Contact", "first_name": first_name, }) contact.add_email(email_id=email, is_primary=True) contact.name = ('{0}-{1}'.format(first_name, email_parts[1]) if first_name.lower() == 'contact' else first_name) contact.insert(ignore_permissions=True) contact_name = contact.name except Exception: traceback = frappe.get_traceback() frappe.log_error(traceback) if contact_name: contacts.append(contact_name) return contacts
22,282
def purge_datasets(app, cutoff_time, remove_from_disk, info_only=False, force_retry=False): # Purges deleted datasets whose update_time is older than cutoff_time. Files may or may # not be removed from disk. dataset_count = 0 disk_space = 0 start = time.time() if force_retry: datasets = app.sa_session.query(app.model.Dataset) \ .filter(and_(app.model.Dataset.table.c.deleted == true(), app.model.Dataset.table.c.purgable == true(), app.model.Dataset.table.c.update_time < cutoff_time)) else: datasets = app.sa_session.query(app.model.Dataset) \ .filter(and_(app.model.Dataset.table.c.deleted == true(), app.model.Dataset.table.c.purgable == true(), app.model.Dataset.table.c.purged == false(), app.model.Dataset.table.c.update_time < cutoff_time)) for dataset in datasets: file_size = dataset.file_size _purge_dataset(app, dataset, remove_from_disk, info_only=info_only) dataset_count += 1 try: disk_space += file_size except Exception: pass stop = time.time() log.info('Purged %d datasets' % dataset_count) if remove_from_disk: log.info('Freed disk space: %s' % disk_space) log.info("Elapsed time: %f" % (stop - start)) log.info("##########################################")
def purge_datasets(app, cutoff_time, remove_from_disk, info_only=False, force_retry=False): # Purges deleted datasets whose update_time is older than cutoff_time. Files may or may # not be removed from disk. dataset_count = 0 disk_space = 0 start = time.time() if force_retry: datasets = app.sa_session.query(app.model.Dataset) \ .filter(and_(app.model.Dataset.table.c.deleted == true(), app.model.Dataset.table.c.purgable == true(), app.model.Dataset.table.c.update_time < cutoff_time)) else: datasets = app.sa_session.query(app.model.Dataset) \ .filter(and_(app.model.Dataset.table.c.deleted == true(), app.model.Dataset.table.c.purgable == true(), app.model.Dataset.table.c.purged == false(), app.model.Dataset.table.c.update_time < cutoff_time)) for dataset in datasets: file_size = dataset.file_size _purge_dataset(app, dataset, remove_from_disk, info_only=info_only) dataset_count += 1 try: disk_space += file_size except Exception: pass stop = time.time() log.info('Purged %d datasets' % dataset_count) if remove_from_disk: log.info("Freed disk space: %d", disk_space) log.info("Elapsed time: %f" % (stop - start)) log.info("##########################################")
47,936
def render_routine(line): """Function for rendering single formula Args: line (tuple): formula idx, formula string, path to store rendered image """ formula, file_idx, folder_path = line output_path = Path(folder_path, file_idx) pre_name = os.path.normcase(output_path).replace('/', '_').replace('.', '_') formula = preprocess_formula(formula) if not output_path.exists(): tex_filename = Path(folder_path, pre_name + '.tex') log_filename = tex_filename.with_name(pre_name + '.log') aux_filename = tex_filename.with_name(pre_name + '.aux') with open(str(tex_filename), "w") as w: w.write(template % formula) subprocess.run(['pdflatex', '-interaction=nonstopmode', '-output-directory', folder_path, str(tex_filename)], check=False, stdout=PIPE, stderr=PIPE, shell=os.name == 'nt') for filename in (tex_filename, log_filename, aux_filename): if filename.exists(): filename.unlink() pdf_filename = tex_filename.with_name(pre_name + '.pdf') png_filename = tex_filename.with_name(pre_name + '.png') if not pdf_filename.exists(): print_info('ERROR: {} cannot compile\n'.format(file_idx)) else: subprocess.run(['convert', '+profile', '"icc"', '-density', '200', '-quality', '100', str(pdf_filename), str(png_filename)], check=True, stdout=PIPE, stderr=PIPE, shell=os.name == 'nt') if pdf_filename.exists(): pdf_filename.unlink() if png_filename.exists(): crop_image(str(png_filename), str(output_path)) png_filename.unlink() else: print_info("ERROR: {png_filename} does not exists".format(png_filename=png_filename))
def render_routine(line): """Function for rendering single formula Args: line (tuple): formula idx, formula string, path to store rendered image """ formula, file_idx, folder_path = line output_path = Path(folder_path, file_idx) pre_name = os.path.normcase(output_path).replace('/', '_').replace('.', '_') formula = preprocess_formula(formula) if not output_path.exists(): tex_filename = Path(folder_path, pre_name + '.tex') log_filename = tex_filename.with_name(pre_name + '.log') aux_filename = tex_filename.with_suffix('.aux') with open(str(tex_filename), "w") as w: w.write(template % formula) subprocess.run(['pdflatex', '-interaction=nonstopmode', '-output-directory', folder_path, str(tex_filename)], check=False, stdout=PIPE, stderr=PIPE, shell=os.name == 'nt') for filename in (tex_filename, log_filename, aux_filename): if filename.exists(): filename.unlink() pdf_filename = tex_filename.with_name(pre_name + '.pdf') png_filename = tex_filename.with_name(pre_name + '.png') if not pdf_filename.exists(): print_info('ERROR: {} cannot compile\n'.format(file_idx)) else: subprocess.run(['convert', '+profile', '"icc"', '-density', '200', '-quality', '100', str(pdf_filename), str(png_filename)], check=True, stdout=PIPE, stderr=PIPE, shell=os.name == 'nt') if pdf_filename.exists(): pdf_filename.unlink() if png_filename.exists(): crop_image(str(png_filename), str(output_path)) png_filename.unlink() else: print_info("ERROR: {png_filename} does not exists".format(png_filename=png_filename))