File size: 8,482 Bytes
58e8353
 
 
 
 
 
 
 
 
 
 
bcb6e0f
58e8353
bcb6e0f
58e8353
bcb6e0f
58e8353
3cdb8c3
 
58e8353
3cdb8c3
bcb6e0f
3cdb8c3
cf8672d
e7d9a3b
cf8672d
58e8353
bcb6e0f
58e8353
e5fbcfa
bcb6e0f
e5fbcfa
e7d9a3b
 
92c8ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
58e8353
764afca
58e8353
5f466e5
c344ed9
 
 
 
 
 
 
92c8ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae42226
92c8ec2
 
 
764afca
92c8ec2
764afca
92c8ec2
 
5f466e5
764afca
5f466e5
 
 
 
 
 
764afca
 
5f466e5
764afca
 
fd03124
ae42226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764afca
ae42226
 
764afca
ae42226
 
 
92c8ec2
 
 
 
 
 
 
 
 
 
 
 
5f466e5
92c8ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae42226
 
 
 
 
 
 
 
 
 
 
 
92c8ec2
 
 
 
 
e7a726b
92c8ec2
e7a726b
92c8ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8daf8e5
 
 
92c8ec2
 
 
bcb6e0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
---
dataset_info:
  features:
  - name: instruction
    dtype: string
  - name: context
    dtype: string
  - name: response
    dtype: string
  - name: category
    dtype: string
  - name: instruction_original_en
    dtype: string
  - name: context_original_en
    dtype: string
  - name: response_original_en
    dtype: string
  - name: id
    dtype: int64
  splits:
  - name: de
    num_bytes: 25985140
    num_examples: 15015
  - name: en
    num_bytes: 24125109
    num_examples: 15015
  - name: es
    num_bytes: 25902709
    num_examples: 15015
  - name: fr
    num_bytes: 26704314
    num_examples: 15015
  download_size: 65586669
  dataset_size: 102717272
license: cc-by-sa-3.0
task_categories:
- text-generation
- text2text-generation
language:
- es
- de
- fr
tags:
- machine-translated
- instruction-following
pretty_name: Databrick Dolly Instructions Multilingual
size_categories:
- 10K<n<100K
---
# Dataset Card for "databricks-dolly-15k-curated-multilingual"

A curated and multilingual version of the Databricks Dolly instructions dataset. It includes a programmatically and manually corrected version of the original `en` dataset. See below.

**STATUS**:

Currently, the original Dolly v2 English version has been curated combining automatic processing and collaborative human curation using Argilla (~400 records have been manually edited and fixed). The following graph shows a summary about the number of edited fields.

![Edited records](edited_records.png)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage: https://huggingface.co/datasets/argilla/databricks-dolly-15k-multilingual/**
- **Repository: https://huggingface.co/datasets/argilla/databricks-dolly-15k-multilingual/**
- **Paper:**
- **Leaderboard:**
- **Point of Contact: [email protected], https://github.com/argilla-io/argilla**

### Dataset Summary

This dataset collection is a curated and machine-translated version of the `databricks-dolly-15k` [dataset](https://github.com/databrickslabs/dolly/tree/master/data) originally created by Databricks, Inc. in 2023.

The goal is to give practitioners a starting point for training open-source instruction-following models with better-quality English data and translated data beyond English. However, as the translation quality will not be perfect, we highly recommend dedicating time to curate and fix translation issues. Below we explain how to load the datasets into [Argilla for data curation and fixing](https://github.com/argilla-io/argilla). Additionally, we'll be improving the datasets made available here, with the help of different communities.


Currently, the original English version has been curated combining automatic processing and collaborative human curation using Argilla (~400 records have been manually edited and fixed). The following graph shows a summary of the number of edited fields.

The main issues (likely many issues still remaining) are the following:

1. Some labelers misunderstood the usage of the `context` field. This `context` field is used as part of the prompt for instruction-tuning and in other works it's called `input` (e.g., Alpaca). Likely, the name context, has led to some labelers using it to provide the full context of where they have extracted the response. This is problematic for some types of tasks (summarization, closed-qa or information-extraction) because sometimes the context is shorter than or unrelated to summaries, or the information cannot be extracted from the context (closed-qa, information-extraction).
2. Some labelers misunderstood the way to give instructions for summarization or closed-qa, for example, they ask: Who is Thomas Jefferson? then provide a very long context and a response equally long.

We programmatically identified records with these potential issues and ran a campaign to fix it and as a result more than 400 records have been adapted. See below for statistics: 
![Edited records](edited_records.png)

As a result of this curation process the content of the fields has been reduced, counted in number of tokens, especially for the responses:


![Edited records](tokens_diff.png)

If you want to browse and curate your dataset with Argilla, you can:

1. [Duplicate this Space](https://huggingface.co/spaces/argilla/dolly-multilingual-curation/settings?duplicate=true). IMPORTANT: The Space's Visibility need to be Public, but you can setup your own password and API KEYS [following this guide](https://docs.argilla.io/en/latest/getting_started/installation/deployments/huggingface-spaces.html#setting-up-secret-environment-variables).
2. Setup two secrets: `HF_TOKEN` and `LANG` for indicating the language split
3. Login with `admin`/`12345678` and start browsing and labelling.
4. Start labeling. Every 5 min the validations will be stored on a Hub dataset in your personal HF space.
5. Please get in touch to contribute fixes and improvements to the source datasets.

There's one split per language:

```python
from datasets import load_dataset

# loads all splits
load_dataset("argilla/databricks-dolly-15k-curate-multilingual")

# loads Spanish splits
load_dataset("argilla/databricks-dolly-15k-curated-multilingual", split="es")

```

### Supported Tasks and Leaderboards

As described in the README of the original dataset, this dataset can be used for:


* Training LLMs
* Synthetic Data Generation
* Data Augmentation


### Languages

Currently: `es`, `fr`, `de`, `en`

Join Argilla [Slack community](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g) if you want to help us include other languages.

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

There's one split per language:

```python
from datasets import load_dataset

# loads all splits
load_dataset("argilla/databricks-dolly-15k-multilingual")

# loads Spanish splits
load_dataset("argilla/databricks-dolly-15k-multilingual", split="es")

```

## Dataset Creation

These datasets have been translated using the DeepL API from the original English dataset between the 13th and 14th of April

### Curation Logbook

* 28/04/23: Removed references from Wikipedia copy pastes for 8113 rows. Applied to context and response fields with the following regex: `r'\[[\w]+\]'`

### Source Data

#### Initial Data Collection and Normalization

Refer to the [original dataset](https://github.com/databrickslabs/dolly/tree/master/data) for more information.

#### Who are the source language producers?

[More Information Needed]

### Annotations

Annotations are planned but not performed yet.

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

This dataset can be used for any purpose, whether academic or commercial,  under the terms of the [Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/legalcode).

**Original dataset Owner: Databricks, Inc.**

### Citation Information

[More Information Needed]