davidberenstein1957 HF staff commited on
Commit
9628654
·
1 Parent(s): 06397f8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +340 -60
README.md CHANGED
@@ -1,63 +1,343 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: metadata
5
- dtype: string
6
- - name: title
7
- dtype: string
8
- id: field
9
- - name: question
10
- dtype: string
11
- id: field
12
- - name: answer
13
- dtype: string
14
- id: field
15
- - name: title_question_fit
16
- sequence:
17
- - name: user_id
18
- dtype: string
19
- - name: value
20
- dtype: string
21
- - name: status
22
- dtype: string
23
- id: question
24
- - name: tags
25
- sequence:
26
- - name: user_id
27
- dtype: string
28
- - name: value
29
- sequence: string
30
- - name: status
31
- dtype: string
32
- id: question
33
- - name: answer_quality
34
- sequence:
35
- - name: user_id
36
- dtype: string
37
- - name: value
38
- dtype: int32
39
- - name: status
40
- dtype: string
41
- id: question
42
- - name: new_answer
43
- sequence:
44
- - name: user_id
45
- dtype: string
46
- - name: value
47
- dtype: string
48
- - name: status
49
- dtype: string
50
- id: question
51
- - name: external_id
52
- dtype: string
53
- id: external_id
54
- splits:
55
- - name: train
56
- num_bytes: 365110
57
- num_examples: 200
58
- download_size: 200652
59
- dataset_size: 365110
60
  ---
61
- # Dataset Card for "stackoverflow_feedback_demo"
62
 
63
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ size_categories: n<1K
3
+ tags:
4
+ - rlfh
5
+ - argilla
6
+ - human-feedback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
 
8
 
9
+ # Dataset Card for stackoverflow_feedback_demo
10
+
11
+ This dataset has been created with [Argilla](https://docs.argilla.io).
12
+
13
+ As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
14
+
15
+ ## Dataset Description
16
+
17
+ - **Homepage:** https://argilla.io
18
+ - **Repository:** https://github.com/argilla-io/argilla
19
+ - **Paper:**
20
+ - **Leaderboard:**
21
+ - **Point of Contact:**
22
+
23
+ ### Dataset Summary
24
+
25
+ This dataset contains:
26
+
27
+ * A dataset configuration file conforming to the Argilla dataset format named `argilla.cfg`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
28
+
29
+ * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
30
+
31
+ * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
32
+
33
+ ### Load with Argilla
34
+
35
+ To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
36
+
37
+ ```python
38
+ import argilla as rg
39
+
40
+ ds = rg.FeedbackDataset.from_huggingface("argilla/stackoverflow_feedback_demo")
41
+ ```
42
+
43
+ ### Load with `datasets`
44
+
45
+ To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
46
+
47
+ ```python
48
+ from datasets import load_dataset
49
+
50
+ ds = load_dataset("argilla/stackoverflow_feedback_demo")
51
+ ```
52
+
53
+ ### Supported Tasks and Leaderboards
54
+
55
+ This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/guides/llms/conceptual_guides/data_model.html) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
56
+
57
+ There are no leaderboards associated with this dataset.
58
+
59
+ ### Languages
60
+
61
+ [More Information Needed]
62
+
63
+ ## Dataset Structure
64
+
65
+ ### Data in Argilla
66
+
67
+ The dataset is created in Argilla with: **fields**, **questions**, and **guidelines**.
68
+
69
+ The **fields** are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
70
+
71
+ | Field Name | Title | Type | Required | Markdown |
72
+ | ---------- | ----- | ---- | -------- | -------- |
73
+ | title | Title | TextField | True | False |
74
+ | question | Question | TextField | True | True |
75
+ | answer | Answer | TextField | True | True |
76
+
77
+
78
+ The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, single choice, or multiple choice.
79
+
80
+ | Question Name | Title | Type | Required | Description | Values/Labels |
81
+ | ------------- | ----- | ---- | -------- | ----------- | ------------- |
82
+ | title_question_fit | Does the title match the question? | LabelQuestion | True | N/A | N/A |
83
+ | tags | What are the topics mentioned in this question? | MultiLabelQuestion | True | Select all that apply. | N/A |
84
+ | answer_quality | Rate the quality of the answer: | RatingQuestion | True | N/A | [1, 2, 3, 4, 5] |
85
+ | new_answer | If needed, correct the answer | TextQuestion | True | If the rating is below 4, please provide a corrected answer | N/A |
86
+
87
+
88
+ Finally, the **guidelines** are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
89
+
90
+ ### Data Instances
91
+
92
+ An example of a dataset instance in Argilla looks as follows:
93
+
94
+ ```json
95
+ {
96
+ "external_id": null,
97
+ "fields": {
98
+ "answer": "\u003cp\u003eUnfortunately the only API that isn\u0027t deprecated is located in the ApplicationServices framework, which doesn\u0027t have a bridge support file, and thus isn\u0027t available in the bridge. If you\u0027re wanting to use ctypes, you can use ATSFontGetFileReference after looking up the ATSFontRef.\u003c/p\u003e\r\n\r\n\u003cp\u003eCocoa doesn\u0027t have any native support, at least as of 10.5, for getting the location of a font.\u003c/p\u003e",
99
+ "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
100
+ "title": "How can I find the full path to a font from its display name on a Mac?"
101
+ },
102
+ "metadata": null,
103
+ "responses": [
104
+ {
105
+ "status": "submitted",
106
+ "user_id": null,
107
+ "values": {
108
+ "answer_quality": {
109
+ "value": 1
110
+ },
111
+ "new_answer": {
112
+ "value": "Sample answer"
113
+ },
114
+ "tags": {
115
+ "value": [
116
+ "arrays"
117
+ ]
118
+ },
119
+ "title_question_fit": {
120
+ "value": "yes"
121
+ }
122
+ }
123
+ },
124
+ {
125
+ "status": "submitted",
126
+ "user_id": null,
127
+ "values": {
128
+ "answer_quality": {
129
+ "value": 5
130
+ },
131
+ "new_answer": {
132
+ "value": "Sample answer"
133
+ },
134
+ "tags": {
135
+ "value": [
136
+ "linux"
137
+ ]
138
+ },
139
+ "title_question_fit": {
140
+ "value": "no"
141
+ }
142
+ }
143
+ },
144
+ {
145
+ "status": "submitted",
146
+ "user_id": null,
147
+ "values": {
148
+ "answer_quality": {
149
+ "value": 1
150
+ },
151
+ "new_answer": {
152
+ "value": "Sample answer"
153
+ },
154
+ "tags": {
155
+ "value": [
156
+ "tkinter"
157
+ ]
158
+ },
159
+ "title_question_fit": {
160
+ "value": "yes"
161
+ }
162
+ }
163
+ }
164
+ ]
165
+ }
166
+ ```
167
+
168
+ While the same record in HuggingFace `datasets` looks as follows:
169
+
170
+ ```json
171
+ {
172
+ "answer": "\u003cp\u003eUnfortunately the only API that isn\u0027t deprecated is located in the ApplicationServices framework, which doesn\u0027t have a bridge support file, and thus isn\u0027t available in the bridge. If you\u0027re wanting to use ctypes, you can use ATSFontGetFileReference after looking up the ATSFontRef.\u003c/p\u003e\r\n\r\n\u003cp\u003eCocoa doesn\u0027t have any native support, at least as of 10.5, for getting the location of a font.\u003c/p\u003e",
173
+ "answer_quality": {
174
+ "status": [
175
+ "submitted",
176
+ "submitted",
177
+ "submitted"
178
+ ],
179
+ "user_id": [
180
+ null,
181
+ null,
182
+ null
183
+ ],
184
+ "value": [
185
+ 1,
186
+ 5,
187
+ 1
188
+ ]
189
+ },
190
+ "external_id": null,
191
+ "metadata": null,
192
+ "new_answer": {
193
+ "status": [
194
+ "submitted",
195
+ "submitted",
196
+ "submitted"
197
+ ],
198
+ "user_id": [
199
+ null,
200
+ null,
201
+ null
202
+ ],
203
+ "value": [
204
+ "Sample answer",
205
+ "Sample answer",
206
+ "Sample answer"
207
+ ]
208
+ },
209
+ "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
210
+ "tags": {
211
+ "status": [
212
+ "submitted",
213
+ "submitted",
214
+ "submitted"
215
+ ],
216
+ "user_id": [
217
+ null,
218
+ null,
219
+ null
220
+ ],
221
+ "value": [
222
+ [
223
+ "arrays"
224
+ ],
225
+ [
226
+ "linux"
227
+ ],
228
+ [
229
+ "tkinter"
230
+ ]
231
+ ]
232
+ },
233
+ "title": "How can I find the full path to a font from its display name on a Mac?",
234
+ "title_question_fit": {
235
+ "status": [
236
+ "submitted",
237
+ "submitted",
238
+ "submitted"
239
+ ],
240
+ "user_id": [
241
+ null,
242
+ null,
243
+ null
244
+ ],
245
+ "value": [
246
+ "yes",
247
+ "no",
248
+ "yes"
249
+ ]
250
+ }
251
+ }
252
+ ```
253
+
254
+ ### Data Fields
255
+
256
+ Among the dataset fields, we differentiate between the following:
257
+
258
+ * **Fields:** These are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
259
+
260
+ * **title** is of type `TextField`.
261
+ * **question** is of type `TextField`.
262
+ * **answer** is of type `TextField`.
263
+
264
+ * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as rating, text, single choice, or multiple choice.
265
+
266
+ * **title_question_fit** is of type `LabelQuestion`.
267
+ * **tags** is of type `MultiLabelQuestion`, and description "Select all that apply.".
268
+ * **answer_quality** is of type `RatingQuestion` with the following allowed values [1, 2, 3, 4, 5].
269
+ * (optional) **new_answer** is of type `TextQuestion`, and description "If the rating is below 4, please provide a corrected answer".
270
+
271
+ Additionally, we also have one more field which is optional and is the following:
272
+
273
+ * **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.
274
+
275
+ ### Data Splits
276
+
277
+ The dataset contains a single split, which is `train`.
278
+
279
+ ## Dataset Creation
280
+
281
+ ### Curation Rationale
282
+
283
+ [More Information Needed]
284
+
285
+ ### Source Data
286
+
287
+ #### Initial Data Collection and Normalization
288
+
289
+ [More Information Needed]
290
+
291
+ #### Who are the source language producers?
292
+
293
+ [More Information Needed]
294
+
295
+ ### Annotations
296
+
297
+ #### Annotation guidelines
298
+
299
+ [More Information Needed]
300
+
301
+ #### Annotation process
302
+
303
+ [More Information Needed]
304
+
305
+ #### Who are the annotators?
306
+
307
+ [More Information Needed]
308
+
309
+ ### Personal and Sensitive Information
310
+
311
+ [More Information Needed]
312
+
313
+ ## Considerations for Using the Data
314
+
315
+ ### Social Impact of Dataset
316
+
317
+ [More Information Needed]
318
+
319
+ ### Discussion of Biases
320
+
321
+ [More Information Needed]
322
+
323
+ ### Other Known Limitations
324
+
325
+ [More Information Needed]
326
+
327
+ ## Additional Information
328
+
329
+ ### Dataset Curators
330
+
331
+ [More Information Needed]
332
+
333
+ ### Licensing Information
334
+
335
+ [More Information Needed]
336
+
337
+ ### Citation Information
338
+
339
+ [More Information Needed]
340
+
341
+ ### Contributions
342
+
343
+ [More Information Needed]