ArielleE commited on
Commit
4e11427
1 Parent(s): 6404151

Update Superimposed-Masked-Dataset.py

Browse files
Files changed (1) hide show
  1. Superimposed-Masked-Dataset.py +25 -23
Superimposed-Masked-Dataset.py CHANGED
@@ -1,21 +1,7 @@
1
- # coding=utf-8
2
- # Copyright 2022 the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # This script was modified from the imagenet-1k HF dataset repo
17
 
18
  import os
 
19
 
20
  import datasets
21
  from datasets.tasks import ImageClassification
@@ -41,6 +27,11 @@ _DATA_URL = {
41
  ]
42
  }
43
 
 
 
 
 
 
44
 
45
  class SMD(datasets.GeneratorBasedBuilder):
46
  VERSION = datasets.Version("1.0.0")
@@ -55,6 +46,7 @@ class SMD(datasets.GeneratorBasedBuilder):
55
  {
56
  "image": datasets.Image(),
57
  "label": datasets.ClassLabel(names=list(IMAGENET2012_CLASSES.values())),
 
58
  }
59
  ),
60
  homepage=_HOMEPAGE,
@@ -65,25 +57,35 @@ class SMD(datasets.GeneratorBasedBuilder):
65
  def _split_generators(self, dl_manager):
66
  """Returns SplitGenerators."""
67
  archives = dl_manager.download(_DATA_URL)
 
68
 
69
  return [
70
  datasets.SplitGenerator(
71
- name="SMD", # "SMD (occluded IN-1K val set)"
72
  gen_kwargs={
73
  "archives": [dl_manager.iter_archive(archive) for archive in archives["smd"]],
 
74
  },
75
  ),
76
  ]
77
 
78
-
79
- def _generate_examples(self, archives):
80
  """Yields examples."""
81
  idx = 0
82
- for archive in archives:
 
83
  for path, file in archive:
84
  if path.endswith(".png"):
85
  synset_id = os.path.basename(os.path.dirname(path))
86
  label = IMAGENET2012_CLASSES[synset_id]
87
- ex = {"image": {"path": path, "bytes": file.read()}, "label": label}
88
- yield idx, ex
89
- idx += 1
 
 
 
 
 
 
 
 
 
1
+ # This script was modified from the imagenet-1k HF dataset repo: https://huggingface.co/datasets/imagenet-1k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  import os
4
+ import numpy as np
5
 
6
  import datasets
7
  from datasets.tasks import ImageClassification
 
27
  ]
28
  }
29
 
30
+ _MASK_DATA_URL = {
31
+ "smd_masks": [
32
+ f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/SMD_masks.tar.gz"
33
+ ]
34
+ }
35
 
36
  class SMD(datasets.GeneratorBasedBuilder):
37
  VERSION = datasets.Version("1.0.0")
 
46
  {
47
  "image": datasets.Image(),
48
  "label": datasets.ClassLabel(names=list(IMAGENET2012_CLASSES.values())),
49
+ "segmentation": datasets.Sequence(datasets.Array2D(shape=(None, None), dtype="float32"))
50
  }
51
  ),
52
  homepage=_HOMEPAGE,
 
57
  def _split_generators(self, dl_manager):
58
  """Returns SplitGenerators."""
59
  archives = dl_manager.download(_DATA_URL)
60
+ mask_archives = dl_manager.download(_MASK_DATA_URL)
61
 
62
  return [
63
  datasets.SplitGenerator(
64
+ name="SMD",
65
  gen_kwargs={
66
  "archives": [dl_manager.iter_archive(archive) for archive in archives["smd"]],
67
+ "mask_archives": [dl_manager.iter_archive(archive) for archive in mask_archives["smd_masks"]],
68
  },
69
  ),
70
  ]
71
 
72
+ def _generate_examples(self, archives, mask_archives):
 
73
  """Yields examples."""
74
  idx = 0
75
+ for archive, mask_archive in zip(archives, mask_archives):
76
+ mask_files = {path: np.load(file) for path, file in mask_archive if path.endswith(".npy")}
77
  for path, file in archive:
78
  if path.endswith(".png"):
79
  synset_id = os.path.basename(os.path.dirname(path))
80
  label = IMAGENET2012_CLASSES[synset_id]
81
+
82
+ mask_file_path = path.replace(".png", "_mask.npy")
83
+ segmentation_mask = mask_files.get(mask_file_path, None)
84
+ if segmentation_mask is not None:
85
+ ex = {
86
+ "image": {"path": path, "bytes": file.read()},
87
+ "label": label,
88
+ "segmentation": segmentation_mask.tolist() # Convert numpy array to list
89
+ }
90
+ yield idx, ex
91
+ idx += 1