ArielleE commited on
Commit
8ee5ccb
·
1 Parent(s): dfdff40

Update Superimposed-Masked-Dataset.py

Browse files
Files changed (1) hide show
  1. Superimposed-Masked-Dataset.py +26 -33
Superimposed-Masked-Dataset.py CHANGED
@@ -1,13 +1,26 @@
1
- # This script was modified from the imagenet-1k HF dataset repo: https://huggingface.co/datasets/imagenet-1k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  import os
4
- import numpy as np
5
 
6
  import datasets
7
  from datasets.tasks import ImageClassification
8
 
9
  from .classes import IMAGENET2012_CLASSES
10
- from io import BytesIO
11
 
12
 
13
  _CITATION = """\
@@ -28,11 +41,6 @@ _DATA_URL = {
28
  ]
29
  }
30
 
31
- _MASK_DATA_URL = {
32
- "smd_masks": [
33
- f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/SMD_masks.tar.gz"
34
- ]
35
- }
36
 
37
  class SMD(datasets.GeneratorBasedBuilder):
38
  VERSION = datasets.Version("1.0.0")
@@ -47,7 +55,6 @@ class SMD(datasets.GeneratorBasedBuilder):
47
  {
48
  "image": datasets.Image(),
49
  "label": datasets.ClassLabel(names=list(IMAGENET2012_CLASSES.values())),
50
- "segmentation": datasets.Sequence(datasets.Array2D(shape=(None, None), dtype="float32"))
51
  }
52
  ),
53
  homepage=_HOMEPAGE,
@@ -57,40 +64,26 @@ class SMD(datasets.GeneratorBasedBuilder):
57
 
58
  def _split_generators(self, dl_manager):
59
  """Returns SplitGenerators."""
60
- archives = dl_manager.download_and_extract(_DATA_URL)
61
- mask_archives = dl_manager.download_and_extract(_MASK_DATA_URL)
62
-
63
  return [
64
  datasets.SplitGenerator(
65
- name="SMD",
66
  gen_kwargs={
67
- "archives": archives["smd"],
68
- "mask_archives": mask_archives["smd_masks"],
69
  },
70
  ),
71
  ]
72
-
73
- def _generate_examples(self, archives, mask_archives):
 
74
  """Yields examples."""
75
  idx = 0
76
- mask_files = {}
77
- for mask_archive in mask_archives:
78
- for path, file in dl_manager.iter_archive(mask_archive):
79
- if path.endswith(".npy"):
80
- mask_files[path] = np.load(BytesIO(file.read()))
81
-
82
  for archive in archives:
83
- for path, file in dl_manager.iter_archive(archive):
84
  if path.endswith(".png"):
85
  synset_id = os.path.basename(os.path.dirname(path))
86
  label = IMAGENET2012_CLASSES[synset_id]
87
-
88
- mask_file_path = path.replace("_occluded.png", "_mask.npy")
89
- segmentation_mask = mask_files.get(mask_file_path)
90
- ex = {
91
- "image": {"path": path, "bytes": file.read()},
92
- "label": label,
93
- "segmentation": segmentation_mask.tolist() # Convert numpy array to list
94
- }
95
  yield idx, ex
96
- idx += 1
 
1
+ # coding=utf-8
2
+ # Copyright 2022 the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # This script was modified from the imagenet-1k HF dataset repo
17
 
18
  import os
 
19
 
20
  import datasets
21
  from datasets.tasks import ImageClassification
22
 
23
  from .classes import IMAGENET2012_CLASSES
 
24
 
25
 
26
  _CITATION = """\
 
41
  ]
42
  }
43
 
 
 
 
 
 
44
 
45
  class SMD(datasets.GeneratorBasedBuilder):
46
  VERSION = datasets.Version("1.0.0")
 
55
  {
56
  "image": datasets.Image(),
57
  "label": datasets.ClassLabel(names=list(IMAGENET2012_CLASSES.values())),
 
58
  }
59
  ),
60
  homepage=_HOMEPAGE,
 
64
 
65
  def _split_generators(self, dl_manager):
66
  """Returns SplitGenerators."""
67
+ archives = dl_manager.download(_DATA_URL)
68
+
 
69
  return [
70
  datasets.SplitGenerator(
71
+ name="SMD", # "SMD (occluded IN-1K val set)"
72
  gen_kwargs={
73
+ "archives": [dl_manager.iter_archive(archive) for archive in archives["smd"]],
 
74
  },
75
  ),
76
  ]
77
+
78
+
79
+ def _generate_examples(self, archives):
80
  """Yields examples."""
81
  idx = 0
 
 
 
 
 
 
82
  for archive in archives:
83
+ for path, file in archive:
84
  if path.endswith(".png"):
85
  synset_id = os.path.basename(os.path.dirname(path))
86
  label = IMAGENET2012_CLASSES[synset_id]
87
+ ex = {"image": {"path": path, "bytes": file.read()}, "label": label}
 
 
 
 
 
 
 
88
  yield idx, ex
89
+ idx += 1