ArielleE commited on
Commit
c4d7a2b
1 Parent(s): e05b334

Upload 4 files

Browse files
generate_occluded_imagenet.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import numpy as np
4
+ import pandas as pd
5
+ from PIL import Image
6
+ from torchvision import datasets, transforms, io
7
+
8
+
9
+ def get_random_occluder(dataset_occluder):
10
+ index = random.randint(0, len(dataset_occluder) - 1)
11
+ texture_path, texture_class_index = dataset_occluder.imgs[index]
12
+ texture_class = dataset_occluder.classes[texture_class_index]
13
+
14
+ # load with the alpha channel
15
+ texture = io.read_image(texture_path, mode=io.image.ImageReadMode.RGB_ALPHA)
16
+
17
+ return texture, texture_class
18
+
19
+
20
+ def resize_occluder(occluder_pil, target_area):
21
+ alpha = np.array(occluder_pil.getchannel('A'))
22
+ non_transparent_area = np.count_nonzero(alpha > 0)
23
+
24
+ area_scale_factor = target_area / non_transparent_area
25
+
26
+ width_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.width / occluder_pil.height))
27
+ height_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.height / occluder_pil.width))
28
+
29
+ new_width = occluder_pil.width * width_scale_factor
30
+ new_height = occluder_pil.height * height_scale_factor
31
+
32
+ resized_occluder = occluder_pil.resize((int(new_width), int(new_height)), Image.LANCZOS)
33
+
34
+ return resized_occluder
35
+
36
+
37
+ def randomly_rotate_occluder(occluder_pil):
38
+ angle = random.uniform(-180, 180)
39
+ return occluder_pil.rotate(angle, resample=Image.BICUBIC, expand=True)
40
+
41
+
42
+ def calculate_distance(point1, point2):
43
+ x1, y1 = point1
44
+ x2, y2 = point2
45
+ return ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
46
+
47
+
48
+ def try_rotations(occluder_pil, image_pil, target_area, pos1=None):
49
+ best_occluder = None
50
+ best_area = 0
51
+ best_pos = None
52
+ min_distance = 130 # min distance if two occluders
53
+ for _ in range(75): # increase number of attempts to find better position
54
+ rotated = randomly_rotate_occluder(occluder_pil)
55
+ resized = resize_occluder(rotated, target_area)
56
+ if resized.width > image_pil.width or resized.height > image_pil.height:
57
+ pos = (image_pil.width // 2 - resized.width // 2,
58
+ image_pil.height // 2 - resized.height // 2)
59
+ else:
60
+ max_x = max(0, image_pil.width - resized.width)
61
+ max_y = max(0, image_pil.height - resized.height)
62
+ pos = (random.randint(0, max_x), random.randint(0, max_y))
63
+
64
+ if pos1 is not None and calculate_distance(pos1, pos) < min_distance:
65
+ continue
66
+
67
+ mask = Image.new('1', image_pil.size)
68
+ mask.paste(resized.getchannel('A'), pos, resized.getchannel('A'))
69
+ area = np.count_nonzero(np.array(mask))
70
+
71
+ if area > best_area:
72
+ best_area = area
73
+ best_occluder = resized
74
+ best_pos = pos
75
+
76
+ return best_occluder, best_pos
77
+
78
+
79
+ def occlude_image(image, occluder_tensor, percentage_occlusion, occluded_dir, img_name):
80
+ occluder_pil = transforms.ToPILImage(mode='RGBA')(occluder_tensor)
81
+ image_pil = transforms.ToPILImage()(image)
82
+
83
+ binary_mask = Image.new('1', image_pil.size)
84
+
85
+ rn = random.random()
86
+
87
+ if rn < 0.5: # randomly use two occluders
88
+ occluder_resizing_factor = 0.5
89
+ else:
90
+ occluder_resizing_factor = 1.0
91
+
92
+ target_area = image_pil.width * image_pil.height * percentage_occlusion * occluder_resizing_factor
93
+
94
+ if rn < 0.5: # randomly use two occluders (can make this k occluders)
95
+ occluder_pil1, pos1 = try_rotations(occluder_pil, image_pil, target_area / 2)
96
+ image_pil.paste(occluder_pil1, pos1, occluder_pil1)
97
+ occluder_alpha1 = occluder_pil1.getchannel('A')
98
+ binary_mask.paste(occluder_alpha1, pos1, occluder_alpha1)
99
+
100
+ occluder_pil2, pos2 = try_rotations(occluder_pil, image_pil, target_area / 2, pos1)
101
+ if occluder_pil2 is not None and pos2 is not None:
102
+ image_pil.paste(occluder_pil2, pos2, occluder_pil2)
103
+ occluder_alpha2 = occluder_pil2.getchannel('A')
104
+ binary_mask.paste(occluder_alpha2, pos2, occluder_alpha2)
105
+
106
+ if pos2 is None:
107
+ pos = [pos1]
108
+ else:
109
+ pos = [pos1, pos2]
110
+ else:
111
+ occluder_pil, pos = try_rotations(occluder_pil, image_pil, target_area)
112
+ image_pil.paste(occluder_pil, pos, occluder_pil)
113
+ occluder_alpha = occluder_pil.getchannel('A')
114
+ binary_mask.paste(occluder_alpha, pos, occluder_alpha)
115
+
116
+ pos = [pos]
117
+
118
+ image_with_occluder_tensor = transforms.ToTensor()(image_pil)
119
+
120
+ mask_array = np.array(binary_mask)
121
+ mask_path = os.path.join(occluded_dir, f"{img_name}_mask.npy")
122
+ np.save(mask_path, mask_array)
123
+
124
+ return image_with_occluder_tensor, mask_path, pos
125
+
126
+
127
+ def rebuild_display_mask(image_path, mask_path):
128
+ image_pil = Image.open(image_path)
129
+ binary_mask = Image.new('1', image_pil.size)
130
+
131
+ mask_array = np.load(mask_path)
132
+ mask_indices = np.transpose(np.nonzero(mask_array))
133
+
134
+ for i, j in mask_indices:
135
+ binary_mask.putpixel((j, i), 1)
136
+
137
+ binary_mask.show()
138
+
139
+
140
+ def build_dataset(data_path, transform):
141
+ dataset = datasets.ImageFolder(data_path, transform=transform)
142
+ nb_classes = len(dataset.classes)
143
+ return dataset, nb_classes
144
+
145
+
146
+ def build_transform():
147
+ t = []
148
+ t.append(transforms.ToTensor())
149
+ return transforms.Compose(t)
150
+
151
+
152
+ def main():
153
+ data_dir = 'imagenet'
154
+ texture_dir = 'occluders_segmented'
155
+ occluded_data_dir = 'imagenet_occluded'
156
+
157
+ transform = build_transform()
158
+ dataset, nb_classes = build_dataset(data_dir, transform)
159
+ dataset_occluder, _ = build_dataset(texture_dir, transform)
160
+ percentage_occlusion = 0.3 # ~30%
161
+
162
+ occlusion_info = pd.DataFrame(columns=["image_name", "class_name", "occluder_class",
163
+ "percentage_occlusion", "mask", "pos"])
164
+
165
+ count = 0
166
+
167
+ for idx in range(len(dataset)):
168
+ image, label = dataset[idx]
169
+ category = dataset.classes[label]
170
+
171
+ in_dir = os.path.join(data_dir, category)
172
+ occluded_dir = os.path.join(occluded_data_dir, category)
173
+
174
+ os.makedirs(occluded_dir, exist_ok=True)
175
+
176
+ img_name = dataset.imgs[idx][0].split('/')[-1].split('.')[0]
177
+
178
+ occluder_tensor, occluder_class = get_random_occluder(dataset_occluder)
179
+ occluded_image, mask_path, pos = occlude_image(image, occluder_tensor,
180
+ percentage_occlusion,
181
+ occluded_dir,
182
+ img_name)
183
+
184
+ mask_array = np.load(mask_path)
185
+ actual_percentage_occlusion = np.count_nonzero(mask_array) / (image.shape[1] * image.shape[2])
186
+
187
+ occluded_image_path = os.path.join(occluded_dir, f"{img_name}_occluded.png")
188
+ transforms.ToPILImage()(occluded_image).save(occluded_image_path)
189
+
190
+ new_row = pd.DataFrame({
191
+ "image_name": [f"{img_name}_occluded.png"],
192
+ "class_name": [category],
193
+ "occluder_class": [occluder_class],
194
+ "percentage_occlusion": [actual_percentage_occlusion],
195
+ "mask": [mask_path],
196
+ "pos": [pos]
197
+ })
198
+
199
+ occlusion_info = pd.concat([occlusion_info, new_row], ignore_index=True)
200
+ if count % 50 == 0:
201
+ print("Folder: {}/1000 ({})".format(count / 50, category))
202
+ count+=1
203
+
204
+ occlusion_info.to_csv(os.path.join(occluded_data_dir, "occlusion_info.csv"), index=False)
205
+
206
+ if __name__ == "__main__":
207
+ main()
generate_occluded_imagenet_faster.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import numpy as np
4
+ import pandas as pd
5
+ from PIL import Image
6
+ from torchvision import datasets, transforms, io
7
+ import torch
8
+
9
+
10
+ def get_random_texture(dataset_occluder):
11
+ index = random.randint(0, len(dataset_occluder) - 1)
12
+ texture_path, texture_class_index = dataset_occluder.imgs[index]
13
+ texture_class = dataset_occluder.classes[texture_class_index]
14
+
15
+ # Load the texture with the alpha channel
16
+ texture = io.read_image(texture_path, mode=io.image.ImageReadMode.RGB_ALPHA)
17
+
18
+ return texture, texture_class
19
+
20
+ def resize_occluder(occluder_pil, target_area, image_width, image_height):
21
+ alpha = np.array(occluder_pil.getchannel('A'))
22
+ non_transparent_area = np.count_nonzero(alpha > 0)
23
+
24
+ area_scale_factor = target_area / non_transparent_area
25
+
26
+ width_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.width / occluder_pil.height))
27
+ height_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.height / occluder_pil.width))
28
+
29
+ new_width = occluder_pil.width * width_scale_factor
30
+ new_height = occluder_pil.height * height_scale_factor
31
+
32
+ resized_occluder = occluder_pil.resize((int(new_width), int(new_height)), Image.LANCZOS)
33
+
34
+ return resized_occluder
35
+
36
+ def randomly_rotate_occluder(occluder_pil):
37
+ angle = random.uniform(-180, 180)
38
+ return occluder_pil.rotate(angle, resample=Image.BICUBIC, expand=True)
39
+
40
+ def occlude_image(image, occluder_tensor, percentage_occlusion, occluded_dir, img_name):
41
+ occluder_pil = transforms.ToPILImage(mode='RGBA')(occluder_tensor)
42
+ occluder_pil = randomly_rotate_occluder(occluder_pil)
43
+ image_pil = transforms.ToPILImage()(image)
44
+
45
+ target_area = image_pil.width * image_pil.height * percentage_occlusion
46
+ occluder_pil = resize_occluder(occluder_pil, target_area, image_pil.width, image_pil.height)
47
+
48
+ if occluder_pil.width > image_pil.width or occluder_pil.height > image_pil.height:
49
+ pos = (image_pil.width // 2 - occluder_pil.width // 2,
50
+ image_pil.height // 2 - occluder_pil.height // 2)
51
+ else:
52
+ max_x = max(0, image_pil.width - occluder_pil.width)
53
+ max_y = max(0, image_pil.height - occluder_pil.height)
54
+ pos = (random.randint(0, max_x), random.randint(0, max_y))
55
+
56
+ image_pil.paste(occluder_pil, pos, occluder_pil)
57
+ image_with_occluder_tensor = transforms.ToTensor()(image_pil)
58
+
59
+ occluder_alpha = occluder_pil.getchannel('A')
60
+ binary_mask = Image.new('1', image_pil.size)
61
+ binary_mask.paste(occluder_alpha, pos, occluder_alpha)
62
+
63
+ mask_array = np.array(binary_mask)
64
+ mask_path = os.path.join(occluded_dir, f"{img_name}_mask.npy")
65
+ np.save(mask_path, mask_array)
66
+
67
+ return image_with_occluder_tensor, mask_path, pos
68
+
69
+
70
+ def rebuild_display_mask(image_path, mask_path):
71
+ image_pil = Image.open(image_path)
72
+ binary_mask = Image.new('1', image_pil.size)
73
+
74
+ mask_array = np.load(mask_path)
75
+ mask_indices = np.transpose(np.nonzero(mask_array))
76
+
77
+ for i, j in mask_indices:
78
+ binary_mask.putpixel((j, i), 1)
79
+
80
+ binary_mask.show()
81
+
82
+
83
+ def build_dataset(data_path, transform):
84
+ dataset = datasets.ImageFolder(data_path, transform=transform)
85
+ nb_classes = len(dataset.classes)
86
+ return dataset, nb_classes
87
+
88
+ def build_transform():
89
+ t = []
90
+ t.append(transforms.ToTensor())
91
+ return transforms.Compose(t)
92
+
93
+ def main():
94
+ data_dir = 'imagenet1'
95
+ texture_dir = 'occluders_segmented'
96
+ occluded_data_dir = 'imagenet_occluded'
97
+
98
+ transform = build_transform()
99
+ dataset, nb_classes = build_dataset(data_dir, transform)
100
+ dataset_occluder, _ = build_dataset(texture_dir, transform)
101
+
102
+ occlusion_info = pd.DataFrame(columns=["image_name", "class_name", "occluder_class",
103
+ "percentage_occlusion", "mask", "pos"])
104
+
105
+ for idx in range(len(dataset)):
106
+ image, label = dataset[idx]
107
+ category = dataset.classes[label]
108
+
109
+ in_dir = os.path.join(data_dir, category)
110
+ occluded_dir = os.path.join(occluded_data_dir, category)
111
+
112
+ os.makedirs(occluded_dir, exist_ok=True)
113
+
114
+ img_name = dataset.imgs[idx][0].split('/')[-1].split('.')[0]
115
+
116
+ occluder_tensor, occluder_class = get_random_texture(dataset_occluder)
117
+ occluded_image, mask_path, pos = occlude_image(image, occluder_tensor, 0.5, occluded_dir, img_name)
118
+
119
+ mask_array = np.load(mask_path)
120
+ actual_percentage_occlusion = np.count_nonzero(mask_array) / (image.shape[1] * image.shape[2])
121
+
122
+ occluded_image_path = os.path.join(occluded_dir, f"{img_name}_occluded.png")
123
+ transforms.ToPILImage()(occluded_image).save(occluded_image_path)
124
+
125
+ new_row = pd.DataFrame({
126
+ "image_name": [f"{img_name}_occluded.png"],
127
+ "class_name": [category],
128
+ "occluder_class": [occluder_class],
129
+ "percentage_occlusion": [actual_percentage_occlusion],
130
+ "mask": [mask_path],
131
+ "pos": [pos]
132
+ })
133
+
134
+ occlusion_info = pd.concat([occlusion_info, new_row], ignore_index=True)
135
+
136
+ occlusion_info.to_csv(os.path.join(occluded_data_dir, "occlusion_info.csv"), index=False)
137
+
138
+ if __name__ == "__main__":
139
+ main()
generate_occluded_imagenet_single_occluder.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import numpy as np
4
+ import pandas as pd
5
+ from PIL import Image
6
+ from torchvision import datasets, transforms, io
7
+ import torch
8
+
9
+
10
+ def get_random_texture(dataset_occluder):
11
+ index = random.randint(0, len(dataset_occluder) - 1)
12
+ texture_path, texture_class_index = dataset_occluder.imgs[index]
13
+ texture_class = dataset_occluder.classes[texture_class_index]
14
+
15
+ # Load the texture with the alpha channel
16
+ texture = io.read_image(texture_path, mode=io.image.ImageReadMode.RGB_ALPHA)
17
+
18
+ return texture, texture_class
19
+
20
+ def resize_occluder(occluder_pil, target_area, image_width, image_height):
21
+ alpha = np.array(occluder_pil.getchannel('A'))
22
+ non_transparent_area = np.count_nonzero(alpha > 0)
23
+
24
+ area_scale_factor = target_area / non_transparent_area
25
+
26
+ width_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.width / occluder_pil.height))
27
+ height_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.height / occluder_pil.width))
28
+
29
+ new_width = occluder_pil.width * width_scale_factor
30
+ new_height = occluder_pil.height * height_scale_factor
31
+
32
+ resized_occluder = occluder_pil.resize((int(new_width), int(new_height)), Image.LANCZOS)
33
+
34
+ return resized_occluder
35
+
36
+ def randomly_rotate_occluder(occluder_pil):
37
+ angle = random.uniform(-180, 180)
38
+ return occluder_pil.rotate(angle, resample=Image.BICUBIC, expand=True)
39
+
40
+ def try_rotations(occluder_pil, image_pil, target_area):
41
+ best_occluder = None
42
+ best_area = 0
43
+ best_pos = None
44
+ for _ in range(10):
45
+ rotated = randomly_rotate_occluder(occluder_pil)
46
+ resized = resize_occluder(rotated, target_area, image_pil.width, image_pil.height)
47
+ if resized.width > image_pil.width or resized.height > image_pil.height:
48
+ pos = (image_pil.width // 2 - resized.width // 2,
49
+ image_pil.height // 2 - resized.height // 2)
50
+ else:
51
+ max_x = max(0, image_pil.width - resized.width)
52
+ max_y = max(0, image_pil.height - resized.height)
53
+ pos = (random.randint(0, max_x), random.randint(0, max_y))
54
+
55
+ mask = Image.new('1', image_pil.size)
56
+ mask.paste(resized.getchannel('A'), pos, resized.getchannel('A'))
57
+ area = np.count_nonzero(np.array(mask))
58
+
59
+ if area > best_area:
60
+ best_area = area
61
+ best_occluder = resized
62
+ best_pos = pos
63
+ return best_occluder, best_pos
64
+
65
+
66
+ def occlude_image(image, occluder_tensor, percentage_occlusion, occluded_dir, img_name):
67
+ occluder_pil = transforms.ToPILImage(mode='RGBA')(occluder_tensor)
68
+ image_pil = transforms.ToPILImage()(image)
69
+
70
+ target_area = image_pil.width * image_pil.height * percentage_occlusion
71
+ occluder_pil, pos = try_rotations(occluder_pil, image_pil, target_area)
72
+
73
+ image_pil.paste(occluder_pil, pos, occluder_pil)
74
+ image_with_occluder_tensor = transforms.ToTensor()(image_pil)
75
+
76
+ occluder_alpha = occluder_pil.getchannel('A')
77
+ binary_mask = Image.new('1', image_pil.size)
78
+ binary_mask.paste(occluder_alpha, pos, occluder_alpha)
79
+
80
+ mask_array = np.array(binary_mask)
81
+ mask_path = os.path.join(occluded_dir, f"{img_name}_mask.npy")
82
+ np.save(mask_path, mask_array)
83
+
84
+ return image_with_occluder_tensor, mask_path, pos
85
+
86
+
87
+ def rebuild_display_mask(image_path, mask_path):
88
+ image_pil = Image.open(image_path)
89
+ binary_mask = Image.new('1', image_pil.size)
90
+
91
+ mask_array = np.load(mask_path)
92
+ mask_indices = np.transpose(np.nonzero(mask_array))
93
+
94
+ for i, j in mask_indices:
95
+ binary_mask.putpixel((j, i), 1)
96
+
97
+ binary_mask.show()
98
+
99
+
100
+ def build_dataset(data_path, transform):
101
+ dataset = datasets.ImageFolder(data_path, transform=transform)
102
+ nb_classes = len(dataset.classes)
103
+ return dataset, nb_classes
104
+
105
+ def build_transform():
106
+ t = []
107
+ t.append(transforms.ToTensor())
108
+ return transforms.Compose(t)
109
+
110
+ def main():
111
+ data_dir = 'imagenet1'
112
+ texture_dir = 'occluders_segmented'
113
+ occluded_data_dir = 'imagenet_occluded'
114
+
115
+ transform = build_transform()
116
+ dataset, nb_classes = build_dataset(data_dir, transform)
117
+ dataset_occluder, _ = build_dataset(texture_dir, transform)
118
+
119
+ occlusion_info = pd.DataFrame(columns=["image_name", "class_name", "occluder_class",
120
+ "percentage_occlusion", "mask", "pos"])
121
+
122
+ for idx in range(len(dataset)):
123
+ image, label = dataset[idx]
124
+ category = dataset.classes[label]
125
+
126
+ in_dir = os.path.join(data_dir, category)
127
+ occluded_dir = os.path.join(occluded_data_dir, category)
128
+
129
+ os.makedirs(occluded_dir, exist_ok=True)
130
+
131
+ img_name = dataset.imgs[idx][0].split('/')[-1].split('.')[0]
132
+
133
+ occluder_tensor, occluder_class = get_random_texture(dataset_occluder)
134
+ occluded_image, mask_path, pos = occlude_image(image, occluder_tensor, 0.3, occluded_dir, img_name)
135
+
136
+ mask_array = np.load(mask_path)
137
+ actual_percentage_occlusion = np.count_nonzero(mask_array) / (image.shape[1] * image.shape[2])
138
+
139
+ occluded_image_path = os.path.join(occluded_dir, f"{img_name}_occluded.png")
140
+ transforms.ToPILImage()(occluded_image).save(occluded_image_path)
141
+
142
+ new_row = pd.DataFrame({
143
+ "image_name": [f"{img_name}_occluded.png"],
144
+ "class_name": [category],
145
+ "occluder_class": [occluder_class],
146
+ "percentage_occlusion": [actual_percentage_occlusion],
147
+ "mask": [mask_path],
148
+ "pos": [pos]
149
+ })
150
+
151
+ occlusion_info = pd.concat([occlusion_info, new_row], ignore_index=True)
152
+
153
+ occlusion_info.to_csv(os.path.join(occluded_data_dir, "occlusion_info.csv"), index=False)
154
+
155
+ if __name__ == "__main__":
156
+ main()
occlusion_info.csv ADDED
The diff for this file is too large to render. See raw diff