# This script was modified from the imagenet-1k HF dataset repo: https://huggingface.co/datasets/imagenet-1k import os import numpy as np import datasets from datasets.tasks import ImageClassification from .classes import IMAGENET2012_CLASSES from io import BytesIO _CITATION = """\ @article{BibTeX } """ _HOMEPAGE = "https://arielnlee.github.io/PatchMixing/" _DESCRIPTION = """\ SMD is an occluded ImageNet-1K validation set, created to be an additional way to evaluate the impact of occlusion on model performance. This experiment used a variety of occluder objects that are not in the ImageNet-1K label space and are unambiguous in relationship to objects that reside in the label space. """ _DATA_URL = { "smd": [ f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/smd_{i}.tar.gz" for i in range(1, 41) ] } _MASK_DATA_URL = { "smd_masks": [ f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/SMD_masks.tar.gz" ] } class SMD(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DEFAULT_WRITER_BATCH_SIZE = 1000 def _info(self): assert len(IMAGENET2012_CLASSES) == 1000 return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel(names=list(IMAGENET2012_CLASSES.values())), "segmentation": datasets.Sequence(datasets.Array2D(shape=(None, None), dtype="float32")) } ), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="label")], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" archives = dl_manager.download(_DATA_URL) mask_archives = dl_manager.download(_MASK_DATA_URL) return [ datasets.SplitGenerator( name="SMD", gen_kwargs={ "archives": [dl_manager.iter_archive(archive) for archive in archives["smd"]], "mask_archives": [dl_manager.iter_archive(archive) for archive in mask_archives["smd_masks"]], }, ), ] def _generate_examples(self, archives, mask_archives): """Yields examples.""" idx = 0 for archive, mask_archive in zip(archives, mask_archives): mask_files = {path: np.load(BytesIO(file.read())) for path, file in mask_archive if path.endswith(".npy")} for path, file in archive: if path.endswith(".png"): synset_id = os.path.basename(os.path.dirname(path)) label = IMAGENET2012_CLASSES[synset_id] mask_file_path = path.replace(".png", "_mask.npy") segmentation_mask = mask_files.get(mask_file_path, None) if segmentation_mask is not None: ex = { "image": {"path": path, "bytes": file.read()}, "label": label, "segmentation": segmentation_mask.tolist() # Convert numpy array to list } yield idx, ex idx += 1