Datasets:

Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
arjunrao2000 commited on
Commit
0f4db9e
·
verified ·
1 Parent(s): 6eebd2d

Added citation

Browse files
Files changed (1) hide show
  1. README.md +17 -10
README.md CHANGED
@@ -10,13 +10,6 @@ size_categories:
10
  task_categories:
11
  - image-classification
12
  - image-segmentation
13
- citation: |
14
- @inproceedings{rao2025,
15
- title={Using Multiple Input Modalities can Improve Data‐Efficiency and O.O.D. Generalization for ML with Satellite Imagery},
16
- author={Arjun Rao and Esther Rolf},
17
- year={2025},
18
- booktitle={Under Review},
19
- }
20
  source_datasets:
21
  - SustainBench
22
  - USAVars
@@ -54,7 +47,7 @@ configs:
54
  ---
55
 
56
 
57
- ## Geolayers-Data
58
  <img src="osm_usavars.png" alt="Sample Geographic Inputs with the USAVars Dataset" width="800"/>
59
 
60
  -->
@@ -105,5 +98,19 @@ This dataset card contains usage instructions and metadata for all data-products
105
  ## Usage Instructions
106
  * Download the `.h5.gz` files in `data/<source dataset name>`. Our source datasets include SustainBench, USAVars, and BigEarthNet2.0
107
  * You may use pigz (https://linux.die.net/man/1/pigz) to decompress the archive. This is especially recommended for USAVars' train-split, which is 117 GB when uncompressed. This can be done with `pigz -d <.h5.gz>`
108
- * Datasets with auxiliary geographic inputs can be read with H5PY.
109
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  task_categories:
11
  - image-classification
12
  - image-segmentation
 
 
 
 
 
 
 
13
  source_datasets:
14
  - SustainBench
15
  - USAVars
 
47
  ---
48
 
49
 
50
+ # Geolayers-Data
51
  <img src="osm_usavars.png" alt="Sample Geographic Inputs with the USAVars Dataset" width="800"/>
52
 
53
  -->
 
98
  ## Usage Instructions
99
  * Download the `.h5.gz` files in `data/<source dataset name>`. Our source datasets include SustainBench, USAVars, and BigEarthNet2.0
100
  * You may use pigz (https://linux.die.net/man/1/pigz) to decompress the archive. This is especially recommended for USAVars' train-split, which is 117 GB when uncompressed. This can be done with `pigz -d <.h5.gz>`
101
+ * Datasets with auxiliary geographic inputs can be read with H5PY.
102
+
103
+ Citation:
104
+
105
+ ```
106
+ @inproceedings{
107
+ rao2025using,
108
+ title={Using Multiple Input Modalities can Improve Data-Efficiency and O.O.D. Generalization for {ML} with Satellite Imagery},
109
+ author={Arjun Rao and Esther Rolf},
110
+ booktitle={TerraBytes - ICML 2025 workshop},
111
+ year={2025},
112
+ url={https://openreview.net/forum?id=p5nSQMPUyo}
113
+ }
114
+ ```
115
+ ---
116
+