Datasets:

Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
arjunrao2000 commited on
Commit
1a8078f
·
verified ·
1 Parent(s): 6408cd0

Dataset descriptions updated

Browse files
Files changed (1) hide show
  1. README.md +34 -0
README.md CHANGED
@@ -8,6 +8,40 @@ This dataset card contains usage instructions and metadata for all data-products
8
  | [BigEarthNet v2.0](https://bigearth.net/static/documents/Description_BigEarthNet_v2.pdf) | Land-cover classification | Sentinel-2 (10 bands) | ViT | [SatCLIP](https://arxiv.org/abs/2311.17179) embeddings | ✓ |
9
  | [USAVars](https://arxiv.org/abs/2010.08168) | Tree-cover regression | NAIP RGB + NIR | ResNet-50 | OSM rasters, DEM | ✗ |
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ---
13
  license: mit
 
8
  | [BigEarthNet v2.0](https://bigearth.net/static/documents/Description_BigEarthNet_v2.pdf) | Land-cover classification | Sentinel-2 (10 bands) | ViT | [SatCLIP](https://arxiv.org/abs/2311.17179) embeddings | ✓ |
9
  | [USAVars](https://arxiv.org/abs/2010.08168) | Tree-cover regression | NAIP RGB + NIR | ResNet-50 | OSM rasters, DEM | ✗ |
10
 
11
+ ## 📦 Datasets & Georeferenced Auxiliary Layers
12
+
13
+ ### SustainBench – Farmland Boundary Delineation
14
+ * **Optical input:** Sentinel-2 RGB patches (224 × 224 px, 10 m GSD) covering French cropland in 2017; ≈ 1.6 k training images.
15
+ * **Auxiliary layers (all geo-aligned):**
16
+ * 19-channel OpenStreetMap (OSM) raster stack (roads, waterways, buildings, biome classes, …)
17
+ * EU-DEM (20 m GSD, down-sampled to 10 m)
18
+ * **Why:** OSM + DEM give an 8 % Dice boost when labels are scarce; gains appear once the training set drops below ≈ 700 images.
19
+
20
+ ---
21
+
22
+ ### EnviroAtlas – Land-Cover Segmentation
23
+ * **Optical input:** NAIP 4-band RGB-NIR aerial imagery at 1 m resolution.
24
+ * **Auxiliary layers:**
25
+ * OSM rasters (roads, waterbodies, waterways)
26
+ * **Prior** raster – a hand-crafted fusion of NLCD land-cover and OSM layers (PROC-STACK)
27
+ * **Splits:** Train = Pittsburgh; OOD validation/test = Austin & Durham. Auxiliary layers raise OOD overall accuracy by ~4 pp without extra fine-tuning.
28
+
29
+ ---
30
+
31
+ ### BigEarthNet v2.0 – Multi-Label Land-Cover Classification
32
+ * **Optical input:** 10-band Sentinel-2 tile pairs; ≈ 550 k patch/label pairs over 19 classes.
33
+ * **Auxiliary layer:**
34
+ * **SatCLIP location embedding** (256-D), one per image centre, injected as an extra ViT token (TOKEN-FUSE).
35
+ * **Splits:** Grid-based; val/test tiles lie outside the training footprint (spatial OOD by design). SatCLIP token lifts macro-F1 by ~3 pp across *all* subset sizes.
36
+
37
+ ---
38
+
39
+ ### USAVars – Tree-Cover Regression
40
+ * **Optical input:** NAIP RGB-NIR images (1 km² tiles); ≈ 100 k samples with tree-cover % labels.
41
+ * **Auxiliary layers:**
42
+ * Extended OSM raster stack (roads, buildings, land-use, biome classes, …)
43
+ * Continental Europe Digital Elevation Model (DEM) resampled to 10 m GSD
44
+ * **Notes:** Stacking the OSM raster boosts R² by 0.16 in the low-data regime (< 250 images); DEM is provided raw for flexibility.
45
 
46
  ---
47
  license: mit