Dataset descriptions updated
Browse files
README.md
CHANGED
@@ -8,6 +8,40 @@ This dataset card contains usage instructions and metadata for all data-products
|
|
8 |
| [BigEarthNet v2.0](https://bigearth.net/static/documents/Description_BigEarthNet_v2.pdf) | Land-cover classification | Sentinel-2 (10 bands) | ViT | [SatCLIP](https://arxiv.org/abs/2311.17179) embeddings | ✓ |
|
9 |
| [USAVars](https://arxiv.org/abs/2010.08168) | Tree-cover regression | NAIP RGB + NIR | ResNet-50 | OSM rasters, DEM | ✗ |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
---
|
13 |
license: mit
|
|
|
8 |
| [BigEarthNet v2.0](https://bigearth.net/static/documents/Description_BigEarthNet_v2.pdf) | Land-cover classification | Sentinel-2 (10 bands) | ViT | [SatCLIP](https://arxiv.org/abs/2311.17179) embeddings | ✓ |
|
9 |
| [USAVars](https://arxiv.org/abs/2010.08168) | Tree-cover regression | NAIP RGB + NIR | ResNet-50 | OSM rasters, DEM | ✗ |
|
10 |
|
11 |
+
## 📦 Datasets & Georeferenced Auxiliary Layers
|
12 |
+
|
13 |
+
### SustainBench – Farmland Boundary Delineation
|
14 |
+
* **Optical input:** Sentinel-2 RGB patches (224 × 224 px, 10 m GSD) covering French cropland in 2017; ≈ 1.6 k training images.
|
15 |
+
* **Auxiliary layers (all geo-aligned):**
|
16 |
+
* 19-channel OpenStreetMap (OSM) raster stack (roads, waterways, buildings, biome classes, …)
|
17 |
+
* EU-DEM (20 m GSD, down-sampled to 10 m)
|
18 |
+
* **Why:** OSM + DEM give an 8 % Dice boost when labels are scarce; gains appear once the training set drops below ≈ 700 images.
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
### EnviroAtlas – Land-Cover Segmentation
|
23 |
+
* **Optical input:** NAIP 4-band RGB-NIR aerial imagery at 1 m resolution.
|
24 |
+
* **Auxiliary layers:**
|
25 |
+
* OSM rasters (roads, waterbodies, waterways)
|
26 |
+
* **Prior** raster – a hand-crafted fusion of NLCD land-cover and OSM layers (PROC-STACK)
|
27 |
+
* **Splits:** Train = Pittsburgh; OOD validation/test = Austin & Durham. Auxiliary layers raise OOD overall accuracy by ~4 pp without extra fine-tuning.
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
### BigEarthNet v2.0 – Multi-Label Land-Cover Classification
|
32 |
+
* **Optical input:** 10-band Sentinel-2 tile pairs; ≈ 550 k patch/label pairs over 19 classes.
|
33 |
+
* **Auxiliary layer:**
|
34 |
+
* **SatCLIP location embedding** (256-D), one per image centre, injected as an extra ViT token (TOKEN-FUSE).
|
35 |
+
* **Splits:** Grid-based; val/test tiles lie outside the training footprint (spatial OOD by design). SatCLIP token lifts macro-F1 by ~3 pp across *all* subset sizes.
|
36 |
+
|
37 |
+
---
|
38 |
+
|
39 |
+
### USAVars – Tree-Cover Regression
|
40 |
+
* **Optical input:** NAIP RGB-NIR images (1 km² tiles); ≈ 100 k samples with tree-cover % labels.
|
41 |
+
* **Auxiliary layers:**
|
42 |
+
* Extended OSM raster stack (roads, buildings, land-use, biome classes, …)
|
43 |
+
* Continental Europe Digital Elevation Model (DEM) resampled to 10 m GSD
|
44 |
+
* **Notes:** Stacking the OSM raster boosts R² by 0.16 in the low-data regime (< 250 images); DEM is provided raw for flexibility.
|
45 |
|
46 |
---
|
47 |
license: mit
|