asahi417 commited on
Commit
7309f64
·
1 Parent(s): e1988d2
attach_speaker_embedding_s2s.py CHANGED
@@ -1,21 +1,13 @@
1
- import subprocess
2
- from os.path import join as p_join
3
- from typing import Optional
4
-
5
- import librosa
6
- from librosa import feature
7
- import numpy as np
8
- from torch import nn
9
-
10
-
11
  import os
12
  from os.path import expanduser
13
 
14
  import shutil
15
- import torch
16
  from soundfile import LibsndfileError
17
  from datasets import load_dataset, DatasetDict, Audio
18
 
 
 
 
19
  direction = os.getenv("DIRECTION", "enA-jaA")
20
  sides = set(direction.split("-"))
21
  dataset_id = os.getenv("DATASET_ID", 0)
@@ -24,97 +16,6 @@ hf_org = os.getenv("HF_ORG", "asahi417")
24
  hf_dataset = os.getenv("HF_DATASET", f"seamless-align-{direction}")
25
  dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="train")
26
  audio_loader = Audio()
27
-
28
- checkpoint_url = "https://huggingface.co/datasets/asahi417/experiment-speaker-embedding/resolve/main/meta_voice_speaker_encoder.pt"
29
- model_weight = p_join(os.path.expanduser('~'), ".cache", "experiment_speaker_embedding", "meta_voice_speaker_encoder.pt")
30
-
31
-
32
- def wget(url: str, output_file: Optional[str] = None):
33
- os.makedirs(os.path.dirname(output_file), exist_ok=True)
34
- subprocess.run(["wget", url, "-O", output_file])
35
- if not os.path.exists(output_file):
36
- raise ValueError(f"failed to download {url}")
37
-
38
-
39
- class MetaVoiceSE(nn.Module):
40
-
41
- mel_window_length = 25
42
- mel_window_step = 10
43
- mel_n_channels = 40
44
- sampling_rate = 16000
45
- partials_n_frames = 160
46
- model_hidden_size = 256
47
- model_embedding_size = 256
48
- model_num_layers = 3
49
-
50
- def __init__(self):
51
- super().__init__()
52
- if not os.path.exists(model_weight):
53
- wget(checkpoint_url, model_weight)
54
- # Define the network
55
- self.lstm = nn.LSTM(self.mel_n_channels, self.model_hidden_size, self.model_num_layers, batch_first=True)
56
- self.linear = nn.Linear(self.model_hidden_size, self.model_embedding_size)
57
- self.relu = nn.ReLU()
58
- # Load weight
59
- self.load_state_dict(torch.load(model_weight, map_location="cpu")["model_state"], strict=False)
60
- # Get the target device
61
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
62
- self.to(self.device)
63
- self.eval()
64
-
65
- def compute_partial_slices(self, n_samples: int, rate, min_coverage):
66
- # Compute how many frames separate two partial utterances
67
- samples_per_frame = int((self.sampling_rate * self.mel_window_step / 1000))
68
- n_frames = int(np.ceil((n_samples + 1) / samples_per_frame))
69
- frame_step = int(np.round((self.sampling_rate / rate) / samples_per_frame))
70
- # Compute the slices
71
- wav_slices, mel_slices = [], []
72
- steps = max(1, n_frames - self.partials_n_frames + frame_step + 1)
73
- for i in range(0, steps, frame_step):
74
- mel_range = np.array([i, i + self.partials_n_frames])
75
- wav_range = mel_range * samples_per_frame
76
- mel_slices.append(slice(*mel_range))
77
- wav_slices.append(slice(*wav_range))
78
- # Evaluate whether extra padding is warranted or not
79
- last_wav_range = wav_slices[-1]
80
- coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start)
81
- if coverage < min_coverage and len(mel_slices) > 1:
82
- return wav_slices[:-1], mel_slices[:-1]
83
- return wav_slices, mel_slices
84
-
85
- def get_speaker_embedding(self,
86
- wav: np.ndarray,
87
- sampling_rate: Optional[int] = None,
88
- rate: float = 1.3,
89
- min_coverage: float = 0.75) -> np.ndarray:
90
- if sampling_rate != self.sampling_rate:
91
- wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.sampling_rate)
92
- wav, _ = librosa.effects.trim(wav, top_db=20)
93
- wav_slices, mel_slices = self.compute_partial_slices(len(wav), rate, min_coverage)
94
- max_wave_length = wav_slices[-1].stop
95
- if max_wave_length >= len(wav):
96
- wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant")
97
- # Wav -> Mel spectrogram
98
- frames = feature.melspectrogram(
99
- y=wav,
100
- sr=self.sampling_rate,
101
- n_fft=int(self.sampling_rate * self.mel_window_length / 1000),
102
- hop_length=int(self.sampling_rate * self.mel_window_step / 1000),
103
- n_mels=self.mel_n_channels,
104
- )
105
- mel = frames.astype(np.float32).T
106
- mel = np.array([mel[s] for s in mel_slices])
107
- # inference
108
- with torch.no_grad():
109
- mel = torch.from_numpy(mel).to(self.device)
110
- _, (hidden, _) = self.lstm(mel)
111
- embeds_raw = self.relu(self.linear(hidden[-1]))
112
- partial_embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
113
- partial_embeds = partial_embeds.cpu().numpy()
114
- raw_embed = np.mean(partial_embeds, axis=0)
115
- return raw_embed / np.linalg.norm(raw_embed, 2)
116
-
117
-
118
  speaker_embedder = MetaVoiceSE()
119
 
120
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  from os.path import expanduser
3
 
4
  import shutil
 
5
  from soundfile import LibsndfileError
6
  from datasets import load_dataset, DatasetDict, Audio
7
 
8
+ from speaker_embedding_metavoice import MetaVoiceSE
9
+
10
+
11
  direction = os.getenv("DIRECTION", "enA-jaA")
12
  sides = set(direction.split("-"))
13
  dataset_id = os.getenv("DATASET_ID", 0)
 
16
  hf_dataset = os.getenv("HF_DATASET", f"seamless-align-{direction}")
17
  dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="train")
18
  audio_loader = Audio()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  speaker_embedder = MetaVoiceSE()
20
 
21
 
speaker_embedding_metavoice.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Speaker embedding obtained via speaker verification training.
2
+ - feature dimension: 256
3
+ - source: https://github.com/metavoiceio/metavoice-src
4
+ """
5
+ import os
6
+ import subprocess
7
+ from os.path import join as p_join
8
+ from typing import Optional
9
+
10
+ import librosa
11
+ from librosa import feature
12
+ import numpy as np
13
+ import torch
14
+ from torch import nn
15
+
16
+
17
+ checkpoint_url = "https://huggingface.co/datasets/asahi417/experiment-speaker-embedding/resolve/main/meta_voice_speaker_encoder.pt"
18
+ model_weight = p_join(os.path.expanduser('~'), ".cache", "experiment_speaker_embedding", "meta_voice_speaker_encoder.pt")
19
+
20
+
21
+ def wget(url: str, output_file: Optional[str] = None):
22
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
23
+ subprocess.run(["wget", url, "-O", output_file])
24
+ if not os.path.exists(output_file):
25
+ raise ValueError(f"failed to download {url}")
26
+
27
+
28
+ class MetaVoiceSE(nn.Module):
29
+
30
+ mel_window_length = 25
31
+ mel_window_step = 10
32
+ mel_n_channels = 40
33
+ sampling_rate = 16000
34
+ partials_n_frames = 160
35
+ model_hidden_size = 256
36
+ model_embedding_size = 256
37
+ model_num_layers = 3
38
+
39
+ def __init__(self):
40
+ super().__init__()
41
+ if not os.path.exists(model_weight):
42
+ wget(checkpoint_url, model_weight)
43
+ # Define the network
44
+ self.lstm = nn.LSTM(self.mel_n_channels, self.model_hidden_size, self.model_num_layers, batch_first=True)
45
+ self.linear = nn.Linear(self.model_hidden_size, self.model_embedding_size)
46
+ self.relu = nn.ReLU()
47
+ # Load weight
48
+ self.load_state_dict(torch.load(model_weight, map_location="cpu")["model_state"], strict=False)
49
+ # Get the target device
50
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
51
+ self.to(self.device)
52
+ self.eval()
53
+
54
+ def compute_partial_slices(self, n_samples: int, rate, min_coverage):
55
+ # Compute how many frames separate two partial utterances
56
+ samples_per_frame = int((self.sampling_rate * self.mel_window_step / 1000))
57
+ n_frames = int(np.ceil((n_samples + 1) / samples_per_frame))
58
+ frame_step = int(np.round((self.sampling_rate / rate) / samples_per_frame))
59
+ # Compute the slices
60
+ wav_slices, mel_slices = [], []
61
+ steps = max(1, n_frames - self.partials_n_frames + frame_step + 1)
62
+ for i in range(0, steps, frame_step):
63
+ mel_range = np.array([i, i + self.partials_n_frames])
64
+ wav_range = mel_range * samples_per_frame
65
+ mel_slices.append(slice(*mel_range))
66
+ wav_slices.append(slice(*wav_range))
67
+ # Evaluate whether extra padding is warranted or not
68
+ last_wav_range = wav_slices[-1]
69
+ coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start)
70
+ if coverage < min_coverage and len(mel_slices) > 1:
71
+ return wav_slices[:-1], mel_slices[:-1]
72
+ return wav_slices, mel_slices
73
+
74
+ def get_speaker_embedding(self,
75
+ wav: np.ndarray,
76
+ sampling_rate: Optional[int] = None,
77
+ rate: float = 1.3,
78
+ min_coverage: float = 0.75) -> np.ndarray:
79
+ if sampling_rate != self.sampling_rate:
80
+ wav = librosa.resample(wav, orig_sr=sampling_rate, target_sr=self.sampling_rate)
81
+ wav, _ = librosa.effects.trim(wav, top_db=20)
82
+ wav_slices, mel_slices = self.compute_partial_slices(len(wav), rate, min_coverage)
83
+ max_wave_length = wav_slices[-1].stop
84
+ if max_wave_length >= len(wav):
85
+ wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant")
86
+ # Wav -> Mel spectrogram
87
+ frames = feature.melspectrogram(
88
+ y=wav,
89
+ sr=self.sampling_rate,
90
+ n_fft=int(self.sampling_rate * self.mel_window_length / 1000),
91
+ hop_length=int(self.sampling_rate * self.mel_window_step / 1000),
92
+ n_mels=self.mel_n_channels,
93
+ )
94
+ mel = frames.astype(np.float32).T
95
+ mel = np.array([mel[s] for s in mel_slices])
96
+ # inference
97
+ with torch.no_grad():
98
+ mel = torch.from_numpy(mel).to(self.device)
99
+ _, (hidden, _) = self.lstm(mel)
100
+ embeds_raw = self.relu(self.linear(hidden[-1]))
101
+ partial_embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
102
+ partial_embeds = partial_embeds.cpu().numpy()
103
+ raw_embed = np.mean(partial_embeds, axis=0)
104
+ return raw_embed / np.linalg.norm(raw_embed, 2)
test_s2s.sh CHANGED
@@ -6,7 +6,7 @@ export LINE_NO_END=10
6
  export HF_DATASET="experiment-process-seamless-align"
7
  python fetch_dataset_s2s.py
8
  # tokenize
9
- export DATASET_ID=test
10
  export DIRECTION="enA-jaA"
11
  export HF_DATASET="experiment-process-seamless-align"
12
  python tokenize_dataset_s2s.py
 
6
  export HF_DATASET="experiment-process-seamless-align"
7
  python fetch_dataset_s2s.py
8
  # tokenize
9
+ export DATASET_ID=test_tokenized
10
  export DIRECTION="enA-jaA"
11
  export HF_DATASET="experiment-process-seamless-align"
12
  python tokenize_dataset_s2s.py
tokenize_dataset_s2s.py CHANGED
@@ -5,7 +5,7 @@ import shutil
5
  import torch
6
  from soundfile import LibsndfileError
7
  from datasets import load_dataset, DatasetDict, Audio
8
- from encodec_audio_tokenizer import EncodecTokenizer
9
 
10
 
11
  direction = os.getenv("DIRECTION", "enA-jaA")
 
5
  import torch
6
  from soundfile import LibsndfileError
7
  from datasets import load_dataset, DatasetDict, Audio
8
+ from tokenizer_encodec import EncodecTokenizer
9
 
10
 
11
  direction = os.getenv("DIRECTION", "enA-jaA")
encodec_audio_tokenizer.py → tokenizer_encodec.py RENAMED
File without changes