parquet-converter commited on
Commit
bc8cce8
·
verified ·
1 Parent(s): d9c13c2

Update parquet files

Browse files
Notebooks.txt DELETED
@@ -1,2 +0,0 @@
1
- https://huggingface.co/datasets/apollo812/RNPD_SD/raw/main/Notebooks/RNPD-SD.ipynb
2
- https://huggingface.co/datasets/apollo812/RNPD_SD/resolve/main/Notebooks/SDXL-LoRA-RNPD.ipynb
 
 
 
Notebooks/RNPD-SD.ipynb DELETED
@@ -1,162 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "# Dependencies"
8
- ]
9
- },
10
- {
11
- "cell_type": "code",
12
- "execution_count": null,
13
- "metadata": {},
14
- "outputs": [],
15
- "source": [
16
- "# Install the dependencies\n",
17
- "\n",
18
- "force_reinstall= False\n",
19
- "\n",
20
- "# Set to true only if you want to install the dependencies again.\n",
21
- "\n",
22
- "#--------------------\n",
23
- "with open('/dev/null', 'w') as devnull:import requests, os, time, importlib;open('/workspace/runpod_server.py', 'wb').write(requests.get('https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Scripts/mainrunpodA1111.py').content);os.chdir('/workspace');time.sleep(2);import mainrunpodA1111;importlib.reload(mainrunpodA1111);from mainrunpodA1111 import *;Deps(force_reinstall)"
24
- ]
25
- },
26
- {
27
- "cell_type": "markdown",
28
- "metadata": {},
29
- "source": [
30
- "# Install/Update AUTOMATIC1111 repo"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": null,
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "Huggingface_token_optional=\"\"\n",
40
- "\n",
41
- "# Restore your backed-up SD folder by entering your huggingface token, leave it empty to start fresh or continue with the existing sd folder (if any).\n",
42
- "\n",
43
- "#--------------------\n",
44
- "repo(Huggingface_token_optional)"
45
- ]
46
- },
47
- {
48
- "cell_type": "markdown",
49
- "metadata": {},
50
- "source": [
51
- "# Model Download/Load"
52
- ]
53
- },
54
- {
55
- "cell_type": "code",
56
- "execution_count": null,
57
- "metadata": {},
58
- "outputs": [],
59
- "source": [
60
- "Original_Model_Version = \"SDXL\"\n",
61
- "\n",
62
- "# Choices are \"SDXL\", \"v1.5\", \"v2-512\", \"v2-768\"\n",
63
- "\n",
64
- "#-------------- Or\n",
65
- "\n",
66
- "Path_to_MODEL = \"\"\n",
67
- "\n",
68
- "# Insert the full path of your trained model or to a folder containing multiple models.\n",
69
- "\n",
70
- "\n",
71
- "MODEL_LINK = \"\"\n",
72
- "\n",
73
- "# A direct link to a Model or a shared gdrive link.\n",
74
- "\n",
75
- "\n",
76
- "#--------------------\n",
77
- "model=mdl(Original_Model_Version, Path_to_MODEL, MODEL_LINK)"
78
- ]
79
- },
80
- {
81
- "cell_type": "markdown",
82
- "metadata": {},
83
- "source": [
84
- "# LoRA Download"
85
- ]
86
- },
87
- {
88
- "cell_type": "code",
89
- "execution_count": null,
90
- "metadata": {},
91
- "outputs": [],
92
- "source": [
93
- "# Download/update ControlNet extension and its models.\n",
94
- "\n",
95
- "ControlNet_v1_Model = \"all\"\n",
96
- "\n",
97
- "# Choices are : none; all; 1: Canny; 2: Depth; 3: Lineart; 4: MLSD; 5: Normal; 6: OpenPose; 7: Scribble; 8: Seg; 9: ip2p; 10:Shuffle; 11: Inpaint; 12: Softedge; 13: Lineart_Anime; 14: Tile; 15: T2iadapter_Models\n",
98
- "\n",
99
- "ControlNet_XL_Model = \"all\"\n",
100
- "\n",
101
- "# Choices are : none; all; 1: Canny; 2: Depth; 3: Sketch; 4: OpenPose; 5: Recolor\n",
102
- "\n",
103
- "#--------------------\n",
104
- "CNet(ControlNet_v1_Model, ControlNet_XL_Model)"
105
- ]
106
- },
107
- {
108
- "cell_type": "markdown",
109
- "metadata": {},
110
- "source": [
111
- "# Start Stable-Diffusion"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "metadata": {},
118
- "outputs": [],
119
- "source": [
120
- "User = \"\"\n",
121
- "\n",
122
- "Password= \"\"\n",
123
- "\n",
124
- "# Add credentials to your Gradio interface (optional).\n",
125
- "\n",
126
- "#-----------------\n",
127
- "configf=sd(User, Password, model) if 'model' in locals() else sd(User, Password, \"\");import gradio;gradio.close_all()\n",
128
- "!python /workspace/sd/stable-diffusion-webui/webui.py $configf"
129
- ]
130
- },
131
- {
132
- "cell_type": "markdown",
133
- "metadata": {},
134
- "source": [
135
- "# Backup SD folder"
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": null,
141
- "metadata": {},
142
- "outputs": [],
143
- "source": [
144
- "# This will backup your sd folder -without the models- to your huggingface account, so you can restore it whenever you start an instance.\n",
145
- "\n",
146
- "Huggingface_Write_token=\"\"\n",
147
- "\n",
148
- "# Must be a WRITE token, get yours here : https://huggingface.co/settings/tokens\n",
149
- "\n",
150
- "#--------------------\n",
151
- "save(Huggingface_Write_token)"
152
- ]
153
- }
154
- ],
155
- "metadata": {
156
- "language_info": {
157
- "name": "python"
158
- }
159
- },
160
- "nbformat": 4,
161
- "nbformat_minor": 2
162
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notebooks/SDXL-LoRA-RNPD.ipynb DELETED
@@ -1,281 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "# Dependencies"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": null,
15
- "metadata": {},
16
- "outputs": [],
17
- "source": [
18
- "# Install the dependencies\n",
19
- "\n",
20
- "force_reinstall= False\n",
21
- "\n",
22
- "# Set to true only if you want to install the dependencies again.\n",
23
- "\n",
24
- "#--------------------\n",
25
- "with open('/dev/null', 'w') as devnull:import requests, os, time, importlib;open('/workspace/sdxllorarunpod.py', 'wb').write(requests.get('https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Scripts/sdxllorarunpod.py').content);os.chdir('/workspace');import sdxllorarunpod;importlib.reload(sdxllorarunpod);from sdxllorarunpod import *;restored=False;restoreda=False;Deps(force_reinstall)"
26
- ]
27
- },
28
- {
29
- "cell_type": "markdown",
30
- "metadata": {},
31
- "source": [
32
- "# Download the model"
33
- ]
34
- },
35
- {
36
- "cell_type": "code",
37
- "execution_count": null,
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "# Run the cell to download the model\n",
42
- "\n",
43
- "#-------------\n",
44
- "MODEL_NAMExl=dls_xlf(\"\", \"\", \"\")"
45
- ]
46
- },
47
- {
48
- "cell_type": "markdown",
49
- "metadata": {},
50
- "source": [
51
- "# Create/Load a Session"
52
- ]
53
- },
54
- {
55
- "cell_type": "code",
56
- "execution_count": null,
57
- "metadata": {},
58
- "outputs": [],
59
- "source": [
60
- "Session_Name = \"Example-Session\"\n",
61
- "\n",
62
- "# Enter the session name, it if it exists, it will load it, otherwise it'll create an new session.\n",
63
- "\n",
64
- "#-----------------\n",
65
- "[WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMExl]=sess_xl(Session_Name, MODEL_NAMExl if 'MODEL_NAMExl' in locals() else \"\")"
66
- ]
67
- },
68
- {
69
- "cell_type": "markdown",
70
- "metadata": {},
71
- "source": [
72
- "# Instance Images\n",
73
- "The most important step is to rename the instance pictures to one unique unknown identifier"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "metadata": {},
80
- "outputs": [],
81
- "source": [
82
- "Remove_existing_instance_images= True\n",
83
- "\n",
84
- "# Set to False to keep the existing instance images if any.\n",
85
- "\n",
86
- "\n",
87
- "IMAGES_FOLDER_OPTIONAL= \"\"\n",
88
- "\n",
89
- "# If you prefer to specify directly the folder of the pictures instead of uploading, this will add the pictures to the existing (if any) instance images. Leave EMPTY to upload.\n",
90
- "\n",
91
- "\n",
92
- "Smart_crop_images = True\n",
93
- "\n",
94
- "# Automatically crop your input images.\n",
95
- "\n",
96
- "Crop_size = 1024\n",
97
- "\n",
98
- "# 1024 is the native resolution\n",
99
- "\n",
100
- "\n",
101
- "#--------------------------------------------\n",
102
- "\n",
103
- "# Disabled when \"Smart_crop_images\" is set to \"True\"\n",
104
- "\n",
105
- "Resize_to_1024_and_keep_aspect_ratio = False\n",
106
- "\n",
107
- "# Will resize the smallest dimension to 1024 without cropping while keeping the aspect ratio (make sure you have enough VRAM)\n",
108
- "\n",
109
- "\n",
110
- "# Check out this example for naming : https://i.imgur.com/d2lD3rz.jpeg\n",
111
- "\n",
112
- "#-----------------\n",
113
- "uplder(Remove_existing_instance_images, Smart_crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR)"
114
- ]
115
- },
116
- {
117
- "cell_type": "markdown",
118
- "metadata": {},
119
- "source": [
120
- "# Manual Captioning"
121
- ]
122
- },
123
- {
124
- "cell_type": "code",
125
- "execution_count": null,
126
- "metadata": {},
127
- "outputs": [],
128
- "source": [
129
- "# Open a tool to manually caption the instance images.\n",
130
- "\n",
131
- "#-----------------\n",
132
- "caption(CAPTIONS_DIR, INSTANCE_DIR)"
133
- ]
134
- },
135
- {
136
- "cell_type": "markdown",
137
- "metadata": {},
138
- "source": [
139
- "# Train LoRA"
140
- ]
141
- },
142
- {
143
- "cell_type": "code",
144
- "execution_count": null,
145
- "metadata": {},
146
- "outputs": [],
147
- "source": [
148
- "# Training Settings\n",
149
- "\n",
150
- "# Epoch = Number of steps/images\n",
151
- "\n",
152
- "\n",
153
- "UNet_Training_Epochs= 120\n",
154
- "\n",
155
- "UNet_Learning_Rate= \"1e-6\"\n",
156
- "\n",
157
- "# Keep the learning rate between 1e-6 and 3e-6\n",
158
- "\n",
159
- "\n",
160
- "Text_Encoder_Training_Epochs= 40\n",
161
- "\n",
162
- "# The training is highly affected by this value, a total of 300 steps (not epochs) is enough, set to 0 if enhancing existing concepts\n",
163
- "\n",
164
- "Text_Encoder_Learning_Rate= \"1e-6\"\n",
165
- "\n",
166
- "# Keep the learning rate at 1e-6 or lower\n",
167
- "\n",
168
- "\n",
169
- "External_Captions= False\n",
170
- "\n",
171
- "# Load the captions from a text file for each instance image\n",
172
- "\n",
173
- "\n",
174
- "LoRA_Dim = 64\n",
175
- "\n",
176
- "# Dimension of the LoRa model, between 64 and 128 is good enough\n",
177
- "\n",
178
- "\n",
179
- "Save_VRAM = False\n",
180
- "\n",
181
- "# Use as low as 10GB VRAM with Dim = 64\n",
182
- "\n",
183
- "\n",
184
- "Intermediary_Save_Epoch = \"[30,60]\"\n",
185
- "\n",
186
- "# [30,60] means it will save intermediary models at epoch 30 and epoch 60, you can add as many as you want like [30,60,80,100]\n",
187
- "\n",
188
- "\n",
189
- "#-----------------\n",
190
- "dbtrainxl(UNet_Training_Epochs, Text_Encoder_Training_Epochs, UNet_Learning_Rate, Text_Encoder_Learning_Rate, LoRA_Dim, False, 1024, MODEL_NAMExl, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, 0, Save_VRAM, Intermediary_Save_Epoch)"
191
- ]
192
- },
193
- {
194
- "cell_type": "markdown",
195
- "metadata": {},
196
- "source": [
197
- "# Test the Trained Model"
198
- ]
199
- },
200
- {
201
- "cell_type": "markdown",
202
- "metadata": {},
203
- "source": [
204
- "# ComfyUI"
205
- ]
206
- },
207
- {
208
- "cell_type": "code",
209
- "execution_count": null,
210
- "metadata": {},
211
- "outputs": [],
212
- "source": [
213
- "Args=\"--listen --port 3000 --preview-method auto\"\n",
214
- "\n",
215
- "\n",
216
- "Huggingface_token_optional= \"\"\n",
217
- "\n",
218
- "# Restore your backed-up Comfy folder by entering your huggingface token, leave it empty to start fresh or continue with the existing sd folder (if any).\n",
219
- "\n",
220
- "#--------------------\n",
221
- "restored=sdcmff(Huggingface_token_optional, MDLPTH, restored)\n",
222
- "!python /workspace/ComfyUI/main.py $Args"
223
- ]
224
- },
225
- {
226
- "cell_type": "markdown",
227
- "metadata": {},
228
- "source": [
229
- "# A1111"
230
- ]
231
- },
232
- {
233
- "cell_type": "code",
234
- "execution_count": null,
235
- "metadata": {},
236
- "outputs": [],
237
- "source": [
238
- "User = \"\"\n",
239
- "\n",
240
- "Password= \"\"\n",
241
- "\n",
242
- "# Add credentials to your Gradio interface (optional).\n",
243
- "\n",
244
- "\n",
245
- "Huggingface_token_optional= \"\"\n",
246
- "\n",
247
- "# Restore your backed-up SD folder by entering your huggingface token, leave it empty to start fresh or continue with the existing sd folder (if any).\n",
248
- "\n",
249
- "#-----------------\n",
250
- "configf, restoreda=test(MDLPTH, User, Password, Huggingface_token_optional, restoreda)\n",
251
- "!python /workspace/sd/stable-diffusion-webui/webui.py $configf"
252
- ]
253
- },
254
- {
255
- "cell_type": "markdown",
256
- "metadata": {},
257
- "source": [
258
- "# Free up space"
259
- ]
260
- },
261
- {
262
- "cell_type": "code",
263
- "execution_count": null,
264
- "metadata": {},
265
- "outputs": [],
266
- "source": [
267
- "# Display a list of sessions from which you can remove any session you don't need anymore\n",
268
- "\n",
269
- "#-------------------------\n",
270
- "clean()"
271
- ]
272
- }
273
- ],
274
- "metadata": {
275
- "language_info": {
276
- "name": "python"
277
- }
278
- },
279
- "nbformat": 4,
280
- "nbformat_minor": 2
281
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,3 +0,0 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
Scripts/runpodLoRA.py DELETED
@@ -1,1160 +0,0 @@
1
- from IPython.display import clear_output
2
- from subprocess import call, getoutput, Popen
3
- from IPython.display import display
4
- import ipywidgets as widgets
5
- import io
6
- from PIL import Image, ImageDraw, ImageOps
7
- import fileinput
8
- import time
9
- import os
10
- from os import listdir
11
- from os.path import isfile
12
- import random
13
- import sys
14
- from io import BytesIO
15
- import requests
16
- from collections import defaultdict
17
- from math import log, sqrt
18
- import numpy as np
19
- import sys
20
- import fileinput
21
- from subprocess import check_output
22
- import six
23
- import base64
24
- import re
25
-
26
- from urllib.parse import urlparse, parse_qs, unquote
27
- import urllib.request
28
- from urllib.request import urlopen, Request
29
-
30
- import tempfile
31
- from tqdm import tqdm
32
-
33
-
34
-
35
-
36
- def Deps(force_reinstall):
37
-
38
- if not force_reinstall and os.path.exists('/usr/local/lib/python3.10/dist-packages/safetensors'):
39
- ntbks()
40
- call('pip install --root-user-action=ignore --disable-pip-version-check -qq diffusers==0.18.1', shell=True, stdout=open('/dev/null', 'w'))
41
- print('Modules and notebooks updated, dependencies already installed')
42
- os.environ['TORCH_HOME'] = '/workspace/cache/torch'
43
- os.environ['PYTHONWARNINGS'] = 'ignore'
44
- else:
45
- call('pip install --root-user-action=ignore --disable-pip-version-check --no-deps -qq gdown PyWavelets numpy==1.23.5 accelerate==0.12.0 --force-reinstall', shell=True, stdout=open('/dev/null', 'w'))
46
- ntbks()
47
- if os.path.exists('deps'):
48
- call("rm -r deps", shell=True)
49
- if os.path.exists('diffusers'):
50
- call("rm -r diffusers", shell=True)
51
- call('mkdir deps', shell=True)
52
- if not os.path.exists('cache'):
53
- call('mkdir cache', shell=True)
54
- os.chdir('deps')
55
- dwn("https://huggingface.co/TheLastBen/dependencies/resolve/main/rnpddeps-t2.tar.zst", "/workspace/deps/rnpddeps-t2.tar.zst", "Installing dependencies")
56
- call('tar -C / --zstd -xf rnpddeps-t2.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
57
- call("sed -i 's@~/.cache@/workspace/cache@' /usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", shell=True)
58
- os.chdir('/workspace')
59
- call('pip install --root-user-action=ignore --disable-pip-version-check -qq diffusers==0.18.1', shell=True, stdout=open('/dev/null', 'w'))
60
- call("git clone --depth 1 -q --branch main https://github.com/TheLastBen/diffusers", shell=True, stdout=open('/dev/null', 'w'))
61
- call('pip install --root-user-action=ignore --disable-pip-version-check -qq gradio==3.41.2', shell=True, stdout=open('/dev/null', 'w'))
62
- call("rm -r deps", shell=True)
63
- os.chdir('/workspace')
64
- os.environ['TORCH_HOME'] = '/workspace/cache/torch'
65
- os.environ['PYTHONWARNINGS'] = 'ignore'
66
- call("sed -i 's@text = _formatwarnmsg(msg)@text =\"\"@g' /usr/lib/python3.10/warnings.py", shell=True)
67
- clear_output()
68
-
69
- done()
70
-
71
-
72
- def dwn(url, dst, msg):
73
- file_size = None
74
- req = Request(url, headers={"User-Agent": "torch.hub"})
75
- u = urlopen(req)
76
- meta = u.info()
77
- if hasattr(meta, 'getheaders'):
78
- content_length = meta.getheaders("Content-Length")
79
- else:
80
- content_length = meta.get_all("Content-Length")
81
- if content_length is not None and len(content_length) > 0:
82
- file_size = int(content_length[0])
83
-
84
- with tqdm(total=file_size, disable=False, mininterval=0.5,
85
- bar_format=msg+' |{bar:20}| {percentage:3.0f}%') as pbar:
86
- with open(dst, "wb") as f:
87
- while True:
88
- buffer = u.read(8192)
89
- if len(buffer) == 0:
90
- break
91
- f.write(buffer)
92
- pbar.update(len(buffer))
93
- f.close()
94
-
95
-
96
- def ntbks():
97
-
98
- os.chdir('/workspace')
99
- if not os.path.exists('Latest_Notebooks'):
100
- call('mkdir Latest_Notebooks', shell=True)
101
- else:
102
- call('rm -r Latest_Notebooks', shell=True)
103
- call('mkdir Latest_Notebooks', shell=True)
104
- os.chdir('/workspace/Latest_Notebooks')
105
- call('wget -q -i https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Notebooks.txt', shell=True)
106
- call('rm Notebooks.txt', shell=True)
107
- os.chdir('/workspace')
108
-
109
- def done():
110
- done = widgets.Button(
111
- description='Done!',
112
- disabled=True,
113
- button_style='success',
114
- tooltip='',
115
- icon='check'
116
- )
117
- display(done)
118
-
119
-
120
-
121
- def mdlvxl():
122
-
123
- os.chdir('/workspace')
124
-
125
- if os.path.exists('stable-diffusion-XL') and not os.path.exists('/workspace/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'):
126
- call('rm -r stable-diffusion-XL', shell=True)
127
- if not os.path.exists('stable-diffusion-XL'):
128
- print('Downloading SDXL model...')
129
- call('mkdir stable-diffusion-XL', shell=True)
130
- os.chdir('stable-diffusion-XL')
131
- call('git init', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
132
- call('git lfs install --system --skip-repo', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
133
- call('git remote add -f origin https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
134
- call('git config core.sparsecheckout true', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
135
- call('echo -e "\nscheduler\ntext_encoder\ntext_encoder_2\ntokenizer\ntokenizer_2\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors\n!*.bin\n!*.onnx*\n!*.xml" > .git/info/sparse-checkout', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
136
- call('git pull origin main', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
137
- dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/text_encoder/model.safetensors', 'text_encoder/model.safetensors', '1/4')
138
- dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/text_encoder_2/model.safetensors', 'text_encoder_2/model.safetensors', '2/4')
139
- dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/vae/diffusion_pytorch_model.safetensors', 'vae/diffusion_pytorch_model.safetensors', '3/4')
140
- dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/unet/diffusion_pytorch_model.safetensors', 'unet/diffusion_pytorch_model.safetensors', '4/4')
141
- call('rm -r .git', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
142
- os.chdir('/workspace')
143
- clear_output()
144
- while not os.path.exists('/workspace/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'):
145
- print('Invalid HF token, make sure you have access to the model')
146
- time.sleep(8)
147
- if os.path.exists('/workspace/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'):
148
- print('Using SDXL model')
149
- else:
150
- print('Using SDXL model')
151
-
152
- call("sed -i 's@\"force_upcast.*@@' /workspace/stable-diffusion-XL/vae/config.json", shell=True)
153
-
154
-
155
-
156
- def downloadmodel_hfxl(Path_to_HuggingFace):
157
-
158
- os.chdir('/workspace')
159
- if os.path.exists('stable-diffusion-custom'):
160
- call("rm -r stable-diffusion-custom", shell=True)
161
- clear_output()
162
-
163
- if os.path.exists('Fast-Dreambooth/token.txt'):
164
- with open("Fast-Dreambooth/token.txt") as f:
165
- token = f.read()
166
- authe=f'https://USER:{token}@'
167
- else:
168
- authe="https://"
169
-
170
- clear_output()
171
- call("mkdir stable-diffusion-custom", shell=True)
172
- os.chdir("stable-diffusion-custom")
173
- call("git init", shell=True)
174
- call("git lfs install --system --skip-repo", shell=True)
175
- call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True)
176
- call("git config core.sparsecheckout true", shell=True)
177
- call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.fp16.safetensors" > .git/info/sparse-checkout', shell=True)
178
- call("git pull origin main", shell=True)
179
- if os.path.exists('unet/diffusion_pytorch_model.safetensors'):
180
- call("rm -r .git", shell=True)
181
- os.chdir('/workspace')
182
- clear_output()
183
- done()
184
- while not os.path.exists('/workspace/stable-diffusion-custom/unet/diffusion_pytorch_model.safetensors'):
185
- print('Check the link you provided')
186
- os.chdir('/workspace')
187
- time.sleep(5)
188
-
189
-
190
-
191
- def downloadmodel_link_xl(MODEL_LINK):
192
-
193
- import wget
194
- import gdown
195
- from gdown.download import get_url_from_gdrive_confirmation
196
-
197
- def getsrc(url):
198
- parsed_url = urlparse(url)
199
- if parsed_url.netloc == 'civitai.com':
200
- src='civitai'
201
- elif parsed_url.netloc == 'drive.google.com':
202
- src='gdrive'
203
- elif parsed_url.netloc == 'huggingface.co':
204
- src='huggingface'
205
- else:
206
- src='others'
207
- return src
208
-
209
- src=getsrc(MODEL_LINK)
210
-
211
- def get_name(url, gdrive):
212
- if not gdrive:
213
- response = requests.get(url, allow_redirects=False)
214
- if "Location" in response.headers:
215
- redirected_url = response.headers["Location"]
216
- quer = parse_qs(urlparse(redirected_url).query)
217
- if "response-content-disposition" in quer:
218
- disp_val = quer["response-content-disposition"][0].split(";")
219
- for vals in disp_val:
220
- if vals.strip().startswith("filename="):
221
- filenm=unquote(vals.split("=", 1)[1].strip())
222
- return filenm.replace("\"","")
223
- else:
224
- headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"}
225
- lnk="https://drive.google.com/uc?id={id}&export=download".format(id=url[url.find("/d/")+3:url.find("/view")])
226
- res = requests.session().get(lnk, headers=headers, stream=True, verify=True)
227
- res = requests.session().get(get_url_from_gdrive_confirmation(res.text), headers=headers, stream=True, verify=True)
228
- content_disposition = six.moves.urllib_parse.unquote(res.headers["Content-Disposition"])
229
- filenm = re.search(r"filename\*=UTF-8''(.*)", content_disposition).groups()[0].replace(os.path.sep, "_")
230
- return filenm
231
-
232
- if src=='civitai':
233
- modelname=get_name(MODEL_LINK, False)
234
- elif src=='gdrive':
235
- modelname=get_name(MODEL_LINK, True)
236
- else:
237
- modelname=os.path.basename(MODEL_LINK)
238
-
239
-
240
- os.chdir('/workspace')
241
- if src=='huggingface':
242
- dwn(MODEL_LINK, modelname,'Downloading the Model')
243
- else:
244
- call("gdown --fuzzy " +MODEL_LINK+ " -O "+modelname, shell=True)
245
-
246
- if os.path.exists(modelname):
247
- if os.path.getsize(modelname) > 1810671599:
248
-
249
- print('Converting to diffusers...')
250
- call('python /workspace/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+modelname+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
251
-
252
- if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
253
- os.chdir('/workspace')
254
- clear_output()
255
- done()
256
- else:
257
- while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
258
- print('Conversion error')
259
- os.chdir('/workspace')
260
- time.sleep(5)
261
- else:
262
- while os.path.getsize(modelname) < 1810671599:
263
- print('Wrong link, check that the link is valid')
264
- os.chdir('/workspace')
265
- time.sleep(5)
266
-
267
-
268
-
269
- def downloadmodel_path_xl(MODEL_PATH):
270
-
271
- import wget
272
- os.chdir('/workspace')
273
- clear_output()
274
- if os.path.exists(str(MODEL_PATH)):
275
-
276
- print('Converting to diffusers...')
277
- call('python /workspace/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+MODEL_PATH+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
278
-
279
- if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
280
- clear_output()
281
- done()
282
- while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
283
- print('Conversion error')
284
- os.chdir('/workspace')
285
- time.sleep(5)
286
- else:
287
- while not os.path.exists(str(MODEL_PATH)):
288
- print('Wrong path, use the file explorer to copy the path')
289
- os.chdir('/workspace')
290
- time.sleep(5)
291
-
292
-
293
-
294
-
295
- def dls_xlf(Path_to_HuggingFace, MODEL_PATH, MODEL_LINK):
296
-
297
- os.chdir('/workspace')
298
-
299
- if Path_to_HuggingFace != "":
300
- downloadmodel_hfxl(Path_to_HuggingFace)
301
- MODEL_NAMExl="/workspace/stable-diffusion-custom"
302
-
303
- elif MODEL_PATH !="":
304
-
305
- downloadmodel_path_xl(MODEL_PATH)
306
- MODEL_NAMExl="/workspace/stable-diffusion-custom"
307
-
308
- elif MODEL_LINK !="":
309
-
310
- downloadmodel_link_xl(MODEL_LINK)
311
- MODEL_NAMExl="/workspace/stable-diffusion-custom"
312
-
313
- else:
314
- mdlvxl()
315
- MODEL_NAMExl="/workspace/stable-diffusion-XL"
316
-
317
- return MODEL_NAMExl
318
-
319
-
320
-
321
- def sess_xl(Session_Name, MODEL_NAMExl):
322
- import gdown
323
- import wget
324
- os.chdir('/workspace')
325
- PT=""
326
-
327
- while Session_Name=="":
328
- print('Input the Session Name:')
329
- Session_Name=input("")
330
- Session_Name=Session_Name.replace(" ","_")
331
-
332
- WORKSPACE='/workspace/Fast-Dreambooth'
333
-
334
- INSTANCE_NAME=Session_Name
335
- OUTPUT_DIR="/workspace/models/"+Session_Name
336
- SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name
337
- INSTANCE_DIR=SESSION_DIR+"/instance_images"
338
- CAPTIONS_DIR=SESSION_DIR+'/captions'
339
- MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.safetensors')
340
-
341
-
342
- if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH):
343
- print('Loading session with no previous LoRa model')
344
- if MODEL_NAMExl=="":
345
- print('No model found, use the "Model Download" cell to download a model.')
346
- else:
347
- print('Session Loaded, proceed')
348
-
349
- elif not os.path.exists(str(SESSION_DIR)):
350
- call('mkdir -p '+INSTANCE_DIR, shell=True)
351
- print('Creating session...')
352
- if MODEL_NAMExl=="":
353
- print('No model found, use the "Model Download" cell to download a model.')
354
- else:
355
- print('Session created, proceed to uploading instance images')
356
- if MODEL_NAMExl=="":
357
- print('No model found, use the "Model Download" cell to download a model.')
358
-
359
- else:
360
- print('Session Loaded, proceed')
361
-
362
-
363
- return WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMExl
364
-
365
-
366
-
367
- def uplder(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR):
368
-
369
- if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
370
- call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
371
-
372
- uploader = widgets.FileUpload(description="Choose images",accept='image/*, .txt', multiple=True)
373
- Upload = widgets.Button(
374
- description='Upload',
375
- disabled=False,
376
- button_style='info',
377
- tooltip='Click to upload the chosen instance images',
378
- icon=''
379
- )
380
-
381
-
382
- def up(Upload):
383
- with out:
384
- uploader.close()
385
- Upload.close()
386
- upld(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader)
387
- done()
388
- out=widgets.Output()
389
-
390
- if IMAGES_FOLDER_OPTIONAL=="":
391
- Upload.on_click(up)
392
- display(uploader, Upload, out)
393
- else:
394
- upld(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader)
395
- done()
396
-
397
-
398
-
399
- def upld(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader):
400
-
401
- from tqdm import tqdm
402
- if Remove_existing_instance_images:
403
- if os.path.exists(str(INSTANCE_DIR)):
404
- call("rm -r " +INSTANCE_DIR, shell=True)
405
- if os.path.exists(str(CAPTIONS_DIR)):
406
- call("rm -r " +CAPTIONS_DIR, shell=True)
407
-
408
-
409
- if not os.path.exists(str(INSTANCE_DIR)):
410
- call("mkdir -p " +INSTANCE_DIR, shell=True)
411
- if not os.path.exists(str(CAPTIONS_DIR)):
412
- call("mkdir -p " +CAPTIONS_DIR, shell=True)
413
-
414
-
415
- if IMAGES_FOLDER_OPTIONAL !="":
416
- if os.path.exists(IMAGES_FOLDER_OPTIONAL+"/.ipynb_checkpoints"):
417
- call('rm -r '+IMAGES_FOLDER_OPTIONAL+'/.ipynb_checkpoints', shell=True)
418
-
419
- if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)):
420
- call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True)
421
- if Crop_images:
422
- os.chdir(str(IMAGES_FOLDER_OPTIONAL))
423
- call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
424
- os.chdir('/workspace')
425
- for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
426
- extension = filename.split(".")[-1]
427
- identifier=filename.split(".")[0]
428
- new_path_with_file = os.path.join(INSTANCE_DIR, filename)
429
- file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename)
430
- file=file.convert("RGB")
431
- file=ImageOps.exif_transpose(file)
432
- width, height = file.size
433
- if file.size !=(Crop_size, Crop_size):
434
- image=crop_image(file, Crop_size)
435
- if extension.upper()=="JPG" or extension.upper()=="jpg":
436
- image[0].save(new_path_with_file, format="JPEG", quality = 100)
437
- else:
438
- image[0].save(new_path_with_file, format=extension.upper())
439
-
440
- else:
441
- call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True)
442
-
443
- else:
444
- for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
445
- call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True)
446
-
447
- elif IMAGES_FOLDER_OPTIONAL =="":
448
- up=""
449
- for file in uploader.value:
450
- filename = file['name']
451
- if filename.split(".")[-1]=="txt":
452
- with open(CAPTIONS_DIR+'/'+filename, 'w') as f:
453
- f.write(bytes(file['content']).decode())
454
- up=[file for file in uploader.value if not file['name'].endswith('.txt')]
455
- if Crop_images:
456
- for file in tqdm(up, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
457
- filename = file['name']
458
- img = Image.open(io.BytesIO(file['content']))
459
- img=img.convert("RGB")
460
- img=ImageOps.exif_transpose(img)
461
- extension = filename.split(".")[-1]
462
- identifier=filename.split(".")[0]
463
-
464
- if extension.upper()=="JPG" or extension.upper()=="jpg":
465
- img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
466
- else:
467
- img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
468
-
469
- new_path_with_file = os.path.join(INSTANCE_DIR, filename)
470
- file = Image.open(new_path_with_file)
471
- width, height = file.size
472
- if file.size !=(Crop_size, Crop_size):
473
- image=crop_image(file, Crop_size)
474
- if extension.upper()=="JPG" or extension.upper()=="jpg":
475
- image[0].save(new_path_with_file, format="JPEG", quality = 100)
476
- else:
477
- image[0].save(new_path_with_file, format=extension.upper())
478
-
479
- else:
480
- for file in tqdm(uploader.value, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
481
- filename = file['name']
482
- img = Image.open(io.BytesIO(file['content']))
483
- img=img.convert("RGB")
484
- extension = filename.split(".")[-1]
485
- identifier=filename.split(".")[0]
486
-
487
- if extension.upper()=="JPG" or extension.upper()=="jpg":
488
- img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
489
- else:
490
- img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
491
-
492
-
493
- os.chdir(INSTANCE_DIR)
494
- call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
495
- os.chdir(CAPTIONS_DIR)
496
- call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
497
- os.chdir('/workspace')
498
-
499
- if Resize_to_1024_and_keep_aspect_ratio and not Crop_images:
500
- resize_keep_aspect(INSTANCE_DIR)
501
-
502
-
503
-
504
-
505
- def caption(CAPTIONS_DIR, INSTANCE_DIR):
506
-
507
- paths=""
508
- out=""
509
- widgets_l=""
510
- clear_output()
511
- def Caption(path):
512
- if path!="Select an instance image to caption":
513
-
514
- name = os.path.splitext(os.path.basename(path))[0]
515
- ext=os.path.splitext(os.path.basename(path))[-1][1:]
516
- if ext=="jpg" or "JPG":
517
- ext="JPEG"
518
-
519
- if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'):
520
- with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
521
- text = f.read()
522
- else:
523
- with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
524
- f.write("")
525
- with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
526
- text = f.read()
527
-
528
- img=Image.open(os.path.join(INSTANCE_DIR,path))
529
- img=img.convert("RGB")
530
- img=img.resize((420, 420))
531
- image_bytes = BytesIO()
532
- img.save(image_bytes, format=ext, qualiy=10)
533
- image_bytes.seek(0)
534
- image_data = image_bytes.read()
535
- img= image_data
536
- image = widgets.Image(
537
- value=img,
538
- width=420,
539
- height=420
540
- )
541
- text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'})
542
-
543
-
544
- def update_text(text):
545
- with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
546
- f.write(text)
547
-
548
- button = widgets.Button(description='Save', button_style='success')
549
- button.on_click(lambda b: update_text(text_area.value))
550
-
551
- return widgets.VBox([widgets.HBox([image, text_area, button])])
552
-
553
-
554
- paths = os.listdir(INSTANCE_DIR)
555
- widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25)
556
-
557
-
558
- out = widgets.Output()
559
-
560
- def click(change):
561
- with out:
562
- out.clear_output()
563
- display(Caption(change.new))
564
-
565
- widgets_l.observe(click, names='value')
566
- display(widgets.HBox([widgets_l, out]))
567
-
568
-
569
-
570
- def dbtrainxl(Unet_Training_Epochs, Text_Encoder_Training_Epochs, Unet_Learning_Rate, Text_Encoder_Learning_Rate, dim, Offset_Noise, Resolution, MODEL_NAME, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, ofstnselvl, Save_VRAM, Intermediary_Save_Epoch):
571
-
572
-
573
- if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
574
- call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
575
- if os.path.exists(CAPTIONS_DIR+"/.ipynb_checkpoints"):
576
- call('rm -r '+CAPTIONS_DIR+'/.ipynb_checkpoints', shell=True)
577
-
578
-
579
- Seed=random.randint(1, 999999)
580
-
581
- ofstnse=""
582
- if Offset_Noise:
583
- ofstnse="--offset_noise"
584
-
585
- GC=''
586
- if Save_VRAM:
587
- GC='--gradient_checkpointing'
588
-
589
- extrnlcptn=""
590
- if External_Captions:
591
- extrnlcptn="--external_captions"
592
-
593
- precision="fp16"
594
-
595
-
596
-
597
- def train_only_text(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs):
598
- print('Training the Text Encoder...')
599
- call('accelerate launch /workspace/diffusers/examples/dreambooth/train_dreambooth_sdxl_TI.py \
600
- '+ofstnse+' \
601
- '+extrnlcptn+' \
602
- --dim='+str(dim)+' \
603
- --ofstnselvl='+str(ofstnselvl)+' \
604
- --image_captions_filename \
605
- --Session_dir='+SESSION_DIR+' \
606
- --pretrained_model_name_or_path='+MODEL_NAME+' \
607
- --instance_data_dir='+INSTANCE_DIR+' \
608
- --output_dir='+OUTPUT_DIR+' \
609
- --captions_dir='+CAPTIONS_DIR+' \
610
- --seed='+str(Seed)+' \
611
- --resolution='+str(Resolution)+' \
612
- --mixed_precision='+str(precision)+' \
613
- --train_batch_size=1 \
614
- --gradient_accumulation_steps=1 '+GC+ ' \
615
- --use_8bit_adam \
616
- --learning_rate='+str(Text_Encoder_Learning_Rate)+' \
617
- --lr_scheduler="cosine" \
618
- --lr_warmup_steps=0 \
619
- --num_train_epochs='+str(Training_Epochs), shell=True)
620
-
621
-
622
-
623
- def train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs):
624
- print('Training the UNet...')
625
- call('accelerate launch /workspace/diffusers/examples/dreambooth/train_dreambooth_sdxl_lora.py \
626
- '+ofstnse+' \
627
- '+extrnlcptn+' \
628
- --saves='+Intermediary_Save_Epoch+' \
629
- --dim='+str(dim)+' \
630
- --ofstnselvl='+str(ofstnselvl)+' \
631
- --image_captions_filename \
632
- --Session_dir='+SESSION_DIR+' \
633
- --pretrained_model_name_or_path='+MODEL_NAME+' \
634
- --instance_data_dir='+INSTANCE_DIR+' \
635
- --output_dir='+OUTPUT_DIR+' \
636
- --captions_dir='+CAPTIONS_DIR+' \
637
- --seed='+str(Seed)+' \
638
- --resolution='+str(Resolution)+' \
639
- --mixed_precision='+str(precision)+' \
640
- --train_batch_size=1 \
641
- --gradient_accumulation_steps=1 '+GC+ ' \
642
- --use_8bit_adam \
643
- --learning_rate='+str(Unet_Learning_Rate)+' \
644
- --lr_scheduler="cosine" \
645
- --lr_warmup_steps=0 \
646
- --num_train_epochs='+str(Training_Epochs), shell=True)
647
-
648
-
649
-
650
- if Unet_Training_Epochs!=0:
651
- if Text_Encoder_Training_Epochs!=0:
652
- train_only_text(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs=Text_Encoder_Training_Epochs)
653
- clear_output()
654
- train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs=Unet_Training_Epochs)
655
- else :
656
- print('Nothing to do')
657
-
658
-
659
- if os.path.exists(SESSION_DIR+'/'+Session_Name+'.safetensors'):
660
- clear_output()
661
- print("DONE, the LoRa model is in the session's folder")
662
- else:
663
- print("Something went wrong")
664
-
665
-
666
-
667
-
668
- def sdcmff(Huggingface_token_optional, MDLPTH, restored):
669
-
670
- from slugify import slugify
671
- from huggingface_hub import HfApi, CommitOperationAdd, create_repo
672
-
673
- os.chdir('/workspace')
674
-
675
- if restored:
676
- Huggingface_token_optional=""
677
-
678
- if Huggingface_token_optional!="":
679
- username = HfApi().whoami(Huggingface_token_optional)["name"]
680
- backup=f"https://huggingface.co/datasets/{username}/fast-stable-diffusion/resolve/main/sdcomfy_backup_rnpd.tar.zst"
681
- headers = {"Authorization": f"Bearer {Huggingface_token_optional}"}
682
- response = requests.head(backup, headers=headers)
683
- if response.status_code == 302:
684
- restored=True
685
- print('Restoring ComfyUI...')
686
- open('/workspace/sdcomfy_backup_rnpd.tar.zst', 'wb').write(requests.get(backup, headers=headers).content)
687
- call('tar --zstd -xf sdcomfy_backup_rnpd.tar.zst', shell=True)
688
- call('rm sdcomfy_backup_rnpd.tar.zst', shell=True)
689
- else:
690
- print('Backup not found, using a fresh/existing repo...')
691
- time.sleep(2)
692
- if not os.path.exists('ComfyUI'):
693
- call('git clone -q --depth 1 https://github.com/comfyanonymous/ComfyUI', shell=True)
694
- else:
695
- print('Installing/Updating the repo...')
696
- if not os.path.exists('ComfyUI'):
697
- call('git clone -q --depth 1 https://github.com/comfyanonymous/ComfyUI', shell=True)
698
-
699
- os.chdir('ComfyUI')
700
- call('git reset --hard', shell=True)
701
- print('')
702
- call('git pull', shell=True)
703
-
704
- if os.path.exists(MDLPTH):
705
- call('ln -s '+os.path.dirname(MDLPTH)+' models/loras', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
706
-
707
- clean_symlinks('models/loras')
708
-
709
- if not os.path.exists('models/checkpoints/sd_xl_base_1.0.safetensors'):
710
- call('ln -s /workspace/auto-models/* models/checkpoints', shell=True)
711
-
712
-
713
- podid=os.environ.get('RUNPOD_POD_ID')
714
- localurl=f"https://{podid}-3001.proxy.runpod.net"
715
- call("sed -i 's@print(\"To see the GUI go to: http://{}:{}\".format(address, port))@print(\"\u2714 Connected\")\\n print(\""+localurl+"\")@' /workspace/ComfyUI/server.py", shell=True)
716
- os.chdir('/workspace')
717
-
718
- return restored
719
-
720
-
721
-
722
-
723
- def test(MDLPTH, User, Password, Huggingface_token_optional, restoreda):
724
-
725
- from slugify import slugify
726
- from huggingface_hub import HfApi, CommitOperationAdd, create_repo
727
- import gradio
728
-
729
- gradio.close_all()
730
-
731
-
732
- auth=f"--gradio-auth {User}:{Password}"
733
- if User =="" or Password=="":
734
- auth=""
735
-
736
-
737
- if restoreda:
738
- Huggingface_token_optional=""
739
-
740
- if Huggingface_token_optional!="":
741
- username = HfApi().whoami(Huggingface_token_optional)["name"]
742
- backup=f"https://huggingface.co/datasets/{username}/fast-stable-diffusion/resolve/main/sd_backup_rnpd.tar.zst"
743
- headers = {"Authorization": f"Bearer {Huggingface_token_optional}"}
744
- response = requests.head(backup, headers=headers)
745
- if response.status_code == 302:
746
- restoreda=True
747
- print('Restoring the SD folder...')
748
- open('/workspace/sd_backup_rnpd.tar.zst', 'wb').write(requests.get(backup, headers=headers).content)
749
- call('tar --zstd -xf sd_backup_rnpd.tar.zst', shell=True)
750
- call('rm sd_backup_rnpd.tar.zst', shell=True)
751
- else:
752
- print('Backup not found, using a fresh/existing repo...')
753
- time.sleep(2)
754
- if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
755
- call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
756
- call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
757
- call('rm sd_mrep.tar.zst', shell=True)
758
- os.chdir('/workspace/sd')
759
- if not os.path.exists('stable-diffusion-webui'):
760
- call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
761
-
762
- else:
763
- print('Installing/Updating the repo...')
764
- os.chdir('/workspace')
765
- if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
766
- call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
767
- call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
768
- call('rm sd_mrep.tar.zst', shell=True)
769
-
770
- os.chdir('/workspace/sd')
771
- if not os.path.exists('stable-diffusion-webui'):
772
- call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
773
-
774
-
775
- os.chdir('/workspace/sd/stable-diffusion-webui/')
776
- call('git reset --hard', shell=True)
777
- print('')
778
- call('git pull', shell=True)
779
-
780
-
781
- if os.path.exists(MDLPTH):
782
- call('mkdir models/Lora', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
783
- call('ln -s '+os.path.dirname(MDLPTH)+' models/Lora', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
784
-
785
- if not os.path.exists('models/Stable-diffusion/sd_xl_base_1.0.safetensors'):
786
- call('ln -s /workspace/auto-models/* models/Stable-diffusion', shell=True)
787
-
788
- clean_symlinks('models/Lora')
789
-
790
- os.chdir('/workspace')
791
-
792
-
793
- call('wget -q -O /usr/local/lib/python3.10/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True)
794
-
795
- os.chdir('/workspace/sd/stable-diffusion-webui/modules')
796
-
797
- call("sed -i 's@possible_sd_paths =.*@possible_sd_paths = [\"/workspace/sd/stablediffusion\"]@' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
798
- call("sed -i 's@\.\.\/@src/@g' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
799
- call("sed -i 's@src\/generative-models@generative-models@g' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
800
-
801
- call("sed -i 's@\[\"sd_model_checkpoint\"\]@\[\"sd_model_checkpoint\", \"sd_vae\", \"CLIP_stop_at_last_layers\", \"inpainting_mask_weight\", \"initial_noise_multiplier\"\]@g' /workspace/sd/stable-diffusion-webui/modules/shared.py", shell=True)
802
- call("sed -i 's@print(\"No module.*@@' /workspace/sd/stablediffusion/ldm/modules/diffusionmodules/model.py", shell=True)
803
- os.chdir('/workspace/sd/stable-diffusion-webui')
804
- clear_output()
805
-
806
- podid=os.environ.get('RUNPOD_POD_ID')
807
- localurl=f"{podid}-3001.proxy.runpod.net"
808
-
809
- for line in fileinput.input('/usr/local/lib/python3.10/dist-packages/gradio/blocks.py', inplace=True):
810
- if line.strip().startswith('self.server_name ='):
811
- line = f' self.server_name = "{localurl}"\n'
812
- if line.strip().startswith('self.protocol = "https"'):
813
- line = ' self.protocol = "https"\n'
814
- if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'):
815
- line = ''
816
- if line.strip().startswith('else "http"'):
817
- line = ''
818
- sys.stdout.write(line)
819
-
820
-
821
- configf="--disable-console-progressbars --upcast-sampling --no-half-vae --disable-safe-unpickle --api --opt-sdp-attention --enable-insecure-extension-access --no-download-sd-model --skip-version-check --listen --port 3000 --ckpt /workspace/sd/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensors "+auth
822
-
823
-
824
- return configf, restoreda
825
-
826
-
827
-
828
-
829
- def clean():
830
-
831
- Sessions=os.listdir("/workspace/Fast-Dreambooth/Sessions")
832
-
833
- s = widgets.Select(
834
- options=Sessions,
835
- rows=5,
836
- description='',
837
- disabled=False
838
- )
839
-
840
- out=widgets.Output()
841
-
842
- d = widgets.Button(
843
- description='Remove',
844
- disabled=False,
845
- button_style='warning',
846
- tooltip='Removet the selected session',
847
- icon='warning'
848
- )
849
-
850
- def rem(d):
851
- with out:
852
- if s.value is not None:
853
- clear_output()
854
- print("THE SESSION "+s.value+" HAS BEEN REMOVED FROM THE STORAGE")
855
- call('rm -r /workspace/Fast-Dreambooth/Sessions/'+s.value, shell=True)
856
- if os.path.exists('/workspace/models/'+s.value):
857
- call('rm -r /workspace/models/'+s.value, shell=True)
858
- s.options=os.listdir("/workspace/Fast-Dreambooth/Sessions")
859
-
860
-
861
- else:
862
- d.close()
863
- s.close()
864
- clear_output()
865
- print("NOTHING TO REMOVE")
866
-
867
- d.on_click(rem)
868
- if s.value is not None:
869
- display(s,d,out)
870
- else:
871
- print("NOTHING TO REMOVE")
872
-
873
-
874
-
875
- def crop_image(im, size):
876
-
877
- import cv2
878
-
879
- GREEN = "#0F0"
880
- BLUE = "#00F"
881
- RED = "#F00"
882
-
883
- def focal_point(im, settings):
884
- corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
885
- entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
886
- face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
887
-
888
- pois = []
889
-
890
- weight_pref_total = 0
891
- if len(corner_points) > 0:
892
- weight_pref_total += settings.corner_points_weight
893
- if len(entropy_points) > 0:
894
- weight_pref_total += settings.entropy_points_weight
895
- if len(face_points) > 0:
896
- weight_pref_total += settings.face_points_weight
897
-
898
- corner_centroid = None
899
- if len(corner_points) > 0:
900
- corner_centroid = centroid(corner_points)
901
- corner_centroid.weight = settings.corner_points_weight / weight_pref_total
902
- pois.append(corner_centroid)
903
-
904
- entropy_centroid = None
905
- if len(entropy_points) > 0:
906
- entropy_centroid = centroid(entropy_points)
907
- entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
908
- pois.append(entropy_centroid)
909
-
910
- face_centroid = None
911
- if len(face_points) > 0:
912
- face_centroid = centroid(face_points)
913
- face_centroid.weight = settings.face_points_weight / weight_pref_total
914
- pois.append(face_centroid)
915
-
916
- average_point = poi_average(pois, settings)
917
-
918
- return average_point
919
-
920
-
921
- def image_face_points(im, settings):
922
-
923
- np_im = np.array(im)
924
- gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
925
-
926
- tries = [
927
- [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
928
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
929
- [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
930
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
931
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
932
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
933
- [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
934
- [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
935
- ]
936
- for t in tries:
937
- classifier = cv2.CascadeClassifier(t[0])
938
- minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
939
- try:
940
- faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
941
- minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
942
- except:
943
- continue
944
-
945
- if len(faces) > 0:
946
- rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
947
- return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
948
- return []
949
-
950
-
951
- def image_corner_points(im, settings):
952
- grayscale = im.convert("L")
953
-
954
- # naive attempt at preventing focal points from collecting at watermarks near the bottom
955
- gd = ImageDraw.Draw(grayscale)
956
- gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
957
-
958
- np_im = np.array(grayscale)
959
-
960
- points = cv2.goodFeaturesToTrack(
961
- np_im,
962
- maxCorners=100,
963
- qualityLevel=0.04,
964
- minDistance=min(grayscale.width, grayscale.height)*0.06,
965
- useHarrisDetector=False,
966
- )
967
-
968
- if points is None:
969
- return []
970
-
971
- focal_points = []
972
- for point in points:
973
- x, y = point.ravel()
974
- focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
975
-
976
- return focal_points
977
-
978
-
979
- def image_entropy_points(im, settings):
980
- landscape = im.height < im.width
981
- portrait = im.height > im.width
982
- if landscape:
983
- move_idx = [0, 2]
984
- move_max = im.size[0]
985
- elif portrait:
986
- move_idx = [1, 3]
987
- move_max = im.size[1]
988
- else:
989
- return []
990
-
991
- e_max = 0
992
- crop_current = [0, 0, settings.crop_width, settings.crop_height]
993
- crop_best = crop_current
994
- while crop_current[move_idx[1]] < move_max:
995
- crop = im.crop(tuple(crop_current))
996
- e = image_entropy(crop)
997
-
998
- if (e > e_max):
999
- e_max = e
1000
- crop_best = list(crop_current)
1001
-
1002
- crop_current[move_idx[0]] += 4
1003
- crop_current[move_idx[1]] += 4
1004
-
1005
- x_mid = int(crop_best[0] + settings.crop_width/2)
1006
- y_mid = int(crop_best[1] + settings.crop_height/2)
1007
-
1008
- return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
1009
-
1010
-
1011
- def image_entropy(im):
1012
- # greyscale image entropy
1013
- # band = np.asarray(im.convert("L"))
1014
- band = np.asarray(im.convert("1"), dtype=np.uint8)
1015
- hist, _ = np.histogram(band, bins=range(0, 256))
1016
- hist = hist[hist > 0]
1017
- return -np.log2(hist / hist.sum()).sum()
1018
-
1019
- def centroid(pois):
1020
- x = [poi.x for poi in pois]
1021
- y = [poi.y for poi in pois]
1022
- return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
1023
-
1024
-
1025
- def poi_average(pois, settings):
1026
- weight = 0.0
1027
- x = 0.0
1028
- y = 0.0
1029
- for poi in pois:
1030
- weight += poi.weight
1031
- x += poi.x * poi.weight
1032
- y += poi.y * poi.weight
1033
- avg_x = round(weight and x / weight)
1034
- avg_y = round(weight and y / weight)
1035
-
1036
- return PointOfInterest(avg_x, avg_y)
1037
-
1038
-
1039
- def is_landscape(w, h):
1040
- return w > h
1041
-
1042
-
1043
- def is_portrait(w, h):
1044
- return h > w
1045
-
1046
-
1047
- def is_square(w, h):
1048
- return w == h
1049
-
1050
-
1051
- class PointOfInterest:
1052
- def __init__(self, x, y, weight=1.0, size=10):
1053
- self.x = x
1054
- self.y = y
1055
- self.weight = weight
1056
- self.size = size
1057
-
1058
- def bounding(self, size):
1059
- return [
1060
- self.x - size//2,
1061
- self.y - size//2,
1062
- self.x + size//2,
1063
- self.y + size//2
1064
- ]
1065
-
1066
- class Settings:
1067
- def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5):
1068
- self.crop_width = crop_width
1069
- self.crop_height = crop_height
1070
- self.corner_points_weight = corner_points_weight
1071
- self.entropy_points_weight = entropy_points_weight
1072
- self.face_points_weight = face_points_weight
1073
-
1074
- settings = Settings(
1075
- crop_width = size,
1076
- crop_height = size,
1077
- face_points_weight = 0.9,
1078
- entropy_points_weight = 0.15,
1079
- corner_points_weight = 0.5,
1080
- )
1081
-
1082
- scale_by = 1
1083
- if is_landscape(im.width, im.height):
1084
- scale_by = settings.crop_height / im.height
1085
- elif is_portrait(im.width, im.height):
1086
- scale_by = settings.crop_width / im.width
1087
- elif is_square(im.width, im.height):
1088
- if is_square(settings.crop_width, settings.crop_height):
1089
- scale_by = settings.crop_width / im.width
1090
- elif is_landscape(settings.crop_width, settings.crop_height):
1091
- scale_by = settings.crop_width / im.width
1092
- elif is_portrait(settings.crop_width, settings.crop_height):
1093
- scale_by = settings.crop_height / im.height
1094
-
1095
- im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
1096
- im_debug = im.copy()
1097
-
1098
- focus = focal_point(im_debug, settings)
1099
-
1100
- # take the focal point and turn it into crop coordinates that try to center over the focal
1101
- # point but then get adjusted back into the frame
1102
- y_half = int(settings.crop_height / 2)
1103
- x_half = int(settings.crop_width / 2)
1104
-
1105
- x1 = focus.x - x_half
1106
- if x1 < 0:
1107
- x1 = 0
1108
- elif x1 + settings.crop_width > im.width:
1109
- x1 = im.width - settings.crop_width
1110
-
1111
- y1 = focus.y - y_half
1112
- if y1 < 0:
1113
- y1 = 0
1114
- elif y1 + settings.crop_height > im.height:
1115
- y1 = im.height - settings.crop_height
1116
-
1117
- x2 = x1 + settings.crop_width
1118
- y2 = y1 + settings.crop_height
1119
-
1120
- crop = [x1, y1, x2, y2]
1121
-
1122
- results = []
1123
-
1124
- results.append(im.crop(tuple(crop)))
1125
-
1126
- return results
1127
-
1128
-
1129
-
1130
- def resize_keep_aspect(DIR):
1131
-
1132
- import cv2
1133
-
1134
- min_dimension=1024
1135
-
1136
- for filename in os.listdir(DIR):
1137
- if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
1138
- image = cv2.imread(os.path.join(DIR, filename))
1139
-
1140
- org_height, org_width = image.shape[0], image.shape[1]
1141
-
1142
- if org_width < org_height:
1143
- new_width = min_dimension
1144
- new_height = int(org_height * (min_dimension / org_width))
1145
- else:
1146
- new_height = min_dimension
1147
- new_width = int(org_width * (min_dimension / org_height))
1148
-
1149
- resized_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4)
1150
-
1151
- cv2.imwrite(os.path.join(DIR, filename), resized_image, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
1152
-
1153
-
1154
-
1155
-
1156
- def clean_symlinks(path):
1157
- for item in os.listdir(path):
1158
- lnk = os.path.join(path, item)
1159
- if os.path.islink(lnk) and not os.path.exists(os.readlink(lnk)):
1160
- os.remove(lnk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scripts/runpodSD.py DELETED
@@ -1,499 +0,0 @@
1
- import os
2
- from IPython.display import clear_output
3
- from subprocess import call, getoutput, Popen, run
4
- import time
5
- import ipywidgets as widgets
6
- import requests
7
- import sys
8
- import fileinput
9
- from torch.hub import download_url_to_file
10
- from urllib.parse import urlparse, parse_qs, unquote
11
- import re
12
- import six
13
-
14
- from urllib.request import urlopen, Request
15
- import tempfile
16
- from tqdm import tqdm
17
-
18
-
19
-
20
-
21
- def Deps(force_reinstall):
22
-
23
- if not force_reinstall and os.path.exists('/usr/local/lib/python3.10/dist-packages/safetensors'):
24
- ntbks()
25
- print('Modules and notebooks updated, dependencies already installed')
26
- os.environ['TORCH_HOME'] = '/workspace/cache/torch'
27
- os.environ['PYTHONWARNINGS'] = 'ignore'
28
- else:
29
- call('pip install --root-user-action=ignore --disable-pip-version-check --no-deps -qq gdown PyWavelets numpy==1.23.5 accelerate==0.12.0 --force-reinstall', shell=True, stdout=open('/dev/null', 'w'))
30
- ntbks()
31
- if os.path.exists('deps'):
32
- call("rm -r deps", shell=True)
33
- if os.path.exists('diffusers'):
34
- call("rm -r diffusers", shell=True)
35
- call('mkdir deps', shell=True)
36
- if not os.path.exists('cache'):
37
- call('mkdir cache', shell=True)
38
- os.chdir('deps')
39
- dwn("https://huggingface.co/TheLastBen/dependencies/resolve/main/rnpddeps-t2.tar.zst", "/workspace/deps/rnpddeps-t2.tar.zst", "Installing dependencies")
40
- call('tar -C / --zstd -xf rnpddeps-t2.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
41
- call("sed -i 's@~/.cache@/workspace/cache@' /usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", shell=True)
42
- os.chdir('/workspace')
43
- call("git clone --depth 1 -q --branch main https://github.com/TheLastBen/diffusers", shell=True, stdout=open('/dev/null', 'w'))
44
- call('pip install --root-user-action=ignore --disable-pip-version-check -qq gradio==3.41.2', shell=True, stdout=open('/dev/null', 'w'))
45
- call("rm -r deps", shell=True)
46
- os.chdir('/workspace')
47
- os.environ['TORCH_HOME'] = '/workspace/cache/torch'
48
- os.environ['PYTHONWARNINGS'] = 'ignore'
49
- call("sed -i 's@text = _formatwarnmsg(msg)@text =\"\"@g' /usr/lib/python3.10/warnings.py", shell=True)
50
- clear_output()
51
-
52
- done()
53
-
54
-
55
- def dwn(url, dst, msg):
56
- file_size = None
57
- req = Request(url, headers={"User-Agent": "torch.hub"})
58
- u = urlopen(req)
59
- meta = u.info()
60
- if hasattr(meta, 'getheaders'):
61
- content_length = meta.getheaders("Content-Length")
62
- else:
63
- content_length = meta.get_all("Content-Length")
64
- if content_length is not None and len(content_length) > 0:
65
- file_size = int(content_length[0])
66
-
67
- with tqdm(total=file_size, disable=False, mininterval=0.5,
68
- bar_format=msg+' |{bar:20}| {percentage:3.0f}%') as pbar:
69
- with open(dst, "wb") as f:
70
- while True:
71
- buffer = u.read(8192)
72
- if len(buffer) == 0:
73
- break
74
- f.write(buffer)
75
- pbar.update(len(buffer))
76
- f.close()
77
-
78
-
79
- def ntbks():
80
-
81
- os.chdir('/workspace')
82
- if not os.path.exists('Latest_Notebooks'):
83
- call('mkdir Latest_Notebooks', shell=True)
84
- else:
85
- call('rm -r Latest_Notebooks', shell=True)
86
- call('mkdir Latest_Notebooks', shell=True)
87
- os.chdir('/workspace/Latest_Notebooks')
88
- call('wget -q -i https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Notebooks.txt', shell=True)
89
- call('rm Notebooks.txt', shell=True)
90
- os.chdir('/workspace')
91
-
92
-
93
- def repo(Huggingface_token_optional):
94
-
95
- from slugify import slugify
96
- from huggingface_hub import HfApi, CommitOperationAdd, create_repo
97
-
98
- os.chdir('/workspace')
99
- if Huggingface_token_optional!="":
100
- username = HfApi().whoami(Huggingface_token_optional)["name"]
101
- backup=f"https://huggingface.co/datasets/{username}/fast-stable-diffusion/resolve/main/sd_backup_rnpd.tar.zst"
102
- headers = {"Authorization": f"Bearer {Huggingface_token_optional}"}
103
- response = requests.head(backup, headers=headers)
104
- if response.status_code == 302:
105
- print('Restoring the SD folder...')
106
- open('/workspace/sd_backup_rnpd.tar.zst', 'wb').write(requests.get(backup, headers=headers).content)
107
- call('tar --zstd -xf sd_backup_rnpd.tar.zst', shell=True)
108
- call('rm sd_backup_rnpd.tar.zst', shell=True)
109
- else:
110
- print('Backup not found, using a fresh/existing repo...')
111
- time.sleep(2)
112
- if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
113
- call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
114
- call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
115
- call('rm sd_mrep.tar.zst', shell=True)
116
- os.chdir('/workspace/sd')
117
- if not os.path.exists('SD'):
118
- call('git clone -q --depth 1 --branch main https://github.com/apollo812/SD', shell=True)
119
-
120
- else:
121
- print('Installing/Updating the repo...')
122
- os.chdir('/workspace')
123
- if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
124
- call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
125
- call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
126
- call('rm sd_mrep.tar.zst', shell=True)
127
-
128
- os.chdir('/workspace/sd')
129
- if not os.path.exists('SD'):
130
- call('git clone -q --depth 1 --branch main https://github.com/apollo812/SD', shell=True)
131
-
132
-
133
- os.chdir('/workspace/sd/SD/')
134
- call('git reset --hard', shell=True)
135
- print('')
136
- call('git pull', shell=True)
137
- os.chdir('/workspace')
138
- clear_output()
139
- done()
140
-
141
-
142
-
143
- def mdl(Original_Model_Version, Path_to_MODEL, MODEL_LINK):
144
-
145
- import gdown
146
-
147
- src=getsrc(MODEL_LINK)
148
-
149
- if not os.path.exists('/workspace/sd/SD/models/Stable-diffusion/SDv1-5.ckpt'):
150
- call('ln -s /workspace/auto-models/* /workspace/sd/SD/models/Stable-diffusion', shell=True)
151
-
152
- if Path_to_MODEL !='':
153
- if os.path.exists(str(Path_to_MODEL)):
154
- print('Using the custom model')
155
- model=Path_to_MODEL
156
- else:
157
- print('Wrong path, check that the path to the model is correct')
158
-
159
- elif MODEL_LINK !="":
160
-
161
- if src=='civitai':
162
- modelname=get_name(MODEL_LINK, False)
163
- model=f'/workspace/sd/SD/models/Stable-diffusion/{modelname}'
164
- if not os.path.exists(model):
165
- dwn(MODEL_LINK, model, 'Downloading the custom model')
166
- clear_output()
167
- else:
168
- print('Model already exists')
169
- elif src=='gdrive':
170
- modelname=get_name(MODEL_LINK, True)
171
- model=f'/workspace/sd/SD/models/Stable-diffusion/{modelname}'
172
- if not os.path.exists(model):
173
- gdown.download(url=MODEL_LINK, output=model, quiet=False, fuzzy=True)
174
- clear_output()
175
- else:
176
- print('Model already exists')
177
- else:
178
- modelname=os.path.basename(MODEL_LINK)
179
- model=f'/workspace/sd/SD/models/Stable-diffusion/{modelname}'
180
- if not os.path.exists(model):
181
- gdown.download(url=MODEL_LINK, output=model, quiet=False, fuzzy=True)
182
- clear_output()
183
- else:
184
- print('Model already exists')
185
-
186
- if os.path.exists(model) and os.path.getsize(model) > 1810671599:
187
- print('Model downloaded, using the custom model.')
188
- else:
189
- call('rm '+model, shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
190
- print('Wrong link, check that the link is valid')
191
-
192
- else:
193
- if Original_Model_Version == "v1.5":
194
- model="/workspace/sd/SD/models/Stable-diffusion/SDv1-5.ckpt"
195
- print('Using the original V1.5 model')
196
- elif Original_Model_Version == "v2-512":
197
- model='/workspace/sd/SD/models/Stable-diffusion/SDv2-512.ckpt'
198
- if not os.path.exists('/workspace/sd/SD/models/Stable-diffusion/SDv2-512.ckpt'):
199
- print('Downloading the V2-512 model...')
200
- call('gdown -O '+model+' https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-nonema-pruned.ckpt', shell=True)
201
- clear_output()
202
- print('Using the original V2-512 model')
203
- elif Original_Model_Version == "v2-768":
204
- model="/workspace/sd/SD/models/Stable-diffusion/SDv2-768.ckpt"
205
- print('Using the original V2-768 model')
206
- elif Original_Model_Version == "SDXL":
207
- model="/workspace/sd/SD/models/Stable-diffusion/sd_xl_base_1.0.safetensors"
208
- print('Using the original SDXL model')
209
-
210
- else:
211
- model="/workspace/sd/SD/models/Stable-diffusion"
212
- print('Wrong model version, try again')
213
- try:
214
- model
215
- except:
216
- model="/workspace/sd/SD/models/Stable-diffusion"
217
-
218
- return model
219
-
220
-
221
- def loradwn(LoRA_LINK):
222
-
223
- if LoRA_LINK=='':
224
- print('Nothing to do')
225
- else:
226
- os.makedirs('/workspace/sd/SD/models/Lora', exist_ok=True)
227
-
228
- src=getsrc(LoRA_LINK)
229
-
230
- if src=='civitai':
231
- modelname=get_name(LoRA_LINK, False)
232
- loramodel=f'/workspace/sd/SD/models/Lora/{modelname}'
233
- if not os.path.exists(loramodel):
234
- dwn(LoRA_LINK, loramodel, 'Downloading the LoRA model')
235
- clear_output()
236
- else:
237
- print('Model already exists')
238
- elif src=='gdrive':
239
- modelname=get_name(LoRA_LINK, True)
240
- loramodel=f'/workspace/sd/SD/models/Lora/{modelname}'
241
- if not os.path.exists(loramodel):
242
- gdown.download(url=LoRA_LINK, output=loramodel, quiet=False, fuzzy=True)
243
- clear_output()
244
- else:
245
- print('Model already exists')
246
- else:
247
- modelname=os.path.basename(LoRA_LINK)
248
- loramodel=f'/workspace/sd/SD/models/Lora/{modelname}'
249
- if not os.path.exists(loramodel):
250
- gdown.download(url=LoRA_LINK, output=loramodel, quiet=False, fuzzy=True)
251
- clear_output()
252
- else:
253
- print('Model already exists')
254
-
255
- if os.path.exists(loramodel) :
256
- print('LoRA downloaded')
257
- else:
258
- print('Wrong link, check that the link is valid')
259
-
260
-
261
-
262
- def CNet(ControlNet_Model, ControlNet_XL_Model):
263
-
264
- def download(url, model_dir):
265
-
266
- filename = os.path.basename(urlparse(url).path)
267
- pth = os.path.abspath(os.path.join(model_dir, filename))
268
- if not os.path.exists(pth):
269
- print('Downloading: '+os.path.basename(url))
270
- download_url_to_file(url, pth, hash_prefix=None, progress=True)
271
- else:
272
- print(f"The model {filename} already exists")
273
-
274
- wrngv1=False
275
- os.chdir('/workspace/sd/SD/extensions')
276
- if not os.path.exists("sd-webui-controlnet"):
277
- call('git clone https://github.com/Mikubill/sd-webui-controlnet.git', shell=True)
278
- os.chdir('/workspace')
279
- else:
280
- os.chdir('sd-webui-controlnet')
281
- call('git reset --hard', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
282
- call('git pull', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
283
- os.chdir('/workspace')
284
-
285
- mdldir="/workspace/sd/SD/extensions/sd-webui-controlnet/models"
286
- for filename in os.listdir(mdldir):
287
- if "_sd14v1" in filename:
288
- renamed = re.sub("_sd14v1", "-fp16", filename)
289
- os.rename(os.path.join(mdldir, filename), os.path.join(mdldir, renamed))
290
-
291
- call('wget -q -O CN_models.txt https://github.com/TheLastBen/fast-stable-diffusion/raw/main/AUTOMATIC1111_files/CN_models.txt', shell=True)
292
- call('wget -q -O CN_models_XL.txt https://github.com/TheLastBen/fast-stable-diffusion/raw/main/AUTOMATIC1111_files/CN_models_XL.txt', shell=True)
293
-
294
- with open("CN_models.txt", 'r') as f:
295
- mdllnk = f.read().splitlines()
296
- with open("CN_models_XL.txt", 'r') as d:
297
- mdllnk_XL = d.read().splitlines()
298
- call('rm CN_models.txt CN_models_XL.txt', shell=True)
299
-
300
- os.chdir('/workspace')
301
-
302
- if ControlNet_Model == "All" or ControlNet_Model == "all" :
303
- for lnk in mdllnk:
304
- download(lnk, mdldir)
305
- clear_output()
306
-
307
-
308
- elif ControlNet_Model == "15":
309
- mdllnk=list(filter(lambda x: 't2i' in x, mdllnk))
310
- for lnk in mdllnk:
311
- download(lnk, mdldir)
312
- clear_output()
313
-
314
-
315
- elif ControlNet_Model.isdigit() and int(ControlNet_Model)-1<14 and int(ControlNet_Model)>0:
316
- download(mdllnk[int(ControlNet_Model)-1], mdldir)
317
- clear_output()
318
-
319
- elif ControlNet_Model == "none":
320
- pass
321
- clear_output()
322
-
323
- else:
324
- print('Wrong ControlNet V1 choice, try again')
325
- wrngv1=True
326
-
327
-
328
- if ControlNet_XL_Model == "All" or ControlNet_XL_Model == "all" :
329
- for lnk_XL in mdllnk_XL:
330
- download(lnk_XL, mdldir)
331
- if not wrngv1:
332
- clear_output()
333
- done()
334
-
335
- elif ControlNet_XL_Model.isdigit() and int(ControlNet_XL_Model)-1<5:
336
- download(mdllnk_XL[int(ControlNet_XL_Model)-1], mdldir)
337
- if not wrngv1:
338
- clear_output()
339
- done()
340
-
341
- elif ControlNet_XL_Model == "none":
342
- pass
343
- if not wrngv1:
344
- clear_output()
345
- done()
346
-
347
- else:
348
- print('Wrong ControlNet XL choice, try again')
349
-
350
-
351
-
352
- def sd(User, Password, model):
353
-
354
- import gradio
355
-
356
- gradio.close_all()
357
-
358
- auth=f"--gradio-auth {User}:{Password}"
359
- if User =="" or Password=="":
360
- auth=""
361
-
362
- call('wget -q -O /usr/local/lib/python3.10/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True)
363
-
364
- os.chdir('/workspace/sd/SD/modules')
365
-
366
- call("sed -i 's@possible_sd_paths =.*@possible_sd_paths = [\"/workspace/sd/stablediffusion\"]@' /workspace/sd/SD/modules/paths.py", shell=True)
367
- call("sed -i 's@\.\.\/@src/@g' /workspace/sd/SD/modules/paths.py", shell=True)
368
- call("sed -i 's@src\/generative-models@generative-models@g' /workspace/sd/SD/modules/paths.py", shell=True)
369
-
370
- call("sed -i 's@\[\"sd_model_checkpoint\"\]@\[\"sd_model_checkpoint\", \"sd_vae\", \"CLIP_stop_at_last_layers\", \"inpainting_mask_weight\", \"initial_noise_multiplier\"\]@g' /workspace/sd/SD/modules/shared.py", shell=True)
371
-
372
- call("sed -i 's@print(\"No module.*@@' /workspace/sd/stablediffusion/ldm/modules/diffusionmodules/model.py", shell=True)
373
- os.chdir('/workspace/sd/SD')
374
- clear_output()
375
-
376
- podid=os.environ.get('RUNPOD_POD_ID')
377
- localurl=f"{podid}-3001.proxy.runpod.net"
378
-
379
- for line in fileinput.input('/usr/local/lib/python3.10/dist-packages/gradio/blocks.py', inplace=True):
380
- if line.strip().startswith('self.server_name ='):
381
- line = f' self.server_name = "{localurl}"\n'
382
- if line.strip().startswith('self.protocol = "https"'):
383
- line = ' self.protocol = "https"\n'
384
- if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'):
385
- line = ''
386
- if line.strip().startswith('else "http"'):
387
- line = ''
388
- sys.stdout.write(line)
389
-
390
- if model=="":
391
- mdlpth=""
392
- else:
393
- if os.path.isfile(model):
394
- mdlpth="--ckpt "+model
395
- else:
396
- mdlpth="--ckpt-dir "+model
397
-
398
- configf="--disable-console-progressbars --no-half-vae --disable-safe-unpickle --api --no-download-sd-model --opt-sdp-attention --enable-insecure-extension-access --skip-version-check --listen --port 3000 "+auth+" "+mdlpth
399
-
400
- return configf
401
-
402
-
403
-
404
- def save(Huggingface_Write_token):
405
-
406
- from slugify import slugify
407
- from huggingface_hub import HfApi, CommitOperationAdd, create_repo
408
-
409
- if Huggingface_Write_token=="":
410
- print('A huggingface write token is required')
411
-
412
- else:
413
- os.chdir('/workspace')
414
-
415
- if os.path.exists('sd'):
416
-
417
- call('tar --exclude="SD/models/*/*" --exclude="sd-webui-controlnet/models/*" --zstd -cf sd_backup_rnpd.tar.zst sd', shell=True)
418
- api = HfApi()
419
- username = api.whoami(token=Huggingface_Write_token)["name"]
420
-
421
- repo_id = f"{username}/{slugify('fast-stable-diffusion')}"
422
-
423
- print("Backing up...")
424
-
425
- operations = [CommitOperationAdd(path_in_repo="sd_backup_rnpd.tar.zst", path_or_fileobj="/workspace/sd_backup_rnpd.tar.zst")]
426
-
427
- create_repo(repo_id,private=True, token=Huggingface_Write_token, exist_ok=True, repo_type="dataset")
428
-
429
- api.create_commit(
430
- repo_id=repo_id,
431
- repo_type="dataset",
432
- operations=operations,
433
- commit_message="SD folder Backup",
434
- token=Huggingface_Write_token
435
- )
436
-
437
- call('rm sd_backup_rnpd.tar.zst', shell=True)
438
- clear_output()
439
-
440
- done()
441
-
442
- else:
443
- print('Nothing to backup')
444
-
445
-
446
-
447
-
448
- def getsrc(url):
449
-
450
- parsed_url = urlparse(url)
451
-
452
- if parsed_url.netloc == 'civitai.com':
453
- src='civitai'
454
- elif parsed_url.netloc == 'drive.google.com':
455
- src='gdrive'
456
- elif parsed_url.netloc == 'huggingface.co':
457
- src='huggingface'
458
- else:
459
- src='others'
460
- return src
461
-
462
-
463
-
464
- def get_name(url, gdrive):
465
-
466
- from gdown.download import get_url_from_gdrive_confirmation
467
-
468
- if not gdrive:
469
- response = requests.get(url, allow_redirects=False)
470
- if "Location" in response.headers:
471
- redirected_url = response.headers["Location"]
472
- quer = parse_qs(urlparse(redirected_url).query)
473
- if "response-content-disposition" in quer:
474
- disp_val = quer["response-content-disposition"][0].split(";")
475
- for vals in disp_val:
476
- if vals.strip().startswith("filename="):
477
- filenm=unquote(vals.split("=", 1)[1].strip())
478
- return filenm.replace("\"","")
479
- else:
480
- headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"}
481
- lnk="https://drive.google.com/uc?id={id}&export=download".format(id=url[url.find("/d/")+3:url.find("/view")])
482
- res = requests.session().get(lnk, headers=headers, stream=True, verify=True)
483
- res = requests.session().get(get_url_from_gdrive_confirmation(res.text), headers=headers, stream=True, verify=True)
484
- content_disposition = six.moves.urllib_parse.unquote(res.headers["Content-Disposition"])
485
- filenm = re.search(r"filename\*=UTF-8''(.*)", content_disposition).groups()[0].replace(os.path.sep, "_")
486
- return filenm
487
-
488
-
489
-
490
-
491
- def done():
492
- done = widgets.Button(
493
- description='Done!',
494
- disabled=True,
495
- button_style='success',
496
- tooltip='',
497
- icon='check'
498
- )
499
- display(done)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
default/train/0000.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7417b2b721df95568514a010f6c9e1327720c78470972915af79b57a3db44df1
3
+ size 1366