Update README.md
Browse files
README.md
CHANGED
@@ -24,11 +24,9 @@ demonstrated strong performance with F1-scores above 95% across all models. The
|
|
24 |
across different text domains, with models fine-tuned on NERsocial showing better transferability compared to those trained
|
25 |
on similar datasets like WNUT. This makes NERsocial particularly valuable for developing NER systems that can handle both formal
|
26 |
and informal communication in HRI applications.
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
***
|
31 |
|
|
|
32 |
```
|
33 |
{
|
34 |
'tokens': {"0": ["Poco", "Bueno", "was", "a", "American", "Quarter", "Horse", "stallion", "foaled", "April", "10", ",", "1944", "."], "1": ["Formal", "breeds", "often", "considered", "to", "be", "of", "the", "pit", "bull", "type", "include", "the", "American", "Pit", "Bull", "Terrier", ",", "American", "Staffordshire", "Terrier", ",", "American", "Bully", ",", "and", "Staffordshire", "Bull", "Terrier", "."], ... },
|
@@ -61,3 +59,19 @@ ids_to_labels = {v: k for k, v in labels_to_ids.items()}
|
|
61 |
|
62 |
### Usage and License Notices
|
63 |
The data is provided under an MIT license, so feel free to use it outside of research purposes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
across different text domains, with models fine-tuned on NERsocial showing better transferability compared to those trained
|
25 |
on similar datasets like WNUT. This makes NERsocial particularly valuable for developing NER systems that can handle both formal
|
26 |
and informal communication in HRI applications.
|
|
|
|
|
|
|
27 |
***
|
28 |
|
29 |
+
### Data Format
|
30 |
```
|
31 |
{
|
32 |
'tokens': {"0": ["Poco", "Bueno", "was", "a", "American", "Quarter", "Horse", "stallion", "foaled", "April", "10", ",", "1944", "."], "1": ["Formal", "breeds", "often", "considered", "to", "be", "of", "the", "pit", "bull", "type", "include", "the", "American", "Pit", "Bull", "Terrier", ",", "American", "Staffordshire", "Terrier", ",", "American", "Bully", ",", "and", "Staffordshire", "Bull", "Terrier", "."], ... },
|
|
|
59 |
|
60 |
### Usage and License Notices
|
61 |
The data is provided under an MIT license, so feel free to use it outside of research purposes.
|
62 |
+
|
63 |
+
### Citation
|
64 |
+
|
65 |
+
If you use this dataset, please cite as follows:
|
66 |
+
|
67 |
+
```
|
68 |
+
@misc{atuhurra2024nersocialefficientnamedentity,
|
69 |
+
title={NERsocial: Efficient Named Entity Recognition Dataset Construction for Human-Robot Interaction Utilizing RapidNER},
|
70 |
+
author={Jesse Atuhurra and Hidetaka Kamigaito and Hiroki Ouchi and Hiroyuki Shindo and Taro Watanabe},
|
71 |
+
year={2024},
|
72 |
+
eprint={2412.09634},
|
73 |
+
archivePrefix={arXiv},
|
74 |
+
primaryClass={cs.CL},
|
75 |
+
url={https://arxiv.org/abs/2412.09634},
|
76 |
+
}
|
77 |
+
```
|