Datasets:

Modalities:
Audio
Text
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
File size: 3,789 Bytes
1a16f09
 
 
 
 
 
 
 
 
 
 
 
 
ccf8b20
 
 
1a16f09
 
 
 
 
ccf8b20
1a16f09
 
ccf8b20
1a16f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262602c
1a16f09
 
 
 
 
 
ccf8b20
1a16f09
ccf8b20
1a16f09
262602c
 
 
 
 
1a16f09
 
 
 
 
 
147f1cd
1a16f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c6487b
1a16f09
 
 
 
 
147f1cd
1a16f09
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""HuggingFace loading script for the JamALT dataset."""


import csv
from dataclasses import dataclass
import json
import os
from pathlib import Path
from typing import Optional

import datasets


_VERSION = "0.0.0"


# TODO: Add BibTeX citation
_CITATION = """\
"""

_DESCRIPTION = """\
Jam-ALT: A formatting-aware lyrics transcription benchmark.
"""

_HOMEPAGE = "https://audioshake.github.io/jam-alt"

_METADATA_FILENAME = "metadata.csv"


_LANGUAGE_NAME_TO_CODE = {
    "English": "en",
    "French": "fr",
    "German": "de",
    "Spanish": "es",
}


@dataclass
class JamAltBuilderConfig(datasets.BuilderConfig):
    language: Optional[str] = None
    with_audio: bool = True
    decode_audio: bool = True
    sampling_rate: Optional[int] = None
    mono: bool = True


class JamAltDataset(datasets.GeneratorBasedBuilder):
    _DESCRIPTION

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIG_CLASS = JamAltBuilderConfig
    BUILDER_CONFIGS = [JamAltBuilderConfig("all")] + [
        JamAltBuilderConfig(lang, language=lang)
        for lang in _LANGUAGE_NAME_TO_CODE.values()
    ]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        feat_dict = {
            "name": datasets.Value("string"),
            "text": datasets.Value("string"),
            "language": datasets.Value("string"),
            "license_type": datasets.Value("string"),
        }
        if self.config.with_audio:
            feat_dict["audio"] = datasets.Audio(
                decode=self.config.decode_audio,
                sampling_rate=self.config.sampling_rate,
                mono=self.config.mono,
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(feat_dict),
            supervised_keys=("audio", "text") if "audio" in feat_dict else None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        metadata_path = dl_manager.download(_METADATA_FILENAME)

        audio_paths, text_paths, metadata = [], [], []
        with open(metadata_path, encoding="utf-8") as f:
            for row in csv.DictReader(f):
                if (
                    self.config.language is None
                    or _LANGUAGE_NAME_TO_CODE[row["Language"]] == self.config.language
                ):
                    audio_paths.append("audio/" + row["Filepath"])
                    text_paths.append(
                        "lyrics/" + os.path.splitext(row["Filepath"])[0] + ".txt"
                    )
                    metadata.append(row)

        text_paths = dl_manager.download(text_paths)
        audio_paths = (
            dl_manager.download(audio_paths) if self.config.with_audio else None
        )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs=dict(
                    text_paths=text_paths,
                    audio_paths=audio_paths,
                    metadata=metadata,
                ),
            ),
        ]

    def _generate_examples(self, text_paths, audio_paths, metadata):
        if audio_paths is None:
            audio_paths = [None] * len(text_paths)
        for text_path, audio_path, meta in zip(text_paths, audio_paths, metadata):
            name = os.path.splitext(meta["Filepath"])[0]
            with open(text_path, encoding="utf-8") as text_f:
                record = {
                    "name": name,
                    "text": text_f.read(),
                    "language": _LANGUAGE_NAME_TO_CODE[meta["Language"]],
                    "license_type": meta["LicenseType"],
                }
            if audio_path is not None:
                record["audio"] = audio_path
            yield name, record